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Abstract: This paper develops a data-driven fault tree methodology that addresses the problem
of the fault prognosis of an aging system based on an interpretable time causality analysis model.
The model merges the concepts of knowledge discovery in the dataset and fault tree to interpret the
effect of aging on the fault causality structure over time. At periodic intervals, the model captures
the cause–effect relations in the form of interpretable logic trees, then represents them in one fault
tree model that reflects the changes in the fault causality structure over time due to the system
aging. The proposed model provides a prognosis of the probability for fault occurrence using a
set of extracted causality rules that combine the discovered root causes over time in a bottom-up
manner. The well-known NASA turbofan engine dataset is used as an illustrative example of the
proposed methodology.

Keywords: knowledge discovery in dataset; fault tree; causality analysis; aging system

1. Introduction

The aging of a system is characterized by the progressive deterioration of its initial
performance over time, including—among other factors—the occurrence of faults that
adversely affect the system’s reliability [1]. Causality analysis methods aim to diagnose
the fault event through identifying, isolating and quantifying the effect of the root causes
on the system performance so that the appropriate maintenance actions can be performed
to restore the system to good condition [2]. The future fault behaviour and its drawback
on the system’s performance are essential in order to optimize the maintenance decision-
making [3]. Gao et al. [4] proposed a comprehensive survey of real-time fault diagnosis
methods that are mainly categorized into model-, signal-, and knowledge-based techniques.
The fault prognosis task provides a model that depicts the progression of a specific failure
mode from its inception until the time of failure [5]. The time causality analysis builds a
prognostic model that captures the fault causality behaviour over time [6].

A prognostic model may use a mathematical expression that quantifies the fault
causality evolution or a graphical representation that depicts the changes in the causality
structure over time [7]. Both the event-based and the data-driven methods are commonly
deployed to provide relevant fault prognostic models. The event-based method requires
the involvement of experts from different fields with detailed prior knowledge about
the fault time causality. However, this knowledge could be biased and reflects only the
expert opinions about the fault development [8]. On the other hand, the data-driven
method can directly extract the fault evolution knowledge from the data, which is unbiased
knowledge and reflects the fault causality. However, it lacks the interpretability and the
expert knowledge representation to identify fault hierarchical causality over time [9].

Waghen and Ouali [10] have developed a data-driven fault tree method for causality
analysis which addresses the lack of interpretability of the data-driven model and over-
comes the model-based limitation regarding the expert prior knowledge. The method
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visualizes the fault causality architecture of a simple system using one-level fault tree
that consists of three layers. The condition layer identifies the fault root causes and their
coverage ranges within the dataset. The pattern layer arranges the root causes in the form
of interpretable conjunctions. The solution layer combines some selected patterns that
depict the fault event. Although the proposed tree is interpretable for the expert, the model
hides the fault hierarchical cause-and-effect relations in a complex system. Moreover, it
reflects the fault causality in a static way without considering the influence of a system’s
aging on the change in the fault causality structure over time.

From a practical point of view, human experts look for models that are able to ex-
plain and represent the fault causality structure in addition to having prediction capability.
Ensuring that the fault and its impact and consequences are well represented to human
experts guarantees optimal preventive maintenance actions. Another challenge in a com-
plex system with regard to data-driven fault prognosis models is graphically modeling the
deterioration and performance degradation. Consequently, the fault causality structure can
be changed over a system’s life. Therefore, these complex systems need models that are
able to capture these changes in an interpretable manner. This is a crucial feature that helps
anticipate the impacts of a fault and provides more precise knowledge about the processes
that will be affected in the future by a currently occurring fault.

In this paper, an interpretable time causality analysis (ITCA) methodology is devel-
oped to address the problem of fault prognosis in an aging system using a data-driven
fault tree model. We aim to build a time-dependent multilevel causality model based on
the selection of feasible solutions that characterize the fault occurrence at a certain period
from a set of representative time series historical datasets to address the causality analysis
over time in a meaningful way. The ITCA model is a combination of different common
one-level fault trees that depict the changes of the fault causality structure at periodic
intervals. At each defined period, the ITCA methodology identifies, isolates, and represents
the possible causes of the fault event in the form of the interpretable one-level fault tree.
These constructed trees over defined periods are merged into a common one-level fault
tree that graphically summarizes the changes in the fault causality structure over time.
This procedure is iteratively repeated for each unexplained cause from the previous level
until the final multilevel ITCA model is constructed. The proposed construction procedure
ensures that redundant knowledge is eliminated within the ITCA model, while maximizing
its interpretability over the time. Finally, a set of causality rules are deduced from the ITCA
fault tree that characterize the dynamic change effect of the causality structure in the causes
of a fault occurrence.

The rest of the paper is organized into four sections. Section 2 reviews the available
methods for achieving the fault prognosis based on time causality analysis and discusses
the main challenges. Section 3 develops the ITCA methodology. It explains the data
preparation, the construction of the fault tree models over time, and the deduction of the
time causality rules for fault prognosis. Section 4 illustrates the ITCA methodology using
the NASA turbofan engine degradation dataset. The performance of the ITCA model to
predict the fault is demonstrated by the fault trend over time. Section 5 concludes the
paper and discusses the contribution of the ITCA methodology in achieving the fault
prognosis task.

