
Citation: Yang, L.; McClean, S.;

Donnelly, M.; Burke, K.; Khan, K.

Detecting and Responding to

Concept Drift in Business Processes.

Algorithms 2022, 15, 174. https://

doi.org/10.3390/a15050174

Academic Editor: Mihaly Mezei

Received: 26 April 2022

Accepted: 18 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Detecting and Responding to Concept Drift in Business Processes
Lingkai Yang 1,* , Sally McClean 1 , Mark Donnelly 1 , Kevin Burke 2 and Kashaf Khan 3

1 School of Computing, Ulster University, Jordanstown BT37 0QB, UK; si.mcclean@ulster.ac.uk (S.M.);
mp.donnelly@ulster.ac.uk (M.D.)

2 MACSI, Mathematics Applications Consortium for Science and Industry, University of Limerick,
Limerick V94 T9PX, Ireland; kevin.burke@ul.ie

3 British Telecom, Ipswich IP5 3RE, UK; kashaf.khan@bt.com
* Correspondence: yang-l9@ulster.ac.uk

Abstract: Concept drift, which refers to changes in the underlying process structure or customer
behaviour over time, is inevitable in business processes, causing challenges in ensuring that the
learned model is a proper representation of the new data. Due to factors such as seasonal effects
and policy updates, concept drifts can occur in customer transitions and time spent throughout the
process, either suddenly or gradually. In a concept drift context, we can discard the old data and
retrain the model using new observations (sudden drift) or combine the old data with the new data
to update the model (gradual drift) or maintain the model as unchanged (no drift). In this paper, we
model a response to concept drift as a sequential decision making problem by combing a hierarchical
Markov model and a Markov decision process (MDP). The approach can detect concept drift, retrain
the model and update customer profiles automatically. We validate the proposed approach on
68 artificial datasets and a real-world hospital billing dataset, with experimental results showing
promising performance.

Keywords: business process; concept drift; duration drift; hierarchical Markov model; Markov
decision process

1. Introduction

A business process is a collection of interconnected tasks aiming to provide a product
or service to customers [1]. Every business process generates data as a result of its activities,
which is extremely valuable in customer understanding, process optimization and product
qualification if properly analyzed [2]. Process mining (PM) is a research area that connects
data mining and process modelling [2]. PM has a wild range of techniques to discover
process models [1], monitor customer behaviour [3], spot business bottlenecks [4], and
detect concept drift [5], etc. Concept drift, also known as process drift in a PM context,
refers to business changes over time, which can be detected from various perspectives, such
as control-flow [1,6], data-flow [7], resource [8] and time [9,10]. Detecting such changes can
provide insight into business circumstances, generate early-stage change warnings and
highlight the opportunity for model refinement [5].

Process control-flow and data-flow are well addressed by business process manage-
ment (BPM) techniques, with the support of database technology [11]. However, less
attention has been devoted to other perspectives such as resource management [11]. Two
other literature review papers report similar findings. R’bigui and Cho [3] reviewed the
research progress in tackling PM challenges outlined in the Process Mining Manifesto [2].
Regarding concept drift, ten of the eleven papers published between 2014 and 2017 only
considered changes from a control-flow perspective. The remaining one discussed two
perspectives: data and resources. Elkhawaga et al. [12] conducted a comprehensive study
using nineteen papers published between 2009 and 2019. A conclusion is given that twelve
of them were solely focused on changes in the control-flow structure and the other seven

Algorithms 2022, 15, 174. https://doi.org/10.3390/a15050174 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15050174
https://doi.org/10.3390/a15050174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4991-6813
https://orcid.org/0000-0002-6871-3504
https://orcid.org/0000-0003-1250-265X
https://orcid.org/0000-0001-8724-809X
https://doi.org/10.3390/a15050174
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15050174?type=check_update&version=2

Algorithms 2022, 15, 174 2 of 19

publications took into account more than two perspectives such as time and resource.
From a time perspective, concept drift is indicative of the variation in the time point when
events occur, as described in [12]; however, it can also refer to changes in the time duration
between events, which has not been well-investigated [3,12].

To fill the research gap, this paper proposes a hierarchical Markov model-based
Markov decision process (HMDP) method for modelling customer duration data, detecting
concept drifts and automatically updating customer profiles. Businesses can gain ben-
efits from automating their processes, such as saving employees’ time, reducing costs
and increasing efficiency [13], which is important in application areas, for example, for
Test-Driven Data Analysis (TDDA) [14] and recommendation systems [15]. The idea of
modelling the concept drift detection problem as a Markov decision process (MDP) orig-
inates from Liebman et al.’s work [16], which aims at solving feature-based supervised
learning and distribution tracking problems. While in this paper, we concentrate on the PM
context and propose a hierarchical Markov model (hierarchical MM) approach for process
modelling. Specifically, in our previous work [17], we explored the possibility of detecting
customer duration drift by using a semi-Markov process (SMP) model. In this paper, we
applied it in our hierarchical MM (the bottom layer) and proposed a corresponding MDP
stage to autonomously respond to concept drift. In the data modelling stage, the proposed
HMDP approach represents customer behaviour using a two-layer hierarchical MM. The
bottom layer is an SMP integrated with gamma mixture models to characterize customer
transition probabilities and duration. The top layer, derived from the K-means clustering, is
a high-level representation of the bottom layer customer behaviour. In the drift adaptation
stage, the method first characterizes the old and new data separately using the hierarchical
MM. The drift adaptation, i.e., customer profile updating problem, is then considered as
an MDP. Specifically, the top-layer customer representations of the old and new data are
combined as the MDP states where actions occur, i.e., keep (no drift), adapt (gradual drift)
or retrain (sudden drift) the old hierarchical MM.

This paper makes three main contributions. First, we represent the business process
as a hierarchical MM, with customer activities and their duration as the bottom layer and
customer performance patterns as the top layer. The aim of introducing the top layer is to
reduce the difficulty of establishing the MDP model. Considering a process with n activities,
the bottom layer representation (i.e., the SMP model) has n2 + (3m− 1) ∗ n2 parameters.
The first item (i.e., n2) refers to the number of transition probabilities. (3m− 1) ∗ n2 relates
to the number of parameters in the gamma mixture model (with m gamma components)
of each of the n2 transitions. A large number of parameters can lead to a huge MDP
state space, making model training more difficult and demanding more computational
resources [18]. By introducing the top layer, the number of parameters can be reduced
significantly, depending on the number of predefined clustering centres in K-means. As a
result, it can avoid the explosion of the MDP state space. Second, the customer duration
data in the bottom layer is modelled using gamma mixture models. There are two main
motivations: (1) when properly parameterized, the gamma mixture model is extremely
flexible to fit any shape of continuous distribution with non-negative values [19]. (2) The
mixed gamma class has been thoroughly investigated, including mathematical theory
and proofs that are useful for model explanation and data comprehension. The third
contribution is, that we consider drift detection and customer behaviour modelling as an
MDP/reinforcement learning problem, with three actions to keep, adapt or retrain the old
hierarchical MM to ensure that it is a sufficient representation of the dynamic business
environment. In conclusion, this paper addresses the importance of the modelling process
duration data, as well as adapting/updating customer profiles to the dynamic environment.

The rest of the paper is organized as follows. Section 2 presents the related work.
Preliminaries used in this paper are given in Section 3. The methodology of the proposed
approach is introduced in Section 4. The findings from a series of experiments on artificial
and real-world datasets are presented in Sections 5 and 6, respectively. Finally, conclusions
and the scope for future work are provided in Section 7.

