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Abstract: Considering the characteristics of different types of users in hybrid carsharing systems, in
which sharing autonomous vehicles (SAVs) and conventional sharing cars (CSCs) coexist, a tailored
pricing strategy (TPS) is proposed to maximize the operator’s profit and minimize all users’ costs. The
fleet sizes and sizes of SAVs’ stations are also determined simultaneously. A bi-objective nonlinear
programming model is established, and a genetic algorithm is applied to solve it. Based on the
operational data in Lanzhou, China, carsharing users are clustered into three types. They are loyal
users, losing users, and potential users, respectively. Results show the application of the TPS can help
the operator increase profit and attract more users. The loyal users are assigned the highest price,
while they still contribute the most to the operator’s profit with the highest number of carsharing
trips. The losing users and potential users are comparable in terms of the number of trips, while the
latter still makes more profit.

Keywords: sharing autonomous vehicles; conventional sharing cars; hybrid carsharing systems;
tailored pricing strategy; user clustering

1. Introduction

Sharing cars have gained more and more attention in the past few years due to the
high utilization rate [1] and the environmental-friendly [2]. Automobiles in the USA spent
nearly 90% of their time in parking spaces in 2001 [3]. Furthermore, sharing cars can be
used by many people in a day without owning one. From the perspective of sustainability,
carsharing is the trend of the future [4]. Most carsharing systems in China are one-way
station-based systems, where users can borrow and return cars flexibly [5]. Sharing cars are
named conventional sharing cars (CSCs) in this study. In this system, users need to borrow
or return cars at stations, and they finish trips in three steps. They need to walk or take
bikes from the origins to borrow cars at stations firstly, drive to returning-car stations, and
finally go to their destinations by walking or cycling. It is not convenient enough for users.
Nowadays, autonomous vehicles (AVs) can already be driven in specific situations [6,7],
and they are also used as autonomous trucks [8]. As AVs enter the carsharing systems as
sharing autonomous vehicles (SAVs), users can wait for SAVs to pick them up at origins
and drop them off at destinations. When compared with CSCs, SAVs can provide more
convenient and flexible door-to-door services to users by charging more.

Most research focuses on carsharing systems with either CSCs or SAVs. However,
with the development of carsharing systems, there will be CSCs and SAVs coexisting for a
long time [4], which is named hybrid carsharing systems here. As far as we know, there are
still no studies focusing on hybrid carsharing systems with CSCs and SAVs.

For carsharing systems, setting reasonable prices is vital to enhancing profit [9] and
greatly impacting users’ choices [10]. Pricing strategies can be performed in many ways,
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e.g., incentive, discount/coupon, or penalty. Different pricing strategies have different in-
fluences on users’ behaviors [11]. Further, different types of users have different sensitivity
to the same price [12] and other distinct characteristics, such as risk preference [12], trip fre-
quency [13], trip purpose [14], and activity persistency [13,15]. Most focus on determining
the optimal prices for a whole day or different prices in different periods. However, prices
are still uniform for all travelers, and the uniform pricing strategy cannot precisely meet
the demands of different user clusters considering their unique characteristics.

Previous studies about the pricing strategies only considered a single service mode in
the carsharing system, i.e., the service of CSCs [16] or SAVs [17]. For the service of CSCs,
the operator only relocates CSCs between stations to provide station-to-station services to
users by maximizing the profit by it containing the cost of relocations, gas consumption,
and depreciation and maintenance costs for sharing cars and parking spaces [18]. While
for the service of SAVs, the operator does not need to perform relocations, and SAVs are
assigned to serve users from their origins to destinations by maximizing profit concerning
the assignment cost of SAVs, gas consumption, depreciation, and maintenance costs [19].
In the hybrid carsharing system with both the service of CSCs and the service of SAVs,
users can choose different services based on some rules. Therefore, users’ mode choices
should be considered in hybrid carsharing systems, which are different from the studies in
carsharing systems with a single mode.

