
Citation: Cutugno, M.; Giani, A.;

Alsing, P.M.; Wessing, L.; Schnore, A.

Quantum Computing Approaches

for Mission Covering Optimization.

Algorithms 2022, 15, 224. https://

doi.org/10.3390/a15070224

Academic Editor: Vangelis Th.

Paschos

Received: 18 May 2022

Accepted: 16 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Quantum Computing Approaches for Mission
Covering Optimization
Massimiliano Cutugno 1,*, Annarita Giani 2, Paul M. Alsing 1 , Laura Wessing 1 and Austar Schnore 2

1 Air Force Research Lab, Information Directorate, Rome, NY 13441, USA; paul.alsing@us.af.mil (P.M.A.);
laura.wessing.1@us.af.mil (L.W.)

2 GE Research, General Electric, Niskayuna, NY 12309, USA
* Correspondence: massimiliano.cutugno@us.af.mil

Abstract: Quantum computing has the potential to revolutionize the way hard computational prob-
lems are solved in terms of speed and accuracy. Quantum hardware is an active area of research and
different hardware platforms are being developed. Quantum algorithms target each hardware imple-
mentation and bring advantages to specific applications. The focus of this paper is to compare how
well quantum annealing techniques and the QAOA models constrained optimization problems. As a
use case, a constrained optimization problem called mission covering optimization is used. Quantum
annealing is implemented in adiabatic hardware such as D-Wave, and QAOA is implemented in
gate-based hardware such as IBM. This effort provides results in terms of cost, timing, constraints
held, and qubits used.

Keywords: quantum computing; quantum annealing; NISQ devices; constrained optimization;
constraint satisfaction problems

1. Introduction

Quantum computing hardware is quickly developing [1] together with the theory of
quantum computing algorithms [2]. Problems historically solved classically have been
translated into quantum computing formulations [3–6], and these formulations differ even
within the various quantum hardware types. In this work, we explore how well constrained
optimization can be implemented between two well-known quantum computing hardware
types, (i) adiabatic, and (ii) the gate-based. Many constrained optimization problems can be
formulated into Quadratic Unconstrained Binary Optimization (QUBO) in which adiabatic
and gate-based hardware types solve via quantum annealing and QAOA, respectively.

To perform our analysis, we choose a constrained optimization problem that can be
implemented on current gate-based and annealing hardware. Job-shop scheduling [7] is one
particular NP-Hard constrained optimization problem with many applications in industry;
it is intractable to obtain exact solutions on classical hardware. There are efforts to compose
job-shop scheduling onto quantum hardware [8]; however, this requires many ancillary
qubits to encode the many constraints that come with the problem. This is not ideal for
current gate-based hardware, as the machines that are used are very limited in qubits.
Another industry-useful NP-Hard problem is the generalized assignment problem [9,10].
The formulation of general assignment on gate-based architecture is also bottlenecked by
the qubit amount due to the inequality constraints that are encoded within it. Motivated by
the applicability of these classically intractable problems, we construct a new optimization
problem we coin as Mission Covering Optimization (MCO) that we believe meets the
criteria for our analysis as it is implementable on current quantum hardware (both adiabatic
and gate-based) while still having applicability (when scaled) in the industry. Furthermore,
specific scenarios of MCO can be designed to set the number of constraints. This is
important for analyzing how the implementation may change when additional constraints
are added to each problem.

Algorithms 2022, 15, 224. https://doi.org/10.3390/a15070224 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070224
https://doi.org/10.3390/a15070224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0467-5200
https://doi.org/10.3390/a15070224
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070224?type=check_update&version=1

Algorithms 2022, 15, 224 2 of 21

The goal of this paper is to assess the performance of each algorithm used when
solving a particular Mission Covering Optimization problem. Variations of MCO problems
are of great interest to industry as well as government. Manufacturing operations, for
example, require covering a set of steps with a number of needed resources. Airline network
optimization consists in best allocating airplanes, pilots, flight attendants, and maintenance
crew [11]. Military missions success is the result of a large number of resources working
together for a common goal. Optimizing these processes will bring great societal benefits.

MCO describes a problem in which a set of missions are to be performed given
constraints on the available resources, where missions are organized efforts to achieve an
objective. Examples of mission types include industrial, logistic, and militaristic, where
the problem can be anything from transporting packages to destinations to efficiently
producing and maintaining equipment devices [8,12]. The global solutions to such problem
are computationally challenging. It is a complex optimization problem [13], often non-
convex. Heuristic approaches are used to find feasible solutions, but they depend on
domain knowledge and problem decomposition, leading to inaccurate solutions. Therefore,
this category of problems is a good candidate for quantum acceleration. In this effort, we
will address an abstraction of a real MCO problem.

We formulate the problem for a Quantum Annealer, specifically the D-Wave quantum
computer, as well as investigate the formulation for a gate-based model approach, specifi-
cally the IBM quantum computer. By using the results from the Quantum Processing Unit
(QPU) and through simulations, we present strengths and weaknesses found with both
models, and outline the fundamentals of this new type of optimization problem.

1.1. Quantum Solutions to MCO

As briefly introduced before, we use three types of optimization problems in this study
on the two different types of quantum machines. We summarize each technique in the
following text.

1.1.1. Quantum Annealing (QA)

Quantum Annealing is a quantum optimization methodology performed on a specific
implementation of quantum computers such as D-Wave quantum annealing machines.
It is an adiabatic quantum computing technique that capitalizes on a unique feature of
quantum mechanics, e.g., quantum tunneling, which is the capability to surf and dive
through an energy landscape until it hits a minimum energy level [14]. This property of
quantum mechanics is engineered to solve Quadratic Unconstrained Binary Optimization
problems [15]. QUBO is a type of optimization problem where the solution is a binary
vector that minimizes an objective function described with terms up to a quadratic degree.
These problems are unconstrained, but there are methods to incorporate the behavior of
constraints [16] into the cost function. To encode an MCO onto a quantum annealing
machine, we must translate the objective function into a QUBO.

1.1.2. Quantum Alternating Operator Ansatz (QAOA)

Quantum Alternating Operator Ansatz (QAOA) is a method for solving combinatorial
optimization problems on NISQ devices [17]. The algorithm is supported by gate-based
quantum computers such as the IBM, Rigetti, IonQ or Xanadu machines. In this effort, we
focus on implementing the problem on an IBM quantum computer [18]. At the current time,
IBM’s Qiskit implementation of QAOA uses a Variational Quantum Eigensolver (VQE)
to find the expectance of a parameterized ansatz eigenstate. This quantity is then used to
calculate the minimum of the cost function, which is embedded in a cost Hamiltonian HC.
Similar to QA, it is limited to solving binary quadratic problems [19].

1.1.3. Quantum Alternating Operator Ansatz with Constraint Hamiltonian (QAOAH)

In QAOA, the starting state is in an equal superposition of all computational basis
states, and the mixing Hamiltonian is a sum of Pauli-X operators acting on each qubit.

Algorithms 2022, 15, 224 3 of 21

In this configuration, every possible classical-state solution can be traversed, making it
ideal for unconstrained problems where there are no states to be filtered out. However,
it is possible to incorporate constraints by altering the default mixing Hamiltonian HM
and the initial quantum state |ψ〉 [20]. Since the mixing operator (the exponentiated
mixing Hamiltonian) specifies how to explore the solution space, it is possible to specify a
mixing operator that determines how to move to another solution within the constraints of
the problem.

