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Abstract: This work aimed to find the most discriminative facial regions between the eyes and
eyebrows for periocular biometric features in a partial face recognition system. We propose multiscale
analysis methods combined with curvature-based methods. The goal of this combination was to
capture the details of these features at finer scales and offer them in-depth characteristics using
curvature. The eye and eyebrow images cropped from four face 2D image datasets were evaluated.
The recognition performance was calculated using the nearest neighbor and support vector machine
classifiers. Our proposed method successfully produced richer details in finer scales, yielding high
recognition performance. The highest accuracy results were 76.04% and 98.61% for the limited dataset
and 96.88% and 93.22% for the larger dataset for the eye and eyebrow images, respectively. Moreover,
we compared the results between our proposed methods and other works, and we achieved similar
high accuracy results using only eye and eyebrow images.

Keywords: curvature-based method; eyes; eyebrows; multiscale analysis method; partial face
recognition; periocular biometrics

1. Introduction

A face recognition system is a methodological technique that aims to find the correct
matches between human face images and face datasets. Various applications utilize this
system, such as identity verification, security and crime prevention, intelligent devices,
robotic and computer interaction, and entertainment purposes in social media [1,2]. Face
biometrics may better recognize individuals in a noninvasive way than other biometrics,
such as through the iris, palm, vein, or fingerprint [3]. However, when the face is obstructed,
the recognition system still has not achieved satisfactory performance. Obstruction of the
face, known as face occlusion, occurs when objects hide part of the face [4].

There has been significant attention directed to masked face recognition research over
the last three years due to the COVID-19 pandemic [5–11]. People must use a face mask in
public places to prevent disease transmission. Using a face mask is one of the challenges in
the face occlusion research topic. Partial face recognition using only the upper part of the
face has become popular due to the occlusion-free condition in this area. The upper part
of the face includes the forehead, eyes, and temporal region [12]. In addition, periocular
biometrics (i.e., the rich information features around the eye) have been studied extensively
in the last few years [13]. The periocular region is considered a substitute or additional
feature due to its highly distinctive character and rich information [14].

Previous works focused on finding the best facial features for face recognition. Kar-
czmarek et al. [15] used the analytic hierarchy process to estimate how important facial
features were in face recognition. From one of the experiment results, the most discrim-
inative features were the eyes, nose, and mouth. Conversely, although they noted that
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eyebrows were equally crucial in computational face recognition, they might not be es-
sential in real-life situations. Peterson and Eckstein [16] studied the gaze behavior from
human eye movement and its connection to identifying individuals. Their findings suggest
that the saccades, rapid eye movements between fixation points, were located just below
the eyes. Tome et al. [17] studied the effect of separating 15 face regions and found that
the inner regions (mouth, nose, and right eyebrow) were more useful for images with a
shorter acquisition distance, while the outer regions (forehead, chin, and right ear) were
more suitable for a farther acquisition distance. Abudarham et al. [18] observed the critical
features for face identification by intentionally changing features and tested the results of
the perceptual effect. They found that several critical features vary slightly across variations
of the equal identity and are robust to invariance problems. Continuing their work in [19],
they discussed three critical findings: the eyebrow thickness, eye color and shape, and lip
thickness were vital to identification. The same features could be used for familiar and
unfamiliar faces, and the features essential in human evaluation were equally prominent
for machine evaluation. Ding et al. [20] achieved detailed and precise detection of the
major facial features by differentiating between features and the context of the features
using subclass discriminant analysis (SDA) and subAdaBoost. Biswas et al. [21] proposed a
one-shot frequency-dominant neighborhood structure to tackle problems when the area of
the eyes is occluded. Wang et al. [22] proposed a combination of the vital subregions (eye,
nose, and mouth) and the entire image to improve recognition performance.

The importance of facial features also helps to determine human race categorization
and facial expression recognition. Bülthoff et al. [23] showed that the eyes are one factor
in determining perceived biogeographic ancestry. From their investigation, Fu et al. [24]
supported that the eyes, eyebrows, mouth, chin, and nose can be discriminative facial
features for distinguishing the human race. Oztel et al. [25] utilized the eye and eyebrow
regions using partial features for facial expression recognition. They achieved similar
results compared to using full-face information. García-Ramírez et al. [26] also investigated
the eyebrow and mouth areas for facial expression recognition.

As early as 2003, Sadr et al. [27] evaluated the importance of eyebrows in face recog-
nition. Their findings recommend that the eyebrows are a significant feature in face
recognition. The three possible reasons are as follows. First, the eyebrows carry emotions
and other nonverbal signals. Second, the eyebrows may assist as a solid feature due to
high contrast. They are robust against image degradation and illumination changes. Third,
the eyebrows are considered a consistent feature because of the incredible variety among
individuals and reliability across short periods of time (weeks or months). Various works
analyzed eyebrow images for recognition. In their work, Yujian and Cihua [28] extracted
string features. Hidden Markov models were employed in [29]. Turkoglu and Arican
in [30] proposed the novel features of a three-patch local binary pattern and Weber local
descriptor. Li et al. [31] designed fast template matching and a Fourier spectrum distance
for an automatic human eyebrow recognition system. These previous works have shown
that eyebrows have the potential to be future biometric traits.

Although they were highly distinctive, few works have investigated the value of
adding a curvature-based method for the eyes and eyebrows to produce in-depth character-
istics. In [32], curvature was added and combined with a gray level co-occurrence matrix
(GLCM) and tested against a masked face recognition system. Although the added curva-
ture did not improve the recognition’s performance, it successfully simplified the number
of properties in the GLCM and the recognition’s running time. In [33], the periocular
images were observed against the wavelet best basis (WBB) method. They were analyzed
using wavelet characteristics and variations in geometry transformations and noisy images.
Although the WBB improved the accuracy performance by 5–12%, the highest accuracy
(86.33%) had not achieved satisfactory results.

In this work, we focused our observation on using the eye and eyebrow regions from
face images datasets (cropped extended Yale B dataset [34,35], Aberdeen dataset [36], pain
expression subset dataset [36], and real fabric face mask dataset [32]) to determine which
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feature was the most discriminative for a partial face recognition system. The eyes and
eyebrows on the face have shapes that have details such as corners, lines, edges, and
colors. Moreover, the eyebrows are located next to the forehead, therefore increasing their
visibility [37]. A curvature-based method offers character to these details due to its ability
to measure how curved a surface is. Generally, curvature-based methods need 3D images
(where the third dimension offers the height value of the image data) [38–40], but in this
research, we propose using 2D images and transforming them into three-dimensional data,
where the third dimension contains the intensity value of the image. In addition, these
periocular features may not offer distinctive details on the coarse scales but may be revealed
on the finer scales. These finer scales can be obtained with the multiscale analysis method.
Thus, we proposed an idea: combining the multiscale analysis methods (i.e., scale space
(SS) and discrete wavelet transform (DWT)) with a curvature-based method.

This list contains the highlights and contributions of this work:

• We compare the eyes and eyebrows to find the most discriminative facial feature for a
partial face recognition system.