2. Time Causality Analysis Methods

Time causality analysis is a causal interference over time where the temporary de-
pendency between events over the stochastic process is captured and represented using
analytical methods. The time causality analysis can achieve the fault prognosis task by
providing the expert with the essential knowledge regarding the fault evolution and the
change in its causality structure over time [11]. Schwabacher distinguishes the model-based
and data-driven methods to address the fault prognosis issue. In what follows, a brief
literature review of each prognostic method is discussed, and their strengths and limitations
are highlighted to clarify the research gap [7].
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The model-based method for time causality analysis relies heavily on human expertise
to describe the system’s behaviour over time in degraded conditions [12]. Lu, Jiang [13]
address the drawback of the system downtime due to fault evolution in complex industrial
process by expert knowledge enrichment. First, the time-delayed mutual information
(TDMI) is employed to model the fault causality in the form of a time-delayed signed
digraph (TD-SDG) mode. Then, a general fault prognosis strategy is used to optimize
the system’s downtime based on TD-SDG and the principal component analysis (PCA)
technique. Darwish, Almouahed [14] propose an enriched fault tree for Active Assisted
Living Systems (AALS). The fault tree basic events are ranked according to the degree of
their importance based on the expert prior knowledge and the imprecise failure probabilities
of those basic events. Ragab, El Koujok [15] combine the domain knowledge with the
extracted knowledge from the database to build an enriched fault tree. First, the expert
constructs the fault tree skeleton, which represents the main causality structure for the
fault event. Then, some extracted patterns from the database that may depict unknown
combinations of root causes are deployed to enrich the initial fault tree. Yunkai, Bin [16]
integrate the bond graph modelling technique with the Bayesian network to predict the
faults in a high-speed train traction system. The bond graph represents the system structure
that is mainly constructed based on expert prior knowledge, while the Bayesian network
enriches the expert prior knowledge represented by the bond graph through discovering
the hidden causal relations.

Indeed, the model-based time causality approach can provide interpretable and rela-
tively accurate models that can be built from the first principle of the system’s faults. It is
mainly applicable on simple systems with well-known causes where human knowledge
about the faults, their occurrence and development is clear. Its limited implementation
in complex systems has been overcome by enriching those models based on data-driven
techniques, in which the unseen events are discovered and added to the model’s prior
knowledge. However, forming the model skeleton prior to knowledge by the expert in
complex systems to identify the principal causality structure of the faulty situation and
combining and positioning the extracted hidden fault knowledge from the data in the
constructed model is a challenging task.

Unlike the model-based methods, the data-driven time causality method explores the
data using machine learning (ML) techniques and does not impose a model to predict the
behaviour of a complex system [17]. The ML data-driven methods build unbaised models
and are able to deal with noisy and correlated variables [18]. Zhang, Wang [19] proposed
a methodology to predict the remaining useful time (RUL) using the Wavelet Packet
Decomposition of the vibration signal and Fast Fourier Transform. The pre-processed
signals are treated as input features to learn the Artificial Neural Network (ANN) that
predicts the RUL. Wu, Ding [20] implemented the long short-term memory (LSTM) neural
network rather than relying on feature engineering and an ANN for fault prognosis in
aircraft turbofan engines. The main advantage of LSTM over an ANN is its ability to
learn long-term dependencies between input features and over the equipment lifetime
to give accurate RUL prediction. Razavi, Najafabadi [21] developed an adaptive neuro-
fuzzy inference system (ANFIS) algorithm that combines the ANN and a fuzzy rule-based
model to predict the RUL of aircraft engines. The ANFIS algorithm has been applied to
maintenance scheduling problems.

Although the data-driven models offer an accurate prediction of the RUL, they suffer
from a lack of interpretability [22]. This is because they are too shallow to understand
the fault causality structure and its changes over time. Therefore, an expert may not
be able to deeply understand the cause–effect relations within a complex system. With
regard to this challenge, several methods have been proposed to simplify and unlock
the model interpretability. Li, Wang [23] employed the Deep Belief Network (DBN) to
model the geometric error structure of the backlash error. The DBN was built using
restricted Boltzmann machines and energy-based models to predict the fault geometric.
Su, Jing [24] have proposed a dynamic extraction knowledge method that illustrates the
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relationship between the environmental stresses and the system failure modes using a
fuzzy causality diagram and a Bayesian rough set of multiple decision classes to weigh
the extracted knowledge. Kimotho, Sondermann-Woelke [25] addressed the challenge of
maintenance action recommendation for industrial systems based on remote monitoring
and diagnosis. They proposed an interpretable event-based decision tree that graphically
identifies some problems associated with particular events and conducts evidence-based
decisions. Medjaher, Moya [26] used Dynamic Bayesian Networks (DBNs) to quantify the
failure prognostic in complex systems. The fault time series data are divided into several
periods and a Bayesian network is constructed for each period. The obtained networks are
connected through the chronology of periods to depict the changes in the fault causality
structure over time and quantify the fault behaviour.