In this study, we consider a hybrid carsharing system with both the service of CSCs and
the service of SAVs. Users’ choice behaviors are taken into account based on the utilities of
each mode. For the service of CSCs, the utility is related to the walking cost from origins to
borrowing-car stations, driving cost between stations, and the walking cost from returning-
car stations to destinations. For the service of SAVs, the utility is related to the cost of
waiting for the SAVs to drive from the nearest autonomous sharing stations to origins and
the rental cost of SAVs between origins and destinations. Then, a tailored pricing strategy
(TPS) for different user clusters is proposed by combining user clusters’ characteristics
in the hybrid carsharing system. Finally, a bi-objective nonlinear programming model is
built by considering the operator’s profit and the travel costs of all users simultaneously to
determine the optimal fleet size, location, and size of autonomous carsharing stations. Case
studies are carried out to explore how the TPS impacts the carsharing system. It turns out
that the TPS can reduce all users’ costs and increase the operator’s profit at the same time.

The main contributions of this study are given below:

• In a hybrid carsharing system with both the service of CSCs and the service of SAVs,
users’ choice behaviors for different service modes are modeled by considering the
rental costs and walking costs of the two service modes.

• Based on the different characteristics of each user cluster, a bi-objective nonlinear
programming model is built up to determine the optimal fleet size and prices for
different service modes. The TPS is proposed to improve the operator’s profit and
the system’s service level. Results show the proposed TPS can enhance the operator’s
profit and lower users’ costs.

The paper is organized as follows. In Section 2, literature about SAVs and pricing
strategies is reviewed. Then, in Section 3, considering the characteristics of each user
cluster, a bi-objective nonlinear programming model is formulated to set tailored prices
for different user clusters in the hybrid carsharing system. In Section 4, case studies in
Lanzhou, China, are performed to testify to the efficiency of the TPS. Conclusions are
drawn in Section 5.

2. Literature Review
2.1. Pricing Strategy in Conventional Carsharing Systems

Many studies showed that prices and demands are related, and a coefficient named
price elasticity is widely used to describe the relationship between them [11,16]. Price
elasticity equals the demand variations divided by price variations, which is applied to
describe the price sensitivity of different user clusters. Different user clusters have different
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reactions to the same price. Jorge and Correia studied the trip pricing strategy in one-
way station-based carsharing systems. A hybrid-integer nonlinear programming model
was built to maximize the carsharing operator’s profit [11]. Price and demands were
also elastically connected, then a hybrid-integer nonlinear and nonconvex programming
model was established to determine the trip price, fleet size, personnel size, and relocations
simultaneously [16]. Further, Huang et al. [18] constructed a logit model to represent the
nonlinear carsharing demands. Results showed that pricing was a key factor impacting
the operator’s profit. A bi-level programming model was built by considering the profit of
the carsharing operator and costs of all users and compared the advantages of relocation,
pricing, and the combination of relocation and pricing. Results showed that the pricing
strategy outperformed in saving costs for all users [20].

Besides the connections between price and demands, many studies also performed
price incentives to enhance the performance of conventional carsharing systems. Four price
incentive strategies were proposed to help operators. For example, by encouraging users to
book cars that should be relocated or parked in a region with low availability of cars, the
operator can also set paid relocation tasks and hire users to perform or encourage users to
share a car with others. These strategies were much more economical and environmental-
friendly [21]. Similar research was done by Angelopoulos et al. [22]. They applied pricing
incentives to relocate sharing cars by users instead of relocations by staff. Different price
incentives were given based on the priority of each relocation. This strategy worked well
in balancing the number of cars in the carsharing system.

Studies mentioned above demonstrated the importance of the prices of sharing cars.
However, the characteristics of different users are still not considered in pricing strategies.

2.2. SAVs

Research related to SAVs mainly focused on analyzing the advantages of the SAVs, the
assignment and/or dispatch problem, and the price setting. The most common advantages
of AVs are to reduce the ownership of private cars [23], less waiting time, shorter travel
mileage [24,25], and fewer empty trips [26].

The assignment problem of SAVs is also widely studied. Hanna et al. [27] matched
AVs to users’ demands and found that the waiting time and the number of unoccupied
trips significantly decreased. Users were clustered by considering the similarity of time
and space; then, SAVs were assigned to them. Several users in the same cluster can share
an SAV in the study. Extending the waiting time would decrease the fleet size [28]. The
joint optimization problem of the assignment and dispatch of AVs was also studied [19].
Centralized dispatchers were designed for immediate travel requests, and decentralized
dispatchers served reservation requests. The dispatch strategy worked well in improving
the revenue and satisfaction rate of the demands.