• We evaluate the eye and eyebrow features with a combination of multiscale analysis
and curvature-based methods. This combination aimed to capture the details of these
features at finer scales and offer them in-depth characteristics using curvature. The
combination using a curvature-based method was proven to improve the performance
of the recognition system.

• We demonstrate a comprehensive evaluation of all variables that occur due to combin-
ing multiscale analysis and curvature-based methods.

• The results from the proposed methods are compared using the limited number of
images versus the whole dataset. We also compare the results to other works with
the condition of the same datasets, and we successfully achieve similar high-accuracy
results using only eye and eyebrow images.

2. Materials and Methods
2.1. Methods

The overall flowchart appears in Figure 1. First, we addressed the original images
(no combination) and the extracted curvature features (connector A) in the classifiers. The
recognition system employed the scale-space method (connector B) and discrete wavelet
transform (connector C). The scale-space method (SS) was built for four octaves and three
levels in each octave. We created two decomposition levels with Haar, Symlet, Daubechies,
and biorthogonal wavelets for the discrete wavelet transform (DWT). These four initial
results were the foundation for evaluating whether our proposed methods successfully
achieved better performance.
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The following observation was to combine the scale space (SS) and discrete wavelet
transform (DWT) with a curvature-based method (connector B + A and connector C + A).
We evaluated the curvature-based methods with four curvatures: Gaussian, mean, max,
and min principal curvatures. All observations were tested against four face image datasets
and two classifiers (i.e., k-nearest neighbor (k-NN) and support vector machine (SVM)).

2.1.1. The Curvature-Based Method

To measure how a surface bends in R3 is to observe changes from each point on the
surface. A grayscale image I(p,q) has p rows and q columns, and each combination of rows
and columns contains a grayscale value of 0–255. Then, the two-dimensional data R2 is
transformed into the three-dimensional data R3. Row p and column q are transformed into
the x-plane and y-plane, while the intensity value is transformed into the z-plane. Then,
the curvature in this research is calculated from R3 of I(p,q) (Equation (1)), where the third
dimension is not the height of the data but the intensity value of the images I:

I(p,q) → I(x,y,z) (1)

I(x,y,z) has a surface in space where each point on the surface is parameterized using
two coordinates [41]:

x : R2 ⊇ U → R3 : (u, v) 7→ x(u, v) (2)

The first partial derivative with respect to u and v is

x1 =
[

∂x
∂u

∂y
∂u

∂z
∂u

]
; x2 =

[
∂x
∂v

∂y
∂v

∂z
∂v

]
(3)

From the first partial derivative, we can calculate the first fundamental form (Equation (4)):

I =
[

g11 g12
g21 g22

]
(4)
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where
gij = xi·xj (5)

The second partial derivative with respect to u and v is

x11 =
∂x1

∂u
; x22 =

∂x2

∂v
; x12 = x21 =

∂x1

∂v
=

∂x2

∂u
(6)

Similarly, from the second partial derivative, the second fundamental form (Equation (7))
can be calculated:

II =
[

b11 b12
b21 b22

]
(7)

where
bij = xij·n (8)

and
n =

x1 × x2

‖x1 × x2‖
(9)

There are several essential curvatures for the surface in R3, Gaussian curvature (K),
mean curvature (H), and principal curvatures (X, N) (Equations (10)–(12)) [41]:

K =
b11b22 − b2

12
g11g22 − g2

12
(10)

H =
1
2

g11b22 − 2g12b12 + g22b11

g11g22 − g2
12

(11)

X, N = H ±
√

H2 − K (12)

These concepts of curvatures help to distinguish different perspectives on a surface.
While the mean curvature is an extrinsic measure, the Gaussian curvature is an intrinsic
measure. The importance of these measures is that some surfaces can be extrinsically curved
but intrinsically flat [42]. The principal curvatures are the shape operator’s eigenvalues
and the maxima and minima values of a normal curvature. The principal curvatures can be
obtained from the Gaussian and mean curvatures (Equation (12)) [43]. The curvature-based
method appears in Figure 1 as connector A. In this work, a curvature-based method offers
characteristics due to its ability to measure the surface’s curvature of the eyes and eyebrows.

2.1.2. The Scale Space with a Curvature-Based Method

The scale-space method [44] is a concept to inspect the features of a multiscale and
multiresolution image. Real-life situations prove that an extensive range of sizes and
different scales are essential to observation. We analyzed the eye and eyebrow features
using the scale-space method because we did not know yet at which scale these features
would yield the highest recognition performance. The scale space has been applied in
well-known methods (e.g., scale-invariant feature transform (SIFT) [45] and speeded up
robust features (SURF)) [46].

Building of the scale space (SS) was accomplished by filtering the image (I) with the
Gaussian function Gσ with a width that varied for different scales (Equations (13)–(16)) [47].
In this work, we created the scale space for four octaves (O = 4) and three levels in each
octave (L = 3), where o ∈ [0, O− 1] indicated the octave index and l ∈ [1, L] indicated the
level index in the same octave:

SS(p,q,o,l) = I(p,q) ∗ Gσ0,l
(p,q) (13)

where

Gσ(p, q) =
1

2πσ2 e
−p2+q2

2σ2 (14)
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and

σv = σ0

√
2

2l
L − 1 (15)

with
σ0 =

√
σ2 − σ2

s (16)

The values of σs and σ were set to be σs = 0.5 and σ = 1.6 as in [44]. To create the
next octave o, when l reaches L in o − 1, the process subsamples the image size by 2 in
Equation (17). Then, the same filtering with Gσ (Equation (13)) is repeated until l reaches L
in o:

SS(p,q,o,l) = SS(2p,2q,o−1,l) (17)

The scale-space combination with the curvature is a method to obtain a representation
of a curve that is invariant under rotation, uniformity, scaling, and translation [48,49]. The
curvature scale space has been widely used in applications such as recognition [50,51],
image processing [52,53], and corner detection [54,55].

The scale space with a curvature-based method is created by taking the output of
the scale-space images and then converting it to the three-dimensional data R3 as in
Equation (1):

SS(p,q,o,l) → SS(x,y,z,o,l) (18)

The convolution in Equation (13) thus modifies the first and second partial derivatives
in Equations (3) and (6) and develops into Equations (19) and (20):

x′1 = x1 ∗ Gσ =
[

∂x′
∂u

∂y′
∂u

∂z′
∂u

]
=
[

∂[x∗Gσ ]
∂u

∂[y∗Gσ ]
∂u

∂[z∗Gσ ]
∂u

]
;

x′2 = x2 ∗ Gσ =
[

∂x′
∂v

∂y′
∂v

∂z′
∂v

]
=
[

∂[x∗Gσ ]
∂v

∂[y∗Gσ ]
∂v

∂[z∗Gσ ]
∂v

] (19)

x′11 =
∂x′1
∂u

; x22 =
∂x′2
∂v

; x12 = x21 =
∂x′1
∂v

=
∂x′2
∂u

(20)

Accordingly, from Equations (19) and (20), we derive the modified first and second
fundamental form and create a new scale space curvature SS + K, SS + H, SS + X, and SS + N.
These are the scale space Gaussian curvature-based, scale space mean curvature-based,
scale space max principal curvature-based, and scale space min curvature-based methods,
respectively. Figure 1′s connector B defines the scale-space method, while connector B + A
describes the scale space with a curvature-based method.