Algorithms 2022, 15, 174 3 of 19

2. Related Work
2.1. Process Mining

Concept drifts refer to data changes over time, which have been classified into four
categories in the literature [20]. Sudden drift occurs abruptly at a specific time point with
one model replaced by another one, while in a gradual drift scenario, the current model
is taken over by a new model gradually. The drift type of recurring concept relates to
situations in which previously seen concepts reoccur after some time. Incremental drift
refers to a sequence of changes to reach a stable new model from the current model. In this
paper, we consider recurring and incremental drift as special types of sudden and gradual
drift, respectively [20,21].

In the context of process mining (PM), concept drift detection techniques can be
roughly classified into online and offline learning approaches [22]. The former concen-
trate on new incoming data batches, with the objective to quickly respond to changes [22].
The latter detectd concept drift in history data, aiming for accurate data modelling and
understanding [16]. Ostovar et al. [23] introduced an online approach aiming at detecting
changes in its early stage. Eravolo et al. [24] reviewed the current state of online process
mining, focusing on evaluation goals and event logs for drift detection. In [25], Adams et al.
discussed the significance of understanding the root causes of concept drift. Sliding win-
dows are commonly applied in offline scenarios to generate continuous populations [1,5,26]
where changes are examined between consecutive pairs. The follows/precedes relationship,
introduced by Bose et al. [1], investigates whether process activity ‘a’ always, sometimes or
never follows activity ‘b’. Thereafter, Hotelling T2, KS and MW tests were employed to
uncover process drift. Maaradji et al. [26] restructured process instances into RUNs as the
representation of customer pathways. The Chi-square test is then used to detect changes.
Clustering methods such as AHC [27], Markov clustering [28] and DBSCAN [29] are also
commonly employed for process drift detection. Yeshchenko et al. [24] proposed the Visual
Drift Detection (VDD) approach with the capability of users visually observing drift.

In addition to drift detection, concept drift adaptation is essential to ensure that the
learned model/customer profile is suitable for the dynamic environment [21]. Junior et al. [30]
proposed a framework for monitoring concept drift in process event streams. The method
first represents process data into a trace histogram and a time histogram. Process cases can
then be transformed into feature vectors to obtain the cluster boundary. New process cases
that fall outside the boundary of any cluster are detected as anomalies. Finally, concept
drift is considered to occur if there is a significant increase in the number of anomalies. The
approach is then extended for real-time reaction and concept drift adaptation [31]. The
method addresses drifts in the time difference/duration between activities but does not
distinguish the difference between different activity transitions. Spenrath and Hassani [32]
proposed a concept drift adaption method with the goal of finding process bottlenecks
in cases that have a long duration. The training process cases are partitioned into a set
of groups to build an ensemble-based drift detection model. The approach can adapt
to gradual and recurrent concept drift, but it only concentrates on the overall duration,
neglecting the duration of specific transitions. In [21], Maisenbacher et al. proposed a
method for dealing with concept drift in predictive process monitoring. The approach uses
incremental learning to adapt the forecast model to control flow and data concept drift, but
there is a lack of duration perspective.

The proposed HMDP approach can automatically adapt to concept drift, i.e., update
customer profiles under changes in customer transition probabilities and their duration.
The method brings about two main benefits: (1) it models the duration distribution of each
transition to highlight variations in the time spent between different activities. (2) The
duration data of a specific transition is fitted using a gamma mixture model, which is more
flexible and comprehensive than the histogram or the average value-based methods.

Algorithms 2022, 15, 174 4 of 19

2.2. Markov Models

A discrete-time Markov chain (DTMC) is usually used to characterize a stochastic pro-
cess, in which the next state depends only on the current state with transition time/sojourn
time/waiting time as one unit time [18]. A continuous-time Markov chain or a semi-Markov
process (SMP) is commonly employed if the transition time is exponentially or randomly
distributed [33]. SMP models are widely used for, e.g., modelling highway bridge main-
tenance [34], characterising patient pathways via hospital care [35] and optimising mode
control [36]. The model also suits business process mining, but it has not been studied much.
In general, a business process can be naturally represented in terms of an SMP framework
by considering process activities as the state space, describing the probability of moving to
the next activity from the current by transition probabilities and simulating the transition
time by non-exponential distributions. It offers a single model for characterizing the process
control-flow and the time spent by customers. A hierarchical MM is a stochastic process
including at least two layers that usually follow the Markov property. Ferreira et al. [37]
proposed a hierarchical MM to discover the relationship between low-level process activi-
ties and the high-level description of business processes. Mitchell et al. [38] integrated the
Coxian phase-type model with the continuous-time Hidden Markov model to describe the
length of stay of patients in hospital.

A Markov decision process (MDP) is a discrete-time stochastic process aiming to model
decision-making in situations [18,39]. That is, an MDP is a DTMC with a decision/action
selection policy in every transition. MDP can be solved by using dynamic programming-
based approaches [39], which require updating the transition probability matrix and the
transition reward matrix for every decision, leading to the cost of a substantial amount
of computational resources [18]. Reinforcement learning (RL), especially approximation-
based methods that estimate the value of state-action pairs (e.g., Deep Q network) [40], can
be considered as a near-optimal solution for large and complex MDP problems [41]. On
the other hand, such methods lack the ability to model transition probabilities of moving
from the current to the next state via a selected action. MDP has been successfully applied
in a wide range of action selection areas such as robotics and control [42], games [43],
trading [44] and resource allocation [11,41], but it has received less attention in PM.

3. Preliminaries

This section introduces the formal preliminaries used throughout the paper, including
details for the business event log, SMP, MDP and the gamma mixture model.

3.1. Business Process Event Log

Definition 1 (Event log). An event log L is a collection of recorded events with their attributes
relating to process executions/activities. Typical attributes include the case ID, activity, timestamp,
and resource, etc. Events with the same case ID consist of a process instance.

An example of a hospital billing log is given in Table 1, illustrating two specific cases
with the process control-flow structure demonstrated in Figure 1.

Figure 1. The hospital billing process.

Algorithms 2022, 15, 174 5 of 19

Table 1. An example event log.

Case ID Activity Timestamp

case0 New 11 February 2015 16:30:00
case0 FIN 11 February 2015 16:30:00
case0 Release 11 February 2015 09:59:02
case0 Code OK 12 February 2015 09:59:02
case0 Billed 12 February 2015 10:21:01

case1 New 11 May 2015 12:07:00
case1 Change Diagnosis 12 May 2015 12:30:40
case1 Release 17 May 2015 12:54:09
case1 Code OK 21 May 2015 15:22:14
case1 Billed 12 June 2015 09:21:29
· · · · · · · · ·

3.2. Semi-Markov Process (SMP)

As a generalization of DTMCs, SMPs allow state transitions to occur at continuous
irregular times. We begin with some definitions that can be found in [33,45] to formulate
an SMP framework. In general, an SMP can be represented by the three-tuple 〈SS, PS, TS〉
referring to the state space, transition probabilities and transition time distributions.

Definition 2 (SS). The state space is used to describe a system/problem which can be finite (e.g.,
the number of people in the queue in a supermarket) or near-infinite (e.g., camera images in an
automatic driving application). In a PM context, we consider the state space is finite.

Definition 3 (PS). The one-step transition probability, pS(i, j), is the probability of transitioning
from one state (i) to another (j) in a single step, that can be estimated by

pS(i, j) =
N(i, j)

∑v∈SS
N(i, v)

. (1)

N(i, j) is the number of transitions from state i to j. All transition probabilities can be listed
in a matrix as PS = {pS(i, j), i, j ∈ SS}.