Consider an initial quantum state |ψ〉, which represents a solution that does not violate
the constraints of the optimization problem but is not necessarily the minimizer. Consider
the mixing operator HM that is constructed such that after an application on a state within
the constrained space, the output state is also guaranteed to be within the constrained
space. The idea is to construct HM and |ψ〉 so that when stopping QAOA at any iteration,
the final encoded solution is always within the constrained solution space. If this mixing
operator can mix such that it allows the algorithm to reach every possible classical-state
in the constrained solution space, it is then possible to obtain the minimizer in that same
space [20].

1.2. Paper Outline

This paper is divided into four main sections. Section 2 describes MCO in greater
formal detail. Section 3 outlines two different scenarios of MCO that are tested in this
study. Section 4 details how each scenario is implemented using three different algorithmic
techniques. Section 5 describes the results of each scenario and compares the different
algorithmic techniques by cost, timing, and constraint-holding metrics. In Section 6, we
summarize and conclude our findings of this work. Lastly, Section 7 discusses research
directions for future work.

2. Formalism for Mission Covering Optimization

The objective of an MCO problem is to allocate a set of resources to missions such
that each resource is assigned to at most one mission, and each mission’s requirements
are satisfied.

An MCO problem is described by a 7-tuple:

(M, R, Q, C, REQM, REQR, fobj)

1. M is the set of missions,
2. R is the set of resources,
3. Q is the set of qualifications,
4. C is the capability function,
5. REQM is the mission’s requirements function,
6. REQR is the resource’s requirements function,
7. fobj is the objective function that scores problem solutions.

In the rest of this section, these terms will be explained in detail.

2.1. Missions

Missions are operations to achieve specific results. They require resources for specific
tasks. For example, a mission could be transporting children to school. The resources are
the buses and the bus drivers. In manufacturing, a mission could represent the process
of building an asset from design to delivery. It includes design, engineering, sourcing,
suppliers, production, control, and packaging. NM denotes the number of missions. In
an MCO, missions need to be completed at the same time; we denote the mission set as
M = {m1, m2, . . . , mNM}.

Algorithms 2022, 15, 224 4 of 21

2.2. Resources

R represents the set of all resources. Resources are all the assets needed for mission
completion. Resources can be objects, machines or people. For example, a given MCO may
define its resources as four planes, four pilots and two engineers. R = {r1, r2, . . . , rNR} is
the set of NR resources within the MCO.

2.3. Qualifications

Q represents the set of all qualifications. Resources are specialized in the sense that
they have qualifications, and they can be assigned to the mission that requests a resource
with such qualification. For example, ‘Can transport’, ‘Can pilot’, and ‘Can troubleshoot’
are qualifications a mission may require. NQ is the number of qualifications in the set
Q = {q1, . . . , qNQ}.

2.4. Capabilities

C represents the capability function. Each resource is scored for its qualifications.
Capabilities are integer numbers that represent how well a resource can perform a certain
qualification. The higher the number, the more qualified the resource is. For example, con-
sider the resource set composed of a senior engineer, intern engineer, and an HR Manager
and with capabilities of 2, 1, 0, respectively, to a certain qualification titled ‘troubleshoot
carburetor’. This reflects the fact that the senior engineer has a higher capability than the
intern engineer to ’troubleshoot carburetor’ because he/she is more experienced in the field.
Conversely, the HR manager has no qualification capability to ‘troubleshoot carburetor’;
therefore, has a score of zero. Capability is the function

C : R×Q→ Z≥0,

which returns zero if and only if the resource is not qualified for the specified qualification.
When this happens, we say that this resource has no capability for that qualification.

Missions require resources with specific qualifications. For example, mission m1
requires n resources with qualification q1 where m1 ∈ M, n ∈ N and q1 ∈ Q, which
represents ‘mission 1 requires n resources that can fly a plane’ (q1). We assume that
resources with higher capability for certain qualifications are chosen.

2.5. Mission’s Requirements

The mission’s requirement function is described as

REQM : M×Q→ N,

This function returns the number of required resources that satisfy the qualification
needed for that mission.

2.6. Resource’s Requirements

The resource’s requirement function is described as

REQR : R×Q→ N,

This function returns the number of required resources that satisfy the qualification
needed for that resource.

2.7. Solutions and Solution Score

A solution of the MCO is defined as a function that associates resources to missions

fs : R→ M,

Algorithms 2022, 15, 224 5 of 21

If NF is the number of functions that are the solutions of the MCO, then
F = { f1, f2, . . . , fNF} is the set of all possible solutions. The goal is to find the best so-
lution in which all missions meet requirements as well as possible. The objective function
maps solutions to real numbers, which measures how far off each solution is from meeting
requirements. The objective function represents a cost function:

fobj : Fs → R

s.t.
Fs = {{(m, r) ∈ M× R | m = fs(r)} | fs : R→ M}.

Therefore, the best solution to an MCO is achieved by minimizing the objective
function and retrieving the minimizer.

3. MCO Scenarios

The MCO optimization problem involves the parameters (missions, resources, mis-
sion require, resource require). From this, there are different metrics of cost that can be
used to represent the objective function. Two specific MCO scenarios are formalized and
implemented on different quantum computing hardware machines. These scenarios are
not computationally difficult to compute classically. However, the design of these scenarios
is intentional for comparing results in this study, as brute force methods for finding the
absolute best cost-minimizers can be used without being throttled by the exponential time
complexity since the scenarios are designed to be permutationally symmetric. The primary
focus of each of these readily solvable MCO scenarios is to identify how well each algorithm
implementation performs when constraints are introduced. Results are compared in terms
of cost, timing, and constraints met. In the general MCO formulation, resources can be
assigned to at most one mission so that resources could be unused. In this paper, in both
scenarios, it is assumed that each resource is assigned to one and only one mission. This is
acheieved by introducing an additional mission that includes the unused resources. The
following subsections describe each scenario.

3.1. Scenario 1: Primary and Secondary Resources

The first scenario involves two categories of resources: primary and secondary. Pri-
mary resources are ready to be used for mission completion. Secondary resources are
allocated when primary resources are not able to perform their duty. Primary resources
that cannot be allocated to missions are removed from the set of primary resources. For
example, the mission covering optimization solution shown in Figure 1 is composed of
three missions requiring three, two and two resources, respectively, for mission completions.
Real-world applications are aeronautical missions and operations with pilots as resources.
This particular example is used throughout the paper. Suppose in the planning phase that
seven pilots were allocated to cover the three missions; they are on-duty (in the primary
resource set), and three other pilots are on-call (in the secondary resource set). Suppose
at a certain point in time, two of the pilots became sick, and they were removed from the
resource group. This is an emergency, an unforeseen situation that requires re-running an
optimization algorithm to cover the missions, including secondary resources. The pilots
are pulled from the set of five pilots on-duty, ready to cover the missions and two pilots
from the secondary resource set should also be included. The challenge is to find the best
allocation of pilots to missions using all the pilots on-duty and two pilots on-call. The goal
of our effort is to use quantum computing to solve this problem and analyze results from
different quantum computing hardware implementations.

The following outlines all the rules in this specific scenario:

1. The set of missions in the problem is M = {m1, . . . , mNm−1, U}.
2. The set of resources is R = {r1, . . . , rNr}.
3. There only exists one qualification, which is the ability to fly a plane, Q = {q1}.