On the other hand, the achieved data-driven methods attempt to unlock the time-
dependent relations between the system variables in an interpretable manner in addition
to capturing the change in the fault causality through the periods. However, building an
interpretable data-driven model that can directly grasp the influence of the system aging on
the fault causality structure and summarize the fault behaviour in one model, is a challenge
that still needs to be overcome. The main motivation of this study is to build an interpretable
time causality analysis model that characterizes, first, the hierarchical causality structure
between the fault event, intermediate causes, and root-causes; and second, the influence
of the system aging on that structure over time. Thus, the proposed ITCA methodology
will achieve the fault prognosis task in an efficient way through anticipating the fault
event based on the causal relations discovered over time. It will be developed in the
following section.

3. The ITCA Methodology

Figure 1 depicts the four-phase ITCA methodology. The main input dataset is an
unlabelled timestamp of observations that can represent sequential data. We assume that
the system undergoes a certain degradation trend, depicted by the sequential data, from a
normal state to a failure state, represented by green and red colors, respectively. Phase 1
prepares several labelled subsets from the input data. Each subset is formed by a sub-
sequence of degraded observations, beginning from normal observations (green colors)
to failure ones (red colors), gradually. Phase 2 iteratively builds the appropriate logic tree
corresponding to each subset of data, and then aggregates them into one common fault tree.
Phase 3 constructs the ITCA model by going deeply through each variable in the above
common fault tree and seeks its root-causes. Phase 4 deduces the time causality rules that
determine the effects that the system aging has on the evolution of the fault occurrence
over time. In what follows, each phase of the proposed methodology is explained in detail.
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3.1. Phase 1: Data Preparation

Phase 1 splits the main input data into several subsets according to the expert’s prior
knowledge about the process degradation trend. Each subset contains the sequential
observations that represent the system state at a certain period and the observations that
characterise the failure state or the worst deterioration condition of the system. The expert
should identify the observations that represent the failure before splitting the rest of the
data into equal or non-equal sizes of subsets, according to his judgment about the amount
of system degradation. Equal and non-equal sizes of subsets are suitable for linear and
nonlinear degradation processes, respectively. Hence, the original main data are divided
into n subsets, where the last one contains the failure observations and the others contain
degraded observations. Those n subsets will be concatenated to form (n − 1) datasets. Each
dataset will contain two classes of observations corresponding to failure and degraded data.

Figure 2 depicts the data preparation procedures, in which X1 and X2 are two variables.
Beginning from the main timestamped dataset, the observations in the last period ∆n
belong to the failure state. Then, (n − 1) subsets are extracted. Each subset SSi contains
the observations of the period ∆i, I = 1, . . . , J, where (j) is the index of the last observation
for a given period. At the end, (n − 1)-labelled datasets are concatenated. Each dataset Di
contains the observations of the period ∆i, labelled as class i and the observations of the
last period ∆n, labelled as class n.
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3.2. Phase 2: Build a One Level Fault Tree

Phase 2 iteratively extracts all of the logic trees that differentiate the fault event (class
n) from each class i, i = 1, . . . , (n − 1) of the degraded observations individually. Each
logic tree highlights the relevant variables that discriminate the observations of the failure
state from the degraded ones, from one period to another. Then, the obtained logic trees
are merged into one common fault tree, which identifies and isolates the variables that
discriminate the failure state from the degraded ones over time. To do so, Waghen and
Ouali [10] developed a four-stage methodology, named Interpretable Logic Tree Analysis
(ILTA), to build a one-level fault tree from a two-class dataset (i.e., normal and failure
classes). The methodology discovers the knowledge from the dataset (Stage 1); forms
feasible solutions (Stage 2); constructs the fault tree (Stage 3); and finally quantifies the
fault tree using Bayes’ theorem (Stage 4). Although such a methodology can be applied
separately with each dataset Di, i = 1, . . . , (n − 1), the merged fault tree may be difficult
to interpret due to the dependence of the datasets over time. To overcome this limitation,
Stage 2 of the ILTA methodology needs to be improved. Nevertheless, for the convenience
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of the reader, we briefly recall the four stages of the ILTA methodology and highlight the
improvements to Stage 2 in the following.

• Stage 1: Discover knowledge. Discovering knowledge from a two-class dataset can be
achieved through different pattern generation and extraction techniques, such as the
logic analysis of data (LAD) [27] and prediction rule ensembles (PRE) [28]. The pattern
is a conjunction of certain conditions that discriminate one class of observations from
another class. Each condition includes a variable, an inequality sign, and a cut point
value. Furthermore, the percentage of observations covered by a given pattern may
characterize the knowledge expanse caught by that pattern. However, when the obser-
vations of the same class are covered by more than one pattern, an overlap between
those patterns may occur, with a certain percentage leading to redundant knowledge.