Definition 4 (TS). The transition time from state i to j is a random variable with probability density
tS(d; i, j)with d as the sojourn time of a specific transition between i and j. TS = {tS(d; i, j), i, j ∈ SS}.

3.3. Markov Decision Process (MDP)

The MDP models sequential decisions in a stochastic environment that can be rep-
resented by the five-tuple 〈SD, AD, PD, RD, ΠD〉 referring to the state space, action space,
transition probability matrix, reward matrix and action selection policy.

Definition 5 (SD). The state space is a set of states that is used to describe a system/problem.

Definition 6 (AD). The action space is a collection of actions that is able to control the system.
Considering a queueing system, actions can be (1) ‘open a counter’, (2) ‘maintain the current
situation’ and (3) ‘close a counter’, dependent on the current state, for example, the number of people
in the queue.

Definition 7 (PD). The transition probability from the current state i to the next state j under the
impact of action a is denoted as pD(i, a, j). PD = {pD(i, a, j), i, j ∈ SD, a ∈ AD}.

pD(i, a, j) =
N(i, a, j)

∑v∈SD
N(i, a, v)

. (2)

Algorithms 2022, 15, 174 6 of 19

N(i, a, j) is the number of transitions from state i to j under the influence of action a.

Definition 8 (RD). The immediate reward (positive or negative) rD(i, a) is obtained when the
Markov chain stays at state i and makes action a. RD = {rD(i, a), i ∈ SD, a ∈ AD}.

Definition 9 (πD). A policy at state i, denoted as πD(i), is a mapping from SD to AD. That is,
selecting the action that has the highest long-term reward.

3.4. Gamma Mixture Model

Definition 10 (gamma distribution). The gamma distribution is a two-parameter (non-negative
shape z and non-negative rate λ) family of continuous probability distributions, which is widely
used for modelling non-negative distributions. The density function is

g(x|z, λ) =
λz

Γ(z)
xz−1e−λx, x ≥ 0 (3)

where Γ(z) is the gamma function that equals (z− 1)! for positive integer z.

Definition 11 (gamma mixture model, ga-mm). The ga-mm is a mixture of multiple gammas
with mixing proportions that sum to one. It is extremely flexible to fit any shape of positive
continuous distributions. The density of a ga-mm is

f (x|Θ) =
m

∑
i=1

αig(x|zi, λi) (4)

where Θ = (α1, · · · , αm, z1, · · · , zm, λ1, · · · , λm). αi, zi and λi, i = 1, · · · , m are the mixing
proportion, shape and rate parameter of the ith gamma component, respectively.

In the proposed HMDP method, gamma mixture models are integrated into the
SMP model to characterize customers’ duration data. The SMP is then applied as the
bottom layer of the hierarchical MM. The top layer of the hierarchical MM is a high-level
representation of customer patterns, derived from K-means. The detection/adaptation of
concept drifts in customer transitions and their duration is then handled by an MDP.

4. Methodology

In this section, we introduce the proposed approach, called the hierarchical Markov
model-based Markov decision process (HMDP). Using the hospital billing data as an
example (as demonstrated in Table 1 and Figure 1), an illustration of the main logic structure
of the method is given in Figure 2.

Given the old and new data/event log, we first represent customer behaviour by
using an SMP separately. Customer transition behaviour is characterized using discrete-
time transition probabilities, and the duration between every activity pair is modelled
using gamma mixture models (ga-mm). We thereafter calculate the mean of these gamma
mixture models and create a duration matrix that has the same size as the transition matrix,
with each element referring to the average customer time spent on a specific transition.
The transition and duration matrices are the low-level representation of the data with
continuous elements. Consequently, the representation has uncountable variations, causing
challenges in learning the MDP Q-table [39]. We, therefore, extract a high-level customer
representation/pattern using the K-means technique [46]. Specifically, we combine the
transition and duration matrices as a row vector and use it as the input of K-means.
The output clustering centre is its high-level representation that has a categorical value.
The high-level pattern of the old and new data contains information about the business
environment evolution, and we combine them as the state of the MDP to make actions,
detect concept drift and update the SMP model. Details of the approach are given in the
following sub-sections.

Algorithms 2022, 15, 174 7 of 19

Figure 2. The flow chart of the HMDP approach.

4.1. Bottom Layer of the Hierarchical MM

The bottom layer of the hierarchical MM is an SMP with the duration estimated by
ga-mm. As discussed in Section 3.2, SS is all the unique activities in a business process and
PS covers the transition probabilities between each state transition. For example, in the
hospital billing scenario, SS = {New, FIN, ChangeDiagnosis, CodeOK, · · · , Billed}. The
time spent between each state transition from i to j, i, j ∈ SS, is fitted by a gamma mixture
model with the number of mixing components optimized by the Bayesian information
criterion (BIC) [47]. For example, we increase the number of mixing components from 1 to
10, and the ga-mm with the lowest BIC is selected as the best model. The Nelder–Mead
algorithm [48] is used to compute the maximum likelihood estimator. The transition matrix
(PS) and gamma mixture models are the low-level representation of the customer behaviour
behind the data. We then generate a matrix GS = gS(i, j), i, j ∈ SS, consisting of the average
duration for all state transitions, which is used for obtaining the top layer representation.
gS(i, j) refers to the average transition time between state i and j and can be calculated
using Equation (5).

gS(i, j) =
m

∑
v=1

αv × zv

λv
. (5)

m is the number of mixing components. αv, zv and λv are the mixing proportion, shape and
rate parameter of the vth gamma component.

4.2. Top Layer of the Hierarchical MM

Using the bottom layer, i.e., the SMP, is promising for monitoring customer transition
and duration behaviour, where a high-level representation is more efficient and effective
for customer understanding and MDP learning. We first combine the transition (PS) and
duration (GS) matrices as a row vector and use it as the input of the K-means model. The
K-means output clustering centre is the high-level representation/pattern. Considering
an event log originating from the hospital billing process that has eleven main activities.
The size of the transition and duration matrix is 11× 11, and therefore, the size of K-means
input is 11× 11× 2 = 242, and the output size is one. In other words, the high-level pattern
is one-dimensional, and its value ranges from one to the number of predefined clusters.
Furthermore, we can use two K-means models, respectively, for the transition and duration
matrix, and in this case, the high-level pattern is two-dimensional.

We say it is a hierarchical MM because it has two layers—a bottom layer modelling
low-level customer activities and duration and a top layer representing the high-level
customer behaviour. The top layer, similar to hidden Markov models, includes a set of

Algorithms 2022, 15, 174 8 of 19

hidden states dependent on the bottom later. Compared to hidden Markov models, which
are commonly optimized using the maximum likelihood estimation, the top layer of our
approach is obtained by K-means. In hidden Markov models, the hidden states are the
bottom layer used to generate top layer customer behaviours, while in this paper, the
hidden states are the top layer as a high-level representation of bottom layer customer
behaviour.

4.3. Model Management Using MDP

We use tuple 〈PSO, GSO〉 and 〈PSN , GSN〉 to represent the transition and duration
matrices of the old and new data, respectively. Furthermore, we use HO and HN as
their high-level representation. We use tuple 〈HO, HN〉 as the MDP state that contains
information about the environment evolution. Naturally, we say there is no concept drift if
the old and new data have the same high-level representation, i.e., HO = HN . Otherwise,
there is a high possibility for concept drift. During the MDP learning stage, depending
on the current state, one of the actions is selected to update the current/old SMP model.
The reward of the selected action is then calculated to update the decision-making policy.
During the MDP testing stage, given the current state, i.e., the high-level environment
representation derived from the old and new data, we select the action that achieves the
highest long-term reward learned in the training process.