2.1.3. The Discrete Wavelet Transform with a Curvature-Based Method

The discrete wavelet transform (DWT) is a type of multiresolution analysis from which
we can observe details in different resolutions. In the DWT, the different resolutions refer
to the ability of the DWT to find the frequency and location information from an image. In
this work, we employed two levels of decomposition using Haar and Symlet wavelets with
n = 2 (Sym2), Daubechies wavelet with n = 2 (Db2), and biorthogonal wavelet with nr = 2
and nd = 2 (Bior2.2), where n was the number of vanishing moments and nr and nd were
the numbers of vanishing moments for the synthesis and analysis wavelets, respectively.
The Haar, Sym2, Db2, and Bior2.2 wavelets were chosen because they detected the tight
space features essential to the eyes and eyebrows.

The downsampled DWT of I(p,q) with the low-pass filter (scaling function) of row s(p)
and column s(q) and high-pass filter (wavelet function) of row t(p) and column t(q) can be
observed in Equations (21) and (22) [56]. The process for the first decomposition level can
be seen in connector C of Figure 1:

Y1(q) = (I ∗ s)(q) = ∑k I(k)s(2q− k); Y2(q) = (I ∗ s)(q) = ∑k I(k)s(2q− k) (21)
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A(p, q) = Y1(q) ∗ s(p) = ∑k Y1(k)s(2p− k); Hr(p, q) = Y1(q) ∗ t(p) = ∑k Y1(k)t(2p− k);
V(p, q) = Y2(q) ∗ s(p) = ∑k Y2(k)s(2p− k); D(p, q) = Y2(q) ∗ t(p) = ∑k Y2(k)t(2p− k)

(22)

The DWT combined with a curvature-based method has been developed to analyze
problems for detecting structure damage [57–61]. For biometric recognition, this combina-
tion has been applied in [62,63]. The output of the DWT (Equation (23)) can be combined
with a curvature-based method using Equations (2)–(12), resulting in 16 variables for each
level of decomposition. A total of 32 variables were obtained for 2 decomposition levels.
The process for the first decomposition level of the DWT with a curvature-based method
appears in connector C + A of Figure 1:

A(p,q) → A(x,y,z); Hr(p,q) → Hr(x,y,z); V(p,q) → V(x,y,z); D(p,q) → D(x,y,z) (23)

2.2. Materials and Experimental Set-Ups
2.2.1. Datasets

We evaluated the proposed methods using four face datasets: the Cropped Extended
Yale Face Database B (EYB) [34,35], the Aberdeen dataset (ABD) [36], the pain expression
subset dataset (PES) [36], and the real fabric face mask dataset (RFFMDS v.1.0) [32]. To
find the best discriminative feature in partial face recognition, we specifically used the
face dataset and then cropped the images to extract the eyes and eyebrows from each
dataset. The cropping process for the eye images was performed using the Viola–Jones
algorithm [64], while the eyebrow images were manually cropped. For the EYB, ABD, and
PES datasets, the final size for the eye images was 118 × 30 pixels, and the final size for
the eyebrow images was 168 × 22 pixels. All eye and eyebrow images were in grayscale.
Figure 2 shows examples of the face images in their original form for these datasets and the
cropped results for the eye and eyebrow images:

• The Cropped Extended Yale Face Database B (EYB) [34,35] has 38 frontal face images of
38 respondents in 65 image variations (1 ambient + 62 illuminations). The original size
of each image is 168 × 192 pixels in grayscale. Each image in the dataset has little to
no variation in the location of the eyes and eyebrows. First, we evaluated 434 cropped
face images taken randomly from 7 respondents in the dataset for this research. Since
extremely dark images were inside the dataset, we evaluated 62 images for each
respondent. We evaluated part of the EYB dataset first to observe the performance
of all the proposed ideas. Then, we later re-evaluated the whole dataset using the
best method that produced the highest recognition performance to observe the effect
using limited data vs. larger data. Re-evaluation for the best method used 2242 images
from 38 respondents. A total of 59 images was taken from each respondent. Several
images were not observed because they were bad images resulting from the acquisition
process.

• The Aberdeen dataset (ABD) [36] has 687 color face images from 90 respondents. Each
respondent provided between 1 and 18 images. The dataset has variations in light-
ing and viewpoint. The original resolution of this dataset varied from 336 × 480 to
624 × 544 pixels. There are images with different hairstyles, outfits, and facial expres-
sions in the ABD. We evaluated 84 face images randomly from 21 respondents, with a
total of 4 images with lighting and viewpoint variations for each respondent. We also
re-evaluated the whole dataset to observe the effect using limited data vs. larger data.
Re-evaluations for the best method used 244 images from 61 respondents. To create a
balanced dataset, we did not use the whole of the images from the 90 respondents be-
cause only 61 respondents from the dataset had the consistency of containing 4 images,
while the other 29 respondents had a varying number of images per person ranging
from 1 to 18 images.

• The pain expression subset dataset (PES) [36] has 84 cropped images from the pain
expression dataset. The face images have a fixed location for the eyes, with 7 expres-
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sions from each of the 12 respondents. The original resolution is 181 × 241 pixels
in grayscale. The eyes and eyebrows differ in shape according to the respondent’s
expression. For this work, we evaluated all images in the dataset.

• The real fabric face mask dataset (RFFMDS v.1.0) [32] has 176 images from 8 respon-
dents. A total of 22 images consisting of 2 face masks and barefaced images were
gathered from each respondent. The images have varying viewpoints and head pose
angles. The images are 200 × 150 pixels in an RGB color space. This dataset was
evaluated to compare the eye and eyebrow images with full-masked face images for
the recognition system. For this dataset, the final size for the cropped eyes image was
49 × 13 pixels, and the final size for the cropped eyebrows image was 67 × 20 pixels.
Both the eye and eyebrow images were in grayscale.
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Figure 2. Example of face images from datasets and cropped results for eye and eyebrow images:
(a) EYB, (b) ABD, (c) PES, and (d) RFFMDS v1.0.

2.2.2. Classification and Performance Calculation

The classification process used two methods: k-nearest neighbor (k-NN) and a support
vector machine (SVM). The distance metric calculated (d) in k-NN used the Euclidean
distance (Equation (24)) [65]. The k-NN method calculates the k-nearest neighbor between
two classes of data (testing and training) x and y, respectively. The SVM classifier was
tested against the linear kernel (SVM-1) and polynomial kernel (SVM-2):

d(x, y) =
√

∑l
i=1(xi − y1)

2 (24)

Before evaluating the proposed idea against the datasets, we found the best accuracy
result with the shortest running time for k-NN was when k = 1. This means we used the
single nearest neighbor between the testing and training data. Due to the similar features
of the eye images and eyebrow images from different classes (respondents), k = 1 in the
k-NN yielded better performance than other values of k. Table 1 displays these preliminary
results. These results were evaluated against the eyebrow images using a combination of
the scale-space method (O = 0 and L = 2) with the max principal curvature (SS + X).

