
Citation: Luo, Y.; Lu, J.; Qin, Q.; Liu,

Y. Improved JPS Path Optimization

for Mobile Robots Based on

Angle-Propagation Theta* Algorithm.

Algorithms 2022, 15, 198.

https://doi.org/10.3390/a15060198

Academic Editor: David F. Manlove

Received: 21 May 2022

Accepted: 7 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Improved JPS Path Optimization for Mobile Robots Based on
Angle-Propagation Theta* Algorithm
Yuan Luo, Jiakai Lu *, Qiong Qin and Yanyu Liu

Key Laboratory of Optoelectronic Information Sensing and Technology, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; luoyuan@cqupt.edu.cn (Y.L.);
s210431074@stu.cqupt.edu.cn (Q.Q.); s202131029@stu.cqupt.edu.cn (Y.L.)
* Correspondence: s200431077@stu.cqupt.edu.cn

Abstract: The Jump Point Search (JPS) algorithm ignores the possibility of any-angle walking, so
the paths found by the JPS algorithm under the discrete grid map still have a gap with the real
paths. To address the above problems, this paper improves the path optimization strategy of the JPS
algorithm by combining the viewable angle of the Angle-Propagation Theta* (AP Theta*) algorithm,
and it proposes the AP-JPS algorithm based on an any-angle pathfinding strategy. First, based on
the JPS algorithm, this paper proposes a vision triangle judgment method to optimize the generated
path by selecting the successor search point. Secondly, the idea of the node viewable angle in the
AP Theta* algorithm is introduced to modify the line of sight (LOS) reachability detection between
two nodes. Finally, the paths are optimized using a seventh-order polynomial based on minimum
snap, so that the AP-JPS algorithm generates paths that better match the actual robot motion. The
feasibility and effectiveness of this method are proved by simulation experiments and comparison
with other algorithms. The results show that the path planning algorithm in this paper obtains
paths with good smoothness in environments with different obstacle densities and different map
sizes. In the algorithm comparison experiments, it can be seen that the AP-JPS algorithm reduces the
path by 1.61–4.68% and the total turning angle of the path by 58.71–84.67% compared with the JPS
algorithm. The AP-JPS algorithm reduces the computing time by 98.59–99.22% compared with the
AP-Theta* algorithm.

Keywords: path planning; robot trajectory optimization; JPS algorithm; Angle-Propagation Theta*
algorithm; grid map

1. Introduction
1.1. Research Background

Initially, the use of mobile robots was limited to manufacturing. However, with the
development of technology and innovation, mobile robots are now commonly used in
various industries such as medical [1], mining, rescue, military, education, agriculture [2]
and service industries [3].

From the perspective of mobile robots, the real point is to move from a designed
starting point to another target point and the need to smoothly avoid obstacles in a path-
optimal manner [4]. Therefore, the navigation of mobile robots is crucial for mobile
robots [5]. Sarif and Buniyamin pointed out that path planning is the main problem of
mobile robots and an important component of navigation [6]. The result of path planning
will intuitively have an impact on how well the robot completes the task in real time and
how well the result is achieved.

From the present point of view, path planning algorithms are favored by many re-
searchers with the rise of mobile robots, UAVs [7–9], the unmanned field [10,11], and the
video game field [12]. However, the study of path planning for mobile robots, especially the
trajectory optimization of generated paths, remains a great challenge. For example, Figure 1

Algorithms 2022, 15, 198. https://doi.org/10.3390/a15060198 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15060198
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060198?type=check_update&version=2

Algorithms 2022, 15, 198 2 of 22

shows a robot and its target location. The solid path is a path consisting of straight lines
and sharp turns at points A, B, C, and D. It is also the path generated for the discrete map
state due to the fixed pathfinding direction. This path is not ideal for the movement of a
mobile robot. First, mobile robots cannot make sudden sharp turns and need to slow down.
For example, for driverless cars, sudden turns between path nodes and discontinuities in
speed and acceleration are very dangerous behaviors for passengers [13,14]. For intelligent
wheelchair robots, there are interruptions and sharp turns among the paths, which may
cause secondary injuries for the patient [15,16]. Second, fixing the robot’s search direction
is not suitable for finding the shortest or optimal path, which makes many possible paths
in the map ignored by the robot. As shown by the dashed line in Figure 1, a shorter
path means higher efficiency and less energy consumption while ensuring the safety of
the mobile robot. For example, in unmanned warehousing as well as in the workshop
transportation process, the efficiency of the transport robot will directly affect the overall
operational efficiency of the warehouse and workshop [17].

Figure 1. Non-smooth path for mobile robots.

To solve these problems, any-angle path planning [18] and path smoothing tech-
niques [19] need to be introduced. Path smoothing is an important issue in path finding
for mobile robots. Smooth paths need to satisfy the constraints of continuity such as path
position, robot movement speed, and acceleration. At the same time, in order to ensure
that the mobile robot finds the shortest path in the path finding process, the any-angle path
planning is needed to no longer restrict the search direction of the mobile robot.

1.2. Related Work

Path planning for mobile robots is actually the selection of a shortest obstacle avoidance
path in the task area that can be connected from the starting point to the end point. The
essence of this is the problem of optimal solution of the path [20]. The path planning
should fully take into account the feasibility constraints that arise during the practical
application of the robot [21]. More precisely, the path generated by the path planning
algorithm of the mobile robot should satisfy the shortest and most efficient path with
continuous and smooth transition of the path node states (position, velocity, acceleration
and other information).

Various path optimization methods have been developed in previous studies. Among
the most intuitive methods for path smoothness optimization are Bessel curves [22] and B
spline curve optimization [23]. This approach allows curve fitting using trajectory control
points in the path generation phase to achieve path smoothing. Usually, the initial number
of control points obtained by the global path planning algorithm is low fitting, and the
fitted paths are prone to re-collide with obstacles. To increase the curve fit, the path
control points are usually added. However, a single increase in the number of control
points can lead to a significant decrease in the efficiency of the algorithm [24]. In the
paper [13], a polynomial interpolation-based method is proposed to improve the continuity
problem in the automatic parking process. Polynomial interpolation is a simple functional
approach [25]. This method is solved by finding a polynomial containing all path nodes
and adding continuity constraints for node positions, velocities, accelerations, etc. In

Algorithms 2022, 15, 198 3 of 22

addition, the polynomial interpolation method can be used to construct a Safe Flight
Corridor (SFC) by generating collision avoidance linear constraints using the convex packet
property of Bernstein polynomials as a further solution to the safety of mobile robots during
operation [26].

The JPS method using heuristic search methods has been proposed in recent years
driven by the efficiency of path planning for mobile robots. The classical JPS algorithm is
built on the basis of the evaluation function of the A* algorithm, which improves the search
efficiency of the A* algorithm by ignoring useless nodes and retaining only key nodes, thus
greatly reducing the time consumption in the search process [27]. However, on the other
hand, the JPS algorithm still cannot escape the limitation of the search direction imposed
by the discretized grid map [28]. When planning a grid map, JPS usually plans from the
center of each grid cell and only allows transitions to the center of adjacent grid cells. This
will cause the JPS algorithm path direction variation to be limited to a multiple of Π/4,
resulting in a suboptimal path, as shown in Figure 2.

Figure 2. Limitations of search angle.