In the scenario that we use two K-means models, respectively, for the transition
and duration matrix to have a two-dimensional high-level representation, actions can be
made individually for transition probabilities and gamma mixture models, leading to nine
actions in total. Consequently, the actions are ‘keep_keep’, ‘keep_adapt’, ‘keep_retrain’,
‘adapt_keep’, · · · and ‘retrain_retrain’. For example, action ‘keep_retrain’ means that we
maintain the current transition probabilities but retrain duration data into gamma mixture
models. On the other hand, if the high-level representation is obtained using one K-means
model, we have three actions: keep, adapt or retrain both the transition probabilities and
gamma mixture models. In other words, the three actions are ‘keep_keep’, ‘adapt_adapt’
and ‘retrain_retrain’.

Regarding actions for transition probabilities, if action ‘keep’ is selected, we con-
sider there is no drift in the process control-flow and therefore keep the current transition
probability matrix (PSO) unchanged, i.e., Pk+1

SO = Pk
SO. k and k + 1 refer to the transition

probabilities before and after updating. If action ‘adapt’ is selected, we consider there is
a gradual drift, and therefore, we update the model using the observed new data. That

is, Pk+1
SO =

Pk
SO+Pk

SN
2 . We consider there is a sudden drift if action ‘retrain’ is selected and

the current transition matrix is replaced by the new data. That is Pk+1
SO = Pk

SN . We denote
the current gamma mixture models and the gamma mixture models derived from the new
data batch as ga-mmO and ga-mmN , respectively. For duration actions, if action ‘keep’ is
selected, we keep the current mixture model unchanged, i.e., ga-mmk+1

O = ga-mmk
O. As a

result, the low-level duration matrix is the same, i.e., Gk+1
SO = Gk

SO. If action ‘adapt’ is se-
lected, we merge the old and new data to refit gamma mixture models. Otherwise, if action
‘retrain’ is selected, we refit the gamma mixture models using the new observation data.

The immediate reward of selecting action ‘a’ at state ‘s’ (〈HO, HN〉) is calculated as
Equation (6). It has three components: (1) the accuracy of updated transition probabilities,
(2) the goodness of fit of updated gamma mixture models and (3) a penalty for using
a specific action. For the first component, we use the multinomial test [49] to measure
the difference in each state transition between the updated transition probabilities and
transition probabilities from the new data batch. In other words, the multinomial test is
applied between each row of the updated transition matrix and the new data transition
matrix. Consequently, there is a collection of independent multinomial test statistics
and then the Fisher’s method—a technique for detecting the difference in combining
probabilities [50] is used with its p-value as the final performance measure. Therefore,
Fisher’s method measures transition probability changes in the entire process environment.
It is straightforward that the better the selected action is, the better transition representation

Algorithms 2022, 15, 174 9 of 19

we will have for the new data batch leading to a higher p-value. The second component
evaluates the goodness of fit of the updated gamma mixture models for the new duration
data. Every gamma mixture model is compared using the Kolmogorov–Smirnov (KS) test,
and the Fisher’s test is used for the multiple test problem. For the third component, we
give no penalty to action ‘keep’, a mild penalty to action ‘adapt’ and a severe penalty for
action ‘retrain’. The reason for introducing the penalty mechanism is that we prefer to
keep the current SMP model unchanged to save computational resources [16]. That is,
action ‘keep’ will be in preference if ‘adapt’ and ‘retrain’ are not significantly better. In
other words, without the penalty mechanism, the MDP agent will retrain the transition
matrix and gamma mixture models at every decision point to receive the highest reward,
which is not as we expected.

rD(s, a) = Fisher(Mult(Pk+1
SO , Pk

SN))

+ Fisher(KS(ga-mmk+1
O , ga-mmk

N))

− penalty(a).

(6)

According to the Bellman optimality equation [39], the value of a state-action pair in
MDP, denoted as Q(s, a), can be written in a recursive fashion, i.e.,

Qk+1(s, a) = (1− β)Qk(s, a) + β ∑
j∈SD

pD(s, a, j)[rD(s, a) + max
b∈AD

Qk(j, b)]. (7)

That is, we consider the Q-value optimization from two perspectives: a probability of
β for obtaining the future maximum reward and a probability of 1− β for preserving the
current Q-value. In other words, β is a trade-off between the exploration of a high reward
and the preservation of historical knowledge. pD(s, a, j) is the transition probability that at
state ‘s’ via action ‘a’, the next state will shift to state j. It can be calculated as discussed in
Definition 3. The policy, therefore, can be updated by,

πD(s)k+1 = arg max
a∈AD

Q(s, a)k+1. (8)

Algorithm 1 details the learning/decision-making process of an MDP framework.
We start to initialize the value and the policy for each state-action pair (lines 1–6). For
example, we can give zero to all Q(s, a) and a uniform distribution for π(i). Following that,
we generate the SMP model based on the old data (line 7) to obtain the transition matrix
(P0

SO), gamma mixture models (ga-mm0
O) and the duration matrix (G0

SO). The high-level
representation is then obtained using K-means (line 8). Define an empty array SAJ to store
the latest state, action, and next state pair for updating the transition probability in the
MDP (line 9). While we observe a new data batch, whether it is in an online or offline
format (line 10), the first step is to calculate its transition and duration matrix and gamma
mixture models (line 11). The following step is to obtain the high-level representation HN
(line 12). The high-level representation from the old and new data are then combined as
the state in the MDP (line 13) and stored in SAJ (line 14). Based on the current state ‘s’,
we select the best action ‘a’ that can reach the highest Q-value (line 18) and also store it
in SAJ (line 19). Notice that array SAJ has two elements (‘s’ and ‘a’) after the first round
iteration, and it will have three elements in the next iteration when we store the next state
(line 15). Therefore, we can update the transition probability (line 16) and delete the first
state-action pair (line 17). In this way, we can continuously update the transition matrix.
According to the selected action, we can update the process presentation, i.e., the SMP
model (line 20), calculate the immediate reward (line 21) and update the Q-factor and the
policy (lines 22–23). Finally, we replace the previous SMP representation (kth iteration)
using the newly updated representation (k + 1th iteration) and wait for the next new data
batch (lines 24–25).

Algorithms 2022, 15, 174 10 of 19

Algorithm 1 MDP policy iteration

Input: SD: the state space,
AD: the action space,
PD = {pD(i, a, j)}: the transition probability matrix,
β: the learning rate.

Output: π: the policy.
1: for i ∈ SD:
2: for a ∈ AD:
3: Initialize Q0(i, a) ∈ R
4: Initialize π0(i) ∈ AD
5: end for
6: end for
7: Obtain P0

SO, ga-mm0
O, G0

SO from the old data.
8: Pass P0

SO and G0
SO into K-means to obtain H0

O.
9: Let SAJ = [], k = 0.

10: while A new data batch:
11: Obtain Pk

SN , ga-mmk
N , Gk

SN .
12: Using K-means to obtain Hk

N .
13: Obtain MDP state s = 〈Hk

O, Hk
N〉.

