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Abstract: An accelerated least-squares approach is introduced in this work by incorporating a greedy
point selection method with randomized singular value decomposition (rSVD) to reduce the compu-
tational complexity of missing data reconstruction. The rSVD is used to speed up the computation of
a low-dimensional basis that is required for the least-squares projection by employing randomness to
generate a small matrix instead of a large matrix from high-dimensional data. A greedy point selection
algorithm, based on the discrete empirical interpolation method, is then used to speed up the recon-
struction process in the least-squares approximation. The accuracy and computational time reduction
of the proposed method are demonstrated through three numerical experiments. The first two experi-
ments consider standard testing images with missing pixels uniformly distributed on them, and the
last numerical experiment considers a sequence of many incomplete two-dimensional miscible flow
images. The proposed method is shown to accelerate the reconstruction process while maintaining
roughly the same order of accuracy when compared to the standard least-squares approach.

Keywords: singular value decomposition; missing data approximation; low-rank approximation;
least-squares method; randomized algorithm; discrete empirical interpolation method

1. Introduction

Missing data is a problematic issue in many applications. This problem may arise
from incomplete data collection, unavailability of data, or corrupted data during the
transmission process. Recovering missing data accurately is essential, especially for the
purposes of data analysis and prediction. Various approaches have been proposed for
reconstructing missing data. In [1], the deep convolution neural network was proposed
to reconstruct missing data for a remote sensing image. A deep learning approach was
used for irregularly and regularly missing data reconstruction in [2]. The concept of fuzzy
similarity was used for recovering data in multidimensional time series in [3]. The long
short-term memory(LSTM) approach was introduced in [4] for reconstructing time series
Landsat images. A methodology based on principles of matrix theory and pseudo-inverses
was proposed in [5] for data reconstruction in erasure codes. In [6], a method of tensor
completion based on nuclear norm minimization was introduced for 5D seismic data
reconstruction. Other approaches for approximating missing data include the regression
method [7], K-nearest neighbors (KNN) [8,9], principal component analysis (PCA) [10],
and least-squares approximation [11–13]. These approaches are mostly specific to certain
problems. The goal of this paper is to improve a general framework based on a least-squares
method for estimating missing data with an optimal low-rank basis in tje Euclidean norm,
which is also called proper orthogonal decomposition (POD) basis.

POD is also known as, for example, Karhunen-Loève decomposition (KLD), principal
component analysis (PCA), or singular value decomposition(SVD). POD has been success-
fully used in many applications, e.g., [14–18], since it can provide an approximation from
the basis that extracts the dominant characteristic of the existing data. POD has been used
in many applications, such as aerodynamic flow fields [19], chemical engineering [20,21],
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mechanical engineering [22,23], image processing [24], and optimization of water flooding
reservoir [25]. In general, the POD basis can be computed by using singular value decompo-
sition (SVD). However, for high-dimensional data, obtaining SVD by a traditional approach
may be computationally costly and memory intensive. Randomized SVD (rSVD) [26] is
considered in this work to reduce this computational complexity.

The rSVD algorithm, introduced by Halko et al. [26], employs randomness to obtain a
smaller matrix from a high-dimensional data matrix. The smaller matrix is then used to
compute the low-dimensional basis. The rSVD algorithm is shown to be computationally
efficient for approximating matrices with low-rank structures. The algorithm is divided
into two stages. In the first stage, random sampling is used to obtain a reduced matrix
whose range approximates the range of the original matrix. A small matrix can be obtained
from the orthogonal projection onto the basis of the reduced matrix from the first stage. In
the second stage, the smaller matrix is then inexpensively factorized. Randomized methods
have been used in many applications, such as low-rank SVD of a large matrix [27], image
compression [28,29], and image reconstruction [30]. The implementation and extension of
the rSVD have been investigated in many works, e.g., [31–34]. This work applies rSVD to
reconstruct missing data components with the notion of least-squares approximation.

The least-squares method has been used in missing data reconstruction in previous
work, e.g., [11–13], which is mainly based on employing all remaining available data. In the
case of high-dimensional data, the reconstruction process might require high-complexity
computation. To accelerate this approximation process further, this work also employs
certain important and relevant available data components, which are selected through
a greedy iterative procedure called the discrete empirical interpolation method (DEIM).
DEIM [35] was originally introduced to estimate nonlinear terms in dynamical systems by
selecting the interpolation indices using a greedy algorithm. The index selection process
in this algorithm is based on trying to capture most of the variation of the sample set
heuristically. DEIM is often used with POD to provide interpolatory projection approxima-
tion. Theoretical works on this approximation and its extension can be found in [35–37].
DEIM has been used in many applications, such as two-dimensional shallow-water equa-
tions [38], four-dimensional variational data assimilation [39], three-dimensional nonlinear
aeroelasticity model [40], and other problems [41,42].