Table 1. The accuracy (%) results and training time (s) of the eyebrow images using SS + X with O = 0
and L = 2 with its respective value of k in the k-NN classifier.

k-NN Acc (%) Training Time (s)

k = 1 91.00 13.47
k = 3 89.20 17.02
k = 5 85.50 17.31
k = 7 84.10 14.69

The images in each dataset were divided in two; the first random half was used for the
training data, while the remaining random half was used for validation. We calculated the
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validation accuracy (Acc) of the recognition system (Equation (25)) for each combination of
methods [66]. TP and TN are true positive and true negative, respectively, while FP and
FN are false positive and false negative, respectively. The Acc displays how accurately the
system recognized individuals:

Acc =
TP + TN

TP + FP + TN + FN
× 100% (25)

All simulations in this work were compiled using MATLAB Version: 9.10.0.1710957
(R2021a) Update 4 running on an Intel(R) CoreTM) i7-7500U CPU at 2.70 GHz with a 2.90
GHz processor and 16 GB RAM.

3. Results and Discussion

The detailed results of the eye and eyebrow images from the EYB dataset are displayed
in Sections 3.1 and 3.2. The results from the ABD, PES, and RFFMDS v1.0 datasets are
compared in Section 3.3. Section 3.4 compares the results from the proposed methods with
other works that used the same dataset. We created Table 2 to list the abbreviations used in
this research.

Table 2. The list of abbreviations in this research.

Abbr. Method

K Gaussian curvature
H mean curvature
X max principal curvature
N min principal curvature
SS + K/H/X/N scale space with curvature (Gaussian, mean, max principal, and min principal)
O-L octave level in scale space
A# approximation coefficient in DWT from # (decomposition level)
Hr# horizontal coefficient in DWT from # (decomposition level)
V# vertical coefficient in DWT from # (decomposition level)
D# diagonal coefficient in DWT from # (decomposition level)
Sym2 Symlet wavelet with 2 vanishing moments
Db2 Daubechies wavelet with 2 vanishing moments
Bior2.2 biorthogonal wavelet with 2 vanishing moments for synthesis and analysis
1-NN k-nearest neighbor with k = 1
SVM-1 support vector machine with linear kernel
SVM-2 support vector machine with polynomial kernel

3.1. The EYB Eyes Image Results
3.1.1. The Curvature-Based Method Results

This section evaluates the EYB dataset, focusing on the eye images using 1-NN, SVM-1,
and SVM-2. Table 3 shows the accuracy results from using the original images (no combi-
nation) and the extracted curvature features. The extracted curvatures were the Gaussian
curvature (K), mean curvature (H), max principal curvature (X), and min principal cur-
vature (N) from Equations (10)–(12) in Section 2.1. From Table 3, we observed that the
extracted curvatures had not improved the performance results. The best accuracy was
66.36%, obtained from SVM-1.

Table 3. The accuracy (%) results from the EYB dataset for the eye images and the extracted curvatures.

Classification Base
Curvature-Based

K H X N

1-NN 58.92 15.88 32.58 47.42 51.36
SVM-1 66.36 31.80 51.61 59.91 58.99
SVM-2 44.70 25.81 30.41 34.56 22.12
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3.1.2. The Scale Space with a Curvature-Based Method Results

In the following experiment, we evaluated the scale-space method from
Equations (13) and (17). There were four octaves (O) and three levels in each octave (L).
Moreover, the scale space (SS) was then combined with the curvature-based methods in
Equations (18)–(20), resulting in a total of 12 variables of O and L from SS and the K, H, X,
and N curvatures.

The accuracy results appear in Figure 3. The best results were derived from O = 0
and O = 1, while starting from O = 2, the accuracy results decreased. The performance
decreased due to the smaller size of the convoluted images and wider Gaussian width in
O = 2 and O = 3. The sizes of the images in O = 1, O = 2, and O = 3 were 59 × 15, 29 × 7,
and 14 × 3 pixels, respectively. The widths of the Gaussian filters for L = 1, L = 2, and L = 3
were 1.23, 1.97, and 2.77, respectively.
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evaluated for 12 octave O and level L variables from SS and 5 curvature-based scale spaces (SS,
SS + K, SS + H, SS + X, and SS + N).

Consequently, due to the inferior results starting from O = 2, Table 4 displays the
results of the curvature-based scale-space method only from O = 0 and O = 1. Overall, the
scale space accuracy results from O = 0 performed better than those from O = 1, except for
combinations of SS + H (scale space with mean curvature) and SS + X (scale space with the
max principal). The results reached the peak at O = 1 and L = 1 from SVM-1. Details from
Table 3 also show that SVM-1 produced superior results compared with 1-NN and SVM-2.
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Table 4. The detailed accuracy (%) results of the scale-space method and its combination with a
curvature-based method (SS, SS + K, SS + H, SS + X, and SS + N) on EYB dataset for the eye images.

Classifier Method
Octave-Level (O-L)

0-1 0-2 0-3 1-1 1-2 1-3

1-NN

SS 54.84 54.10 50.41 48.36 45.90 43.32
SS + K 41.24 43.89 45.90 25.32 29.10 29.29
SS + H 63.20 64.49 63.32 53.78 52.35 51.89
SS + X 63.85 64.06 64.70 57.58 56.43 51.77
SS + N 66.41 65.35 65.46 46.38 45.88 42.86

SVM-1

SS 69.59 69.59 69.12 68.20 67.28 66.82
SS + K 47.93 53.92 57.60 49.77 42.40 36.41
SS + H 64.06 64.52 65.44 74.65 64.98 60.37
SS + X 65.44 64.06 63.13 76.04 72.81 64.98
SS + N 67.74 66.82 66.82 60.83 50.23 45.16

SVM-2

SS 49.31 40.55 40.55 24.42 25.81 18.89
SS + K 35.02 38.71 35.48 22.12 26.73 35.02
SS + H 43.78 59.91 54.38 35.48 32.26 26.27
SS + X 43.78 36.41 36.87 29.49 29.03 33.18
SS + N 53.00 52.53 48.85 33.18 33.64 33.64

We successfully improved the accuracy of the scale-space method by combining it with
a curvature-based method. The best accuracies were 76.04% and 74.65%, respectively, from
SS + X and SS + H. They improved the previous scale-space method accuracy by 7.84%.
Figure 4 shows the results from SS + K, SS + H, SS + X, and SS + N. From Figure 4, we can
observe why the combination of SS + H (Figure 4b) and SS + X (Figure 4c) performed well.
They were richer in features compared with SS + K (Figure 4a) and SS + N (Figure 4d). The
scale space with a curvature-based method effectively captured the prominent feature at
O = 1, while the mean and max principal curvature characterized this feature to be more
distinctive.
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3.1.3. The DWT with a Curvature-Based Method Results

The evaluation of the following experiment used the DWT of the Haar, Sym2, Db2,
and Bior2.2 wavelets. There were two decomposition levels with four wavelet coefficients:
approximation (A), vertical (V), horizontal (Hr), and diagonal (D) details, as explained in
Equation (22).