14: Put s into SAJ for updating PD.
15: if SAJ has three elements:
16: Update PD using Equation (2).
17: Remove the first two elements.
18: Obtain action a = arg maxa∈AD

Q(s, a).
19: Put a into SAJ.
20: Update SMP, obtain Pk+1

SO , ga-mmk+1
O , Gk+1

SO .
21: Calculate reward rD(s, a) using Equation (6).
22: Update the Q-factor using Equation (7).
23: Update πD(s) using Equation (8).
24: Update Hk+1

O using Pk+1
SO and Gk+1

SO .
25: k = k + 1.

5. Evaluation on Artificial Data

This section applies the HMDP approach to 68 artificial datasets referring to loan
applications based on Maaradji et al.’s work [26]. These datasets have various characteris-
tics, follow different process structures and contain sudden and gradual concept drift in
customer transitions and their duration.

5.1. Datasets
5.1.1. Sudden and Gradual Control-Flow Drift Data

By modifying a textbook example of a loan application process [51], demonstrated
as the ‘base’ model in Figure 3a, Maaradji et al. [26] created 18 alternatives (e.g., ‘cf’ in
Figure 3b) indicating control-flow changes in loops, parallel and alternative branches. Loan
applications start from ‘Check form’ and end in one of the green activities. Process activities
in blue boxes represent a loop structure. Thereafter, Maaradji et al. generated a set of
event logs for each of the loan application models and then combined the ‘base’ model
with each of the 18 ‘altered’ models separately for simulating control-flow sudden drift,
as demonstrated in Figure 4. By control-flow sudden drift, we mean abrupt variations in
customer behaviour through the process due to changes from the process management or
the user side.

Algorithms 2022, 15, 174 11 of 19

(a)

(b)

Figure 3. The base model and one of its alternative versions. (a) base model; (b) altered model (‘cf’).

Figure 4. Log generation for sudden drifts.

In this paper, we generated another 18 gradual control-flow changes, as illustrated in
Figure 5. There exist two types of special areas (the red and blue bars) in which process
instances are generated by both the ‘base’ and the ‘altered’ model. That is, instances in
the green bars were completely created by the ‘base’ model, and then during the red bars,
instances were generated based on the probabilities shown in Figure 6a. Generally speaking,
the fading of the old process model and the taking over of the new model happen linearly.
Regarding red bars, the ‘base’ model is gradually replaced by the ‘altered’ model, and
before the crossover point (in Figure 6a), samples are more likely to be sampled from the
‘base’ model, and vice versa for instances after the crossover point. Similarly, instances
in orange bars are totally from the ‘altered’ model, and during the blue bars, the ‘altered’
model is gradually taken over by the ‘base’ model.

Algorithms 2022, 15, 174 12 of 19

Figure 5. Log generation for gradual drifts.

Figure 6. Probability of sampling during the periods of gradual drift.

5.1.2. Sudden and Gradual Duration Drift Data

To generate datasets containing duration drift, we first reorganized the ‘base’ model
by maintaining its control-flow structure but simulating all state transitions to follow the
same distribution: a mixture of an exponential distribution (with rate and mean equal one)
and a gamma distribution (with shape and mean equal five), weighted by a 50% probability.
Thereafter, we generated 16 ‘altered’ models by altering the duration distribution of the
three transitions in the blue box in Figure 3. Specifically, eight of them were generated by
increasing the gamma shape parameter from 5 to 21 with an increment of two, maintain-
ing the exponential distribution and the mixing proportion unchanged. The other eight
alternative models were created by tuning the mixing proportion from 10% to 90% with
an increment of 10%, instead of the original 50% setup. Following that, we generated
event logs for all the ‘base’ and ‘altered’ models and created datasets involving sudden and
gradual drifts using the same strategy (as shown in Figures 4 and 5). Finally, we created
16 sudden duration drift logs and 16 gradual duration drift logs.

5.2. Experimental Setup

In a sudden drift context, we sampled 2000 process instances for each of the ‘base’
(green) and ‘altered’ (orange) bars. We generated 20 (10 green and 10 orange) bars for each
of the 34 (18 transition drift and 16 duration drift) sudden datasets, leading to 40,000 process
instances in total in each dataset. For gradual drift, the green and orange bars still have
2000 process instances, but during the gradual drift period, i.e., the red and blue bars,
1000 instances were generated. Consequently, each gradual drift dataset has 120,000 process
instances.

This section validates the proposed HMDP approach in an offline manner by splitting
datasets into equal-sized populations (800 process instances each). The first half of popula-
tion is used to optimize the MDP, i.e., to optimize the policy π. The remaining populations
are used to evaluate the performance. To start with, the first and second populations are
used as the old and new data, respectively, to obtain their low- and high-level represen-
tation. The high-level representations are then combined as the state for action selection,
as well as the update of transition probabilities and gamma mixture models. In the next
iteration, the third population is considered as the new data and the learning process con-
tinues until the last population. The number of clusters in K-means is predefined as three
to represent three possible scenarios: (1) all process instances are from the ‘base’ model,

Algorithms 2022, 15, 174 13 of 19

(2) all process instances are from the ‘altered’ model, (3) process instances are generated
by both the models. We set the action penalty as zero for action ‘keep’ and tested the
performance under different penalties for action ‘adapt’ and ‘retrain’. Furthermore, we
compared the HMDP action selection policy with four other policies: ‘Always keep’ (i.e.,
action ‘keep_keep’), ‘Always adapt’, ‘Always retrain’ and ‘Random’. By using action ‘Ran-
dom’, one of the three actions is selected under an equal probability for both the transition
probabilities and gamma mixture models.

5.3. Experimental Results

The HMDP approach was validated under different penalties. That is, the penalty for
action ‘retrain’ is increased from zero to one with an increment of 0.1, associated with a
50% discount for ‘adapt’. For example, under a penalty of 0.6 for ‘retrain’, the penalty is
0.3 for ‘adapt’. Tables 2 and 3 demonstrate the average reward of HMDP and other action
selection policies under all the above-mentioned datasets. Column ‘penalty’ represents the
penalty for action ‘retrain’, and the best policy is highlighted in bold type separately for
sudden and gradual drift. Without action penalty, the average reward ranges from zero
to two because the p-value of Fisher’s method for both transitions and duration ranges
from 0 to 1. Under action penalty one, there can be a negative penalty ranging from −2
(‘retrain_retrain’) to 0 (‘keep_keep’) and, therefore, the average reward can be negative but
within the period between −1 (action ‘adapt_adapt’ with both Fisher’s p-value equal to 0)
and 2 (action ‘keep_keep’ with Fisher’s p-value as 1).

Table 2. The average reward of the 18 sudden and gradual transition drifts.

Penalty
Sudden Drifts Gradual Drifts

Keep Adapt Retrain Random HMDP Keep Adapt Retrain Random HMDP

0 1.160 0.884 2.000 1.377 1.967 0.726 0.954 2.000 1.321 1.495
0.1 0.783 0.692 1.800 1.155 1.697 0.714 0.847 1.800 1.200 1.787
0.2 0.770 0.619 1.600 1.044 1.529 0.739 0.747 1.600 1.117 1.620
0.3 0.793 0.507 1.400 0.916 1.373 0.731 0.664 1.400 1.004 1.439
0.4 0.780 0.391 1.200 0.828 1.221 0.712 0.544 1.200 0.881 1.262
0.5 0.773 0.299 1.000 0.753 1.064 0.721 0.444 1.000 0.812 1.096
0.6 0.786 0.205 0.800 0.632 0.888 0.727 0.347 0.800 0.728 0.928
0.7 0.786 0.095 0.600 0.529 0.740 0.734 0.261 0.600 0.619 0.750
0.8 0.788 0.005 0.400 0.476 0.595 0.740 0.156 0.400 0.497 0.573
0.9 0.796 −0.099 0.200 0.347 0.431 0.724 0.038 0.200 0.397 0.405
1.0 0.778 −0.204 0.000 0.260 0.276 0.739 −0.049 0.000 0.313 0.229

Table 3. The average reward of the 16 sudden and gradual duration drifts.