This work is an extension of the result given in [43], which only considered one simple
preliminary numerical test. This work provides substantially more materials with an
additional improved method that incorporates a faster way to compute projection basis
based on a randomized algorithm, as well as performs more numerical experiments with
detailed analysis and comparisons to the standard approach. The main contributions of
this work can be summarized as follows.

• We propose an algorithm that accelerates the missing data reconstruction procedure
based on the least-squares method, which can reduce computational time in two
aspects. The first one is based on applying the rSVD to obtain an optimal low-
dimensional basis used in the least-squares projection. The second aspect arises
from applying a greedy point selection procedure that can extract a small subset of
important components to reduce the size of the reconstruction problem and, therefore,
speed up the computational time.

• We provide numerical experiments that demonstrate the efficiency (in terms of accu-
racy and speedup) of the proposed method for some standard testing images with
different amounts of missing data.

• We perform numerical tests on a sequence of two-dimensional miscible flow images.
The proposed method was shown to give 10 to 100 times reduction in reconstruction
time with the same order of accuracy. This illustrates the extensibility of the proposed
method on other large-scale problems, as well as the applications of video processing.

This paper is organized as follow. Section 2 describes the approach for reconstructing
missing components using the least-squares method. The connection between SVD and
the projection basis, which is called POD basis, used in the approximation is discussed
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in Section 3. The rSVD algorithm is explained in Section 4. Section 5 presents a greedy
point selection process using DEIM as well as shows how it is used to reduce the computa-
tional complexity of missing data reconstruction. Section 6 discusses more details on the
complexity reduction of the proposed method in terms of floating-point operations when
compared to the standard least-squares approach. The numerical tests demonstrating the
effectiveness of the proposed method are performed on three experiments in Section 7.
Finally, the conclusion and some possible extensions are discussed in Section 8.

2. Standard Projection-Based Approach for Data Reconstruction

This section describes how SVD is used to reconstruct missing components of incom-
plete data. We will approximate an incomplete data vector by projecting on a subspace
spanned by a basis that represents other related complete data vectors.

Let {y1, y2, . . . , yns} be a complete data set. Define Y := {y1, y2, . . . , yns} ⊂ Rn and
Y = [y1, y2, . . . , yns ] ∈ Rn×ns . Suppose ŷ is an incomplete sample that has nc known com-
ponents and ng = n− nc unknown components. Let C := {c1, c2, . . . , cnc} ⊂ {1, 2, . . . , n}
be the indices of the known components in ŷ and define C = [ec1 , . . . , ecnc ] ∈ Rn×nc , where
eci = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the ci-th column of the identity matrix In ∈ Rn×n, for
i = 1, . . . , m. Note that pre-multiplying CT is equivalent to extracting the nc rows corre-
sponding to the indices c1, . . . , cnc . Similarly, let G = {g1, g2, . . . , gng} ⊂ {1, 2, . . . , n} be
the indices of the unknown components in ŷ and define G = [eg1 , . . . , egng ] ∈ Rn×ng . Let
ŷc := CT ŷ ∈ Rnc and ŷg := GT ŷ ∈ Rng . Then, the known components and the unknown
components are contained in the vectors ŷc and ŷg, respectively. The missing components
contained in ŷg will be approximated by first projecting ŷ onto the column span of a basis
matrix V with rank k, where k ≤ r, r := rank(Y). i.e.,

ŷ ≈ Va, or ŷc ≈ Vca and ŷg ≈ Vga,

for some coefficient vector a ∈ Rk, and where Vc := CTV ∈ Rnc×k, Vg := GTV ∈ Rng×k.
The known components contained in ŷc are then used to determine the coefficient

vector a through the approximation ŷc ≈ Vca from the following least-squares problem:

min
a∈Rk
‖ŷc −Vca‖2

2. (1)

The solution obtained from the corresponding normal equation of the above problem
is given by a = V+

c ŷc, where V+
c = (VT

c Vc)−1VT
c is the Moore–Penrose pseudo-inverse.

That is,

ŷg ≈ Vga = VgV+
c ŷc. (2)

The steps described above, which is called the POD-LS approach or standard LS
approach, are summarized in Algorithm 1.