Table 5 presents the accuracy results for this experiment. The approximation (A)
showed the best performances among the other coefficients. The second decomposition
level overall displayed higher accuracy results. The results reached the peak performance
in A2 (approximation coefficient with the second decomposition level) for all wavelets. The
best accuracy result was 72.81% from Sym2 and Db2.

Table 5. The accuracy (%) results of the DWT on the EYB dataset for the eye images. The performance
was calculated for all wavelet coefficients in two decomposition levels, producing A1, V1, Hr1, D1,
A1, V2, Hr2, and D2.

Classifier DWT
Wavelet Coefficient and Decomposition Level

A1 V1 Hr1 D1 A2 V2 Hr2 D2

1-NN

Haar 58.06 50.71 51.64 20.07 55.44 58.87 56.87 29.82
Sym2 59.45 21.06 32.70 14.40 58.29 45.85 52.17 22.24
Db2 59.29 21.08 32.86 14.82 58.04 45.55 51.71 22.33

Bior2.2 57.24 18.39 27.60 14.95 58.27 31.24 43.80 17.65

SVM-1

Haar 67.28 58.06 55.30 41.94 70.51 56.68 54.38 43.32
Sym2 66.36 41.47 48.85 30.88 72.81 47.00 51.15 27.19
Db2 66.36 41.47 48.85 30.88 72.81 47.00 51.15 27.19

Bior2.2 69.12 40.55 47.00 26.27 71.43 39.17 42.86 23.50

SVM-2

Haar 16.13 33.18 36.87 30.41 56.68 44.24 37.33 29.03
Sym2 16.59 24.42 29.95 26.27 51.61 35.02 43.78 27.19
Db2 16.59 24.42 29.95 26.27 51.61 35.02 43.78 27.19

Bior2.2 20.74 28.11 28.57 20.74 41.47 26.73 29.95 23.96

We then observed the results from a combination of the DWT and curvature-based
method. Each wavelet coefficient was paired with curvatures in every decomposition level,
resulting in 16 variables. Figure 5 shows the results for each classifier. Like the previous
results, SVM-1 demonstrated a higher performance accuracy compared with 1-NN and
SVM-2. We then further investigated the results using the SVM-1 in Table 6. Table 6
shows that the approximation coefficient produced better results, supporting the previous
experiment conclusion from Table 5.

On the other hand, the first decomposition level presented the best results, which
is contrary to Table 5, where the second decomposition level produced the best results.
The DWT achieved the highest accuracy if paired with H (mean curvature) or X (max
principal curvature). This argument supported the previous conclusion in Table 4. The
best accuracy result (74.65%) was derived from A-H (approximation with mean curvature)
on the first-level decomposition with Sym2 or Db2. The combination of the DWT with the
curvature-based method improved the accuracy result by 1.84%.
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Table 6. The detailed accuracy (%) results of the combined DWT with a curvature-based method on the EYB dataset for the eye images using SVM-1. The combined
methods produced wavelet coefficients with two decomposition levels and curvature-based variables (e.g., A-K (approximation with Gaussian curvature) until D-N
(diagonal with min principal curvature)).

Classifier DWT
Wavelet Coefficient and Curvature Combination

A-K A-H A-X A-N V-K V-H V-X V-N Hr-K Hr-H Hr-X Hr-N D-K D-H D-X D-N

SVM-1

Haar Lv1 20.28 70.51 64.06 56.22 21.66 51.61 44.24 47.47 22.12 53.92 51.15 50.69 24.88 43.78 38.25 39.63
Haar Lv2 28.11 61.75 65.44 55.76 25.35 52.07 41.01 45.62 20.74 48.85 46.08 48.85 21.66 34.56 31.80 30.41
Sym2 Lv1 22.58 74.65 64.06 69.12 22.58 46.54 44.24 43.78 26.73 45.16 38.71 42.40 29.95 28.57 37.33 32.72
Sym2 Lv2 28.11 66.36 68.66 58.99 17.05 43.78 34.10 40.09 21.66 47.47 42.40 40.09 17.05 23.50 24.42 31.34
Db2 Lv1 22.58 74.65 64.06 69.12 22.58 46.54 44.24 43.78 26.73 45.16 38.71 42.40 29.95 28.57 37.33 32.72
Db2 Lv2 28.11 66.36 68.66 58.99 17.05 43.78 34.10 40.09 21.66 47.47 42.40 40.09 17.05 23.50 24.42 31.34

Bior2.2 Lv1 23.50 70.97 65.90 68.66 22.58 44.70 44.24 38.25 25.35 45.16 46.08 41.01 26.27 25.81 32.72 35.48
Bior2.2 Lv2 30.41 64.52 65.90 59.91 19.82 41.47 35.94 36.41 23.96 39.17 39.17 40.09 22.12 23.96 30.41 28.57
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3.1.4. Summary

This section emphasizes the findings so far based on the results in Section 3.1. First, we
found that combining the multiscale analysis methods with the curvature-based methods
improved the accuracy results. The improvement varied between 1.84% and 7.84%. Second,
we found that the best combination was with the mean curvature and max principal
curvature. The highest accuracy was 76.04% from SS + X and 74.05% from SS + H. The
mean curvature and the max principal curvature successfully characterized the multiscaled
eyes images to be more distinctive. Third, we found that the scale-space method decreased
the accuracy when using one-quarter and one-eighth of the resolution of the original image.
This decrement also happened in the scale space with the curvature-based method and the
DWT with the curvature-based method. On the contrary, the decrement did not happen for
the DWT. Fourth, the linear SVM was the best classifier tested against all variables in the
whole experiment.

3.2. The EYB Eyebrow Image Results
3.2.1. Curvature-Based Method Results

In this section, an evaluation is performed on the eyebrow images still with the EYB
dataset. Table 7 displays the performance results for the eyebrow images using the same
experimental conditions for the eye images from Table 3. In contrast to the results from the
eye images, from Table 7, we can see that the results from the eyebrow images displayed
high accuracy. Almost all combinations with curvatures produced higher results compared
with the eye images. The SVM-1 demonstrated superior performance to the original
images with the highest accuracy of 92.63% and 91.24% from an extracted min principal
curvature (N).

Table 7. The accuracy (%) results from the EYB dataset for the eyebrow images and the extracted
curvatures.

Classifier Base
Curvature-Based

K H X N

1-NN 63.27 18.29 52.65 72.74 72.86
SVM-1 92.63 56.68 86.64 86.64 91.24
SVM-2 64.52 35.94 47.93 31.34 35.94

3.2.2. The Scale Space with Curvature-Based Method Results

The same experimental conditions from the eye images in Table 4 were applied to the
eyebrow images in this section, resulting in Table 8. The results of the eyebrow images in
this experiment also displayed higher performance than the eye images. The conclusion
from Table 3 for the accuracy results of O = 0 offered higher accuracy than O = 1, which
was also repeated for the eyebrow images.