Researchers attached much attention to the price-setting problem for AVs. Karama-
nis et al. [29] explored the advantages of dynamic pricing in a hybrid system with public
transport and AVs. A hybrid service of private and ride-sharing was provided by AVs. They
found that dynamic pricing was much superior to static pricing in increasing the number of
shared trips. By considering the distance, parking fee, traffic, and road conditions, the price
for long-range autonomous valet parking was optimized [17]. The performance of hybrid
autonomy systems with AVs and human-driven cars was also explored [30]. By setting
differentiated prices for different types of cars, the equilibria of the system were achieved
efficiently. AVs were assumed to use to provide E-hailing services. A link-based dynamic
pricing model was proposed to improve the performance of the road network system [31].
In a hybrid ride-sharing system with AVs and human-driven cars coexisting, the connection
between the fleet size of AVs and the operational costs was studied by adjusting the prices
for riders and the compensation cost for drivers. It turned out that the operational costs
had a significant impact on the setting of the fleet size of AVs. AVs were adopted by Uber
and Lyft (examples of ride-sharing companies). Schaller [32] revealed that ride-sharing is
one of the competitors of sharing cars. Shokoohyar [33] studied the ride-sharing system
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from the perspective of drivers considering Uber and Lyft compete with each other. Results
showed that the operational cost played an essential role in the drivers’ job satisfaction.
Furthermore, Shokoohyar et al. [34] pointed out that reward programs could be used to
keep the users as loyal customers.

In previous studies, AVs were mainly used in the taxi or ride-sharing systems. There
are no studies focused on hybrid carsharing systems with both the service of SAVs and the
service of CSCs. Further, uniform prices were offered to users, and rare research about the
differentiated prices for hybrid carsharing systems. To fill the gap, the choice behaviors of
different user clusters are analyzed in hybrid carsharing systems. Then, a TPS is proposed
to set tailored prices for different user clusters by considering the characteristics of each
user cluster, and a bi-objective nonlinear programming model is formulated to maximize
the operator’s profit and simultaneously minimize all users’ costs. The optimal price, fleet
size, location, and size of SAV stations are jointly determined.

3. Model Formulation

A mathematical model is set to describe the TPS by considering the characteristics of
each user cluster in a hybrid carsharing system. Firstly, the hybrid carsharing system is
introduced. Then, the notations used in the model are listed. The user clustering is also
presented. Finally, the model is described.

3.1. The Hybrid Carsharing System

When considering a hybrid carsharing system, there are two kinds of services provided,
i.e., the service of CSCs and the service of SAVs, respectively. The former already exists, and
the latter is new. The service of CSCs is station-based, which means users must borrow or
return CSCs to the nearest carsharing stations. Figure 1 gives an example of the two service
modes. In Figure 1a, station y is the nearest carsharing station to origin i, and station y′

is the nearest carsharing station to destination j. For brevity, assuming that users walk
from origin i to the nearest carsharing station y or from the nearest carsharing station y′ to
destination j. The full-service mode of CSCs is that users walk from origin i to station y,
drive a sharing car to station y′, and finally walk to destination j.
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Figure 1. Service modes in hybrid carsharing systems: (a) Service mode of CSCs, and (b) Service
mode of SAVs.

SAVs can provide door-to-door services, as shown in Figure 1b, where SAVs can pick
up users from origins and then drop them off at destinations. Users only need to wait at
origin i, and SAVs would drive from the nearest SAV station y to pick them up. Then, users
can finish trips directly from origin i to destination j. After their trips are finished, SAVs are
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requested to drive back to the nearest SAV station y′. It is assumed that an SAV can only
serve one user per trip.

3.2. Notations

To make a tradeoff between the profit of the carsharing operator and the travel costs of
all users, a bi-objective programming model is established to set tailored prices for each user
cluster in the hybrid carsharing system. Users in this study are clustered into three types
by the K-means clustering method [35]. They are loyal users, losings users, and potential
users, respectively. The fleet size for SAVs and CSCs and the size of the SAV stations are
also needed to be set in the model. Notations used in the bi-objective programming model
are listed below.