Note that the dominant computational work in Algorithm 1 generally comes from
Step 2 for constructing a set of basis that can accurately approximate the incomplete
data and Step 3 for solving the least-squares problem. In this work, Step 2 employs the
basis obtained from the singular value decomposition (SVD) because it is optimal in the
least-squares sense, as discussed next in Section 3. To reduce the computational cost for
Step 2, we will apply a randomized SVD (rSVD), as discussed in Section 4. To reduce the
computational cost in Step 3, we will consider a greedy procedure that can decrease the
size of the least-squares problem efficiently in Section 5.1.
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Algorithm 1 Standard POD-LS approach for approximating missing data
INPUT:
- Complete snapshot set {yj}ns

j=1 ⊂ Rn and, dimension k ≤ rank({yj}ns
j=1)

- Incomplete data ŷ ∈ Rn with known entries in ŷc ∈ Rnc and unknown entries in ŷg ∈ Rng ,
where nc + ng = n.
OUTPUT:
- Approximation of ŷg

1: Create snapshot matrix : Y = [y1, . . . , yns ] ∈ Rn×ns and let r = rank(Y).
2: Construct basis V of rank k ≤ r for Y.
3: Find coefficient vector a from ŷc using least-squares problem in (1):

mina∈Rk ‖ŷc −Vca‖2
2.

4: Compute the approximation ŷg ≈ Vga.

3. Optimal Basis for Data Set

Consider a set of snapshots {y1, y2, . . . , yns} where yj ∈ Rn, j = 1, 2, . . . , ns. Suppose
we want to approximate a snapshot yj by using a set of orthonormal vectors {φ1, φ2, . . . , φk}
⊂ Rn, where k < n. Then, the approximation is in the form yj ≈ ∑k

i=1 wiφi, for some
constant wi, i = 1, 2, . . . , k. Alternatively, we can write this approximation in matrix
form as yj ≈ Φkw, where Φk = [φ1, φ2, . . . , φk] ∈ Rn×k is a matrix of basis vectors and
w = [w1, w2, . . . , wk]

T ∈ Rk is the vector of unknown coefficients. To find w, we use the
fact that Φ has orthonormal columns, i.e., ΦTΦ = I, and the minimum error occurs when
the residual is orthogonal to the column span of Φk, i.e., ΦT

k (yj −Φkw) = 0, which implies
that w = ΦTyj and the approximation becomes

yj ≈ ΦkΦT
k yj. (3)

The goal is to find the orthonormal basis that minimizes this approximation error in
2-norm for a given basis rank k ≤ rank({y1, y2, . . . , yns})

min
Φk∈Rn×k

ns

∑
j=1
‖yj −ΦkΦT

k yj‖2
2 such that ΦT

k Φk = Ik, (4)

where Ik ∈ Rk×k is the identity matrix. This optimal basis is often called proper orthogonal
decomposition (POD), which is also known by other names, for example, Karhunen-Loève
decomposition (KLD), principal component analysis (PCA), or singular value decomposi-
tion (SVD).

It can be shown [44,45] that the POD basis defined above can be obtained from the
left singular vector of the snapshot matrix Y = [y1, y2, . . . , yns ]. Let Y = UΣVT be the
singular value decomposition of Y, where matrices U = [u1, . . . , ur] ∈ Rn×r and V =
[v1, . . . , vr] ∈ Rns×r are matrices with orthonormal columns and Σ = diag(σ1, . . . , σr) ∈
Rr×r is a diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then the POD basis matrix
of dimension k is Uk = [u1, . . . , uk] ∈ Rn×k, k ≤ r, i.e. Uk = arg minΦk∈Rn×k ∑ns

j=1 ‖yj −
ΦkΦT

k yj‖2
2 with UT

k Uk = Ik. It is well known [44,45] that this minimum error is
given by

ns

∑
j=1
‖yj −UkUT

k yj‖2
2 =

r

∑
`=k+1

σ2
` , (5)

which is the sum of the neglected singular values σk+1, . . . , σr from the SVD of Y.
When the dimension n of snapshots is not too large, we can directly obtain the POD

basis from the SVD of the snapshot matrix. However, in practice, n can be extremely large
and computing the POD basis through a standard SVD might not be efficient. In this work,
we use the randomized SVD to handle this problem.
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4. Randomized SVD (rSVD)

The randomized SVD (rSVD) was proposed in [26] to reduce the computational
complexity of the standard approach for computing SVD. It consists of two stages. In the
first stage, random sampling is used to obtain a reduced matrix whose range approximates
the range of Y; in the second stage, this reduced matrix is then factorized inexpensively.

In particular, suppose we want to construct a low-dimensional basis with rank k by
using rSVD. A random matrix Ω ∈ Rns×k is first employed to generate the weights used
in the linear combination of the data matrix Y to obtain a matrix with k columns, where
k < ns. Let

Z = YΩ ∈ Rn×k.