Algorithms 2022, 15, 224 6 of 21

4. Resources can have a capability of 1 or 2. Therefore, the capability function is then
C : R×Q→ {1, 2}. This is a way to represent how ready the resource is to be allocated
to a mission. It can be thought of as an ordering for the allocation of resources;
resources with capability 2 should be allocated before ones with 1. Resources that
have capability 2 are referred to as primary resources, which are assigned to missions
first. Resources that have capability 1 are referred to as secondary resources, which
are assigned to missions only if primary resources become unavailable.

5. REQM is the mission’s requirement. For example:

• REQM(m1, q1) = 3.
• REQM(m2, q1) = 2.
• REQM(m3, q1) = 2.

6. There are no resource requirements. Therefore, the resource requirement function is

REQR : R×Q→ {0}.

7. fobj is the function used to score the different problem solutions in terms of cost The
mission cost includes two parts:

• The mission cost represents how many of the mission’s requirements are not met.
It is a penalty introduced every time a mission is not able to accomplish its goal
due to a lack of resources.

• The precedence cost measures how well each solution allocates resources with
higher capabilities before others to missions. In the specific example, it means that
it is desirable that primary pilots are allocated to missions before secondary pilots.

As discussed previously, MCO covers a broad spectrum of problems distinguishable
only by its objective function. In the scenario described here, the objective function reflects
the cost, which is the sum of the mission cost and precedence cost. All solutions are
measured in terms of the cost in order to find the optimal solution. This scenario can be
described by using a matrix arrangement of Boolean variables, shown in Figure 1. Each
row of the table in the figure represents a mission, and each column represents a resource.

Figure 1. Matrix view for Solution: This represents a table representing the solution of a problem
with three missions, five primary resources and three secondary resources. A purple circle symbolizes
a Boolean variable xm,r ∈ {0, 1} where m represents the mission (row) while r represents the resource
(column). A circle filled in with orange represents xm,r = 1 and the fact that resource r is allocated to
mission m.

The final row of the table represents an artificial mission created for the purpose of
having all the resources utilized. When resources are not allocated to any of the other
missions, it has to be allocated this special mission. It will be referred to as the unallocated
mission (U mission for short) and has no mission cost associated.

A separate column specifies the required amount of qualifying resources for each
mission. Since there is only one qualification in the scenario, this number just represents

Algorithms 2022, 15, 224 7 of 21

how many resources should be allocated to the mission. The example in Figure 1 shows
a solution where each mission satisfies its requirements, but only after using all primary
resources before it uses any of the secondary ones. Since each resource can only be assigned
to one mission, no more than one Boolean variable may be true in a single column of the
matrix representation of an MCO. In general, the column constraint assures that a resource
can be assigned at most to one mission. This is a hard constraint.

3.2. Scenario 2: The Buddy System

This scenario was designed to see how different algorithms deal with additional
constraints. There are two groups of resources of different types. If a resource from one
group is assigned to a mission, it is required that a resource from the other group joins the
same mission. Consider the previous example where a set of planes and pilots must be
allocated to a set of aerial missions. A pilot and plane are required to complete a mission.
Every time a plane is chosen, a pilot needs to be chosen. From an application standpoint,
this scenario highlights the modeling of resource dependencies (planes depend on pilots
for allocation). This scenario contains an additional row constraint. The list of constraints
is as follows:

• Column constraint: a resource can be assigned at most to one mission. This is the hard
constraint of the problem.

• Row constraint: if a type of resource is chosen, then a resource of the second type must
also be chosen. We call it the buddy constraint. This is the additional constraint added
in this scenario.

The entire set of rules for this scenario is as follows:

1. The set of missions in the problem is M = {m1, . . . , mNm−1, U}.
2. The set of resources is R = {r1, . . . , rNr}.
3. There are two qualifications Q = {q1, q2}, which means that resources are divided in

two groups: R1 and R2.
4. Resource’s capability is C : R×Q→ {0, 1}, which means that all resources that are

qualified have the same capability. Resources have only one qualification:

• The set of all resources that have capability 1 for qualification q1 is notated as R1.
• The set of all resources that have capability 1 for qualification q2 is notated as R2.
• The sets R1 and R2 do not contain the same resource: R1 ∩ R2 = {}.
• The sets R1 and R2 contain all resources: R1 ∪ R2 = R.
• The number of resources in R1 and R2 is the same |R1| = |R2|.

5. Missions require resources with qualification q1 and not q2. Therefore, the mission
require function can be formally described as: REQM : M× {q1} → Z≥0.

6. The resource’s requirement is called the buddy requirement. Every resource when
allocated requires another resource with the opposite qualification.

• REQR(r, 1) = 0 & REQR(r, 2) = 1 ∀r ∈ R1
• REQR(r, 1) = 1 & REQR(r, 2) = 0 ∀r ∈ R2

7. As in the previous scenario, the objective function measures the total mission cost.

The mission cost formulation is exactly the same as the secondary resources scenario.
However, the way we view the problem in its matrix representation is slightly different, as
shown in Figure 2.

Algorithms 2022, 15, 224 8 of 21

Figure 2. Matrix view for Solution. This solution is shown for a problem with three missions, four
resources of type R1 and four resources of type R2. REQM describes how many R1 resources must be
assigned to mission m. Each R1 resource is paired with exactly one R2 resource for each mission.

The primary difference between this solution and the prior scenario’s solution is that
now there are buddy constraints present along the rows of the matrix (for this reason, it is
also called the row constraint). For example, in Figure 2, the first row related to the first
mission has two resources allocated from R1. In order for the buddy constraint to not be
violated, two resources from R2 are allocated to that mission. The solution shown is valid
since no rows or columns violate any of the constraints. The solution also has the lowest
mission cost since the mission requirements were all exactly met.

Finding optimal solutions for this scenario is trivial since all resources within the
same group are indistinguishable from each other in terms of allocation cost. However,
when adding different capabilities to resources within this MCO, the complexity of finding
the optimal solution increases. The case where resources have different and multiple
capabilities has not been studied and is part of future work. While this does not substantially
change how the problem is formulated and implemented on the quantum device, it is
a more complex method of checking how well the quantum algorithms solutions are
performing compared to the optimal solution. To do this, the optimal solution needs to
be known, so brute force methods are used to find it. If resources are indistinguishable
from one another, then it takes far less time to brute force the optimal solution due to the
permutation symmetry across resources.

4. Algorithm Implementation

In this work, we tested three techniques to solve the MCO problem with the two scenarios
described in the previous section, quantum annealing and two types of QAOA algorithms.

• Quantum Annealing (QA) [21]
• Quantum Alternating Operator Ansatz (QAOA) [17]. It implements constraints by

means of a Lagrange multiplier embedded into a cost function Hamiltonian.
• QAOAH, which is a version of QAOA with a constrained mixer. It is denoted as

QAOAH as it was developed by Hadfield et al. [20]. It engineers the constraints to
remain within a constraint space during the entire solution process.

All three approaches use similar means for encoding the objective function but differ
in the way they implement their constraints and what machines support them.

Since QA and QAOA are both derived from the same formulation, the implementation
details are described together. In QAOAH, constraints are embedded into the Mixing
Hamiltonian, which results in a different formulation. The following sub-sections outline
the implementation for both scenarios using the three approaches described above.