Set
W = {s, a} Set of service modes, ∀w ∈W. s and a separately represent the service of CSCs and the service of SAVs.
H = {1, . . . , h, . . . H} Set of user clusters, ∀h ∈ H. H is the maximum cluster.
T = {1, . . . , t, . . . , T} Time steps in the operational period. T is the maximum time step of the studied period.
K = {1, . . . , k, . . . , K} Nodes in the hybrid carsharing system, i, j, k are commonly used indices.
Y = {1, . . . , y, . . . , Y} Carsharing stations for the service of both CSCs and SAVs, Y ⊆ K. Commonly used indices are y and y′.
X = {11, . . . , kt, . . . , KT} Time-space nodes set combines the nodes and time steps, and kt means node k at time step t.
Parameters

Qh
it jt′

Travel demands of user cluster h between nodes i and node j, the departing time step is t, and the
arriving time step is t′. The demands can be satisfied either by CSCs or SAVs, t′ is dependent on the
service mode the user cluster h chooses, ∀(it, jt′ ) ∈ A, h ∈ H.

δsth
iy

Walking time for user cluster h who choose service s, between origin i and station y, departing from
time step t, ∀y ∈ Y, i ∈ K, t ∈ T, h ∈ H.

δsth
y′ j

Walking time for user cluster h choosing service s, between station y′ and destination j, and the
departing time step is t, ∀y′ ∈ Y, j ∈ K, t ∈ T, h ∈ H.

δath
yi

Waiting time for user cluster h choosing service s, between station y and origin i, departing from time
step t, ∀y ∈ Y, i ∈ K, h ∈ H.

αh Walking cost per minute for user cluster h who choose service s, ∀h ∈ H.
µh Waiting cost per minute for user cluster h who choose service a, ∀h ∈ H.

Dw0h
it j′t

The initial number of trips for user cluster h who choose service w, departing from node i at time step t
and arriving at node j at time step t′, ∀(it, jt′ ) ∈ A, h ∈ H, w ∈W. t′ is different when users choose
different service modes.

Pw0h
ij′ , Pwmaxh

ij
The initial or the highest price can be set between node i and j for user cluster h who choose service w,
∀y, y′ ∈ Y, h ∈ H, w ∈W.

Qs
y The number of parking places of CSC station y, ∀y ∈ Y.

Cw
m The maintenance cost for a parking place per day under service w, ∀w ∈W.

Cw
z The depreciation cost per car per day under service w, ∀w ∈W.

Cw
v The driving cost, the operator, should pay for a car per time step under service w, ∀w ∈W.

Cwh
Qit jt′

Travel cost for user cluster h who chooses service w, departing from node i at time step t and arriving
at node j at t′, ∀i, j ∈ K, h ∈ H.

Decision variables

Dwh
it jt′

The number of trips for user cluster h who choose service s, departing from node i at time step t and
arriving at node j at t′, t′ = t + δth

ij , ∀(it, jt′ ) ∈ A, h ∈ H, w ∈W. t′ is dependent on the service mode
users choose.

Pwth
ij

Rental price per time step between nodes i and j for user cluster h choosing service w, and the
departing time step is t, ∀i, j ∈ K, h ∈ H, w ∈W.

Qa
y The number of parking places for SAV station y, ∀y ∈ Y.

Auxiliary variables

Probath
ij

The probability of carsharing users who would potentially choose SAVs between nodes i and j, and the
departing time step is t, ∀i, j ∈ K, h ∈ H.

∆Dwh
it jt′

Demand variation between nodes i and j for user cluster h who choose service w,
∀(it, jt′ ) ∈ A, h ∈ H, w ∈W.

∆Pwth
ij

Price variation between nodes i and j for each user cluster h under service w, and the departing time
step is t, ∀i, j ∈ K, h ∈ H, w ∈W.
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3.3. User Clusters and Price Elasticity

In this study, differential prices are given to different user clusters based on the unique
characteristics of each one. In our previous study [36], the using frequency monthly and
duration (equal to the time of the last use minus the time of the first use) are proposed to be
indicators. Then, users can be clustered into three types by the K-means clustering method.
Details about the indicators and the clustering results are all shown in Table 1. The first
cluster is called the loyal users, i.e., the number of daily trips remains constant. The second
cluster is named the losing users, i.e., the number of trips keeps fading until it reaches 0.
The last cluster is called the potential users since the number of trips keeps increasing from
the middle of the study period.