Then the matrix Z is used to find an orthonormal basis Q ∈ Rn×k, which can be done
through many algorithms, such as Gram–Schmidt process, Householder transformation, or
the QR decomposition. At this point, we can use the basis matrix Q to approximate the
column span of Z, as well as the column span of the data matrix Y, i.e.,

Y ≈ QB,

where B ∈ Rk×ns can be obtained from the orthogonal projection of Y onto the low di-
mensional subspace spanned by the columns of Q, which gives B = QTY. The second
stage of rSVD then computes the SVD of this small matrix B. Suppose B = ÛΣ̂V̂T is
the SVD of B, where matrices Û = [û1, . . . , ûr̂] ∈ Rk×r̂ and V̂ = [v̂1, . . . , v̂r̂] ∈ Rns×r̂ are
matrices with orthonormal columns, Σ̂ = diag(σ̂1, . . . , σ̂r̂) ∈ Rr̂×r̂ is a diagonal matrix with
σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂r̂ > 0 and r̂ = rank(B). Then, we finally obtain the approximated POD
basis or the left singular vectors of Y from the product QÛ.

In practice, the matrix Z constructed from an n-by-k random matrix may not be a good
representation of the original data matrix Y. Consequently, the basis matrix Q may not give
an accurate approximation for the column space of Y. To solve this issue, we consider an
improved algorithm for rSVD by using an oversampling strategy given in [26], which uses
an n-by-(k + p) random matrix instead of n-by-k, where p is a positive integer of additional
random vectors. Algorithm 2 summarizes these two stages of the rSVD.

Algorithm 2 Randomized Singular Value Decomposition (rSVD)

INPUT: {y`}ns
`=1 ⊂ Rn, k where k ≤ rank({y`}ns

`=1)

OUTPUT: POD basis: Uk, Singular values: Sk

1: Form Y = [y1, y2, . . . , yns ]
2: Construct random matrix Ω = rand(M, K0), K0 = k + p, where p is a positive integer
3: Q = orthog(YΩ)
4: Set B = QTY ∈ RK0×ns

5: Compute SVD of B: B = ÛΣ̂V̂T

6: Basis: U = QÛ
7: Truncation: Uk = U(:, 1 : k), Sk = Σ(:, 1 : k)

5. Accelerated POD-LS Method (Gappy POD)

This section aims to discuss an efficient approach that can reduce the computational
complexity for solving the standard LS approach (LS-POD approach) used in the data
reconstruction technique described in Section 2. A greedy-based approach called the
discrete empirical interpolation method (DEIM) is first discussed. Then, two variants of
missing data approximations using DEIM are later introduced.

5.1. Discrete Empirical Interpolation Method (DEIM)

DEIM was first introduced for the purpose of approximating the nonlinear term in the
differential equations [35]. In this work, the interpolation indices from this method will be
used to reduce the computational complexity of solving the least-squares approximation in
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Step 3 of Algorithm 1. This section describes DEIM in a general setting and provides the
corresponding greedy algorithm for selecting important components that can be used in
the approximation.

Consider a vector f ∈ Rn. For a given orthonormal matrix U ∈ Rn×m with m ≤ n,
an approximation of this vector f obtained from projecting onto the subspace span{U} is
given by

f ≈ Ud, (6)

for some vector d ∈ Rm. The vector d can be obtained by using an interpolation method.
That is, it can be solved from a square system that extracts only m rows of (6). In particular,
suppose ℘1,℘2, . . . ,℘m are the indices of the selected components in f and define P =
[e℘1 , . . . , e℘m ] ∈ Rn×m, where e℘i = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the ℘i-th column of the
identity matrix In ∈ Rn×n, for i = 1, . . . , m. Note that, as in the previous section, pre-
multiplying PT is equivalent to extracting the m rows corresponding to the interpolation
indices ℘1, . . . ,℘m. The coefficient vector d in the DEIM approximation solves the following
minimization problem

min
d∈Rm

‖PTf− PTUd‖2
2,

which gives d = (PTU)+PTf, where (PTU)+ = [(PTU)T(PU)]−1(PTU)T is the pseudo-
inverse of PTU. Notice that PTU is a square matrix of size m × m. When the indices
℘1, . . . ,℘m are selected by the DEIM procedure given in Algorithm 3, it was shown in [35]
that PTU is invertible. i.e., (PTU)+ = (PTU)−1, and the approximation in (6) for f becomes

f ≈ U(PTU)−1PTf. (7)

This approximation (7) is called the DEIM approximation. The sets of indices
{℘1,℘2, . . . ,℘m} are obtained by the DEIM index selection algorithm [35], shown
in Algorithm 3, which is a greedy procedure that aims to capture the variation of the
spatial behavior of the input basis using the infinity norm.