The highest accuracy result of 94.93% occurred when O = 1 and L = 1 with SS + H. The
equal highest accuracy result was also produced with SS + N when O = 0 using SVM-1.
The difference between O = 0 and O = 1 was within the Gaussian kernel’s width and the
images’ size. In O = 0, the image’s size was bigger than that in O = 1 by half due to the
decimation in Equation (17). Figure 6 displays the results from SS + K, SS + H, SS + X, and
SS + N. Like the eye images, the combination with H and X resulted in richer features in
the eyebrow images. Additionally, for the eyebrow images, the combination with N also
performed well.
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Table 8. The detailed accuracy (%) results of the scale-space method and its combination with a
curvature-based method (SS, SS + K, SS + H, SS + X, and SS + N) on the EYB dataset for the eyebrow
images.

Classifier Method
Octave-Level (O-L)

0-1 0-2 0-3 1-1 1-2 1-3

1-NN

SS 57.76 56.36 55.30 52.24 49.95 45.18
SS + K 47.74 48.16 39.52 35.37 38.69 37.35
SS + H 82.70 83.11 83.25 76.82 76.04 70.90
SS + X 83.76 91.00 83.41 69.12 64.88 61.45
SS + N 84.22 83.00 82.53 79.26 74.72 67.12

SVM-1

SS 87.56 88.48 87.10 85.25 86.64 86.18
SS + K 78.80 82.95 83.87 64.52 65.44 65.44
SS + H 93.55 94.47 89.86 94.93 93.55 85.71
SS + X 94.01 93.09 91.24 88.94 88.48 82.03
SS + N 93.55 94.93 93.09 93.55 89.40 83.41

SVM-2

SS 66.36 47.47 55.30 29.49 22.58 23.04
SS + K 36.87 39.63 44.70 21.20 34.10 23.50
SS + H 63.59 57.14 38.25 31.34 32.26 33.64
SS + X 46.08 67.74 30.41 28.11 27.19 22.12
SS + N 62.21 55.76 57.60 38.71 40.09 33.64
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3.2.3. The DWT with Curvature-Based Method Results

Table 9 displays the results for the eyebrow images using the DWT with the same
experimental conditions as the previous eye images from Table 5. The SVM-1 showed
consistently superior performance, while overall, the second decomposition level still
produced a higher accuracy. Contrary to Table 5, the vertical and horizontal coefficients
demonstrated improved results. In several cases (e.g., Hr2 with Sym2 and Db2), the
horizontal coefficient displayed a similar or better accuracy than A2 in 1-NN and SVM-1.
The best results were obtained from A1 with the Haar wavelet, followed by A1, A2, and Hr2
with Sym2 and Db2. This Hr accentuated the shapes of eyebrows that had more distinctive
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features in the horizontal direction. Figure 7 displays the DWT results using the Sym2
wavelet with the first decomposition level (Figure 7a) and the second decomposition level
(Figure 7b).

Table 9. The accuracy (%) results of the DWT on the EYB dataset for the eyebrow images. The
performance was calculated for all wavelet coefficients in two decomposition levels, producing A1,
V1, Hr1, D1, A1, V2, Hr2, and D2.

Classifier DWT
Wavelet Coefficient and Decomposition Level

A1 V1 Hr1 D1 A2 V2 Hr2 D2

1-NN

Haar 63.69 60.58 77.65 24.29 61.52 78.02 77.51 33.34
Sym2 62.76 30.16 56.47 17.14 59.03 63.29 81.13 33.06
Db2 63.02 29.26 52.67 17.10 60.00 57.93 81.50 34.06

Bior2.2 64.03 25.53 46.38 17.26 62.26 46.96 75.23 25.46

SVM-1

Haar 92.17 84.79 87.1 79.72 89.4 86.18 86.18 69.12
Sym2 91.71 73.73 83.41 74.65 91.71 86.64 91.24 70.97
Db2 91.71 73.73 83.41 74.65 91.71 86.64 91.24 70.97

Bior2.2 91.71 76.96 83.87 69.59 90.78 80.18 87.56 57.6

SVM-2

Haar 35.48 43.32 40.55 34.56 60.83 56.22 48.39 32.26
Sym2 26.73 36.87 35.02 23.96 59.45 41.47 45.62 35.02
Db2 26.73 36.87 35.02 23.96 59.45 41.47 45.62 35.02

Bior2.2 29.03 37.79 35.94 31.8 56.68 32.26 44.24 29.49
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Table 10 displays the results of the DWT with a curvature-based method for the
eyebrow images. We only presented the results with SVM-1 since this classifier repeatedly
showed higher results than 1-NN and SVM-2. The first decomposition level demonstrated
higher performance, as shown in Table 6. The curvatures H, X, and N were unsurpassed if
combined with the wavelets. Accordingly, the best accuracy was 98.61%, obtained from
A-H with the Haar wavelet from the first decomposition level, followed by 98.16% from the
Sym2 and Db2 wavelets. This result achieved the highest accuracy thus far. The combination
of the DWT with a curvature-based method improved the accuracy result by 6.45%.

Figure 8 displays the results when using the Sym2 wavelet from the first decomposition
level’s combined curvature, showing A-K (Figure 8a), A-H (Figure 8b), A-X (Figure 8c), and
A-N (Figure 8d). We can observe why A-H, A-X, and A-N performed well, but A-K showed
a lesser result. A-K only captured inferior features, which yielded a worse performance in
the recognition system.
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3.2.4. Summary of the EYB Eyebrow Image Results

The following includes the findings based on Section 3.2. First, we found that the
eyebrow images yielded higher accuracy results compared with the eye images. The EYB
dataset has variations in the lighting angle. These high results proved the argument in [26]
that the eyebrows are robust against illumination. Second, similar to the eye results, the
best combination was with the mean curvature and max principal curvature. In addition,
in the eyebrow images, the min principal curvature also produced a high accuracy. The
highest accuracy was 98.61% from A + H with the Haar wavelet and 98.16% from A + H
with the Sym2 and Db2 wavelets. Both were derived using the first decomposition level.
The mean, max, and min principal curvatures successfully characterized the multiscale
eyebrow images to be more distinctive. Third, we found that the horizontal approximations
in the DWT and its combination with a curvature-based method produced high accuracy
results. We did not find these high results when using the eye images. The horizontal
approximation produced high accuracy because the shape of the eyebrows might have had
more distinctive features in the horizontal direction. Fourth, the decreasing results due to
the smaller resolutions of the images also happened in the eyebrow images. Fifth, the SVM
linear classifier was consistently showing the highest results. This repeated performance
also occurred with the eyebrow images.
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Table 10. The accuracy (%) results of combined DWT with a curvature-based method on the EYB dataset for the eyebrow images using SVM-1. The combined
methods produced wavelet coefficients with two decomposition levels and curvature-based variables (e.g., A-K (approximation with Gaussian curvature) until D-N
(diagonal with min principal curvature)).