Table 1. Details about the indicators for different user clusters.

Indicators Cluster 1 Cluster 2 Cluster 3

Proportion (%) 36.63 34.55 28.82
Using frequency monthly 6.41 1.01 3.38
Time of the first use 181.58 169.95 51.81
Time of the last use 19.95 147.93 31.71
Using duration 161.63 22.02 20.1
Consumption potential Bh(¥/day) 921.87 206.5 223.16
Travel potential Gh 42.53 6.5 7.46
Travel efficiency κh (min/km) 4.90 5.29 5.92
Average revenue Rh(¥/trip) 21.67 31.75 29.89
Penalty coefficient βh 11.113 0.554 0.651

Each cluster of users have unique characteristics, e.g., travel potential Gh, consumption
potential Bh, travel efficiency κh, and average revenue Rh. Travel potential is defined as the
number of carsharing trips of each user cluster. Consumption potential is the revenue that
each user cluster can contribute to the operator. Travel efficiency is equal to the total travel
time divided by the total travel distance, which means the average travel time per unit
travel distance. The bigger the value, the lower the travel efficiency for the corresponding
cluster. The average revenue means the average profit per trip each cluster can bring to
the operator. As shown in Table 1, the loyal users have the highest travel potential and
consumption potential with the lowest average revenue. The average revenue of the losing
users is the highest, while the other two indicators are the lowest.

Based on the analysis mentioned above, the penalty coefficient βh is defined to describe
the differences of all user clusters in the model.

Since CSCs or SAVs might not serve all travel demands. The operator would pay
extra penalty costs for unmet demands. The penalty coefficient βh is used to evaluate
the potential effect of the unsatisfied demands for user cluster h on the operator’s profit.
It combines the average revenue, travel potential, and consumption potential, given as
Equation (1). The second term and last term mean the proportion of consumption potential
and travel potential of user clusters h among all user clusters, respectively. The higher
the coefficient of user cluster h, the more important the corresponding user cluster. Since
the penalty coefficient for loyal users is the highest, it is apparent that losing them would
significantly reduce the operator’s profit.

βh = Rh × Bh

∑h∈H Bh ×
Gh

∑h∈H Gh , ∀ h ∈ H (1)

Given the circumstances that different user clusters have different features, the TPS
is used to set different prices for different clusters and then exploit the potential of all
user clusters. In this study, user clusters are distinguished by the price elasticity Eh. The
formulation is as shown in Equation (2), which connects the price variations and demand
variations. The price elasticity of each user cluster is also given in Table 2. When jointly
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considering the indicators mentioned in Table 1, the price elasticity of loyal users is set to
be the lowest. Since the potential users have the lowest proportion and the highest travel
efficiency, they are the most sensitive users to the price. Their price elasticity is set to be
the highest.

Eh =
∆Dwh

it jt′/Dw0h
it jt′

∆Pwth
ij /Pw0h

ij
, ∀(it, jt′) ∈ A, h ∈ H, w ∈W (2)

Table 2. Price elasticity for each user cluster.

Clustering
No Clustering

Cluster 1 Cluster 2 Cluster 3

Eh 1.3 1.4 1.5 1.5

The demand variation of user cluster h can be rewritten as Equation (3).

∆Dwh
it jt′ = ∆Pwth

ij × Eh × Dw0h
it jt′/Pw0h

ij , ∀(it, jt′) ∈ A, h ∈ H, w ∈W (3)

3.4. Bi-Objective Nonlinear Programming Model

In this section, a bi-objective nonlinear programming model is established to determine
the fleet size, location, and size of SAV stations of the hybrid carsharing system. In this
model, tailored prices are given, considering the characteristics of each user cluster. In
the following, the service choice behaviors and characteristics of all user clusters are
analyzed first. Then, the bi-objective nonlinear programming model is constructed in terms
of both the operator’s profit and all users’ costs. Finally, the method used to solve the
model is presented.

3.4.1. Service Choices of Users

There are two services provided in the system mentioned in Figure 1. Users can choose
the service based on the travel utilities of each service. The travel utility of each service
takes the negative value of the travel costs of the corresponding service.

The service of CSCs; for users who choose CSCs, the travel costs are shown in Equation (4).