Algorithm 3 Algorithm to create for Interpolation Indices DEIM
INPUT: {u`}m

`=1 ⊂ Rn linearly independent
OUTPUT: ~℘ = [℘1, . . . ,℘m]T ∈ Rm and P

1: ℘1 = arg maxi=1,2,...,n{|ui1|}
2: U = [u1], P = [e℘1 ],~℘ = [℘1];
3: for j = 2 to m do
4: Solve (PTU)z = PTuj;
5: r = uj −Uz
6: ℘j = arg maxi=1,...,n{|ri|}

7: U← [U uj], P← [P e℘j ],~℘←
[
~℘
℘j

]
8: end for

From Algorithm 3, DEIM selects the interpolation indices so that the approximation
has the smallest error r = uj −Uz in each iteration j. The procedure of DEIM Algorithm 3
can be described as follows. First, the input basis set {u`}m

`=1 of rank m. The space spanned
by this basis set, in general, is expected to approximately contain the vector f. Then, it
selects the first index of a component in the first basis vector u1 with the largest absolute
value. Next, each of the other indices is selected from the component with the largest
absolute residual error r = u` −Uz in each step.

More details on DEIM approximation and its corresponding error bound can be found
in [35]. Some extensions of this error bound to the state-space error estimate can be found
in [36,37].
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5.2. Accelerated POD-LS Method by Using DEIM

This work particularly focuses on the situation when the incomplete data ŷ is in a high-
dimensional space, i.e., the value of n is large, which may result in a large number of known
components nc, even though there are a lot of unknown components ng. In this case, the
main computational work in approximating missing components may occur while solving
for the coefficient vector a in (1) or in Step 3 of Algorithm 1. One possible way to reduce
this computational work is to use only a small number of known components to specify
a ∈ Rk. These components have to be carefully selected so that they can represent all other
nc components and maintain the same accuracy in the approximation. For this purpose,
the procedure shown in Algorithm 3 for selecting DEIM indices, which corresponde to
important components, will be used as described.

Recall from Step 3 of Algorithm 1 that it has to solve for a vector a from the following
minimization problem:

min
a∈Rk
‖ŷc −Vca‖2

2.

Suppose Vc ∈ Rnc×k has linearly independent columns. Then, for a given DEIM
dimension m ≤ min{nc, k}, the columns of Vc can be used as an input of Algorithm 3 to
select m DEIM indices that can cover the variations of nc components.

In many applications, when n is much larger than the number of available complete
data ns , i.e., n > ns ≥ k, we have min{n, k} = k. Notice that, based on the standard DEIM
approximation, dimension m is limited to the truncated dimension k of V. We can improve
the accuracy of the reconstruction by further including more important components of
the complete data, i.e., using dimension m that is larger than k. However, using k > m
is impossible if we follow the standard DEIM approximation and use Vc as an input to
Algorithm 3, because Vc has only k columns, which implies Algorithm 3 can give, at most,
k indices. To resolve this issue, instead of using Vc directly, we will consider a matrix
constructed from the full set of the POD basis for the complete snapshot matrix Y with rows
selected from the indices of the known components. In particular, if we define V̄ ∈ Rn×r to
be the left singular matrix from SVD of the complete snapshot matrix Y, where r = rank(Y),
the input to Algorithm 3 would be the matrix obtained from V̄ with rows corresponding to
the complete components, i.e.,

V̄c := CTV̄ ∈ Rnc×r, (8)

which comes from V̄ with selected rows corresponding to the nc known components in C.
In this case, we can use the DEIM algorithm to select up to r indices that correspond to the
most (r) relevant components of the reconstruction problem in (1). Note that the columns
in V are the first k columns in V̄.

Suppose V̄c ∈ Rnc×r has r linearly independent columns with r ≤ nc. Then, the
columns of V̄c can be used in Algorithm 3 to select m DEIM indices, where m ≤ r. In
this case, suppose ℘1,℘2, . . . ,℘m are the output indices of DEIM Algorithm 3 and let
P = [e℘1 , . . . , e℘m ] ∈ Rnc×m as defined earlier in this section. Vector a in (1) can be
computed from a smaller least-squares problem:

min
a∈Rk
‖PT ŷc − PTVca‖2

2. (9)

Note that we have assumed that V̄c ∈ Rnc×r has linearly independent columns, which
may not hold in general cases. To avoid this assumption, we can apply SVD to the matrix
V̄c and use the set of first m corresponding left singular vectors as an input to the DEIM
Algorithm 3. The accelerated POD-LS steps are summarized in Algorithm 4 for both cases
of (i) using V̄c directly as an input and (ii) using the set of left singular vectors of V̄c as
an input to Algorithm 3 for selecting the most (m) important components. Note that, as
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later shown in the numerical tests, the reconstruction results using case (ii) may not be as
accurate as the ones using case (i).