Algorithms 2022, 15, 224 9 of 21

4.1. Scenario 1 (One Constraint)
4.1.1. QA and QAOA

The goal of the MCO problem is to minimize the total cost. Various methods are used
to define the mission cost. The following formulation takes into account the limitations
of QUBO. In the rest of the paper, QA denotes QUBO problems performed on quantum
annealing machines, while QAOA and QAOAH denote QUBO problems executed on
gate-based architectures.

The optimal mission cost occurs when all the resources required are allocated. Or,
formally, consider mission m; the optimal mission cost occurs when:

∑r∈R xm,r = REQM(m, 1). (1)

The x values represent Booleans (an alternative representation of the solution fs), such
that when indexed by m ∈ M and r ∈ R, e.g., xm,r, it represents whether or not the solution
mapped resource r to mission m.

As an example, suppose there are three resources, R = {1, 2, 3} and the first mission
requires two of them, then the optimal mission cost for the mission occurs when:

x1,1 + x1,2 + x1,3 = 2. (2)

Equation (2) is true when two out of the three variables are true. The mission cost
represents the penalty added any time a mission lacks one or more needed resources. The
penalty is higher when more resources are missing. A squared error is used to represent
the mission cost:

MC(x, m) =
(
∑r∈R xm,r − REQM(m, 1)

)2
, (3)

where MC(x, m) is the cost associated with mission m. It can be seen from Equation (3) that
the minimum mission cost, when MC(x, m) = 0, yields the optimal case, as described in
Equation (1). The mission cost is quadratic. The example that yielded the optimal case in
Equation (2) in terms of the mission cost function is:

MC(x, 1) = (x1,1 + x1,2 + x1,3 − 2)2. (4)

For this optimization problem, secondary resources should be allocated only after
primary resources are allocated first. Therefore, we introduce precedence costs for resources.
Equation (5) shows the ideal condition regarding the allocation of secondary resources.

∑m∈M
m 6=U

xm,r = C(r, 1)− 1 ∀r ∈ R (5)

The precedence cost is dependent on the capability of a resource and, therefore,
dependent on whether or not this resource is primary or secondary. When the resource is
primary, the ideal condition means that the it must be allocated to one of the active missions
(apart from the unallocated/psuedo mission). For the other secondary resources, ideally
none are used.

The precedence cost may or may not be met when optimizing, so similarly to mission
cost, precedence cost is the squared error of this equality:

PC(x, r) =
(

∑m∈M
m 6=U

xm,r − C(r, 1) + 1
)2

. (6)

Finally, the objective function is then the total mission cost and the total precedence
cost in the MCO:

fobj(x) = ∑m∈M MC(x, m) +
1
|R|∑r∈R PC(x, r). (7)

Algorithms 2022, 15, 224 10 of 21

We weight the precedence cost by 1
|R| to ensure that the mission cost is minimized

before precedence cost. The total cost is the sum of the mission cost and the precedence
cost, and it is reflected in the objective function.

The constraint that a resource must be paired to exactly one mission is formulated:

∑m∈M xm,r = 1 ∀r ∈ R. (8)

The constraint function used for this scenario is defined as

CONSTR(x, r) =
(
∑m∈M xm,r − 1

)2
. (9)

Since the QUBO is used to solve problems without constraints, we must add it to the
objective function so that when it minimizes, the constraints will be met. The method of
Lagrange multipliers is a strategy for finding the local maxima and minima of functions
subject to equality constraints.

If fobj(x) is the objective function to be minimized, the Lagrangian function is

L(x, λ) = fobj(x) + λ · CONSTR(x). (10)

The solution to the original constrained problem is always a saddle point of this
function. Setting a large value for λ, the term related to the constraint, will have the greatest
impact on the optimization problem. The solution will minimize the constraint first and
then the cost.

The new objective function that includes the constraints is:

fobj(x) = L(x, λ)

= ∑m∈M MC(x, m) +
1
|R|∑r∈R PC(x, r)

+ λ ·∑r∈R CONSTR(x, r).

(11)

QAOA for this method uses an equal superposition for the starting state |Ψ〉 over
N states:

|Ψ〉 = 1√
N

N−1

∑
i=0
|i〉. (12)

The value N is equal to 2n where n is the number of qubits used. For this problem,
the number of qubits used is NM ·MR, and the number of missions times the number of
resources.

The mixing operator is constructed using a Hamiltonian, which is the sum of Pauli-X
as follows:

Xi = I ⊗ · · · ⊗ X ⊗ · · · ⊗ I
1 i n

, (13)

HM =
n

∑
i=1

Xi. (14)

4.1.2. QAOAH

In the last section, Lagrange multipliers are used to encode constraints into the QUBO
problem. Alternatively, by choosing the appropriate mixing Hamiltonian and initial state,
we can constrain the solution space outside of the QUBO formulation in QAOA [20].

The initial state must be within the constrained solution space. A trivial starting
configuration that is known not to violate the constraint is when all resources are set to the
unallocated mission, as shown in Figure 3.

Algorithms 2022, 15, 224 11 of 21

Figure 3. Example Initial State: All resources are initialized to be unallocated, or allocate to mission
U, the last row.

This initial state used is:

|ψ〉 =
⊗

(m,r)∈M×R

{
|1〉 m = U
|0〉 m 6= U

. (15)

The mixing Hamiltonian describes how to move from the starting state, as well as all
subsequent states, such that they are also in the constrained space. To be in the constrained
space, only one qubit per column must be active. The Hamiltonian should describe how to
cycle a qubit in an active state throughout the column so that it can reach every possible
combination of configurations that still satisfy the constraint. The identity operator and the
SWAP gates are used for this cycling action. For the thre mission examples, we can confirm
that an individual column can have each of its possible states reached using three swap
gates (see Figure 4).

Figure 4. Resource 1’s Mixing Operators: The leftmost segment details the starting state before
applying the mixing operator. The second segment from the left shows an identity mixing operator
that allows the current state to remain unchanged. The three right-most segments show an operation
that uses one swap to cycle the qubit’s on state to missions 1, 2, and 3.

Thus, a single resource mixing MIX(r) is:

MIX(r) = ∑
m∈M
m 6=U

SWAP(U,r),(m,r), (16)

where (m, r) encodes the index of the qubit representing a mapping of resource r and
mission m. The U in (U, r) represents the unallocated mission. The total mixing operator
Hm is the sum of MIX(r) on each resource with the identity operation:

Algorithms 2022, 15, 224 12 of 21

Hm = I⊗n + ∑
r∈R

MIX(r). (17)

In order to embed the mixing operation as a Hamiltonian to run on the IBM machines,
it must be described as a composition of tensored Pauli gates. Each SWAP gate can be
decomposed in terms of Pauli gates:

SWAP =
1
2
(I ⊗ I + X⊗ X + Y⊗Y + Z⊗ Z). (18)

When SWAP is indexed by i and j, the Pauli gates fall on the ith and jth, qubits respectively:

SWAPi,j =
1
2
(

I⊗n + Xi,j + Yi,j + Zi,j
)
, (19)

Xi,j = I ⊗ · · · ⊗ X ⊗ · · · ⊗ X ⊗ · · · ⊗ I
1 i j n

. (20)

Each Pauli gate used in Equation (19) (Xi,j, Yi,j, Zi,j) is defined similarly to what is
defined in Equation (20). For clarity, Equation (20) places the corresponding Pauli gate only
at the specified indices i and j in a tensor product of identities I.