The article [29] proposes an improved version of Field D* based on the D* algorithm.
The algorithm generates smoother paths by linearly interpolating the grid so that the path
points are not limited to endpoints and the planning direction is no longer limited to integer
multiples of Π/4. However, from the experimental results of the Field D* algorithm, the
paths are not optimal, and there are still optimizable sections in the overall path. The Theta*
family of algorithms is a good choice, where the Basic Theta* and AP-Theta* algorithms
avoid the limitation of the angular direction of the search by passing information along
the edges of the grid during the pathfinding process [30]. Among them, the AP-Theta*
algorithm further solves the problem of insufficient operational efficiency of the Basic
Theta* algorithm through the propagation of angular information. However, since the
Theta* family of algorithms is designed based on the A* algorithm framework [31], it still
suffers from the A* algorithm in terms of operational efficiency.

Some of the problems in the commonly used path planning algorithms, path smooth-
ing techniques and any-angle path planning techniques for mobile robots are shown
in Table 1.

Based on the above problems, an AP-JPS algorithm is proposed in this paper based on
the JPS algorithm. The AP-JPS algorithm uses the any-angle path planning rule in AP-Theta*
to improve the drawback that the original JPS algorithm cannot be multi-angle pathfinding.
Meanwhile, this paper uses a seven-segment polynomial optimization method based on
minimum snap, incorporating flight corridor inequality constraints, so that the smoothness
and continuity of the resultant path generated by the AP-JPS algorithm can be guaranteed
while satisfying safety. For the overall structure of the article, first, this paper proposes a
vision triangle judgment to optimize the generation path of JPS by selecting inherited search
points. Second, the LOS reachability detection between two nodes of the generated path
is modified using the viewable angle in the AP Theta* algorithm. Finally, the paths are
optimized for smoothness using a seventh-order polynomial based on minimum snap.

Algorithms 2022, 15, 198 4 of 22

Table 1. Map information selected for the dataset.

Classification Algorithm Problems

Path planning methods

A* Algorithm The A* algorithm has a large number of redundant nodes in the search process
leading to the inefficiency of the algorithm, especially when the map size is large.

RRT algorithm [32]

The RRT algorithm is particularly important for the design of the step length. A
step length that is too long leads to crossing obstacles. Too short a step length
leads to inefficiency of the algorithm. In addition, the path found by the RRT

algorithm is suboptimal, not optimal.

RRT* algorithm [33]

The RRT* algorithm is asymptotically optimized, which means that the resulting
path is increasingly optimized as the number of iterations increases [34].

Therefore, the convergence time of the RRT* algorithm
is a more prominent problem.

Artificial potential field [35] The combined force generated by the gravitational field and the repulsive field is
zero; then, it is easy to fall into the local optimum solution.

JPS algorithm The fixed direction search results in a gap between the resulting path and the
path available to the mobile robot.

Path smoothing method

Bessel curve optimization The Bessel curve is less flexible, and the generated path does not guarantee the
continuity of velocity and acceleration.

B-sample curve optimization
The B spline curve is more flexible than the Bessel curve because of its local
modifiable feature. However, the optimized path still cannot guarantee the

continuity of velocity and acceleration.

Polynomial interpolation method
The polynomial interpolation method is better for continuity treatment, but the

possibility of reoccurrence of collisions in the fitted curves needs to be taken
into account.

Any-angle path planning method

Line of sight method [29]
The line-of-sight method is inefficient for optimization and requires LOS

detection for a large number of nodes, leading to a decrease in the efficiency of
the algorithm.

Field D* The path obtained by the Field D* algorithm is not the optimal path.

Basic Theta*
The time required by the Basic Theta* algorithm to expand each vertex increases

linearly with the number of rasters. When the map size is too large, the
algorithm becomes less efficient.

AP-Theta*

Although the consumption of AP Theta* in expanding vertices is no longer
linearly related to the number of lattices, but becomes constant in magnitude.

However, the search process of a large number of useless nodes still exists in the
Theta* family of algorithms, resulting in inefficiency

2. JPS Algorithm

The JPS algorithm is a pathfinding algorithm that uses pruned neighbor rules as the
search direction of nodes and the position of forced neighbors as the judgment of jump
points. The JPS algorithm extends the jump points by iterative computation and by selecting
the least costly node among the candidate jump points as the subsequent path. The JPS
algorithm’s method of determining the current jump point x consists of the following
three parts:

1. If node x is a start point or a target point, then node x is a jump point.
2. If node x has at least one forced neighbor, then node x is a jump point.
3. If the search direction from the parent node of node x to x is diagonal and there is a

point in the horizontal or vertical direction of x that satisfies condition 1 and 2, then x
is a jump point.

JPS Algorithm for Pruned Neighbor Rule and Forced Neighbors

In the JPS algorithm, the neighboring nodes in each direction need to be considered
when searching from the starting node. When the JPS algorithm determines a specific
search direction, it expands in that direction and does not need to calculate the generation
value of nodes in that direction until it meets an obstacle or jump point. If a path is blocked,
all nodes along that direction will be pruned without further consideration.

While JPS is extending a path in a particular direction, it identifies a set of natural
neighbors for a node under evaluation. When the extension direction is a straight line, the
natural neighbor of the current point x is defined as the next node in the same direction.
That is, JPS will continue to search along the direction of the current natural neighbor.
When the extension direction is diagonal, the natural neighbors of the current point x
include three nodes, which are the next node along the extension diagonal, and the next

Algorithms 2022, 15, 198 5 of 22

vertical and horizontal nodes in the extension direction, as shown in Figure 3a,b. That
is, JPS will start expanding in the direction of vertical and horizontal natural neighbors
first until they are blocked or jump points are found before considering the search in the
diagonal direction.

Figure 3. JPS algorithm for natural neighbors and forced neighbors. (a) pruning rule of JPS algorithm,
(b) pruning rule of JPS algorithm, (c) the way to determine the forced neighbor nodes, (d) the way to
determine the forced neighbor nodes.

In the JPS algorithm, the current node x has obstacles among its eight neighbors, and
n is a non-obstacle, non-search direction neighbor node of the current node. Then, the
distance cost of x’s parent node parent(x) to reach n through x is smaller than the distance
cost of any path to reach n without going through x. Then, n is said to be a forced neighbor
of x. If the current node is found to have forced neighbors, the node is identified as a jump
point, and the expansion in the direction of forced neighbors must be considered, as shown
in Figure 3c,d.

3. JPS Path Optimization Based on Angle-Propagation Theta* Algorithm

As shown in Figure 3, the JPS algorithm differs from the A* algorithm in the way
it selects successor nodes, and the jump search method can avoid the calculation of a
large number of redundant nodes in the A* algorithm. The JPS algorithm is undoubtedly
an excellent path planning algorithm. However, because the search direction of the JPS
algorithm is fixed in the pathfinding process, this will cause the JPS algorithm to miss some
important path turning points in the search process, resulting in the JPS algorithm’s result
path and the shortest realistic path still exists. A common optimization method is the LOS
optimization method. The LOS optimization method can only eliminate the redundant
points on the path in some cases, while it cannot obtain the judgment due to the existence
of obstacles between two nodes, as shown in Figure 4.

Algorithms 2022, 15, 198 6 of 22

Figure 4. Unoptimized case based on line of sight.