Csh
Qit j

t′′
= αh ×

(
δsth

iy + δst′′ h
y′ j

)
+ Psth

yy′ × δt′h
yy′

t′ = t + δsth
iy , t′′ = t′ + δst′h

yy′ , ∀y, y′ ∈ Y, i, j ∈ K, h ∈ H, t ∈ T
(4)

It incorporates three parts, i.e., the walking costs from origin i to station y and from
station y′ to destination j, and the rental fees of the CSCs between stations y and y′. All
costs mentioned before are linearly connected with the travel time of the trip.

The service of SAVs. Equation (5) shows the travel cost of users who choose SAVs.

Cah
Qit jt′

= µh × δath
yi + Path

ij × δt′h
ij , t′ = t + δath

yi , ∀y ∈ Y, i, j ∈ K, h ∈ H, t ∈ T (5)

there are only two components included. The first one is the waiting costs (waiting for
SAVs driving from station y to origin i to drive them up), and the second is the rental fees
from origin i to destination j.

The travel utility of each mode takes the negative value of the corresponding travel
cost. The probability of users’ who would choose SAVs can be calculated based on the logit
model in Equation (6).
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Probath
ij =

exp
(
−Cah

Qit jt′

)
∑w∈W exp

(
−Cwh

Qit jt′

) , t′ = t + δth
ij , ∀ i, j ∈ K, h ∈ H, t ∈ T (6)

Then, the upper bound of the number of SAV users belonging to different user clusters
is calculated as Equation (7). It ensures that the number of users who choose the service of
SAVs is no greater than the upper limit.

Dah
it jt′
≤ Qh

it jt′
× Probath

ij , t + δth
ij , ∀i, j ∈ K (7)

3.4.2. Model Formulation

A bi-objective nonlinear programming model is constructed by simultaneously con-
sidering the operator’s profit and all users’ costs. The TPS is applied to help the operator
and users achieve the goal. The price for each user cluster, fleet size, size of SAV stations,
and the demands satisfied by CSCs and SAVs are all determined by the model.

(1) Objective Functions

The objective functions contain two objectives; one is the operator’s profit maximiza-
tion, and another is to minimize all users’ costs.

Since the carsharing operator can provide two kinds of service, including the service
of CSCs and the service of SAVs, then the profit also comes from the two modes. The first
objective function is given in Equation (8), and the operator’s profit is maximized.

Max π = ∑
i∈K,y,y′∈Y,h∈H

t′=t+δsth
iy

Dsh
it, jt+δth

ij

×
(

Pst′h
yy′ − Cs

v

)
× δt′h

yy′+ ∑
i, j ∈ K, h ∈ H

t′ = t + δath
yi , y ∈ Y

Dah
it, jt+δth

ij

×Pat′h
ij × δt′h

ij

−Ca
v × ∑

y, y′ ∈ Y, h ∈ H
t′ = t + δath

yi

Dah
it, jt+δth

ij

×
(

δth
yi + δt′h

ij + δ
(t′+δt′h

ij )h
jy′

)
− Cw

z ∑
y∈Y,w∈W

Aw
y − Cw

m ∑
y∈Y,w∈W

Qw
y

− ∑
i,j∈Y,h∈H

βh×
(

Qh
it j

t+δth
ij
− ∑

w∈W
Dwh

it j
t+δth

ij

)
(8)

The first and second terms show the profit gained by the service of CSCs and the
service of SAVs, respectively. For the service of CSCs, the operator’s profit equals the rental
fees paid by users between stations minus the driving costs during the trips. For the service
of SAVs, the profit is equal to the rental fees between origins and destinations paid by users.
The third term means the extra driving cost paid by the operator during the trips of SAVs,
i.e., the driving cost of SAVs from the carsharing stations to users’ origins and from users’
destinations to carsharing stations. The fourth term represents the depreciation cost of all
sharing cars, and the fifth part refers to the maintenance cost of all parking spaces. The last
term gives the penalty cost of the unsatisfied carsharing demands.

The second objective is given in Equation (9), and all users’ costs are minimized.