4.2. Scenario 2 (Two Constraints)
4.2.1. QA and QAOA

In this scenario, the objective function measures just the mission cost, as opposed to
the previous scenario that also measures precedence cost. Therefore, the objective function
is the sum of the mission cost and the constraint function:

fobj(x) = ∑m∈M MC(x, m) + λ · CONSTR(x). (21)

Two different constraints are embedded in the objective function using Lagrange
multipliers. The first one was discussed in the previous scenario and assures that resources
are allocated to no more than one mission. It is formulated in a similar way as before:

CONSTR1(x, r) =
(
∑m∈M xm,r − 1

)2
. (22)

The additional constraint (buddy constraint) requires that the amount of resources
allocated from set R1 must be the same as the number of resources allocated from set R2.
This hard equality is formulated as:

CONSTR2(x, m) =

(
∑

r∈R1

xm,r − ∑
r∈R2

xm,r

)2

. (23)

The total constraint function expressed in Equation (21) can be expressed as the sum
of both of these constraints:

CONSTR(x) = ∑
r∈R

CONSTR1(x, r)

+ ∑
m∈M
m 6=U

CONSTR2(x, m) . (24)

For QAOA, the starting state and the mixing Hamiltonian are the same as defined in
Equations (12) and (14).

Algorithms 2022, 15, 224 13 of 21

4.2.2. QAOAH

For this scenario, it is more challenging to construct the mixing Hamiltonian to describe
how to move in the constrained space in QAOA. Unlike the Lagrange multiplier’s case,
it is not easy to linearly combine two constraint encodings to obtain the final constraint
Hamiltonian. In other words, one cannot add Hm1 + Hm2 to obtain Hm1+m2, where Hm1
Hm2, Hm1andm2 are mixing Hamiltonian’s representing 1st, 2nd and 1st and 2nd constraints,
respectively. This scenario presents two challenges:

1. If a mixing operator allowed a resource in R1 to move from an unallocated state to an
allocated state by pairing it with a mission, then it must also move a resource from R2
to the same mission.

2. The mixing operator must operate such that it is possible after multiple applications
to visit every classical state from the starting quantum state. These two obstacles
require a slightly different mixing operator and more qubits.

The strategy for creating a two-constraint mixing operator is to reallocate resources in
pairs—one from R1 and one from R2. These pairs will always move together. However,
the problem is that not every possible classical state can be produced from the mixing.
For example, let us say that there are resources R1 = {1, 2, 3, 4} and R2 = {5, 6, 7, 8}. If
resource 1 and resource 5 move together, then it is never possible to see resource 2 just be
paired with resource 5 without also being paired with 1. A way to resolve this problem is
to introduce an additional mixing operator to swap entire columns within just R1 or R2
resources. However, every time columns are swapped, the classical state must remember
what mappings are paired with others so that if another reallocation is performed, the
buddy constraint will not be violated.

For this reason, new qubits are introduced to each column. These qubits represent the
pair ID that is present in the columns for resources in R1 and R2. Resources with the same
ID are reallocated together. When columns are swapped, the pair IDs of the columns are
also swapped.

Consider an MCO with three missions (plus the unallocated mission) and eight re-
sources evenly split between R1 and R2. Our initialized state is shown in Figure 5a. Each
column has two extra ID qubits (lowest two rows) with a unique bit-encoding that matches
another column from the opposite qualification type. This means that these columns are
paired together.

For example, consider the case where the mixer operation reallocates resource 2 from
the unallocated mission to mission 2. Since this column has an ID of ‘10b’ (top ID qubit
true, bottom one false), it is paired with resource 6 because it has the same ID. In order to
respect this pairing, both resource 2 and 6 are swapped together using a dual swap gate
C-DSWAP, as shown in Figure 5b.

Consider the situation when the mixing operator performs a column swap between
columns 2 and 4 (see Figure 5c). Note that the IDs of these columns are also swapped. If
the mixer chooses to move resource 6 back to the unallocated state, it also would move
resource 4 into the unallocated state since they have the same ID. This can be ensured if the
mixer uses the dual swap operation once again (see Figure 5d).

The added qubits to represent the IDs of each of the columns are notated as |ID〉 and
defined as:

|ID〉 =
IDmax⊗
j1=0
|j1〉 ⊗

IDmax⊗
j2=0
|j2〉. (25)

The starting state |ψ〉 is:

|ψ〉 = |ID〉 ⊗
⊗

(m,r)∈M×R

{
|1〉 m = U
|0〉 m 6= U

, (26)

and the mixing Hamiltonian Hm becomes

Algorithms 2022, 15, 224 14 of 21

Hm = ∑
p∈R1×R2×M

IDmax

∑
j=0

C-DSWAP(p, j)

+
1
2 ∑

r1∈R1

∑
r′1∈R1
r1 6=r′1

COL-SWAP(r1, r′1)

+
1
2 ∑

r2∈R2

∑
r′2∈R2
r2 6=r′2

COL-SWAP(r2, r′2)

. (27)

(a) (b)

(c) (d)

Figure 5. (a) Initial State Layout. The initial state is similar to the QAOA case except with additional
ID qubits to be used to support the constraint mixer. Each column of ID qubits forms a unique binary
number for that resource within its resource set. (b) First Control Dual-Swap Operation. Through
mixing, resource 2 is allocated to mission 2. In order to not violate the row constraint, resource 6
from R2 is allocated using a dual-swap gate with controls on the ID qubits. (c) Column Swap. The
mixing operator can never produce a valid solution where just resource 4 and 6 are paired to mission
2 using just Controlled Dual-Swap Operations. Therefore, column-swap operations are permitted,
which swap any two columns in the table within its resource set. Here, resource 2 and 4 in resource
set R1 have their entire columns swapped. (d) Second Control Dual-Swap Operation. This operation
is exactly the same as (b), but the Control Dual-Swap operator is used to unallocate resource 4 from
mission 2 to mission U. Notice that the Control Dual-Swap operator has its control configuration
identical on both resource 4 and 6 ID-qubit columns; this is to ensure that the row constraint cannot
be violated. A violation occurs when leaving resource 6 with no pair on mission 2.

The constant IDmax represents the maximum required binary states to represent all
columns. This is the number of resources in either R1 or R2, and it is represented by IDmax:

IDmax = |R1| = |R2|. (28)

Algorithms 2022, 15, 224 15 of 21

The column-swap gate, notated as COL-SWAP(r, r′), swaps the columns represented by
resources r and r′. Its decomposition is trivial as it employs many swaps tensored together.

The control dual-swap, notated as C-DSWAP(p, j), has parameters p and j. The param-
eter p = (r1, r2, m) is a tuple composed of a resource from R1, a resource from R2, and a
mission m in M. This gate applies a control swap gate to resource r1 and r2 between the
mission m and the unallocated mission U. The parameter j is an ID which represents how
to control the swap gate. For example, 10b is applying a control-true, control-false gate to
both IDs in the columns represented by r1 and r2.

To implement the algorithm on the IBM machine, we must decompose Hm such
that it is a sum of tensored Pauli gates. The column-swap gates COL-SWAP(r, r′) can be
decomposed, knowing that they are made up of swap gates, as from Equation (18).