Based on the disadvantages of the LOS optimization method, this paper proposes a
vision triangle judgment rule and introduces the Angle-Propagation Theta* algorithm of
the viewable angle for further optimization of the above problem.

3.1. The Method of Judging the Field of Vision Triangle

This paper propose a vision triangle to determine whether there are possible turning
points in the path within the coverage of this triangle and compare the generation value
(the actual path length between two nodes) between all possible turning points and the
current search point in order to select the optimal turning point.

As shown in Figure 3, first, all the passing nodes on the JPS result path are discretized
and put into a list, which is called Route(< s, 1, 2, . . . , e >). Next, we need to set the path
starting node s as the first search node and determine the LOS reachability of the search
nodes one by one according to the order of the nodes stored in Route(< s, 1, 2, . . . , e >)
until we find the first node that does not have reachability. Here, the LOS reachability of
two nodes is expressed, as the two nodes can be reached through a straight line between
them with no obstacle in the intermediate path.

This method uses the Rm flag to denote the first node that does not have LOS reacha-
bility to the search point and the Rm−1 flag to denote the previous node of this node. LOS
reachability detection is generally accomplished using the Bresenham’s line algorithm [36],
and in subsequent work, LOS reachability detection will be replaced by the viewable angle
of the AP Theta* algorithm. Finally, call the triangle formed by Rm, Rm−1 and the search
point the field of vision triangle. In the view triangle, all contained obstacle vertices (pos-
sible turning points of the path) are detected, their generation value to the search point
is calculated, and the obstacle vertex with the smallest generation value is selected as the
optimal turning point of the path and the next search point.

The process of how to find the optimal turning point (successor search point) among
the view triangles is illustrated in Figure 5. The dots represent the path discrete points
and the information of the points present in the list. The triangle nodes represent optimal
turning points and successor search points.

Figure 5. Unoptimized case based on line of sight.

Algorithms 2022, 15, 198 7 of 22

3.2. Angle-Propagation Theta* Algorithm

In this paper, based on the LOS reachability detection between two nodes proposed
in the above optimization process, the Angle-Propagation Theta* algorithm is introduced
to determine whether there is LOS reachability between two nodes by calculating the
viewable range of the nodes in the section to be optimized. As shown in Figure 6, AP Theta*
calculates the viewable angle range when expanding outward from a grid and determines
whether the new node is reachable based on whether the angle at which it is located is
included in the viewable angle range. Because the time to compute the angle is essentially
constant, the consumption of AP Theta* in scaling is not linearly related to the number of
grids, and the optimization efficiency of the JPS shortest path is further improved.

Figure 6. Visual angle of x node in AP theta*.

3.2.1. Definition of Angle-Propagation Theta* Algorithm Viewable Angle

In the AP Theta* algorithm, any node x has two variables that represent the viewable
angle, namely the upper angle region ub(x) and the lower angle region lb(x). The viewable
angle of the node is denoted as [lb(x), ub(x)]. The meaning of [lb(x), ub(x)] is the visible
range angle of x from lb(x) to ub(x) from the parent node parent(x) of the current node x,
and the ray angle of parent(x) to reach x is 0.

For the neighbor node x’ of the current node x, if the angle between the ray arriving at
x’ from parent(x) and the ray arriving at x from parent(x) is in the range [lb(x), ub(x)], it
means that x’ must be LOS reachable with parent(x), as shown in Figure 7.

Figure 7. The viewable angle range of node x.

3.2.2. AP-Theta* Algorithm for Visual Angle Constraint

The AP Theta* algorithm sets the viewable angle [lb(x), ub(x)] of the current node to
[−∞,+∞] when expanding from the current node x to other nodes, and then, it constrains
lb(x) and ub(x) by the viewable angle constraints. We set the current node as x, the parent
of the current node as parent(x), the path start point as s, and the end point as e. The
specific constraints are as follows:

Algorithms 2022, 15, 198 8 of 22

1. If the current node x is a vertex of the obstacle grid and all other vertices z of the
current obstacle grid satisfy one of the following conditions, the lower angle region
lb(x) of the current node’s viewable angle area is equal to 0.

parent(x) = z (1)

θ(x, parent(x), z) < 0 (2)

θ(x, parent(x), z) = 0 AND G(parent(x), z) ≤ G(parent(x), x) (3)

If the current node x is a vertex of the obstacle grid and all other vertices z of the
current obstacle grid satisfy one of the following conditions, the upper angle region
ub(x) of the current node’s viewable angle area is equal to 0.

parent(x) = z (4)

θ(x, parent(x), z) > 0 (5)

θ(x, parent(x), z) = 0 AND G(parent(x), z) ≤ G(parent(x), x) (6)

2. For a neighbor node x′ of the current node x, if x′ satisfies all of the following condi-
tions.

x′ ∈ closedlist (7)

parent(x) = parent(x′) (8)

x′ 6= s (9)

If lb(x′) + θ(x, parent(x), x′) ≤ 0 is satisfied between node x and node z, then:

lb(x) = max(lb(x), lb(x′) + θ(x, parent(x), x′)) (10)

If ub(x′) + θ(x, parent(x), x′) ≥ 0 is satisfied between node x and node z, then:

ub(x) = min(ub(x), ub(x′) + θ(x, parent(x), x′)) (11)

3. For a neighbor node x′ of the current node x, if x′ satisfies all of the following condi-
tions.

G(parent(x), x′) < G(parent(x), x) (12)

parent(x) 6= x′ (13)

x′ /∈ closedlist OR parent(x) 6= parent(x′) (14)

If the viewable angle satisfies θ(x, parent(x), x′) < 0 then:

lb(x) = max(lb(x), θ(x, parent(x), x′)) (15)

If the viewable angle satisfies θ(x, parent(x), x′) > 0 then:

ub(x) = min(ub(x), θ(x, parent(x), x′)) (16)

where θ(x, parent(x), x′) denotes the angle between the ray formed from parent(x) to x
and the ray formed from parent(x) to x′. θ(x, parent(x), x′) ∈ [−90, 90]. When the ray
consisting of parent(x) to x is in the clockwise direction of the ray consisting of parent
(x) to x′, then θ(x, parent(x), x′) takes a positive value, and vice versa, it takes a negative
value. The G(x, y) function represents the value of the generation between two nodes x, y.
For example, G(parent(x), x) denotes the generation value from parent(x) node to x node,
which is the actual path length of parent(x) node to x node. closedlist indicates the list of
nodes that have been searched.

Algorithms 2022, 15, 198 9 of 22

After the angle constraint is completed, the LOS reachability of x′ and parent(x) can
be determined by checking whether lb(x) ≤ θ(x, parent(x), x′) ≤ ub(x) is satisfied when
expanding from the current node x to the neighboring node x′. The pseudo code for visual
angle constraint is shown below.

Algorithm 1: Visual Angle Constraint.

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 24

Algorithm 1: Visual Angle Constraint.

3.3. JPS Path Optimization Process with Viewable Angle Based on AP Theta *

In this paper, we improve the path optimization strategy for the JPS algorithm based

on the idea of using angles to find the shortest path in the AP Theta* algorithm. The com-

plete optimization path process is shown in the following example.