Classifier DWT
Wavelet Coefficient and Curvature Combination

A-K A-H A-X A-N V-K V-H V-X V-N Hr-K Hr-H Hr-X Hr-N D-K D-H D-X D-N

SVM-1

Haar Lv1 38.25 98.61 95.39 96.77 37.79 90.78 87.56 89.86 40.09 92.63 92.63 91.71 47.93 80.65 82.95 82.95

Haar Lv2 34.10 88.48 82.95 87.56 33.64 92.17 82.49 88.02 30.88 90.78 89.86 84.79 27.19 71.43 59.91 65.44

Sym2 Lv1 43.78 98.16 96.31 97.24 43.32 88.48 84.79 85.25 42.40 94.01 94.01 91.24 48.39 72.81 76.96 69.59

Sym2 Lv2 41.94 94.01 86.64 94.93 30.41 82.03 84.33 81.11 35.94 92.63 88.94 92.63 27.19 70.97 60.37 65.90

Db2 Lv1 43.78 98.16 96.31 97.24 43.32 88.48 84.79 85.25 42.40 94.01 94.01 91.24 48.39 72.81 76.96 69.59

Db2 Lv2 41.94 94.01 86.64 94.93 30.41 82.03 84.33 81.11 35.94 92.63 88.94 92.63 27.19 70.97 60.37 65.90

Bior2.2 Lv1 34.56 96.77 96.77 97.24 40.09 87.10 79.26 83.41 35.94 93.09 90.78 93.09 44.70 68.20 70.97 67.74

Bior2.2 Lv2 34.56 93.09 89.40 94.01 29.49 72.81 67.28 69.12 32.72 90.78 90.32 87.10 26.73 52.07 49.77 51.61
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3.3. Results Using Other Datasets

The best results for the eye images and eyebrow images from the EYB dataset were
first re-evaluated using the whole dataset to observe the effect of using the limited number
of images vs. larger data. As mentioned before, in this research, the limited data set of EYB
contained 434 images from 7 respondents, while the whole EYB dataset contained 2242
images from 38 respondents. The previous best results from the eye images were produced
from SS + X and SS + H, while from the eyebrow images, the best results were produced
from A + H from the Sym2 and Db2 wavelets.

Table 11 shows the limited data results vs. larger data using the EYB dataset. From
Table 11, we observed that by using a larger number of images in the same dataset (EYB
dataset), the accuracy results for the eye images showed higher performance, while the
eyebrow images showed inferior results. Although the eyebrows feature produced higher
performance, the eyes feature in the face images had the potential to be a more stable
feature for a larger dataset.

Table 11. The accuracy (%) results of the limited EYB dataset vs. the whole EYB dataset against the
best method in all proposed idea.

Region Method
Accuracy (%)

Limited EYB (434 Images) Whole EYB (2242 Images)

Eyes base 66.36 74.04
SS + H 74.65 85.37
SS + X 76.04 83.41

Sym2(A) + H 74.65 96.88
Sym2(A) + X 64.06 96.52
Db2(A) + H 74.65 96.88
Db2(A) + X 64.06 96.52

Eyebrows base 92.63 79.3
SS + H 94.93 83.23
SS + N 94.93 83.59

Sym2(A) + H 98.16 83.59
Sym2(A) + X 96.31 93.22
Db2(A) + H 98.16 83.59
Db2(A) + X 96.31 93.22

The effects of the limited and whole datasets were also evaluated against the ABD.
From Figure 9, we observed that contradictory results were found. The limited ABD
produced higher results than the whole ABD for the eye images and eyebrow images. We
also assessed the same experimental conditions for the eye and eyebrow images using the
PES datasets for the face images and RFFMDS v1.0 for the masked face images. Figure 9
displays the accuracy results from these datasets using SVM-1. We observed that the
whole EYB dataset produced the highest accuracy for the eye images, followed by the
PES, RFFMDS v1.0, limited EYB, limited ABD, and whole ABD. The limited EYB dataset
produced the best results for the eyebrow images, followed by RFFMDS v1.0, whole EYB,
PES, limited ABD, and whole ABD. For the limited and whole ABD, the best results were
obtained with SS + H at O = 1 and L = 1. In the PES dataset, the best results for the eye
images were from A2 with the Sym2 and Db2 wavelets, and the eyebrow images displayed
the best results with SS + H at O = 1 and L = 3. For the RFFMDS v1.0 dataset, the best
results for the eye images were obtained from SS at O = 0 and L = 3. The eyebrow images
displayed the best results from A1 with the Haar wavelet.
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Figure 9. Accuracy results (%) from EYB, ABD, PES, and RFFMDS v1.0 datasets for eye images and
eyebrow images.

It is worth noting the differences between these datasets. The ABD has more variations
in showing respondents’ conditions when capturing the images, such as variations in
lighting conditions, facial expressions, and hair styles. Sometimes, the hairstyles of the
respondents occluded the eye and eyebrow regions. The EYB dataset has little to no
variations in the location of the eyes and eyebrows. The variations in the EYB dataset
involve poses and illumination. Compared with the EYB dataset, the ABD has more
uncontrolled conditions. The PES dataset has variations in respondents’ expressions,
resulting in more variations in eye and eyebrow shape, but they have fixed locations.
Compared with the ABD, the PES dataset has more controlled conditions. The RFFMDS
v1.0 was collected to create a dataset for face images using the actual fabric face mask with
random colors and patterns. The variations in the RFFMDS v1.0 involve poses and angles.
Our proposed methods were evaluated using this dataset to compare the results of partial
face feature recognition with the eyes and eyebrows with full-face features occluded with a
face mask. The order of these datasets from controlled to the most uncontrolled conditions
was the EYB dataset, the RFFMDS v1.0, the PES dataset, and the ABD. These were in line
with the order of the accuracy results in Figure 9. Figure 10 shows the examples of images
according to the order of the datasets from controlled to uncontrolled conditions.
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3.4. Comparison with Other Methods

In the following section, Table 12 compares the results of our proposed methods with
other methods that used the same datasets. We specifically compared RFFMDS v1.0 to
contrast the partial face features of the eyes and eyebrows and the masked face images.
The best accuracy result from RFFMDS v1.0 [32] was 87.50%, while using the eyebrow
images from the same dataset with the proposed method yielded a higher accuracy of 95%.
This result demonstrated that the eyebrows could be discriminative enough and employed
when other facial parts were occluded.

Table 12. Comparison of accuracy (%) results with other methods.