• Stage 2: Obtain similar feasible solutions. A solution is defined as a combination
of certain patterns that cover the observations of the same class. Each solution can
be characterized by its coverage (Cov) and overlap (OL) percentages. The feasible
solution is a solution that respects certain criteria. In the ILTA methodology, only the
feasible solution that maximizes the class Cov and minimizes the class OL is selected,
which leads to maximizing the interpretability and minimizing the redundancy of the
discovered knowledge. However, in the ITCA methodology, we need to search for all
of the feasible solutions that respect not only the Cov and OL threshold percentages,
but also with minimal number of patterns to capture the common knowledge at the
same level over time. In other words, the minimal number of patterns having the
maximum Cov and the minimum OL allows us to characterize the fault using global
knowledge at the first levels of the tree. When this causality is represented in the
tree and the related knowledge is removed from the dataset, the subsequent feasible
solutions will reveal other knowledge that depicts sub-causalities not yet discovered
and represented in the tree. As Stage 2 aims to select similar feasible solutions that
characterize knowledge discovery over time, we seek the most frequent patterns over
the predefined periods of time. In addition, the frequent pattern involves the same
variable and inequality sign in the shared conditions, independent of the cut-point
values. Therefore, the initial version of the burn-and-build algorithm proposed in [10]
is improved to form a set of feasible solutions instead of only one for each period,
using another decision criterion called the solution tolerance selection (STS) threshold.
Hence, a time-based searching algorithm is developed in the ITCA methodology to
obtain all the similar feasible solutions over time. It is depicted in the following
Algorithm 1.

Figure 3 illustrates the proposed time-based searching algorithm using the above three
concatenated datasets D1, D2 and D3 of the toy example (Figure 1). Applying Step 1 to
Step 4, the algorithm finds a set of five feasible solutions that respect the STS threshold of
90%. To clearly understand this, we assume that each solution consists of only one pattern.
From D1, S1 : P1 : (X1 ≤ 30) and S2 : P2 : (X2 > 10) are obtained with 98% and 100% of
Cov, respectively. From D2, there is only one formed solution S3 : P3 : (X1 ≤ 20) with a
Cov of 90%. From D3, the obtained solutions S4 : P4 : (X1 ≤ 10) and S5 : P5 : (X2 > 20)
have 95% and 100% Cov, respectively. Note that the patterns P1, P3 and P4 share the same
condition on X1 except the cut points. Consequently, at Step 5, the algorithm selects S1,
S3 and S4 as the only three similar solutions that characterize the evolution of the same
condition through the three periods ∆1, ∆2, and ∆3, respectively. However, the algorithm
does not select S2 and S5 because there is a loss of information during the period ∆2, even
though they are similar, by sharing the same condition of X2 during ∆1 and ∆3. Hence, the
algorithm evaluates all of the similar feasible solutions and selects the ones that dominate
the maximum number of periods.
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Algorithm 1. Time-based searching algorithm: Search for similar feasible solutions over time.
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are consecutive, and the cut-point curve may have a positive, negative, or constant trend
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• Stage 3: Construct a common logic tree over time. The similar feasible solutions
obtained are visualized in a one-level fault tree through the condition, pattern, and
solution layers. At the condition layer, all the involved conditions are connected to
their respective patterns using the AND gate. At the pattern layer, all the patterns
of the similar feasible solutions are connected to that solution using the OR gate.
Similarly, at the solution layer, all the selected similar feasible solutions are connected
to the fault event using the OR gate.

• Stage 4: Assign the probabilities. The common logic tree is quantified using the
probabilities of the solutions, patterns and conditions involved in similar feasible
solutions obtained from the concatenated dataset individually. Let Nk and NT be
the number of observations covered by the condition Ck and the total number of
observations in one concatenated dataset, respectively. Equations (1) to (4) calculate the
probabilities of the fault class P(CL) and the involved solutions P

(
Sq
)

q = 1, 2, . . . Q,
patterns P

(
Pj
)

j = 1..J, and conditions P(Ck) k = 1..K as follows:

P(Ck) =
Nk
NT

(1)



Algorithms 2022, 15, 178 8 of 19

P
(

Pj
)
=

nj−1

∏
k=1
P(Ck | Ck+1) · P(Ck+1) (2)

P
(
Sq
)
= P

 J⋃
j=1

Pj

 (3)

P(CL) = P

 Q⋃
q=1

Sq

 (4)
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For a simple cause–effect relation between the fault event and its root causes, the
common one-level logic tree can depict the fault causality structure at each period, as well
as over time through the trend of cut-point curves of similar feasible solutions employed
in the tree. For a complex causality structure, the one-level logic tree is not sufficient to
completely represent a fault occurrence because the variables involved at the condition
layer may represent the intermediate causes, and not necessarily the root causes of the
fault event. Therefore, each one of those variables needs a second level of decomposition
or more to explore the solution that will explain its causality structure at each period.
Accordingly, Phase 3 constructs many levels of the tree to address the complex causality
structure over time.
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3.3. Phase 3: The ITCA Model Construction

Phase 3 builds, in a sequential up-bottom structure, several connected common logic
trees to depict unexplained causes through multilevel structure. Each level includes three
stages: verify the common logic trees’ construction, connect those trees to their correspond-
ing causes, and generate new labelled sub-datasets that exclude the variables associated
with causes already explained from the concatenated datasets. In Phase 3, each cause
(i.e., condition) of the obtained common logic trees in Phase 2 is considered as a new event
that needs to be explained in a lower level using a new common logic tree. This procedure
is iteratively repeated to construct a multilevel tree that represent the fault causality struc-
ture over time. In such hierarchical structures, the common feasible solutions at the first
level characterize the fault event using general fault indicators, while the common feasible
solutions at the lower levels will use specific fault indicators to explain the last causes of
the tree.