1. First, the starting point (f,2) is taken as the first search point, and we judge whether

there is an LOS reachable between the search point and the end point. If the LOS is

reachable, the algorithm ends; if the LOS is not reachable, the path is discretized and

loaded into the (,1, 2, ...,)Route s e list. Set the child node (e,3) of the start point

to the current node x . Then, set the viewable range of x to [,] . Next, the

constraint calculation of the viewable angle of x is needed to obtain its viewable

angle as [0,45]. Set the (d,4) node to 'x in the order of the nodes in the

(,1,2,...,)Route s e list. The LOS reachability between all discrete points and the

search point is checked in turn until the first node (a,8) is found that does not have

LOS reachability, as shown in Figure 8 (1).

2. Set (a,8) to flag mR and (a,7) to flag 1mR . The obstacle vertices within the triangular

region of the field of view consisting of mR , 1mR and the search points are searched.

The optimal turning angle (e,3) is found by calculating and comparing the cost of

each vertex to the search point, as identified by the triangle in Figure 8 (1).

3. Set the node (e,3) as the next search point and its path sub-node (d,4) as the current

node x . Continue the search by the method provided in step 1 until the next search

point is found, as shown in Figure 8 (2).

4. If the current search point is found to have LOS reachable with the end of the path

by detection, the search is ended, as shown in Figure 8 (3). The final generated path

is (f,2), (e,3), (b,7), and (a,11).

3.3. JPS Path Optimization Process with Viewable Angle Based on AP Theta *

In this paper, we improve the path optimization strategy for the JPS algorithm based
on the idea of using angles to find the shortest path in the AP Theta* algorithm. The
complete optimization path process is shown in the following example.

1. First, the starting point (f,2) is taken as the first search point, and we judge whether
there is an LOS reachable between the search point and the end point. If the LOS is
reachable, the algorithm ends; if the LOS is not reachable, the path is discretized and
loaded into the Route(< s, 1, 2, . . . , e >) list. Set the child node (e,3) of the start point to
the current node x. Then, set the viewable range of x to [−∞,+∞]. Next, the constraint
calculation of the viewable angle of x is needed to obtain its viewable angle as [0,45].
Set the (d,4) node to x′ in the order of the nodes in the Route(< s, 1, 2, . . . , e >) list.
The LOS reachability between all discrete points and the search point is checked in
turn until the first node (a,8) is found that does not have LOS reachability, as shown
in Figure 8 (1).

2. Set (a,8) to flag Rm and (a,7) to flag Rm−1. The obstacle vertices within the triangular
region of the field of view consisting of Rm, Rm−1 and the search points are searched.
The optimal turning angle (e,3) is found by calculating and comparing the cost of each
vertex to the search point, as identified by the triangle in Figure 8 (1).

3. Set the node (e,3) as the next search point and its path sub-node (d,4) as the current
node x. Continue the search by the method provided in step 1 until the next search
point is found, as shown in Figure 8 (2).

Algorithms 2022, 15, 198 10 of 22

4. If the current search point is found to have LOS reachable with the end of the path by
detection, the search is ended, as shown in Figure 8 (3). The final generated path is
(f,2), (e,3), (b,7), and (a,11).

Figure 8. Example of the pathing process. (a) (e,3) is selected as the next search point, (b) (b,7)
succeeds (e,3) as the next search point, (c) comparison of paths before and after optimization.

4. Trajectory Optimization

It is well known that the fold path generated by the JPS algorithm is not conducive
to the robot’s motion in real work scenarios. Therefore, this paper uses polynomials for
trajectory optimization based on the AP-JPS algorithm. The derivatives of each order
of the polynomial are used as the position, velocity, acceleration, jerk, and snap of the
trajectory. Since it is difficult to adapt single segment polynomials to more complex
scenarios, and considering the continuity of position, velocity, acceleration and rate of
change of acceleration at the junction between two moving trajectories of the robot, the snap
function is used as the minimization objective in this paper, and the path is smoothed using
the minimum snap objective function to solve the seventh-order polynomial minimally.

Algorithms 2022, 15, 198 11 of 22

4.1. Seventh-Order Polynomial Optimization Based on Minimum Snap

First, the trajectory is segmented according to the path nodes, and assuming that the
path is divided into m segments in total and each segment is fitted as a polynomial curve,
the expression of the nth segment path is shown in Equation (17).

Fn(t) = pn,0 + pn,1t + pn,2t2 + . . . + pn,ktk =
k
∑

i=0
pn,iti (k = 7) (17)

Fn(t) =
(
t0 t1 . . . tk)

pn,0
pn,1

...
pn,k

 (k = 7) (18)

where pn,i means the nth path polynomial coefficient and t means time. For the overall
path, then the following expression (18) is given.

F(t) =

k
∑

i=0
p1,iti =

(
t0 t1 . . . tk)(p1,0 p1,1 · · · p1,k

)T
(T0 ≤ t ≤ T1; k = 7)

k
∑

i=0
p2,iti =

(
t0 t1 . . . tk)(p2,0 p2,1 · · · p2,k

)T
(T1 ≤ t ≤ T2; k = 7)

k
∑

i=0
p3,iti =

(
t0 t1 . . . tk)(p3,0 p3,1 · · · p3,k

)T
(T2 ≤ t ≤ T3; k = 7)

...
k
∑

i=0
pm,iti =

(
t0 t1 . . . tk)(pm,0 pm,1 · · · pm,k

)T
(Tm−1 ≤ t ≤ Tm; k = 7)

(19)

where T0T1 . . . Tm denote the times of the path interruption points. From Equation (19),
the position, velocity, acceleration, jerk function, and snap function at any moment t can be
obtained by deriving the equation as shown below.

vn(t) =
(

0 1 2t · · · ktk−1
)(

pn,0 pn,1 · · · pn,k
)T

(k = 7)
an(t) =

(
0 0 2 6t · · · k(k− 1)tk−2

)(
pn,0 pn,1 · · · pn,k

)T
(k = 7)

jerkn(t) =

(
0 · · · 0︸ ︷︷ ︸

3

6 · · · k!
(k−3)! t

k−3
)(

pn,0 pn,1 · · · pn,k
)T

(k = 7)

snapn(t) =

(
0 · · · 0︸ ︷︷ ︸

4

24 · · · k!
(k−4)! t

k−4
)(

pn,0 pn,1 · · · pn,k
)T

(k = 7)

(20)

Combined with the characteristics of smooth robot moving path, this paper uses
deterministic values for the position (P = F(t)), velocity (v = F′(t)) and acceleration
(a = F′′ (t)) of the start and end points of the path to constrain, and it adds the position
information of the middle trajectory points of the path to constrain at the same time. Finally,
we construct the cost function Jm as the integral that minimizes the snap square; the formula
is shown in Equations (21) and (23) below.

Jm = min
∫ T

0
(p(4)(t))

2
dt (21)

where expanding it for Jm yields the expression (22).

Jm =
m

∑
i=1

PT
∫ Ti

Ti−1

(
0 · · · 0︸ ︷︷ ︸

4

24 · · · k!
(k−4)! t

k−4
)T(

0 · · · 0︸ ︷︷ ︸
4

24 · · · k!
(k−4)! t

k−4
)

dt · P (22)

Algorithms 2022, 15, 198 12 of 22

Jm = min
m

∑
i=1

PT

Q1
. . .