Algorithm 4 Accelerated POD-LS method for approximating missing data
INPUT:
- Complete snapshot set {yj}ns

j=1 ⊂ Rn and, dimension k ≤ rank({yj}ns
j=1)

- Incomplete data ŷ ∈ Rn with known entries ŷj, j ∈ C and unknown entries ŷj, j ∈ G
OUTPUT:
- Approximation: ŷg = [ŷj], j ∈ G = {g1, g2, . . . , gng}

1: Create snapshot matrix : Y = [y1, . . . , yns ] ∈ Rn×ns and let r = rank(Y).
2: Compute POD basis V of rank k ≤ r for Y from rSVD in Algorithm 2.
3: Find coefficient vector a

3.1 Find indices ~℘ = [℘1, . . . ,℘m]T ∈ Rm and P from Algorithm 3 by using input from either
(i) V̄c defined in (8), or
(ii) Left singular vectors of V̄c using SVD or rSVD

3.2 Solve a from (9): mina∈Rk ‖PT ŷc − PTVca‖2
2.

4: Compute the approximation ŷg ≈ Vga.

Remarks: In practice, the computation for DEIM indices can be performed in advance
and reused for many incomplete snapshots. Once the DEIM indices are found from
Algorithm 3, the terms PT ŷc and PTVc can be computed without actually performing
matrix multiplication since this can be performed through selected row indices.

The next section discusses the computational complexity reduction of the proposed ap-
proach.

6. Computational Complexity

In this work, as shown in Algorithm 4, we have reduced the computational complexity
in two main parts. The first one is based on using the rSVD for constructing the projection
basis, and the other one is based on applying the DEIM procedure to efficiently select a
small subset of the most relevant components in the least-squares problem used in the
reconstruction process.

In the first part, for a given complete data matrix Y ∈ Rn×ns , computing a projection
basis of rank k for Y by using SVD can be performed efficiently via a rank-revealing QR
factorization and then manipulating the factors to obtain the final SVD. The cost of this
approach is typically O(nnsk) floating-point operations (flops) [26,46]. The rSVD can
approximate SVD with computational cost that is reduced to O(nns log(k) + (n + ns)k2)
flops. This computational cost can be reduced further when using a random matrix Ω that
has some internal structure to accelerate the computation of YΩ in Step 3 of Algorithm 2.

In the second part of reducing the computational cost for solving the least-squares
problem, we incorporated the DEIM procedure to reduce the size of the problem in the
reconstruction process. In general, the well-known approaches for solving least-squares
problems are based on using normal equations, QR factorization and SVD [47–49]. The last
two approaches are efficient for large-scaled problems [48,49]. For the coefficient matrix Vc
of size nc-by-k with nc � k, the computational cost of solving the least-squares problem
in (1) using the QR factorization or the SVD approaches is in the of order O(ncn2

s ) flops.
Therefore, when the DEIM algorithm is used to reduce the size of the least-squares problem
to a coefficient matrix of size m× k with m� nc as shown in (9), the computational cost is
reduced to O(mn2

s ) flops. Note that the complexity of performing the DEIM procedure is
O(m3), which is negligible for m < ns and m� nc in most practical cases when compared
to the overall complexity of the reconstruction process.

The next section investigates the effectiveness of the proposed techniques described
in Algorithm 4 through different cases of numerical tests. The reduction in computational
cost explained above is also reflected in these reconstruction results.
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7. Numerical Results

The numerical experiments in this section compare the efficiency and accuracy of the
standard least-squares approach using the standard SVD with the accelerated least-squares
approach using rSVD with DEIM. These results are obtained from MATLAB 2021b running
on a computer with the following specifications Intel Core i5-1035G4, CPU 1.10, 1.50 GHz,
and 8 GB RAM.

We consider three numerical experiments. The first two numerical experiments use
data from images with missing pixels. The last one uses data from the solution of 2D
nonlinear flow in porous media with some missing components at certain time instances.
This dataset can be considered as a sequence of images in the form of movie data. The
accuracy of the reconstruction is measured by the average relative error of the reconstructed
missing data. The CPU times used in the reconstruction process will be scaled with the
ones used by the standard LS approach to see the speedup of the simulation time.