• Stage 1: Verify the common logic trees’ construction over the defined periods. This
stage verifies the knowledge representability of the constructed logic tree for each
defined period of time and decides whether the further decomposition of its involved
condition is required or not. At each decomposition level, verification of the tree
knowledge is characterized by the coverage of the common feasible solution, which
assists in avoiding decomposing the weak information branches. Therefore, the model
construction is verified to sustain the tree at a non-redundant knowledge level based on
the pre-set coverage threshold. Meanwhile, the construction phase can be interpreted
if there is no common tree that is able to provide sufficient knowledge representability,
or if there are no more variables in the dataset for any further root cause explorations.

• Stage 2: Connect the common logic trees to their corresponding causes. The applied
relaxation in selecting a common feasible solution over the defined periods is very
useful in constructing a common logic tree that easily demonstrates the change in the
causality at a given level of decomposition in the ITCA model. However, it could
happen if the time-based searching algorithm fails to form only one common logic
tree that dominates all the defined periods at a certain decomposition level. This
case could happen if there is a lack of extracted knowledge or a tight range in the
solution tolerance selection (STS). To solve this situation, different common logic trees
may be found by the algorithm, but each period is dominated by only one common
feasible solution. Therefore, if such a situation rises, a time–OR gate is proposed to
connect the different common logic trees to represent the change in the event causality
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knowledge over all the defined periods at a given decomposition level. The time–OR
gate acts as a time switch that shifts between the common logic trees according to their
corresponding periods. Hence, an expert could observe the fault behaviour over time
based on the proposed common similar solution trees at a certain decomposition level
of the ITCA model.

Figure 5 presents an example of the time–OR gate functionality in a one-level ITCA
model. Two common feasible solutions, S1 and S2, are found by the time-based searching
algorithm. S1 characterizes the fault event at only ∆1 and ∆2 using the OR gate (G2)
between the patterns P1 and P2. While S2 represents the fault even only at only ∆3 with
one pattern, P3. This allows P3 to be connected directly to S2 without any need for an OR
gate. The time–OR gate (G1) enables ITCA to fully demonstrate the fault event causality
over the three defined periods (∆1, ∆2 and ∆3). It switches between S1 and S2 according to
the selected corresponding period that is dominated by the solution. For instance, at the
periods ∆1 and ∆2, the time–OR gate (G1) enables only S1 to depict the fault event causality.
On the other hand, during the period ∆3, the fault causality is explained only by S2.
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• Stage 3: Generate new (m − 1) sub-datasets. In a case in which the added common
logic trees are verified at a certain decomposition level of the ITCA model, each one of
the involved conditions in the tree is used to generate new labelled sub-datasets based
on the condition variable cut-point values. Figure 6 takes the example of Figure 3.
It presents the generation of the three two-class sub-datasets D(2)

1 , D(2)
2 and D(2)

3 at
the second decomposition level using the variable X1 cut-point values 10, 20 and 30,
respectively. Note that the generated new sub-datasets contain (m − 1) columns each
time that a variable is removed from the data.
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3.4. Phase 4: Derive the Time Causality Rules

Based on the calculation of the probabilities of root causes, causes and fault events in
the final ITCA model, Phase 4 derives the time causality rules that represent the change in
occurrence probabilities from one period to another. Each time causality rule summarizes a
specific structure of the cause–effect relations over the time between the root causes, causes
and fault events within the ITCA model in the form of an algebraic formula based on the
above Equations 1 to 4 (Stage 4, Phase 2). The obtained time causality rules allow the
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fault event occurrence to be controlled based only on its root causes. Moreover, these rules
enable managing the fault occurrence over the defined time horizon, which makes them
more suitable and appropriate for the task of making a prognosis.

4. Case Study

Most aging systems that include bearings, seals, glands, shafts, and couplings are
more likely to suffer from several degradation processes due to harsh operating constraints
such as high temperatures, vibration, and dynamic load, and likely the deficiency of the
maintenance plan as well. In this section, the ITCA methodology is deployed on simu-
lated data that reproduce the degradation of a turbofan engine proposed by NASA. It is
known as the PHM08 challenge dataset. The dataset is generated by the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) simulator based on MATLAD® and
Simulink® [29]. The simulator uses the combination of three specific operation variables to
generate different degradation profiles. The high-pressure compressor (HPC) degradation
fault mode is selected as an illustrative example.