Qm

P (23)

The constraints for polynomial optimization are shown in Equation (24).

s.t.

F1(T0) = P1
Fm(Tm) = Pm+1

Fi
(k)(Ti)− F(k)

i+1(Ti) = 0 (i = 1, 2, . . . , m− 1; k = 1, 2, 3, 4)
(24)

Since the polynomial optimized trajectory has the possibility of re-collision with
obstacles, this paper adds a safety corridor to the overall optimized path by establishing
inequality constraints. The corridor width is set to half of the grid to ensure sufficient safety
distance, and the formula is shown below.

Pi − r ≤ Fi(Ti−1) ≤ Pi + r (i = 2, 3, . . . , m) (25)

where r denotes the corridor width.

4.2. Time Allocation

The time allocation in polynomial optimization has a direct impact on the generated
trajectories. In this paper, the total time T is calculated based on the preset velocity and
the total length L of the initial trajectory generated according to the AP-JPS algorithm. In
general, the allocation time of each trajectory is evenly distributed in proportion to the
path length, but in order to weaken the degree of influence of the trajectory length on the
allocation time and make the robot travel faster in the longer path and relatively slower in
the trajectory with more inflection points to increase the safety of robot motion, the time
allocation strategy used in this paper is shown in Equation (26).

Ti =
(Li/L)γ

m
∑

i=1
(Li/L)

γ
T (26)

where Ti denotes the time allocated to the ith trajectory, γ ∈ (0, 1) denotes the time
allocation coefficient, and Li is the length of the ith trajectory. Once the time allocation
is determined, the velocity, acceleration, jerk and other parameters of the trajectory can
be obtained by calculation, and if the parameters do not satisfy the constraints, the time
allocated to the segment is adjusted in a fixed proportion until the constraints are satisfied.

5. Simulation

In this paper, three sets of experiments were conducted on the AP-JPS algorithm
proposed in the paper and the original JPS algorithm using Matlab 2020b simulation
software based on the i5-1135G7 small mobile computer.

In Experiment 1, randomized obstacle distribution experiments were conducted for
maps with different sizes and different obstacle percentages, given the path start and
end points.

In Experiment 2, this paper uses two 256 × 256 grid maps of part of Shanghai and
part of New York City to compare the A* algorithm, RRT algorithm, AP-Theta* algorithm,
JPS algorithm, AP-JPS algorithm and polynomially optimized AP-JPS algorithm.

In Experiment 3, this paper uses the datasets distributed freely from Moving AI
Lab, and four groups of indoor small map (80 × 80), outdoor medium map (512 × 512)
and outdoor large map (768 × 768) are used for dataset experiments; this is used to
verify the reliability of the AP-JPS algorithm proposed in this paper in approximating real
environment maps.

Algorithms 2022, 15, 198 13 of 22

5.1. Randomness Map Test

The first set of experiments was conducted using 10 sets of grid maps ranging from
10 × 10 to 100 × 100, with each set of map obstacles set from 10% to 55%, respectively, for
the JPS algorithm, the AP-JPS algorithm, and the polynomially optimized AP-JPS algorithm
for 100 sets of randomness experiments. To better distinguish the resultant path from the
obstacle grid, this experiment places the starting point of the path planning at the middle
point of the grid. The distance calculation in the heuristic function of the JPS algorithm and
AP-JPS algorithm in the simulation uses the Euclidean distance formula, and the actual
results are the average of 10 experiments. In this paper, the polynomially optimized AP-JPS
algorithm is referred to as Op-AP-JPS to facilitate the presentation of experimental results.
The results of the simulation experiment were selected from 20 × 20, 40 × 40 and 80 × 80
size raster maps, and the obstacles were selected from 10%, 30% and 50% for display.

As can be seen in Figure 9, the JPS algorithm searches in a fixed number of eight
directions during the path search. If the JPS algorithm encounters an obstacle during the
search process, it will reselect the path according to other fixed directions, resulting in a
large path turning angle and long search path edges, thus making it difficult to approach
the actual optimal solution. The AP-JPS algorithm shown in Figure 8 reselects the path
nodes by means of optimization in this paper to obtain a shorter path. Meanwhile, the
AP-JPS algorithm has better path smoothing after trajectory optimization by minimum
snap seventh-order polynomial interpolation. The specific 100 experimental comparisons
are shown in Figure 10, where the total turning angle change rate is the reduction rate of
the total turning angle of the path of the AP-JPS algorithm compared to the JPS algorithm.

Figure 9. Comparison of JPS algorithm, AP-JPS algorithm and polynomial optimized AP-JPS algo-
rithm under three size maps. (a) 10% obstacles, (b) 30% obstacles, (c) 50% obstacles, (d) 10% obstacles,
(e) 30% obstacles, (f) 50% obstacles, (g) 10% obstacles, (h) 30% obstacles, (i) 50% obstacles.

Algorithms 2022, 15, 198 14 of 22

Figure 10. AP Theta* Main Flow Chart.

From Figure 11a–c, it can be seen that as the number of grids and the percentage of
obstacles increase, the total turning angle of the path and the difference of the total turning
angle between the JPS algorithm and the AP-JPS algorithm are on an increasing trend, with
the largest angle difference for 100 × 100 grids and the percentage of obstacles reaching
55%. Figure 11d shows that the rate of change of the total turning angle for both algorithms
shows a decreasing trend with the increase in the obstacle percentage. Among them, the
90 × 90 grid map has the highest ratio at 10% obstacle percentage, and the total path
turning angle of the AP-JPS algorithm is 88.4% lower than that of the JPS algorithm. The
40 × 40 grid map, with the lowest ratio at 50% obstacle share, shows a 13.7% reduction in
total path turning angle for the AP-JPS algorithm compared to the JPS algorithm.

From Figure 12a–c, it can be seen that the path length and path length difference of
both the AP-JPS algorithm and JPS algorithm show an increasing trend as the raster size
and obstacle percentage increase. In the case of the 100 × 100 grid map with a 50% obstacle
ratio, the path length difference is the largest, and the AP-JPS algorithm generates a path
length 5.27 m shorter than the JPS algorithm. In addition, in the case of a 10 × 10 grid map
with a 20% obstacle ratio, the path length difference is the smallest, and the generated path
length of the AP-JPS algorithm is 0.41 m shorter than that of the JPS algorithm. It can be
seen in Figure 12d that the rate of change of path length shows a decreasing trend with
the growth of the number of grids. The path variation rate is highest in the case of the
10 × 10 grid with an obstacle percentage up to 10%, and the generated path length of the
AP-JPS algorithm is 5.2% shorter than that of JPS. The path variation rate is lowest in the
100 × 100 raster map with 15% obstacle percentage, and the generated path length of the
AP-JPS algorithm is 1.1% shorter than that of JPS.

Algorithms 2022, 15, 198 15 of 22

Figure 11. Comparison of JPS algorithm and AP-JPS algorithm path total turning angle parameters.
(a) JPS algorithm path total turning angle, (b) AP-JPS algorithm path total turning angle, (c) Total
Turning Angle Difference, (d) Total Turning Angle Change Rate.

Figure 12. Comparison of JPS algorithm and AP-JPS algorithm to generate path length parameters.
(a) JPS algorithm path length, (b) AP-JPS algorithm path length, (c) Path length difference, (d) Path
length change rate.