7.1. Numerical Test 1

This section considers a standard test image, called the Lena image, of size 200× 200 pixels.
The goal is mainly to investigate the accuracy of the reconstruction by the proposed accelerated
LS approach for different amounts of missing pixels. The speedup of the reconstruction time
will be considered later in the next two numerical tests. We consider the cases when 30%,
50%, and 65% pixels are missing uniformly on the original image, as shown in Figure 1. The
reconstruction results for all these cases are shown in Figure 2 when using the standard POD-LS
approach with k = 30 and the proposed accelerated POD-LS approach with k = 30 and m = 50.
Figure 3 demonstrates the average relative errors of the reconstructed missing components
using the accelerated POD-LS approach for k = 30 and different values of m = 10, 20, 30, . . . , 80
for the cases of 30%, 50%, and 65% missing pixels. It shows the convergence of the accelerated
POD-LS approach to the standard POD-LS approach as dimension m increases. When there
are more missing pixels, this convergence seems to be slower, i.e., the error of the accelerated
POD-LS method approaches the error of the standard method at a larger dimension m. Note
that, in Figure 3, the accelerated POD-LS approach for both cases (i) and (ii) in Algorithm 4 are
performed. The errors for case (ii) seem to be larger than the ones for case (i), and these errors
for case (ii) seem to be oscillating with no trend when m < 30. This suggests that to select the
DEIM components it is more appropriate to use the matrix constructed from the rows of POD
basis matrix corresponding to the indices of the know components in case (i) than to use its
orthogonalized basis in case (ii).

Figure 1. (Numerical Test 1) The original Lena image and incomplete images with 30%, 50%, and
65% missing pixels distributed uniformly over the image.

Figure 2. Cont.
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Figure 2. (Numerical Test 1) Reconstructions of incomplete images with 30%, 50%, and 65% missing
pixels by the standard POD-LS accelerated POD-LS approach using k = 30 (Top) and the proposed
POD-LS approach using k = 30 and m = 50 (Bottom).

Figure 3. (Numerical Test 1) Average relative error of the reconstruction for 30%, 50%, and 65%
missing components using the standard LS method and the accelerated LS with basis from rSVD,
denoted by LS-DEIM for case (i) and LS-DEIM-b for case (ii) as described in Algorithm 4 for POD
dimension k = 30 with DEIM dimension m = 10, 20, 30, 40, 50, 60, 70, 80.

7.2. Numerical Test 2

This section considers a test image of size 807× 605 pixels. The corresponding incom-
plete image has uniform missing pixels equal to 50%, as shown in Figure 4. The goal of this
numerical test is to investigate the accuracy and the speedup of the proposed accelerated
POD-LS approach when compared to the standard POD-LS approach.

(a) (b)

Figure 4. (Numerical Test 2) (a) Original image and (b) an incomplete image with 50% missing pixels.

Figure 5 illustrates the reconstructed images by the standard POD-LS approach with
basis from SVD using dimension k = 10, 50 and by the accelerated POD-LS approach with
basis from rSVD as described in Algorithm 4 case (i) using k = 10 with m = 10, 20, 50
and k = 50 with m = 50, 80, 150. The corresponding values of the average relative errors
and the scaled CPU time of the reconstructed images in Figure 5 are given in Tables 1
and 2, respectively, for the cases of k = 10 and k = 50. From these tables, the CPU time of
the accelerated POD-LS approach is shown to be roughly reduced by 10–50 times when
compared to the standard POD-LS approach for the same level of accuracy. Figure 6
demonstrates the trend of the average relative errors for these 2 approaches for different
dimensions k = 10, 30, 50 with DEIM dimension m ranging from 10 to 210. Notice that,
as the dimensions k and m get larger, the overall errors seem to decrease. Figure 6 also
shows that as m increases, the errors of the accelerated POD-LS approach decrease and get
closer to the errors of the standard POD-LS approach. As in the previous numerical test,
in Figure 6, we consider the errors of the accelerated POD-LS approach for both cases (i)



Algorithms 2022, 15, 190 11 of 16

and (ii) in Algorithm 4. The errors for case (ii) seem to be larger in all cases of k considered
in Figure 6. This confirms the result in the previous numerical test that we should use
the POD basis with rows extracted from corresponding to the known component directly,
instead of using its orthogonalized basis, to select the DEIM points used in the accelerated
least-squares approach.

Figure 5. (Numerical Test 2) Reconstructed image from standard POD-LS with basis from SVD using
dimension k = 10, 50 and from the accelerated POD-LS with basis from rSVD using k = 10 with
m = 10, 20, 50 and using k = 50 with m = 50, 80, 150.

(a) (b) (c)

Figure 6. (Numerical Test 2) Average relative error of the reconstructed missing components using
the standard POD-LS method and the accelerated POD-LS method, denoted by LS-DEIM for case (i)
and LS-DEIM-b for case (ii) defined in Algorithm 4 for POD dimension k = 10, 30, 50 are shown in
(a–c), respectively, with DEIM dimension m = 10, 30, 50, . . . , 210.