Decomposing a generalized version of the control dual-swap gate is tedious, so
we provided an example decomposition for C-DSWAP(∗, 10b), which is the gate used in
Figure 5b,d. First, we present the Pauli-decomposition of the control-true and control-false
unitary operations shown in Equations (29) and (30), respectively. Unitary A is arbitrarily
acting on m qubits.

C-T(A) =
1
2
(
(I + Z)⊗ I⊗m + (I − Z)⊗ A

)
. (29)

C-F(A) =
1
2
(
(I − Z)⊗ I⊗m + (I + Z)⊗ A

)
. (30)

Now, C-DSWAP(∗, 10b) can be represented in terms of control-true and control-false
unitaries and the dual-swap gate DSWAP:

C-DSWAP(∗, 10b) =

C-T(C-F(C-T(C-F(DSWAP)))).
(31)

Following this, the dual-swap gate DSWAP is two swap gates tensored together:

DSWAP = SWAP⊗ SWAP. (32)

The DSWAP can further be decomposed using Equation (18).
As mentioned in the previous section, our two-constraint MCO problem has permuta-

tion symmetry between the resources in the same set/group. Therefore, the column swap
terms can be effectively removed, and Hm becomes

Hm = ∑
p∈R1×R2×M

IDmax

∑
j=0

C-DSWAP(p, j). (33)

This effectively shrinks the search space from the total constraint space. However,
because of the symmetry, it is known that the optimal solution still lies inside the smaller
subspace. When different capabilities are introduced to each resource, this optimization
technique cannot be used since the permutation symmetry is not guaranteed.

5. Analyses of Results

In this section, we compare the results of the different MCO implementations. Em-
ploying the implementation methods discussed above, the MCO problem was run on the
D-Wave and on IBM machines, capturing several key metrics:

• Number of qubits,
• Quantum processor time,
• Cost,
• Number of constraints violated.

Algorithms 2022, 15, 224 16 of 21

For both scenarios (see Table 1), 100 random MCO configurations were generated using
up to 27-qubits (200 different MCO configurations in total). Quantum Annealing, QAOA,
QAOAH, and Brute Force (BF) methods were run for each generated configuration. For
Quantum Annealing, the DW_2000Q_6 machine was used, while ibmq_toronto, ibm_hanoi,
ibm_cairo, ibmq_mumbai, and ibmq_montreal machines were used for running QAOA and
QAOAH. The Lagrange multipliers were set to five for both scenarios, and a p-value of two
is used for QAOA (this parameter is discussed in the original paper [17]). The Quantum
Annealing runs each sample of the anneal 50 times, while each IBM job sampled the state-
vector 1000 times. These parameters were chosen based on a good balance of timing, cost,
and constraints satisfied found by preliminary results not discussed in this paper.

Table 1. S1 and S2 stands for Scenario 1 and 2, respectively. MCO implementations in hardware and
simulation execution environment. And number of constraints violated in the various cases.

Results Execution Environment Average Violated Constraints
Machine D-Wave IBMQ D-Wave IBMQ

Algorithm QA QAOA QAOAH QA QAOA QAOAH

S1 Hardware X X X 0.05 0.97 3.89
S1 Simulation - - - - - -
S2 Hardware X X - 0.0 0.96 -
S2 Simulation - - X - - 0.0

5.1. Scenario 1

Figure 6 shows the timing averages for QA, QAOA, and QAOAH, respectively, versus
the problem qubit size.

Figure 6. QPU Results QPU Times for Scenario 1 Runs. QA timing includes the anneal time of each
50 samples, 20 microseconds per sample. QAOA and QAOAH varied in the number of jobs that ran,
each of which ran the parameterized circuit 1000 times.

Because the timing differed by different levels of magnitude, three y-axes with different
scales are displayed. QA run time outperforms the other methods by having an overall
constant run-time of 0.012 s, while QAOAH can use the QPU for 5 h across all jobs in
certain worse-case instances (this excludes queue-time and creation time on QPU for IBMQ
devices). For all methods, timing was calculated based on qpu time (not wall-clock time).
For the QA method, ‘qpu_sampling_time’ was used to calculate the total qpu time, while
‘running time’ is used for QAOA and QAOAH.

Figure 7a shows the average costs for all MCO configurations versus the number of
qubits it took to encode each scenario 1 run. These costs do not include the cost accumulated
from the embedded constraint functions Equations (9) and (24) as these are used to make the
constraints hold. Furthermore, all the costs plotted are actually the cost for that particular
run minus the best possible cost it can receive. This best possible cost is computed by using

Algorithms 2022, 15, 224 17 of 21

brute force search methods in simulation. This difference is referred to as the relative cost.
Therefore, the best possible relative cost a run could have is zero. For most runs, it can be
seen that QA and QAOA runs have a relative cost of around zero, but as the number of
qubits increase, QAOA becomes less optimal compared to QA. The QAOAH approach,
when using a large amount of qubits, actually had a negative relative cost indicating that it
must have violated some constraints in order to achieve a cost below the solution found
with brute-force.

In Figure 7b, the average number of constraints violated is plotted against qubit
size. The number of constraints is calculated by counting the number of resources that
were assigned to more than one mission. For example, if resource 1 was assigned to two
extra missions, and resource 2 was assigned to three extra missions, then the number of
constraints violated is five. QA mostly had no constraints violated at any sized qubit
problem, while QAOA and QAOAH suffered constraint violations when the problem size
increased.

(a) (b)

Figure 7. QPU Results (a) Average relative cost versus the number of qubits used. The relative cost is
the mission plus the precedence cost obtained minus the lowest possible mission plus precedence
cost that can be achieved (while keeping constraints) for the problem; the lowest possible cost is
found by brute force: Relative cost = algorithm’s solution cost–brute force solution’s cost. Negative
relative costs imply that the solution violated constraints. (b) Average number of constraints violated
versus the number of qubits used. The number of constraints counts up how many extras qubit are
on within a column in the matrix view representation. This count includes the number of columns
that do not have any qubits on it at all.

5.2. Scenario 2

For scenario 2, the QAOAH method was calculated via IBM’s state-vector numerical
simulation tool due to the long running-time of runs in scenario 1. Because of this shift from
running on actual hardware (scenario 1), to simulation (scenario 2), the QAOAH method is
plotted using its wall-clock times against QA’s and QAOA’s QPU time in Figure 8. Even
with this change, the magnitudes of running-time are very diverse, so a third y-axis is added,
as before. Furthermore, for the QAOAH approach, the mixing operator in Equation (33) is
used instead of Equation (27) because removing the column-swap terms reduces the total
gate count of the overall computation, making simulation times faster.

In scenario 2, QA times are quite faster than QAOA methods. It can be seen that the
QAOAH method has far less flexibility in terms of qubit-range. This is because in our MCO
algorithm implementation, extra qubits are required to represent each resource’s ID. To
keep consistency with the QA and QAOA methods, the x-axis in each plot in this section
represents the number of qubits used minus the amount used to represent the IDs.

Algorithms 2022, 15, 224 18 of 21

Figure 8. QPU and Simulated Results QA and QAOA QPU times and simulated QAOAH wall-clock
times for Scenario 2. QA timing includes the anneal time of each 50 samples, each 20 microseconds
per sample. QAOA ran with 1000 shots. QAOAH ran an undetermined amount of jobs using the
statevector-simulator to obtain results. Unlike Scenario 1, the times recorded are total wall-clock
times for QAOAH.