Based on the C-MAPSS user guide, as shown in Figure 7A, the engine consists of
several interconnected subsystems (inlet, bypass nozzle, fan, low-pressure compressor
(LPC), high-pressure compressor (HPC), combustor, high-pressure turbine (HPT), low-
pressure turbine (LPT), and core nozzle). The fuel valve controls the fuel flow into the
combustor that turns the HPT. The HPT rotates the HPC, LPT, LPC and the inlet fan.
The turbofan engine has two state variables: the fan speed and the core speed [30]. Based
on the thermodynamic cycle, the air is compressed and combusted by the engine to produce
propelling. Figure 7B describes the ambient airflow to the engine. First, the air enters the
engine through the inlet and the fan. Then, it is divided by the splitter into two portions.
One portion passes through the compressor and then the burner to mix with fuel and
produces combustion. The hot exhaust passes through the core and fan turbines to the
nozzle, while the other portion is bypassed to the back of the engine. The airflow is
controlled by the bypass ratio, which is the ratio of the bypassed mass airflow to the mass
airflow that goes through an engine core [31]. The HPC’s main functionality drives the
airflow to higher pressure and temperature states to prepare it for combustion by using its
spinning blades. Therefore, the change in the bypass ratio is the main control element for
controlling the HPC outlet air pressure and its temperature for the burning phase.

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 19 
 

3.4. Phase 4: Derive the Time Causality Rules 
Based on the calculation of the probabilities of root causes, causes and fault events in 

the final ITCA model, Phase 4 derives the time causality rules that represent the change 
in occurrence probabilities from one period to another. Each time causality rule summa-
rizes a specific structure of the cause–effect relations over the time between the root 
causes, causes and fault events within the ITCA model in the form of an algebraic formula 
based on the above Equations 1 to 4 (Stage 4, Phase 2). The obtained time causality rules 
allow the fault event occurrence to be controlled based only on its root causes. Moreover, 
these rules enable managing the fault occurrence over the defined time horizon, which 
makes them more suitable and appropriate for the task of making a prognosis. 

4. Case Study  
Most aging systems that include bearings, seals, glands, shafts, and couplings are 

more likely to suffer from several degradation processes due to harsh operating con-
straints such as high temperatures, vibration, and dynamic load, and likely the deficiency 
of the maintenance plan as well. In this section, the ITCA methodology is deployed on 
simulated data that reproduce the degradation of a turbofan engine proposed by NASA. 
It is known as the PHM08 challenge dataset. The dataset is generated by the Commercial 
Modular Aero-Propulsion System Simulation (C-MAPSS) simulator based on MATLAD® 
and Simulink® [29]. The simulator uses the combination of three specific operation varia-
bles to generate different degradation profiles. The high-pressure compressor (HPC) deg-
radation fault mode is selected as an illustrative example. 

Based on the C-MAPSS user guide, as shown in Figure 7A, the engine consists of 
several interconnected subsystems (inlet, bypass nozzle, fan, low-pressure compressor 
(LPC), high-pressure compressor (HPC), combustor, high-pressure turbine (HPT), low-
pressure turbine (LPT), and core nozzle). The fuel valve controls the fuel flow into the 
combustor that turns the HPT. The HPT rotates the HPC, LPT, LPC and the inlet fan. The 
turbofan engine has two state variables: the fan speed and the core speed [30]. Based on 
the thermodynamic cycle, the air is compressed and combusted by the engine to produce 
propelling. Figure 7B describes the ambient airflow to the engine. First, the air enters the 
engine through the inlet and the fan. Then, it is divided by the splitter into two portions. 
One portion passes through the compressor and then the burner to mix with fuel and 
produces combustion. The hot exhaust passes through the core and fan turbines to the 
nozzle, while the other portion is bypassed to the back of the engine. The airflow is con-
trolled by the bypass ratio, which is the ratio of the bypassed mass airflow to the mass 
airflow that goes through an engine core [31]. The HPC’s main functionality drives the 
airflow to higher pressure and temperature states to prepare it for combustion by using 
its spinning blades. Therefore, the change in the bypass ratio is the main control element 
for controlling the HPC outlet air pressure and its temperature for the burning phase.  

  

(A) (B) 

Figure 7. The simulated turbofan engine based on C-MAPSS [32] (images courtesy of NASA).
(A) Simplified diagram of the turbofan engine; (B) Turbofan engine modules layout and connections.

The challenge addressed by the ITCA methodology is to model the HPC fault causality
structure in a dynamic manner so that the model can demonstrate the effect of the root
cause changes over time on the main HPC degradation curve.
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4.1. Dataset Description

The dataset consists of 21 measurement variables that describe the HPC fault mode
(Table 1) and 465 timestamp observations. The generated data are divided into training
and testing sets with 258 (60%) and 207 observations (40%), respectively. The constant (—),
increasing (↑) or decreasing (↓) trend that depicts each variable over time is mentioned
in Table 1.

Table 1. Variable descriptions of the HPC fault mode.