The first randomness experiment shows that the total path turning angle generated by
the AP-JPS algorithm is 13.7% to 88.4% lower than the total path turning angle generated
by the JPS algorithm, the generated path length is 1.1% to 5.2% lower than that of the JPS
algorithm, and the path smoothing is better than that of the JPS algorithm.

Algorithms 2022, 15, 198 16 of 22

5.2. Algorithm Comparison Experiment

This experiment uses the AP-JPS algorithm, A* algorithm, RRT algorithm, JPS algo-
rithm and AP-Theta* algorithm to conduct comparative experiments in terms of algorithm
running time, algorithm memory usage, path length and total path turning angle using
maps of downtown Shanghai, downtown New York and downtown Boston extracted from
public datasets. The experiments were conducted. The experimental procedure is shown in
Figure 13. The comparative results are shown in Table 2.

Figure 13. Experimental procedure of algorithm comparison. (a) Shanghai, (b) Shanghai, (c) New
York, (d) New York, (e) Boston, (f) Boston.

Table 2. Map information selected for the dataset.

Name Running Time (s) Memory Usage (kb) Path Length (m) Total Turning Angle of the
Path (◦)

Shanghai

A* 28.3386 2488.4063 345.0437 2160
RRT 99.5774 536.7510 472.1204 4205.3070
JPS 0.1217 1067.0938 345.0437 405

AP-Theta* 29.0491 2740.0223 349.2478 154.3191
AP-JPS 0.2265 1224.1230 328.8865 94.3191

New York

A* 19.4580 2410.4219 346.2153 2430
RRT 104.9274 547.0947 464.1386 4004.6040
JPS 0.1659 1111.2578 346.2153 1125

AP-Theta* 21.4166 2715.2300 334.7146 172.4967
AP-JPS 0.2889 1363.1390 334.7146 172.4967

Boston

A* 11.7563 1990.7422 294.8600 1305
RRT 61.5348 533.3369 415.6851 2904.0880
JPS 0.1074 1065.6250 294.8600 1125

AP-Theta* 13.2568 2275.0470 290.1114 464.5372
AP-JPS 0.1864 1280.2889 290.1114 464.5372

Algorithms 2022, 15, 198 17 of 22

The following information can be derived from Table 2. From the experiments of the
three maps, the AP-JPS algorithm has the smallest total path turning angle and the best path
smoothness, and the RRT algorithm has the largest total path turning angle and the worst
path smoothness. Among them, the AP-JPS algorithm is effective in reducing the total
path turning angle by 58.71% to 84.67% compared with the original JPS. From the resultant
path length of each algorithm, the AP-JPS algorithm has the shortest path length and the
RRT algorithm has the longest path length, where the resultant path length of the AP-JPS
algorithm is 1.61% to 4.68% less than the resultant path length of the original JPS algorithm.
Analyzing the space complexity of these algorithms, it can be seen that the RRT algorithm
has the lowest memory footprint and the AP-Theta* algorithm has the highest memory
footprint. The AP-JPS algorithm has an increased memory footprint compared to the JPS
algorithm and a reduced memory footprint compared to the AP-Theta* algorithm. The
memory footprint of the AP-JPS algorithm increased by 14.71% to 22.66% and decreased
by 43.72% to 55.32% over the memory footprint of the JPS algorithm and the AP-Theta*
algorithm. Finally, from the running time point of view, we can find that the JPS algorithm
has the shortest computation time and the RRT algorithm has the longest computation
time. The computation time of the AP-JPS algorithm is increased compared to the JPS
algorithm, and the computation time of the AP-JPS algorithm is increased from 73.35% to
86.01% compared to JPS. However, at the same time, the AP-JPS algorithm has a significant
decrease in computing time compared to the AP-Theta* algorithm. The AP-JPS algorithm
reduces the running time by 98.59% to 99.22% compared to the AP-Theta* algorithm.

The following conclusions can be seen from the results of this comparison experiment.
The AP-JPS algorithm proposed in this paper has a smaller total path turning angle, shorter
path and better overall result path smoothing compared to the JPS algorithm, A* algorithm,
RRT algorithm and AP-Theta* algorithm. Meanwhile, the AP-JPS algorithm has reduced
algorithmic time complexity and space complexity compared to JPS, but it has substantially
improved compared to the AP-Theta* algorithm based on multi-angle pathfinding. That
is, the AP-JPS algorithm substantially improves the quality of the resultant path while
ensuring the efficiency of the algorithm, making it more consistent with the motion process
of the mobile robot in real situations.

5.3. Data Set Map Experiment

The experiments were conducted using a public dataset freely distributed by Moving
AI Lab. Four sets of maps of 80× 80, 512× 512, and 768× 768 sizes are used for the dataset
maps. The specific map information is shown in Table 3.

Table 3. Map information selected for the dataset.

Number Map Name Map Size (m) Number of Obstacles Max Length
Problem in Scenario

1

Baldurs Gate II

AR0513SR 80 × 80 4328 87.1543
2 AR0709SR 80 × 80 4353 75.0121
3 AR0310SR 80 × 80 4517 62.6274
4 AR0704SR 80 × 80 4752 95.2548

5

Warcraft III

divideandconquer 512 × 512 146,545 651.3280
6 plunderisle 512 × 512 147,100 654.7077
7 harvestmoon 512 × 512 147,551 567.9331
8 moonglade 512 × 512 159,833 682.7544

9

Starcraft

Crossroads 768 × 768 200,600 1183.8053
10 BlastFurnace 768 × 768 205,689 1355.3890
11 Hellfire 768 × 768 273,180 1211.3006
12 SapphireIsles 768 × 768 380,719 1443.8986

In this experiment, A*, JPS, AP-JPS and AP-JPS after polynomial optimization are
selected for experimental comparison. The experimental data and results are the average of
ten experiments, and the results are shown in Figure 14.

Algorithms 2022, 15, 198 18 of 22

Algorithms 2022, 15, x FOR PEER REVIEW 20 of 24

In this experiment, A*, JPS, AP-JPS and AP-JPS after polynomial optimization are
selected for experimental comparison. The experimental data and results are the average
of ten experiments, and the results are shown in Figure 14.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14. Data set experiment. (a) AR0310SR, (b) AR0513SR, (c) AR0709SR, (d) AR0709SR, (e)
divideandconquer, (f) plunderisle, (g) moonglade, (h) harvestmoon, (i) BlastFurnace, (j) Cross-
roads, (k) Hellfire, (l) SapphireIsles.

Figure 14. Data set experiment. (a) AR0310SR, (b) AR0513SR, (c) AR0709SR, (d) AR0709SR,
(e) divideandconquer, (f) plunderisle, (g) moonglade, (h) harvestmoon, (i) BlastFurnace, (j) Cross-
roads, (k) Hellfire, (l) SapphireIsles.

The generated path lengths, total path turning angles, and actual data of the three
algorithms were recorded in the twelve sets of experiments as shown in Tables 4–6.

Algorithms 2022, 15, 198 19 of 22

Table 4. The 80 × 80 grid map experiment.