Table 1. (Numerical Test 2) The average relative error of the reconstructed missing data and the
corresponding scaled CPU times for the reconstruction when the standard POD-LS method and the
accelerated POD-LS method with rSVD are used. Dimensions for POD: k = 10, DEIM: m = 10, 20, 50.

Method dim POD dim DEIM Relative Error CPU Time
(Scaled)

Standard POD-LS k = 10 - 0.0627 1

Accelerated POD-LS k = 10 m = 10 0.8566 0.01382
k = 10 m = 20 0.1239 0.02425
k = 10 m = 50 0.0969 0.10185
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Table 2. (Numerical Test 2) The average relative error of the reconstructed missing data and the
corresponding scaled CPU times for the reconstruction when the standard POD-LS method and the
accelerated POD-LS method with rSVD are used. Dimensions for POD: k = 50, DEIM: m = 50, 80, 150.

Method dim POD dim DEIM Relative Error CPU Time
(Scaled)

Standard POD-LS k = 50 - 0.01753 1

Accelerated POD-LS k = 50 m = 50 9.20223 0.02120
k = 50 m = 80 0.05181 0.03578
k = 50 m = 150 0.02855 0.04114

7.3. Numerical Test 3

This section uses snapshots from the solutions of miscible flow, which changes continu-
ously with no particular pattern for each time instance, as shown in Figure 7. Each snapshot
has n =15,000 pixels. The POD basis is constructed from ns = 200 complete snapshots
and used to reconstruct the missing pixels of 50 incomplete snapshots. Each incomplete
snapshot has 30% missing pixels, as demonstrated in Figure 8. The average relative error
for the reconstruction and the corresponding CPU time are displayed in Figure 9 for differ-
ent cases of POD dimensions k = 10, 30, 50, 100. For each of these cases, different values
of DEIM dimensions m = 10, 30, . . . , 190 are used in the accelerated POD-LS approach.
Figure 9 demonstrates the convergence of the reconstruction error and the speed up of
the CPU time of the accelerated POD-LS and the standard POD-LS approaches as in the
previous numerical tests. In this numerical test, the accelerated POD-LS can be used to
speed up the CPU time by roughly O(10) to O(100) times. Note that the dimension of m
that is suitable in each case of k is generally selected from the corner of the error plot before
the error becomes constant. Therefore, from Figure 9, the error plot from the accelerated
least-squares approach using case (i) in Algorithm 4 suggests that we should use an m that
is slightly larger than k, for each case of k = 10, 30, 50, 100.

Figure 7. (Numerical Test 3) Snapshots of flow data at different four time instances.

(a) (b) (c)

Figure 8. (Numerical Test 3) Example of an incomplete image (a), with the reconstructions from the standard
least-squares with SVD (b) and the accelerated least-squares with rSVD (c).
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Figure 9. (Numerical Test 3) Average relative error of the reconstructed missing components using
the standard LS method and the accelerated least-squares with basis from rSVD, denoted by LS-DEIM
for case (i) and LS-DEIM-b for case (ii) defined in Algorithm 4 for POD dimensions k = 10, 30, 50
with DEIM dimensions m = 10, 30, 50, 70, 90, 110, 130, 150, 170, 190.

To clearly illustrate the effect of dimension k on the POD basis, Figure 10 compares the
average relative error and the corresponding CPU time used in the reconstruction from
the accelerated POD-LS approach using m = k with the ones from the standard POD-LS
approach for each k ranging from 10 to 190. Figure 10 shows that the accelerated POD-LS
approach can provide almost the same accurate reconstruction as the standard POD-LS
roughly 100 times faster. This numerical test, therefore, demonstrates the potential of the
proposed approach for other large-scale problems.
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Figure 10. (Numerical Test 3) Reconstruction error (a) and CPU time (b) of the incomplete image
from the standard least-squares approach and from the accelerated least-squares approach case (i) in
Algorithm 4 using different dimensions of k and m = k.

8. Conclusions

This work presented an accelerated data reconstruction technique based on the least-
squares method, which can reduce computational time in two aspects. The first one is based
on using rSVD in computing a low-dimensional basis used in least-squares approximation.
The second aspect that can speed up the reconstruction process is based on applying the
DEIM greedy point selection procedure on the least-squares approximation. Accuracy and
computational time reduction of the proposed method are demonstrated through three
numerical experiments, which considered standard test images, as well as a set of sequential
two-dimensional flow images in a similar form as video data. These numerical results show
that the proposed method can speed up the reconstruction process up to 100 times with a
small accuracy trade-off. This work can be extended by employing different approaches to
construct the projection basis, e.g., [50–52]. It is also possible to adapt other approaches
used for solving differential equations, e.g., in [53–56], to select the relevant components
used in the least-squares approximation for data reconstruction. These extensions are left
for future investigations.
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