Dataset Methods Accuracy (%)

Total Images
(Class/Testing per
Class/Training per

Class)

RFFMDS v1.0
Eyes * 81.25 160 (8/10/10)

Eyebrows * 95.00 160 (8/10/10)
Lionnie [32] 87.50 176 (8/2/20)

ABD

Eyes * 69.05 84 (21/2/2)
Eyebrows * 57.14 84 (21/2/2)

Eyes * 39.34 244 (61/2/2)
Eyebrows * 23.77 244 (61/2/2)

Rahmad [67] on SVM 74.83 687 (90:10-CV) **

EYB dataset

Eyes * 76.04 434 (7/31/31)
Eyebrows * 98.61 434 (7/31/31)

Eyes * 96.88 2242 (38/29/30)
Eyebrows * 93.22 2242 (38/29/30)
Yang [68] 93.96 70 (10/1/6)
Lin [69] 67.42 2432 (38/1/63)

Phornchaicharoen [70] 96.56 2404 (80:20) ***
Deng [71] on L-SVM 97.10 2432 (38/32/32)
Wright [72] on SVM 97.70 2432 (38/32/32)

* Results from the proposed methods. ** On 90/10 training/testing cross-validation total of 687 images with
unbalanced dataset. *** On 80/20 training/testing division for 2404 images.

Using face images from the ABD, Rahmad [67] produced the best accuracy result of
74.83% for an unbalanced dataset using 10-fold cross-validation. Unfortunately, our eye
and eyebrow images in this dataset failed to match this result. This poor result was due
to more uncontrolled conditions in the ABD that affected the performance of our model.
Using face images from the EYB dataset with limited data, our proposed method and
idea of using only eyebrow images produced higher results than Yang’s study [68]. Using
face images from the whole EYB dataset, Lin [69], Phornchaicharoen [70], Deng [71], and
Wright [72] displayed different accuracy results. The highest accuracy was 97.70% from
Wright [72], and we successfully achieved a similar accuracy result of 96.88%, but only
when using the eye images.

4. Conclusions

We evaluated our proposed methods using the eye and eyebrow images from four
face datasets. The combination of the multiscale analysis methods with the curvature-based
methods performed well. We achieved the goal from this work, as the scale-space method
and discrete wavelet transform successfully exposed details at finer scales, and these details
were given in-depth characteristics with a curvature-based method.

Furthermore, the best discriminative features between the eyes and eyebrows were
investigated. The variations in the datasets took an important role in the system’s perfor-
mance. Based on the accuracy results, the eyebrows were suitable for datasets with more
controlled conditions, while the eyes were ideal for uncontrolled and larger datasets. The
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highest accuracy results were 76.04% and 98.61% for the limited dataset, and 96.88% and
93.22% for the larger dataset for the eye and eyebrow images, respectively. The performance
results were comparable and achieved similar high accuracy results to other works.
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57. Xu, W.; Ding, K.; Liu, J.; Cao, M.; Radzieński, M.; Ostachowicz, W. Non-uniform crack identification in plate-like structures using

wavelet 2D modal curvature under noisy conditions. Mech. Syst. Signal Processing 2019, 126, 469–489. [CrossRef]
58. Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Chate, A. Experimental structural damage localization in beam structure using

spatial continuous wavelet transform and mode shape curvature methods. Measurement 2017, 102, 253–270. [CrossRef]
59. Bao, L.; Cao, Y.; Zhang, X. Intelligent Identification of Structural Damage Based on the Curvature Mode and Wavelet Analysis

Theory. Adv. Civ. Eng. 2021, 2021, 8847524. [CrossRef]
60. Teimoori, T.; Mahmoudi, M. Damage detection in connections of steel moment resisting frames using proper orthogonal

decomposition and wavelet transform. Measurement 2020, 166, 108188. [CrossRef]
61. Karami, V.; Chenaghlou, M.R.; Gharabaghi, A.R.M. A combination of wavelet packet energy curvature difference and Richardson

extrapolation for structural damage detection. Appl. Ocean Res. 2020, 101, 102224. [CrossRef]
62. Zhang, X.; Wu, J.; Meng, M. Small Target Recognition Using Dynamic Time Warping and Visual Attention. Comput. J. 2020, 65,

203–216. [CrossRef]
63. Li, J.; Ma, H.; Lv, Y.; Zhao, D.; Liu, Y. Finger vein feature extraction based on improved maximum curvature description. In

Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019.
64. Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
65. Patel, S.P.; Upadhyay, S.H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis. Expert Syst.

Appl. 2020, 154, 113400. [CrossRef]
66. Powers, D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn.

Technol. 2011, 2, 37–63.
67. Rahmad, C.; Arai, K.; Asmara, R.A.; Ekojono, E.; Putra, D.R.H. Comparison of Geometric Features and Color Features for Face

Recognition. Int. J. Intell. Eng. Syst. 2021, 14, 541–551. [CrossRef]
68. Huixian, Y.; Gan, W.; Chen, F.; Zeng, J. Cropped and Extended Patch Collaborative Representation Face Recognition for a Single

Sample Per Person. Autom. Control Comput. Sci. 2019, 53, 550–559. [CrossRef]
69. Lin, J.; Te Chiu, C. Low-complexity face recognition using contour-based binary descriptor. IET Image Process. 2017, 11, 1179–1187.

[CrossRef]
70. Phornchaicharoen, A.; Padungweang, P. Face recognition using transferred deep learning for feature extraction. In Proceed-

ings of the 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Con-
ference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), Nan, Thailand,
30 January–2 February 2019.

71. Deng, W.; Hu, J.; Guo, J. Face Recognition via Collaborative Representation: Its Discriminant Nature and Superposed Representa-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2513–2521. [CrossRef] [PubMed]

72. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal.
Mach. Intell. 2009, 31, 210–227. [CrossRef]

http://doi.org/10.1016/j.sigpro.2019.06.020
http://doi.org/10.1364/AO.58.003064
http://doi.org/10.1109/34.735812
http://doi.org/10.1016/j.ymssp.2019.01.047
http://doi.org/10.1016/j.measurement.2017.02.005
http://doi.org/10.1155/2021/8847524
http://doi.org/10.1016/j.measurement.2020.108188
http://doi.org/10.1016/j.apor.2020.102224
http://doi.org/10.1093/comjnl/bxaa015
http://doi.org/10.1023/B:VISI.0000013087.49260.fb
http://doi.org/10.1016/j.eswa.2020.113400
http://doi.org/10.22266/ijies2021.0228.50
http://doi.org/10.3103/S0146411619060099
http://doi.org/10.1049/iet-ipr.2016.1074
http://doi.org/10.1109/TPAMI.2017.2757923
http://www.ncbi.nlm.nih.gov/pubmed/28976311
http://doi.org/10.1109/TPAMI.2008.79

	Introduction 
	Materials and Methods 
	Methods 
	The Curvature-Based Method 
	The Scale Space with a Curvature-Based Method 
	The Discrete Wavelet Transform with a Curvature-Based Method 

	Materials and Experimental Set-Ups 
	Datasets 
	Classification and Performance Calculation 


	Results and Discussion 
	The EYB Eyes Image Results 
	The Curvature-Based Method Results 
	The Scale Space with a Curvature-Based Method Results 
	The DWT with a Curvature-Based Method Results 
	Summary 

	The EYB Eyebrow Image Results 
	Curvature-Based Method Results 
	The Scale Space with Curvature-Based Method Results 
	The DWT with Curvature-Based Method Results 
	Summary of the EYB Eyebrow Image Results 

	Results Using Other Datasets 
	Comparison with Other Methods 

	Conclusions 
	References