Number Map Name Algorithm Type Path Length (m) Total Turning Angle
of the Path (◦) Operation Time (s)

1
AR0513SR

A* 68.0122 315 0.1654
2 JPS 68.0122 315 0.0397
3 AP-JPS 64.3672 39.5076 0.0751

4
AR0709SR

A* 74.7696 495 0.2241
5 JPS 74.7696 225 0.0248
6 AP-JPS 71.4807 104.1320 0.0643

7
AR0310SR

A* 57.6233 585 0.1523
8 JPS 57.6233 225 0.0137
9 AP-JPS 54.3827 94.3987 0.0674

10
AR0704SR

A* 78.0833 990 0.2057
11 JPS 78.0833 675 0.0303
12 AP-JPS 77.6401 378.6445 0.0988

Table 5. The 512 × 512 grid map experiment.

Number Map Name Algorithm Type Path Length (m) Total Turning Angle
of the Path (◦) Operation Time (s)

1
divideandconquer

A* 502.7838 2690 93.6902
2 JPS 527.5706 1035 3.9906
3 AP-JPS 500.2249 291.3104 7.9424

4
plunderisle

A* 519.9554 891 100.7357
5 JPS 519.9554 765 3.8260
6 AP-JPS 492.9167 80.2559 5.9129

7
harvestmoon

A* 516.2641 2430 90.5687
8 JPS 516.2641 855 4.0340
9 AP-JPS 503.5609 182.1982 5.9667

10
moonglade

A* 589.3209 2745 90.1968
11 JPS 589.3209 1035 4.6622
12 AP-JPS 570.7837 288.7079 7.1101

Table 6. The 768 × 768 grid map experiment.

Number Map Name Algorithm Type Path Length (m) Total Turning angle
of the Path (◦) Operation Time (s)

1
Crossroads

A* 1175.8 4140 793.3247
2 JPS 1175.8 2385 8.4912
3 AP-JPS 1151.4 412.6626 15.9326

4
BlastFurnace

A* 1136.5 4200 781.1085
5 JPS 1136.5 1665 9.5450
6 AP-JPS 1097.0 359.3899 16.5546

7
Hellfire

A* 980.7048 1039 717.4127
8 JPS 980.7048 675 15.4673
9 AP-JPS 948.6092 144.3275 24.5147

10
SapphireIsles

A* 884.8154 3690 561.7834
11 JPS 884.8154 1165 12.2100
12 AP-JPS 851.2148 419.2467 21.2617

Algorithms 2022, 15, 198 20 of 22

From the dataset experiments, it can be seen that the total path turning angle of the
AP-JPS algorithm is much smaller than that of the A* algorithm and JPS algorithm, and the
total path turning angle of the AP-JPS algorithm is reduced by 43.90% to 89.51% compared
with JPS. The path length of the AP-JPS algorithm is 0.57% to 5.36% shorter than the JPS
algorithm and 0.51% to 5.36% shorter than the A* algorithm. The AP-JPS algorithm has
better path smoothing and better paths compared to the path smoothing. The shortest path
expressiveness in an approximate real environment is closer to the actual situation.

6. Conclusions

1. This paper proposes a smoothed JPS path planning method, combining the improved
JPS algorithm with the smoothing method in this paper, adding angle indicators to
the paths to exchange a smaller time sacrifice for a smoother path.

2. This paper combines the AP-JPS algorithm with the seventh-order polynomial opti-
mization based on minimum snap while introducing a safety corridor to solve the
safety problem of AP-JPS optimized paths by inequality constraints.

3. In this paper, we verify the path optimization effect of the AP-JPS algorithm in
different complex map situations by three sets of experiments. First, the AP-JPS
algorithm is tested by performing the AP-JPS algorithm under different sizes of
random obstacle maps. From the test results, the AP-JPS algorithm shortens the
total turn angle of the path by 13.7% to 88.4% and the path length by 1.1% to 5.2%
compared with the JPS algorithm. Secondly, this paper uses some map data of three
cities for algorithm comparison experiments. From the experimental results, the
AP-JPS algorithm has shorter and smoother paths compared to the JPS algorithm. At
the same time, the time complexity and space complexity of the AP-JPS algorithm
are much smaller than that of the AP-Theta* algorithm. Finally, this paper simulates
real indoor and outdoor scenes by using large maps with public datasets for path
planning tests. From the experimental results, the AP-JPS algorithm can complete the
task with better paths, and its generated paths are more consistent with the actual
motion requirements of mobile robots than other algorithms.

4. The AP-JPS algorithm still has some drawbacks, as it sacrifices more computing time
compared to the JPS algorithm, and the complexity of the algorithm is still high.
As the size and complexity of the grid map increase, the efficiency of the algorithm
decreases. In future work, we need to further optimize the computational efficiency
and memory usage of AP-JPS algorithm, and we hope to apply AP-JPS 3D to UAV
path planning [7].

Author Contributions: Author Contributions: software, J.L.; validation, Y.L. (Yanyu Liu); investi-
gation, Y.L. (Yanyu Liu); resources, Y.L. (Yuan Luo); data curation, Q.Q.; writing—original draft
preparation, J.L.; writing—review and editing, J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, G.; Liu, Y.; Zhao, J.; Zhu, L. Path planning for a new mine rescue robot base on visual tangent graphs. Jilin Daxue Xuebao

2011, 41, 1107–1112.
2. Yang, C.; Liu, Y.; Wang, Y.; Xiong, L.; Xu, H.; Zhao, W. Research and Experiment on Recognition and Location System for Citrus

Picking Robot in Natural Environment. Nongye Jixie Xuebao 2019, 50, 14–22+72.
3. Oh, J.S.; Choi, Y.H.; Park, J.B.; Zheng, Y.F. Complete coverage navigation of cleaning robots using triangular-cell-based map.

IEEE Trans. Ind. Electron. 2004, 51, 718–726. [CrossRef]

http://doi.org/10.1109/TIE.2004.825197

Algorithms 2022, 15, 198 21 of 22

4. Atiyah, A.N.; Adzhar, N.; Jaini, N.I. An overview: On path planning optimization criteria and mobile robot navigation. J. Phys.
Conf. Ser. 2021, 1988, 012036. [CrossRef]

5. Babunski, D.; Berisha, J.; Zaev, E.; Bajrami, X. Application of Fuzzy Logic and PID Controller for Mobile Robot Navigation. In
Proceedings of the 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020; pp. 21–36.

6. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings of the 4th Student
Conference on Research and Development, Shah Alam, Malaysia, 27–28 June 2006; pp. 183–188.

7. Zhang, N.; Zhang, M.; Low, K.H. 3D path planning and real-time collision resolution of multirotor drone operations in complex
urban low-altitude airspace. Transp. Res. Part C Emerg. Technol. 2021, 129, 103123. [CrossRef]

8. Ivić, S.; Crnković, B.; Grbčić, L.; Matleković, L. Multi-UAV trajectory planning for 3D visual inspection of complex structures.
arXiv 2022, arXiv:math/2204.10070. [CrossRef]

9. Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV.
Aerosp. Sci. Technol. 2012, 16, 47–55. [CrossRef]

10. Ayawli, B.B.K.; Chellali, R.; Appiah, A.Y.; Kyeremeh, F. An Overview of Nature-Inspired, Conventional, and Hybrid Methods of
Autonomous Vehicle Path Planning. J. Adv. Transp. 2018, 2018, 8269698.