Penalty
Sudden Drifts Gradual Drifts

Keep Adapt Retrain Random HMDP Keep Adapt Retrain Random HMDP

0 1.042 1.196 2.000 1.339 1.741 1.051 1.244 2.000 1.384 1.873
0.1 1.041 1.097 1.800 1.279 1.650 1.056 1.114 1.800 1.246 1.725
0.2 1.036 0.988 1.600 1.158 1.538 1.049 0.993 1.600 1.172 1.564
0.3 1.058 0.886 1.400 1.052 1.398 1.043 0.901 1.400 1.062 1.402
0.4 1.051 0.795 1.200 0.961 1.269 1.061 0.792 1.200 0.972 1.285
0.5 1.045 0.691 1.000 0.872 1.165 1.051 0.700 1.000 0.870 1.135
0.6 1.046 0.610 0.800 0.745 1.058 1.040 0.625 0.800 0.751 0.965
0.7 1.039 0.494 0.600 0.666 0.934 1.057 0.499 0.600 0.655 0.767
0.8 1.045 0.400 0.400 0.604 0.748 1.052 0.414 0.400 0.558 0.659
0.9 1.043 0.286 0.200 0.469 0.599 1.047 0.310 0.200 0.480 0.497
1.0 1.047 0.216 0.000 0.349 0.306 1.058 0.199 0.000 0.375 0.327

As we expected, without a penalty, action ‘retrain’ can achieve 100% accuracy in
modelling new data’s transitions and durations because the bottom layer representation
is updated using new data and then used to estimate the new data’s goodness of fit.
Consequently, the HMDP approach becomes invalid for detecting concept drift and manage
model updating. On the contrary, using penalty one, Fisher’s method can have 100%

Algorithms 2022, 15, 174 14 of 19

accuracy with the p-value as one, but there is a negative penalty of −1, leading to zero
reward at the end. There is no penalty for action ‘keep’, so it remains stable, with the
reward fluctuating around one, indicating its ineffectiveness. Because all datasets solely
contain one drift type, either in transitions or durations, the action ‘keep’ can achieve a
p-value close to one for the unchanged part, i.e., it has a bottom line around one. In other
words, the action ‘keep’ has an average reward of around one, indicating that it can not
represent new data under concept drift scenarios. Action ‘adapt’ performs unsatisfactorily
under all scenarios because it combines both the old and new data, and the mixed data
can not precisely represent the environment. The HMDP approach can outperform the
baseline policy ‘random’ and other policies under appropriate penalties, indicating its
effectiveness. Basically, a penalty between 0.4 and 0.7 is suitable. In conclusion, the action
‘retrain’ concentrates on the goodness of fit of the process environment, requiring updating
the bottom layer customer representation every time. Action ‘keep’ saves computational
resources since it does nothing during the environment evolution and, consequently, is
disabled to represent the environment. The HMDP approach benefits both the accuracy and
efficiency in environment modelling by automatically retraining the model under concept
drift and maintaining the model otherwise.

Using penalty 0.5 as an example, we illustrate the average reward for transition and
duration drift in Figure 7. The first two subfigures refer to the average reward of the five
action selection policies under sudden and gradual transition drift, respectively. Figure 7c,d
relate to the average reward under duration and concept drift. The horizontal axis of
Figure 7a,b is the 18 control-flow change datasets. In Figure 7c,d, the horizontal axis
refers to the 16 duration drift patterns with the first eight elements as changes in mixing
proportions and the latter eight elements as drift in the gamma shape parameter. The mean
of the reward of each policy in Figure 7 is the value in Tables 2 and 3 with a penalty of 0.5.

(a)

(b)

Figure 7. Cont.

Algorithms 2022, 15, 174 15 of 19

(c)

(d)

Figure 7. Performance measure under artificial datasets with a penalty of 0.5. (a) Sudden transition
drift; (b) gradual transition drift; (c) sudden duration drift; (d) gradual duration drift.

6. Evaluation of the Real-World Hospital Billing Data

In this section, the HMDP approach is evaluated using a real-world hospital billing
(HB) dataset [52]. The HB data were collected between December 2012 and January 2016,
containing 18 process activities, 451,359 events and 100,000 cases [53]. There are eleven
main operations, covering 99% process instances (98,515), with the discovered control-flow
structure presented in Figure 1.

We validate the HMDP approach in an online learning scenario. That is, we consider a
new data batch as arriving in time windows such as a month or a week. In other words,
the customer behaviour and environment representation are updated on a daily or weekly
basis. Consequently, the observed process instances can be incomplete, i.e., truncated
or censored [54]; for example, a process instance started within the observation but has
not finished at the end of the observation. In this case, we have no information for its
following activities at the time point we make decisions for concept drift detection and
model refinement. Furthermore, the number of process instances in a new data batch is
changeable depending on the number of applications in that observation window. This
is different to the experiments on the artificially created loan applications. In that offline
learning scenario, we sample a fixed number of process instances (i.e., the number of
process instances is the same in every data batch) that are complete with a starting and
ending activity. We split the HB event log into two sets where the first one started from
December 2012 to July 2014 as the training stage to optimize the MDP action selection
policy and determine the penalty. During the testing stage, data between August 2014 and
January 2016 are used for performance evaluation.

The performance of the five action selection policies is validated under different
penalties on a weekly basis, as demonstrated in Figure 8. The HMDP approach performs
the best under a penalty of 0.3 and 0.4, and therefore, we use 0.4 in the testing stage. The
average reward of the five policies is demonstrated in Figure 9. The horizontal axis refers
to the arrival of new data, and the vertical axis represents the reward for each new data.
The average reward of each policy is illustrated in the legend area. In general, the HMDP
approach can achieve the best performance with an average reward of 1.36, followed by
the policy of ‘random’, ‘retrain’ ‘keep’ and ‘adapt’. The HMDP is more stable than other
methods with mild fluctuation.

Algorithms 2022, 15, 174 16 of 19

Figure 8. The average reward under different penalties.

Figure 9. The average reward under different policies.

7. Conclusions

This paper proposes a technique, namely the hierarchical Markov model-based
Markov decision process (HMDP), for business process concept drift detection and cus-
tomer behaviour representation refinement. A hierarchical MM is generated for modelling
customer transition and duration behaviour into a low- and high-level representation. The
bottom layer is a semi-Markov process with customer discrete-time transition probabilities
and gamma mixture model fitted duration. The top layer is a high-level representation of
customer behaviour and the process environment, which was achieved using the K-means
technique. The high-level representation of the old and new data are then combined as the
MDP state for action selection and policy update. We validated the approach in an offline
manner using 68 artificially created sudden and gradual drifts that occur in customer
transitions and duration, as well as in an online setup on a real-world hospital billing
log. Experiments demonstrate the effectiveness of the approach in drift detection and
autonomous customer behaviour representation refinement.