Variable Description (Unit) Trend (—, ↑, ↓) Variable Description (Unit) Trend (—, ↑, ↓)

T2 Total temperature at fan
inlet (R) — phi Ratio of fuel flow to

Ps30 (pps/psi) ↓

T24 Total temperature at
LPC outlet (R) ↑ NRf Corrected fan speed

(rpm) ↑

T30 Total temperature at
HPC outlet (R) ↑ NRc Corrected core speed

(rpm) ↓

T50 Total temperature at
LPT outlet (R) ↑ BPR Bypass ratio (rpm) ↑

P2 Pressure at fan inlet
(psia) — farB Burner fuel–air ratio

(without unit) —

P15 Total pressure in bypass
duct (psia) — htBleed Bleed enthalpy

(without unit) ↑

P30 Total pressure at HPC
outlet (psia) ↓ Nf_dmd Demanded fan speed

(rpm) —

Nf Physical fan speed
(rpm) ↑ W31 HPT coolant bleed

(lbm/s) ↓

Nc Physical core speed
(rpm) ↓ W32 LPT coolant bleed

(lbm/s) ↓

epr Engine pressure ratio — Ps30 Static pressure at HPC
outlet (psia) ↓

PCNfR_dmd Demanded corrected
fan speed (rpm) —

Note that the majority of the variables have an increasing or decreasing trend over the time, except T2, P2, P15,
epr, farB, Nf_dmd and PCNfR_dmd, which are constant no matter the fault mode.

4.2. The HPC Fault Prognosis Using the ITCA Model

In what follows, the main results of the proposed four-phase ITCA methodology
applied on the NASA turbofan engine dataset are presented and discussed to perform the
HPC fault prognosis task. As per the first phase, the training dataset is ordered according
to the timestamp variable and divided into six equal, unlabelled subsets, where each subset
SSi i = 1..6 depicts the period of time ∆i i = 1..6. The subsets are ordered in a timely
manner, where SS1 represents the best normal state of the turbofan while SS6 depicts its
worst or failure state. Consequently, five labelled datasets are concatenated from those
6 subsets as follows Di: SSi versus SS6 i = 1..5. Each dataset has 86 labelled observations.
Note that the dataset is divided by fixed width for simplicity. However, the expert can
assign different width thresholds to produce non-equal data subsets. Meanwhile, the
number of subsets is important to capture the evolution of the faults over time. This is a
trade-off between time step resolution and ITCA construction time. Phase 2 and Phase 3
are iteratively repeated to construct the ITCA model. The coverage tolerance selection STS
threshold used by the time-based searching algorithm (Stage 2 of Phase 2) is set to 10%.
In addition, the coverage threshold is set to 90% to control redundant knowledge in the
common trees at Stage 1 of Phase 3, when a new level is considered in the ITCA model.
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Figure 8 depicts the final ITCA model of the HPC fault mode. It includes six levels
of decomposition to reproduce the causality structure between the HPC fault and its root-
causes over six periods of time. Note that each level of the ITCA model consists of three
layers that represent the solutions, patterns, and conditions related to the fault event or
to one of its causes. The first level includes only one common feasible solution S1 over
the five defined time periods (∆1 to ∆5). S1 has only one pattern, P1, which includes only
one condition: C1 : P30 > λ1. The plot A1 of Figure 8 characterizes the degradation of
the variable P30 over time. Note that the cut-point curve (blue line) bounds the trend of
the variable P30 in time. Additionally, the plot A2 of Figure 8 shows the common feasible
solution coverage and the overlap percentages over the five time periods. Regarding
Level 2 of the ITCA model, the same interpretation above can be performed for the variable
T50. It is clear that the ITCA model captures the trend of the involved variables based on
the cut-point curves.
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Figure 8. Obtained ITCA model of the HPC degradation mode.

At Level 3, two common feasible solutions, S3 and S4, are found by the time-based
searching algorithm. These solutions respect the construction setting; S3 explains the cause
(C2 : T50 ≤ λ2) at the time periods ∆1 and ∆2, while S4 dominates the three other periods
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∆3 to ∆5. S3 and S4 each have only one pattern and condition. The plots C2 and D1 of
Figure 8 depict the bordering of the cut-point curves that represent the degradation trends
of the variables T24 and NF, respectively. Meanwhile, the C1 and D2 plots show the solution
coverage and overlap percentages over the corresponding time periods. S3 and S4 describe
the full-time causality of the cause event (C2 : T50 ≤ λ2) through the time–OR gate by
toggling between the two feasible solutions. Hence, S3 explains the event causality at only
∆1 and ∆2, while S4 illustrates the causality of the same event at ∆3, ∆4 , and ∆5.

At Level 4, two other feasible solutions, S5 and S6, are found that explain the events
C3 : T24 ≤ λ3) and C4 : NF > λ4, respectively. At Level 5, only one common feasible
solution S7 is found that explains both events’ (C5 : Ps30 ≤ λ5 and C6 : Phi ≤ λ6) causality
over the five periods of time. This solution includes one pattern P7 with only one condition
C7 : NRF ≤ λ7. The same reasoning can be made with the only common feasible solution
S8, which explains the condition C7 at the last level of the ITCA model using only one
pattern P8 that consists of one root cause: C8 : BPR ≤ λ8. The cut-point curve of Figure 8.
H1 bounds the trend of C8.