11. Zhou, K.; Yu, L.; Long, Z.; Mo, S. Local path planning of driverless car navigation based on jump point search method under
urban environment. Futue Internet 2017, 9, 51. [CrossRef]

12. Foderaro, G.; Swingler, A.; Ferrari, S. A model-based cell decomposition approach to on-line pursuit-evasion path planning and
the video game Ms. Pac-Man. In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), Granada,
Spain, 11–14 September 2012; pp. 281–287.

13. Hu, Q.; Wang, J.; Zhang, X. Optimized Parallel Parking Path Planning Based on Quintic Polynomial. Comput. Eng. Appl. 2022,
1–9. Available online: http://kns.cnki.net/kcms/detail/11.2127.TP.20210325.1007.008.html (accessed on 21 May 2022).

14. Leiyan, Y.; Xianyu, W.; Zeyu, H.; Zaiyou, D.; Yufeng, Z.; Zhaoyang, M. Path Planning Optimization for Driverless Vehicle in
Parallel Parking Integrating Radial Basis Function Neural Network. Appl. Sci. 2021, 11, 8178.

15. Chen, L.; Wang, S.; Hu, H.; McDonald-Maier, K.; Fei, M. Novel path curvature optimization algorithm for intelligent wheelchair
to smoothly pass a narrow space. Zidonghua Xuebao Acta Autom. Sin. 2016, 42, 1874–1885.

16. Sahin, H.; Kavsaoglu, A. Indoor path finding and simulation for smart wheelchairs. In Proceedings of the 29th Signal Processing
and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021; pp. 1–4.

17. Hu, M.; Cao, J.; Chen, X.; Peng, F. Path planning of intelligent factory based on improved ant colony algorithm. In Proceedings of
the Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 22–24 January
2021; pp. 1–4.

18. Firmansyah, E.; Masruroh, S.; Fahrianto, F. Comparative analysis Of A and basic theta algorithm in android-based pathfmding
games. In Proceedings of the 6th International Conference on Information and Communication Technology for The Muslim
World (ICT4M), Jakarta, Indonesia, 22–24 November 2016; pp. 275–280.

19. Geng, S.; Peng, S.; Han, Y. Research on motion planning of snake-like robot based on the interpolation function. In Proceedings of
the 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 27–28
August 2016; pp. 81–84.

20. Huo, F.; Chi, J.; Huang, Z.; Ren, L.; Sun, Q.; Chen, J. Review of Path Planning for Mobile Robots. Jilin Daxue Xuebao 2018,
36, 639–647.

21. Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C. Path smoothing techniques in robot navigation: State-of-the-art,
current and future challenges. Sensors 2018, 18, 3170. [CrossRef]

22. Shi, J.; Su, Y.; Bu, C.; Fan, X. A mobile robot path planning algorithm based on improved A*. J. Phys. Conf. Ser. 2020, 1468, 032018.
[CrossRef]

23. Foo, J.L.; Knutzon, J.; Kalivarapu, V.; Oliver, J.; Winer, E. Path planning of unmanned aerial vehicles using B-splines and particle
swarm optimization. J. Aerosp. Comput. Inf. Commun. 2009, 6, 271–290. [CrossRef]

24. Elbanhawi, M.; Simic, M.; Jazar, R.N. Continuous Path Smoothing for Car-Like Robots Using B-Spline Curves. J. Intell. Robot. Syst.
Theor. Appl. 2015, 80, 23–56. [CrossRef]

25. Huh, U.-Y.; Chang, S.A. G2 continuous path-smoothing algorithm using modified quadratic polynomial interpolation. Int. J. Adv.
Rob. Syst. 2014, 11, 25. [CrossRef]

26. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-D complex environments. IEEE Robot. Autom. 2017, 2, 1688–1695. [CrossRef]

27. Harabor, D.; Grastien, A. Online graph pruning for pathfinding on grid maps. In Proceedings of the AAAI Conference on
Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; Volume 25, pp. 1114–1119.

28. Huang, J.; Wu, Y.; Lin, X. Smooth JPS Path Planning and Trajectory Optimization Method of Mobile Robot. Nongye Jixie Xuebao
2021, 52, 21–29+121.

29. Dave, F.; Anthony, S. Field D*: An Interpolation-Based Path Planner and Replanner; Robotics Research; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 239–253.

30. Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-Angle Path Planning on Grids. JAIR 2010, 39, 533–579. [CrossRef]
31. Sinyukov, D.A.; Padir, T. CWave: Theory and Practice of a Fast Single-source Any-angle Path Planning Algorithm. Robotica 2020,

38, 207–234. [CrossRef]

http://doi.org/10.1088/1742-6596/1988/1/012036
http://doi.org/10.1016/j.trc.2021.103123
http://doi.org/10.2139/ssrn.4096560
http://doi.org/10.1016/j.ast.2011.02.006
http://doi.org/10.3390/fi9030051
http://kns.cnki.net/kcms/detail/11.2127.TP.20210325.1007.008.html
http://doi.org/10.3390/s18093170
http://doi.org/10.1088/1742-6596/1486/3/032018
http://doi.org/10.2514/1.36917
http://doi.org/10.1007/s10846-014-0172-0
http://doi.org/10.5772/57340
http://doi.org/10.1109/LRA.2017.2663526
http://doi.org/10.1613/jair.2994
http://doi.org/10.1017/S0263574719000560

Algorithms 2022, 15, 198 22 of 22

32. Jayasree, K.; Jayasree, P.; Vivek, A. Smoothed RRT techniques for trajectory planning. In Proceedings of the International
Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017;
Volume 1, pp. 1–8.

33. Chen, L.; Shan, Y.; Tian, W.; Li, B.; Cao, D. A Fast and Efficient Double-Tree RRT*-Like Sampling-Based Planner Applying on
Mobile Robotic Systems. IEEE ASME Trans. Mechatron. 2018, 23, 2568–2578. [CrossRef]

34. Gammel, J.; Srinivasa, S.; Barfoot, T. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

35. Yao, Q.; Zheng, Z.; Qi, L.; Yuan, H.; Guo, X.; Zhao, M.; Liu, Z.; Yang, T. Path Planning Method with Improved Artificial Potential
Field–A Reinforcement Learning Perspective. IEEE Access 2020, 8, 135513–135523. [CrossRef]

36. Liu, Z.; Yu, L.; Xiang, Q.; Qian, T.; Lou, Z.; Xue, W. Research on USV trajectory tracking method based on LOS algorithm. In
Proceedings of the 14th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 11–12
December 2021; Volume 1, pp. 408–411.

http://doi.org/10.1109/TMECH.2018.2821767
http://doi.org/10.1109/ACCESS.2020.3011211

	Introduction
	Research Background
	Related Work

	JPS Algorithm
	JPS Path Optimization Based on Angle-Propagation Theta* Algorithm
	The Method of Judging the Field of Vision Triangle
	Angle-Propagation Theta* Algorithm
	Definition of Angle-Propagation Theta* Algorithm Viewable Angle
	AP-Theta* Algorithm for Visual Angle Constraint

	JPS Path Optimization Process with Viewable Angle Based on AP Theta *

	Trajectory Optimization
	Seventh-Order Polynomial Optimization Based on Minimum Snap
	Time Allocation

	Simulation
	Randomness Map Test
	Algorithm Comparison Experiment
	Data Set Map Experiment

	Conclusions
	References