As in scenario 1, the relative costs for each method are plotted in Figure 9a. Both
QAOAH and QA methods have zero relative costs. However, QAOA by itself did not
exhibit a positive relative cost. For both cases in this subplot, the data are insufficient to
deduce whether or not these violated constraints.

In Figure 9b, the average number of constraints violated is plotted against the number
of qubits the problem encodes. The number of constraints violated is calculated similarly
to scenario 1, but now including all violations of the second constraint. For example, if
four resources of type-1 and 2 of type-2 were allocated to a mission, then the number of
constraints violated is 4− 2 = 2. Figure 9b shows that QA and QAOAH did not violate
constraints at any qubit size, while QAOA did on average. QAOA violated constraints
mostly likely because it found a solution where the mission cost exceeded the cost incurred
by the constraint function. QAOAH in simulation, however, did not violate constraints
because the mixing operator that was used transforms solutions without leaving the
constrained space. These results contrast with the QPU runs for QAOAH in Scenario 1
where it did violate constraints. Since the simulation ran without any noise profiles, it is
expected that QAOAH should not violate constraints in theory, but this is not the case
when running on the actual quantum machine. The source of noise on actual hardware is
most likely due to the gate noise and noise from measurement.

Algorithms 2022, 15, 224 19 of 21

(a) (b)

Figure 9. QPU and Simulated Results (a) Average relative cost versus the number of qubits used.
The relative cost is the mission cost obtained minus the lowest possible mission cost that can be
achieved (while keeping constraints) for the problem. The lowest possible cost is found by brute
force. Negative relative costs must mean that the solution violated constraints. (b) Average number
of constraints of each method versus the number of qubits used. The number of constraints counts
up how many extra qubits are within a column in the matrix view representation plus the absolute
difference of qubits within a row between resource sets (R1 and R2). This count includes the number
of columns that do not have any qubits on at all.

6. Summary and Conclusions

In this paper, we introduced Mission Covering Optimization (MCO), implemented
three different constrained optimization techniques (QA, QAOA, and QAOAH) to find
solutions to two scenarios of MCO, and discussed results after running implementations
on the IBM machine, D-Wave Machine, and on a state vector simulator. Results were
compared based on timing, relative cost, qubits used, and constraints violated. From the
200 tests performed on each scenario, QA achieved the quickest results while using the
least number of qubits and violating the least number of constraints. We conjecture that
QAOA and QAOAH approaches may have taken longer for the gradient descent algorithm
to be convinced that an optimal solution was found because of the abundance of noise in
current hardware. It was found that it is nontrivial to engineer multiple constraints by
embedding in the mixing-Hamiltonian, especially when compared to the ease of using
Lagrange multipliers, in simulation, where adding constraints entails simply adding terms
together. The study conducted here suggests that the additional complexity in the QAOAH
approach poses potential scalability challenges (due to the additional qubits required to ID
the constraints) for problems similar to MCO with multiple types of unique constraints.

The results of the work presented here illustrate the fact that at the current nascent
stage of quantum computing, one is still coding to the quantum computing paradigm;
here, Adiabatic Quantum Computing Model (AQCM) (as instantiated by the D-Wave
machine), and the Gate-Based Model (GBM) (as instantiated by the IBMQ). Even at the
ideal simulation stage of this study, there are substantial differences in the resources
required for implementing constraints under the AQCM and the GBM, with the latter
requiring many more ancilla qubits. In the AQCM, mixing occurs naturally through the
adiabatic evolution, while in the GBM, mixing has to be explicitly implemented, which for
the model we investigated, entailed the construction of mixers that would not violate the
constraints. In simulation, this construction worked seamlessly; however, in practice, it
was limited by the actual noise in the qubit-based implemented quantum circuits involved.
This is a well-recognized limitation of today’s current noisy intermediate scale quantum
(NISQ) hardware.

Lastly, while not directly explored in this study, the network connectivity plays an
important role in contributing to the noise (resulting in constraint violation) under each
paradigm. It is well-known that under the AQCM, the implementation of constraints
requires the ‘chaining’ together of many individual qubits in order to act as an effective

Algorithms 2022, 15, 224 20 of 21

single qubit. In practice, the length of chain is finite (typically 10–20 qubits) and ‘breakage’
of the chain, due to local environmental decoherence, acts as another important source
of circuit noise and degradation. In the GBM, extra ancilla are required to implement
constraints, increasing the circuit depth of the specific problem under study, which is then
subject to local environmental decoherence effects.

The goal of the work presented here was to illustrate, albeit in a very specific, small
qubit model, the challenges of translating the implementation of a constrained optimization
quantum (MCO) algorithm between two quantum computing paradigms, AQCM and
GBM, to identify (for this illustrative problem) where the challenges lay for the purpose of
tackling larger-scale problems.

7. Future Work

Adding further capabilities to different resources in Scenario 2 would make for a more
interesting/realistic optimization problems for quantum computers to solve. This is just
one of the many alterations that can be applied to MCO to increase the complexity of the
optimization problem.

In this paper, resource dependencies are modeled within MCO; however, there may
be missions with different priorities along with mission dependencies. Furthermore, in this
work, resources were only shown to possess one type of qualification. However, there can
be cases where a resource may have many types of qualifications. At the heart of MCO, it
is an optimization problem concerning the allocation of resources invariant to time. An
interesting direction for future study is how well this type of optimization problem can be
ported to an extension of a job-shop problem.

Although error mitigation is not a focus of this study, research for mitigating errors for
QAOA is being conducted by others [22]. Employing error mitigation techniques for MCO
is a direction of study.

There are alternate techniques that can be employed on gate-based machines to solve
QUBO problems. For example, the Grover adaptive search [23] is an iterative Grover-like
approach that filters states based on a conditional oracle. Furthermore, filtering-VQE [24]
can be used to solve optimization problems, utilizing filtering operators to achieve faster
and more reliable convergence to the optimal solution.

Lastly, another interesting solution method might entail the use of a ‘bang-bang’ strat-
egy [25] for multiple constraints. Here, for each constraint Ci associated with a constraint
Hamiltonian Hi, one might randomly cycle through applications of individual Hi for each
time step, as opposed to the application of the joint Hamiltonian H = ∑i Hi. While each
Hi only preserves constraints Ci, the supposition is that the application of Hi might only
partially violate constraints Cj 6=i, if applied for a short time and randomly. This solution
approach to MCO-like problems will be investigated in future work.

Author Contributions: Conceptualization and methodology, all authors contributed; software, M.C.,
A.G. and A.S.; resources, supervision and funding A.G., P.M.A. and L.W.; writing—review and editing,
M.C., A.G. and P.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: For any request related to the data please contact the corresponding author.

Acknowledgments: The authors would like to thank David Vernooy and the exponential campaign
at GE Research for supporting this effort, and Daniel Koch and Saahil Patel for useful discussions.
The views expressed are those of the authors and do not reflect the official guidance or position of
the United States Government, the Department of Defense, the United States Air Force or General
Electric. The appearance of external hyperlinks does not constitute endorsement by the United States
Department of Defense or General Electric of the linked websites, or the information, products, or
services contained therein. The Department of Defense and General Electric do not exercise any
editorial, security, or other control over the information you may find at these locations.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2022, 15, 224 21 of 21

References
1. de Leon, N.P.; Itoh, K.M.; Kim, D.; Mehta, K.K.; Northup, T.E.; Paik, H.; Palmer, B.; Samarth, N.; Sangtawesin, S.; Steuerman, D.