From the obtained logic tree of Figure 8, the ITCA model confirms the discussion
above about the main root cause of the HPC fault mode. Effectively, the first level of the
ITCA model identifies the variable P30 (total pressure at HPC outlet) as the only fault
indicator of the HPC degradation over time. Therefore, P30 can be employed to predict
the remaining useful time of the turbofan engine according to the HPC fault mode. At the
second level, the variable T50 (total temperature at an LPT outlet) is discovered to explain
the effect of the temperature of combustion on the total pressure at the HPC outlet. T50
refines the knowledge discovered about P30. The same reasoning continues until reaching
the final Level, 6, where the ITCA model discovers the variable BPR (bypass ratio), which is
identified by the expert as the main control element that affects the occurrence of the HPC
fault mode over time. Therefore, the ITCA model provides the expert with more refined
knowledge, outlining the effects of the root causes on the fault trend over time, which help
him to achieve the prognosis task in an efficient way.

The probabilities associated with the ITCA model are calculated using Equations (1) to (4)
of Stage 4, Phase 2. They quantify the occurrence of similar feasible solutions, patterns, and
associated conditions, period after period, at each level of the ITAC model. Figure 9 plots
the probabilities of the eight discovered conditions over five periods of time. Note that the
occurrence of each feasible solution is equal to the probability of its associated conditions due to
the structure of the obtained logic tree. For example, plot A in Figure 9 represents the probability
curve of S1 : P1 : C1 over the periods ∆1 to ∆5. The maximum probability value is equal to 0.16
at each period, since the original data are divided into six equal-size data subsets. Therefore,
each subset represents 0.16 from the original data size. Note that each common feasible solution
tries to maximize its class coverage, so that the associated condition probability value may not
exceed that coverage value over the five periods.

Based on the ITCA model and the calculation of probabilities, only one time causality
rule can be derived over five investigated periods, as follows:

P(HPC(∆i)) = P(C8(∆i)) i = 1 . . . 5 (5)

The time causality rule expresses the contribution of the root-cause on the occurrence
of the HPC fault, period after period, according to the C8 cut-point curve. Each cut-point
value provides the essential knowledge to sustain the turbofan for more or less time in
each defined period interval through the maintenance action. For instance, the turbofan
can spend more time in ∆1 by making the C8 variable (BPR) value under the corresponding
cut-point value for a set of time.
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From another point of view, the variables T2, P2, P15, epr, farB, Nf_dmd and PC-
NfR_dmd are not considered in the ITCA model of Figure 8 because they have a constant
trend over time (see Table 1). However, the variables NC, NRc, htBleed, W31 and W32 have
a changeable trend, but are not included in the ITCA model. To investigate this situation,
the correlation matrix between those omitted variables and those already considered in the
ITCA model are measured, as depicted in Table 2. In each column, the bold value shows
the maximum correlation value. The variables NRc, htBleed, and both W31 and W32 are
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correlated to the variables phi, Nrf and Ps30, respectively, with a correlation value that
is higher than 0.6. Except for the variable NC, which measures the physical core speed,
and is correlated to P30 with the highest absolute value of 0.17. Accordingly, it seems to be
relevant for the HPC degradation. This could be overlooked by the ITCA model.

Table 2. Correlation matrix. The bold cell shows the maximum correlation value.

NC NRc htBleed W31 W32

T24 −0.159 −0.502 0.595 −0.629 −0.614

T30 −0.211 −0.459 0.534 −0.543 −0.582

T50 −0.153 −0.548 0.644 −0.727 −0.699

P15 −0.001 −0.014 0.065 −0.059 −0.107

P30 0.175 0.588 −0.651 0.718 0.739

Nf −0.167 −0.594 0.707 −0.750 −0.743

Ps30 −0.171 −0.594 0.689 −0.761 −0.742

phi 0.158 0.616 −0.688 0.722 0.721

NRf −0.169 −0.582 0.708 −0.746 −0.715

BPR −0.184 −0.575 0.605 −0.663 −0.714

5. Conclusions

This paper has proposed an interpretable time causality analysis (ITCA) methodology
for aging systems. The ITCA model represents the fault hierarchy causality by using the
logic of the graphical fault tree and the knowledge discovery in the dataset. The obtained
tree models the effect of the system’s aging on the changes in the fault causality structure
over time to better achieve fault prognosis. The illustrated case study demonstrates its use-
fulness and ability to discover only the relevant root cause that impacts the fault behaviour.
Based on the model’s interpretability, the expert is able to use the time causality structure of
the turbofan HPC degradant performance to support his decision. Thus, the ITCA model
provides the expert with the deep causality knowledge that explains the fault evolution
over time. Unlocking the data-driven model’s complexity by providing an interpretable
graphical model, in addition to summarizing the evolution of the fault over time in one
interpretable model are the two major contributions of the ITCA model over the current
time causality data-driven models for fault prognosis. The ITCA model takes a further step
towards reinforcing the link between experts and data-driven models. Such a model will
help experts elucidate and implement the maintenance decision-making process.

Our next research work will be to assist the expert by better optimizing the system
performance through a set of control actions to maximize the RUL. We hope to allow our
future ITCA model to demonstrate the system’s reaction regarding a set of proposed control
actions based on its causality rules and link the impact of a given proposed action to the
RUL. The expert still needs to observe this system’s reaction, represented by the new fault
causality structure that reflects the system’s response to the causality rule control actions
that are taken, and note how this improves the RUL. Therefore, the future ITCA model
must include different scenarios for fault causality structures that reflect the impact of the
different combinations of control actions based on the derived causality rules.
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