In its current form, the top layer of the hierarchical MM is created using the K-means,
while in the future, we are interested in learning the hidden state using maximum likelihood
estimation to model the hierarchical Markov structure in a formal way. In the MDP, part of
the HMDP approach, the long-term reward and action policy are updated using a Q-table
strategy, which causes difficulties in applications under complex business process scenarios
that have a large state and action space. To solve this problem, a possible direction for future
work is to consider the use of deep neural networks for value estimation (for example, Deep
Q-network) and action policy optimization. Furthermore, we are interested in applying the
technique in process datasets with already known concept drift areas. The final direction is
to apply the framework for modelling big data from British Telecom.

Algorithms 2022, 15, 174 17 of 19

Author Contributions: Conceptualization, L.Y., S.M., M.D., K.B. and K.K.; methodology, L.Y., S.M.,
M.D. and K.B.; software, L.Y.; validation, L.Y.; formal analysis, L.Y.; investigation, L.Y.; resources, L.Y.;
data curation, L.Y.; writing—original draft preparation, L.Y.; writing—review and editing, S.M., M.D.
and K.B.; visualization, L.Y.; supervision, S.M., M.D., K.B. and K.K.; project administration, S.M.;
funding acquisition, S.M. and K.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by British Telecom and Invest Northern Ireland.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436 (accessed on
14 March 2022)] and [https://data.4tu.nl/articles/dataset/Hospital_Billing_-_Event_Log/12705113
(accessed on 14 March 2022)].

Acknowledgments: This research is supported by BTIIC (the British Telecom Ireland Innovation
Centre), funded by British Telecom and Invest Northern Ireland.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bose, R.J.C.; Van Der Aalst, W.M.; Žliobaitė, I.; Pechenizkiy, M. Dealing with concept drifts in process mining. IEEE Trans. Neural

Netw. Learn. Syst. 2013, 25, 154–171. [CrossRef] [PubMed]
2. Van Der Aalst, W.; Adriansyah, A.; De Medeiros, A.K.A.; Arcieri, F.; Baier, T.; Blickle, T.; Bose, J.C.; Van Den Brand, P.; Brandtjen,

R.; Buijs, J.; et al. Process mining manifesto. In Proceedings of the International Conference on Business Process Management,
Clermont-Ferrand, France, 28 August–2 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–194.

3. R’bigui, H.; Cho, C. The state-of-the-art of business process mining challenges. Int. J. Bus. Process Integr. Manag. 2017, 8, 285–303.
[CrossRef]

4. Premchaiswadi, W.; Porouhan, P. Process modeling and bottleneck mining in online peer-review systems. SpringerPlus 2015,
4, 441. [CrossRef] [PubMed]

5. Martjushev, J.; Bose, R.J.C.; van der Aalst, W.M. Change point detection and dealing with gradual and multi-order dynamics in
process mining. In Proceedings of the International Conference on Business Informatics Research, Tartu, Estonia, 26–28 August
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 161–178.

6. Seeliger, A.; Nolle, T.; Mühlhäuser, M. Detecting concept drift in processes using graph metrics on process graphs. In Proceedings
of the 9th Conference on Subject-Oriented Business Process Management, Darmstadt, Germany, 30–31 March 2017; pp. 1–10.

7. Stertz, F.; Rinderle-Ma, S. Detecting and Identifying Data Drifts in Process Event Streams Based on Process Histories. In
Proceedings of the International Conference on Advanced Information Systems Engineering, Rome, Italy, 3–7 June 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 240–252.

8. Nguyen, H.; Dumas, M.; La Rosa, M.; ter Hofstede, A.H. Multi-perspective comparison of business process variants based on
event logs. In Proceedings of the International Conference on Conceptual Modeling, Xi’an, China, 22–25 October 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 449–459.

9. Hompes, B.; Buijs, J.C.; van der Aalst, W.M.; Dixit, P.M.; Buurman, J. Detecting changes in process behavior using comparative
case clustering. In Proceedings of the International Symposium on Data-Driven Process Discovery and Analysis, Vienna, Austria,
9–11 December 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 54–75.

10. Hompes, B.; Buijs, J.; Van der Aalst, W.; Dixit, P.; Buurman, J. Discovering deviating cases and process variants using trace
clustering. In Proceedings of the 27th Benelux Conference on Artificial Intelligence (BNAIC), Hasselt, Belgium, 5–6 November
2015; pp. 5–6.

11. Huang, Z.; van der Aalst, W.M.; Lu, X.; Duan, H. Reinforcement learning based resource allocation in business process
management. Data Knowl. Eng. 2011, 70, 127–145. [CrossRef]

12. Elkhawaga, G.; Abuelkheir, M.; Barakat, S.I.; Riad, A.M.; Reichert, M. CONDA-PM—A Systematic Review and Framework for
Concept Drift Analysis in Process Mining. Algorithms 2020, 13, 161. [CrossRef]

13. Ter Hofstede, A.H.; Van der Aalst, W.M.; Adams, M.; Russell, N. Modern Business Process Automation: YAWL and Its Support
Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.

14. Test-Driven Data Analysis (Python TDDA library). Available online: https://github.com/tdda/tdda (accessed on 14 March 2022).
15. Barile, N.; Sugiyama, S. The automation of taste: A theoretical exploration of mobile ICTs and social robots in the context of

music consumption. Int. J. Soc. Robot. 2015, 7, 407–416. [CrossRef]

https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
https://data.4tu.nl/articles/dataset/Hospital_Billing_-_Event_Log/12705113
http://doi.org/10.1109/TNNLS.2013.2278313
http://www.ncbi.nlm.nih.gov/pubmed/24806651
http://dx.doi.org/10.1504/IJBPIM.2017.10009731
http://dx.doi.org/10.1186/s40064-015-1183-4
http://www.ncbi.nlm.nih.gov/pubmed/26312206
http://dx.doi.org/10.1016/j.datak.2010.09.002
http://dx.doi.org/10.3390/a13070161
https://github.com/tdda/tdda
http://dx.doi.org/10.1007/s12369-015-0283-1

Algorithms 2022, 15, 174 18 of 19

16. Liebman, E.; Zavesky, E.; Stone, P. A stitch in time-autonomous model management via reinforcement learning. In Proceedings
of the 17th International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 10–15 July 2018;
pp. 990–998.

17. Yang, L.; McClean, S.; Donnelly, M.; Burke, K.; Khan, K. Process Duration Modelling and Concept Drift Detection for
Business Process Mining. In Proceedings of the 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 18–21 October 2021; pp. 653–658.

18. Das, T.K.; Gosavi, A.; Mahadevan, S.; Marchalleck, N. Solving semi-Markov decision problems using average reward reinforce-
ment learning. Manag. Sci. 1999, 45, 560–574. [CrossRef]

19. Tijms, H.C.; Tijms, H.C. Stochastic Models: An Algorithmic Approach; Wiley: New York, NY, USA, 1994; Volume 303.
20. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv.

(CSUR) 2014, 46, 1–37. [CrossRef]
21. Maisenbacher, M.; Weidlich, M. Handling Concept Drift in Predictive Process Monitoring. In Proceedings of the IEEE International

Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017; Volume 17, pp. 1–8.
22. Ostovar, A.; Leemans, S.J.; Rosa, M.L. Robust drift characterization from event streams of business processes. ACM Trans. Knowl.

Discov. Data (TKDD) 2020, 14, 1–57. [CrossRef]
23. Ostovar, A.; Maaradji, A.; La Rosa, M.; ter Hofstede, A.H. Characterizing drift from event streams of business processes. In

Proceedings of the International Conference on Advanced Information Systems Engineering, Melbourne, VIC, Australia, 28
June–2 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 210–228.