Materials Challenges and Opportunities for Quantum Computing Hardware. Science 2021, 372, eabb2823. [CrossRef]
2. Weidenfeller, J.; Valor, L.C.; Gacon, J.; Tornow, C.; Bello, L.; Woerner, S.; Egger, D.J. Scaling of the Quantum Approximate

Optimization Algorithm on Superconducting Qubit based Hardware. arXiv 2022. arXiv:2202.03459
3. Bhaskar, M.K.; Hadfield, S.; Papageorgiou, A.; Petras, I. Quantum Algorithms and Circuits for Scientific Computing. Quantum

Inf. Comput. 2021, 16, 197–236. [CrossRef]
4. Andersson, M.P.; Jones, M.N.; Mikkelsen, K.V.; You, F.; Mansouri, S.S. Quantum Computing for Chemical and Biomolecular

Product Design. Curr. Opin. Chem. Eng. 2022, 36, 100754. [CrossRef]
5. Gao, P.; Perkowski, M.; Li, Y.; Song, X. Novel Quantum Algorithms to Minimize Switching Functions Based on Graph Partitions.

Comput. Mater. Contin. 2022, 70, 4545–4561. [CrossRef]
6. Phillipson, F.; Chiscop, I. ultimodal Container Planning: A QUBO Formulation and Implementation on a Quantum Annealer. In

InInternational Conference on Computational Science 2021; Springer: Cham, Switzerland, 2021; pp. 30–44.
7. Çaliş, B.; Bulkan, S. A research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 2013,

26, 961–973. [CrossRef]
8. Venturelli, D.; Marchand, D.J.J.; Rojo, G.H. Job Shop Scheduling Solver Based on Quantum Annealing; Association for the Advancement

of Artificial Intelligence Constraint Satisfaction techniques for planning and Scheduling (COPLAS): London, UK, 2016.
9. Özbakira, L.; Baykasoğlu, A.; Tapkan, P. Bees Algorithm for Generalized Assignment Problem. Appl. Math. Comput. 2010,

215, 3782–3795. [CrossRef]
10. Öncan, T. A Survey of the Generalized Assignment Problem and Its Applications. Inf. Syst. Oper. Res. 2007, 45, 123–141.

[CrossRef]
11. Yu, Y.; Argüello, M.; Song, G.; McCowan, S.M.; White, A. A New Era for Crew Recovery at Continental Airlines. Interfaces 2003,

33, 5–22. [CrossRef]
12. Schnore, G. Quantum Annealing for Asset Sustainment. 2019. Available online: https://www.dwavesys.com/media/prsl42qn/

ge-research-asset-sustainment-2019-qubits-europe_0.pdf (accessed on 31 March 2022).
13. Ng, X.W. Complex Optimization Problems. In Concise Guide to Optimization Models and Methods: A Problem-Based Test Prep for

Students; Springer: Cham, Switzerland, 2022; pp. 69–120.
14. Das, A.; Chakrabarti, B.K. Quantum Annealing and Related Optimization Methods; Springer: Cham, Switzerland, 2005.
15. Kochenberger, G.; Hao, J.K. The Unconstrained Binary Quadratic Programming Problem: A Survey. J. Comb. Optim. 2014,

28, 58–81. [CrossRef]
16. Glover, F.; Kochenberger, G. A Tutorial on Formulating and Using QUBO Models. arXiv 2019, arXiv:1811.11538.
17. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2019, arXiv:1411.4028.
18. Community, T.J.B. Solving Combinatorial Optimization Problems using QAOA. Available online: https://qiskit.org/textbook/

ch-applications/qaoa.html (accessed on 7 July 2022).
19. Hen, I.; Spedalieri, F.M. Quantum Annealing for Constrained Optimization. Phys. Rev. Appl. 2016, 5, 034007. [CrossRef]
20. Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E.G.; Biswas, R.; Venturelli, D. From the Quantum Approximate Optimization

Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 2019, 12, 34. [CrossRef]
21. Kadowaki, T.; Nishimori, H. Quantum Annealing in the Transverse Ising model. Phys. Rev. E 1998, 58, 5355. [CrossRef]
22. Streif, M.; Leib, M.; Wudarski, F.; Rieffel, E.; Wang, Z. Quantum Algorithms with Local Particle-Number Conservation: Noise

effects and Error Correction. Phys. Rev. A 2021, 103, 042412. [CrossRef]
23. Gilliam, A.; Woerner, S.; Gonciulea, C. Grover Adaptive Search for Constrained Polynomial Binary Optimization. Quantum 2021,

5, 428. [CrossRef]
24. Amaro, D.; Modica, C.; Rosenkranz, M.; Fiorentini, M.; Benedetti1, M.; Lubasch, M. Filtering Variational Quantum Algorithms

for Combinatorial optimization. Quantum Sci. Technol. 2022, 7, 015021. [CrossRef]
25. Bapat, A.; Jordan, S. Bang-bang Control as a Design Principle for Classical and Quantum Optimization Algorithms. Quantum Inf.

Comput. 2019, 19, 424–446. [CrossRef]

http://doi.org/10.1126/science.abb2823
http://dx.doi.org/10.26421/QIC16.3-4-2
http://dx.doi.org/10.1016/j.coche.2021.100754
http://dx.doi.org/10.32604/cmc.2022.020483
http://dx.doi.org/10.1007/s10845-013-0837-8
http://dx.doi.org/10.1016/j.amc.2009.11.018
http://dx.doi.org/10.3138/infor.45.3.123
http://dx.doi.org/10.1287/inte.33.1.5.12720
https://www.dwavesys.com/media/prsl42qn/ge-research-asset-sustainment-2019-qubits-europe_0.pdf
https://www.dwavesys.com/media/prsl42qn/ge-research-asset-sustainment-2019-qubits-europe_0.pdf
http://dx.doi.org/10.1007/s10878-014-9734-0
https://qiskit.org/textbook/ch-applications/qaoa.html
https://qiskit.org/textbook/ch-applications/qaoa.html
http://dx.doi.org/10.1103/PhysRevApplied.5.034007
http://dx.doi.org/10.3390/a12020034
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/PhysRevA.103.042412
http://dx.doi.org/10.22331/q-2021-04-08-428
http://dx.doi.org/10.1088/2058-9565/ac3e54
http://dx.doi.org/10.26421/QIC19.5-6-4

	Introduction
	Quantum Solutions to MCO
	Quantum Annealing (QA)
	Quantum Alternating Operator Ansatz (QAOA)
	Quantum Alternating Operator Ansatz with Constraint Hamiltonian (QAOAH)

	Paper Outline

	Formalism for Mission Covering Optimization
	Missions
	Resources
	Qualifications
	Capabilities
	Mission's Requirements
	Resource's Requirements
	Solutions and Solution Score

	MCO Scenarios
	Scenario 1: Primary and Secondary Resources
	Scenario 2: The Buddy System

	Algorithm Implementation
	Scenario 1 (One Constraint)
	QA and QAOA
	QAOAH

	Scenario 2 (Two Constraints)
	QA and QAOA
	QAOAH

	Analyses of Results
	Scenario 1
	Scenario 2

	Summary and Conclusions
	Future Work
	References