24. Yeshchenko, A.; Di Ciccio, C.; Mendling, J.; Polyvyanyy, A. Comprehensive process drift detection with visual analytics.
In Proceedings of the International Conference on Conceptual Modeling, Salvador, Brazil, 4–7 November 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 119–135.

25. Adams, J.N.; van Zelst, S.J.; Quack, L.; Hausmann, K.; van der Aalst, W.M.; Rose, T. A Framework for Explainable Concept Drift
Detection in Process Mining. arXiv 2021, arXiv:2105.13155.

26. Maaradji, A.; Dumas, M.; La Rosa, M.; Ostovar, A. Detecting sudden and gradual drifts in business processes from execution
traces. IEEE Trans. Knowl. Data Eng. 2017, 29, 2140–2154. [CrossRef]

27. Bose, R.J.C.; van der Aalst, W.M. Trace clustering based on conserved patterns: Towards achieving better process models. In
Proceedings of the International Conference on Business Process Management, Ulm, Germany, 7–10 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 170–181.

28. Hompes, B.; Buijs, J.C.; van der Aalst, W.M.; Dixit, P.M.; Buurman, H. Detecting Change in Processes Using Comparative Trace
Clustering. In Proceedings of the 5th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2015),
Vienna, Austria, 9–11 December 2015; pp. 95–108.

29. Zheng, C.; Wen, L.; Wang, J. Detecting process concept drifts from event logs. In Proceedings of the OTM Confederated
International Conferences “On the Move to Meaningful Internet Systems”, Rhodes, Greece, 23–28 October 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 524–542.

30. Barbon Junior, S.; Tavares, G.M.; da Costa, V.G.T.; Ceravolo, P.; Damiani, E. A framework for human-in-the-loop monitoring of
concept-drift detection in event log stream. In Proceedings of the Companion Proceedings of the the Web Conference 2018, Lyon,
France, 23–27 April 2018; pp. 319–326.

31. Tavares, G.M.; Ceravolo, P.; Da Costa, V.G.T.; Damiani, E.; Junior, S.B. Overlapping analytic stages in online process mining. In
Proceedings of the 2019 IEEE International Conference on Services Computing (SCC), Milan, Italy, 8–13 July 2019; pp. 167–175.

32. Spenrath, Y.; Hassani, M. Ensemble-Based Prediction of Business Processes Bottlenecks With Recurrent Concept Drifts. In
Proceedings of the EDBT/ICDT Workshops, Lisbon, Portugal, 26–29 March 2019.

33. Grabski, F. Semi-Markov Processes: Applications in System Reliability and Maintenance; Elsevier: Amsterdam, The Netherlands, 2015;
Volume 599.

34. Wu, D.; Yuan, C.; Kumfer, W.; Liu, H. A life-cycle optimization model using semi-markov process for highway bridge maintenance.
Appl. Math. Model. 2017, 43, 45–60. [CrossRef]

35. Papadopoulou, A.; McClean, S.; Garg, L. Discrete semi Markov patient pathways through hospital care via Markov modelling.
In Stochastic Modeling, Data Analysis and Statistical Applications; ISAST: Oakland, CA, USA, 2015; pp. 65–72.

36. Qi, W.; Zong, G.; Karimi, H.R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans.
Autom. Control 2019, 65, 361–368. [CrossRef]

37. Ferreira, D.R.; Szimanski, F.; Ralha, C.G. A hierarchical Markov model to understand the behaviour of agents in business
processes. In Proceedings of the International Conference on Business Process Management, Tallinn, Estonia, 3–6 September 2012;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 150–161.

38. Mitchell, H.J.; Marshall, A.H.; Zenga, M. A joint likelihood approach to the analysis of length of stay data utilising the
continuous-time hidden Markov model and Coxian phase-type distribution. J. Oper. Res. Soc. 2021, 72, 2529–2541. [CrossRef]

39. Gosavi, A. A Tutorial for Reinforcement Learning; The State University of New York at Buffalo: Buffalo, NY, USA, 2017.
40. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
41. Żbikowski, K.; Ostapowicz, M.; Gawrysiak, P. Deep Reinforcement Learning for Resource Allocation in Business Processes. arXiv

2021, arXiv:2104.00541.

http://dx.doi.org/10.1287/mnsc.45.4.560
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/3375398
http://dx.doi.org/10.1109/TKDE.2017.2720601
http://dx.doi.org/10.1016/j.apm.2016.10.038
http://dx.doi.org/10.1109/TAC.2019.2915141
http://dx.doi.org/10.1080/01605682.2020.1796540

Algorithms 2022, 15, 174 19 of 19

42. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
43. Ye, D.; Chen, G.; Zhang, W.; Chen, S.; Yuan, B.; Liu, B.; Chen, J.; Liu, Z.; Qiu, F.; Yu, H.; et al. Towards playing full moba games

with deep reinforcement learning. arXiv 2020, arXiv:2011.12692.
44. Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; Dai, Q. Deep direct reinforcement learning for financial signal representation and trading.

IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 653–664. [CrossRef]
45. Gosavi, A. Relative value iteration for average reward semi-Markov control via simulation. In Proceedings of the 2013 Winter

Simulations Conference (WSC), Washington, DC, USA , 8–11 December 2013, pp. 623–630.
46. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
47. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004,

33, 261–304. [CrossRef]
48. Singer, S.; Singer, S. Efficient implementation of the Nelder–Mead search algorithm. Appl. Numer. Anal. Comput. Math. 2004,

1, 524–534. [CrossRef]
49. Engels, B. XNomial: Exact Goodness-of-Fit Test for Multinomial Data with Fixed Probabilities. R Package Version. 2015. Available

online: https://cran.r-project.org/web/packages/XNomial/index.html (accessed on 14 March 2022).
50. Rosenthal, R. Combining results of independent studies. Psychol. Bull. 1978, 85, 185. [CrossRef]
51. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer: Berlin/Heidelberg,

Germany, 2013; Volume 1.
52. Mannhardt, F. Multi-perspective Process Mining. In Proceedings of the BPM (Dissertation/Demos/Industry), Sydney, Australia,

9–14 September 2018; pp. 41–45.
53. Mannhardt, F.; de Leoni, M.; Reijers, H.A.; van der Aalst, W.M. Data-driven process discovery-revealing conditional infrequent

behavior from event logs. In Proceedings of the International Conference on Advanced Information Systems Engineering, Essen,
Germany, 12–16 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 545–560.

54. Klein, J.P.; Moeschberger, M.L. Survival Analysis: Techniques for Censored and Truncated Data; Springer: Berlin/Heidelberg, Germany,
2003; Volume 2.

http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1109/TNNLS.2016.2522401
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1177/0049124104268644
http://dx.doi.org/10.1002/anac.200410015
https://cran.r-project.org/web/packages/XNomial/index.html
http://dx.doi.org/10.1037/0033-2909.85.1.185

	Introduction
	Related Work
	Process Mining
	Markov Models

	Preliminaries
	Business Process Event Log
	Semi-Markov Process (SMP)
	Markov Decision Process (MDP)
	Gamma Mixture Model

	Methodology
	Bottom Layer of the Hierarchical MM
	Top Layer of the Hierarchical MM
	Model Management Using MDP

	Evaluation on Artificial Data
	Datasets
	Sudden and Gradual Control-Flow Drift Data
	Sudden and Gradual Duration Drift Data

	Experimental Setup
	Experimental Results

	Evaluation of the Real-World Hospital Billing Data
	Conclusions
	References