Minϕ = ∑
i, j ∈ K, y, y′ ∈ Y, h ∈ H

t′ = t + δsth
iy

Dsh
it, jt+δth

ij

×
(

Pst′h
ij × δt′h

yy′ + αh ×
(

δsth
yi + δ

s(t′+δt′h
ij )h

y′ j

))

+ ∑
i, j ∈ K, y ∈ Y, h ∈ H

t′ = t + δath
yi

Dah
it, jt+δth

ij

×
(

Pat′h
ij × δt′h

ij + µh × δath
yi

) (9)
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All users’ costs are composed of CSC users and SAV users. CSC users need to pay the
rental fees of CSCs between carsharing stations and the walking costs. Combined with the
service provided by CSCs (Figure 1a), the walking costs include two components; one is
the walking costs from origins to carsharing stations, and another is the walking costs from
drop-off stations to destinations. In Figure 1b, SAV users need to pay the rental fees from
origins to destinations and the waiting costs when SAVs drive from the nearest carsharing
stations to origins.

(2) Constraints

Constraints in the programming model include the flow conservation, constraints
about the fleet size and demands, and restrictions about decision variables.

• Flow conservation

The fleet size in consecutive time steps at each station follows the flow conservation
rules, as shown in Equation (10).

Aw
yt+1

= Aw
yt − ∑

h ∈ H, t′ ∈ T
i, j ∈ K, y′ ∈ Y

Dwh
it′ jt′′

+ ∑
h ∈ H, t1 ∈ T

i, j ∈ K, y′ ∈ Y

Dwh
jt1 it2

, ∀y ∈ Y, t ∈ T (10)

For both the CSCs’ stations and SAVs’ stations, the number of available sharing cars in
the next time step Aw

yt+1
equals to the number of available sharing cars at the current time

step Aw
yt , minus the number of cars rented by users at the same time step, then plus the

number of users who arrived at this station at the current time step.
The time steps used in Equation (10) are explained below. As shown in Figure 1, when

users travel from node i to node j, the nearest carsharing stations to node i and j are station
y and station y′, respectively. The arriving time step at station y is t. The departing time
step at node i is t′, and the arriving time step at destination j is t′′ . When users travel from
node j to i and stop by carsharing station y′ and y, the arriving time step at station y is still
t, t1 is the departing time step at node j and t2 corresponds to the arriving time step at node
i. Details about the time steps are shown in Table 3.

Table 3. Details about the time step mentioned in Equation (10).

CSCs SAVs

t′ max
[
0, t− δst′h

iy

]
min

[
t + δath

yi , T
]

t′′ min
[

t + δth
yy′ + δ

s(t+δth
yy′ )h

y′ j , T
]

min
[
t′ + δt′h

ij , T
]

t1 max

[
0, t− δ

(t1+δ
st1h
jy′ )h

y′y

]
max

[
0, t2 − δ

(t1+δ
at1h
ji )h

ji

]
t2 min

[
t + δsth

yi , T
]

max
[
0, t− δth

iy

]

• Constraints about demands

Since the demand for each cluster is limited, users belonging to different clusters can
choose the service of CSCs and the service of SAVs based on the utilities of each service
mode. Then, there is an upper bound for the CSC users.

Dsh
it jt′
≤ Qh

it jt′
− Dah

it jt′
, t′ = t + δth

ij , ∀i, j ∈ K, h ∈ H, t, t′ ∈ T (11)

Demands satisfied by CSCs are less than the potential CSCs’ demands, which equals
the total demands minus the demands satisfied by SAVs.

Furthermore, under the TPS, the new demands equal to the initial demands Dw0h
it jt′

plus the demand variations ∆Dwh
it jt′ brought by price variations. The demand variation is
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already given in Equation (3). The demand variation between the same nodes is different
for different user clusters.

Dwh
it jt′ = Dw0h

it jt′ + ∆Dwh
it jt′ , t′ = t + δth

ij , ∀i, j ∈ K, h ∈ H, w ∈W, t, t′ ∈ T (12)

• Constraints about the fleet size

The fleet size is restricted by the size of the station.

Aw
yt ≤ Qw

y , ∀yt ∈ X, y ∈ Y, w ∈W (13)

Constraints (13) guarantee that the number of available sharing cars at each station is
always no greater than the number of parking places at the same station.

• Domain of decision variables

Constraints (14)–(17) set the domain of all decision variables.
Especially in constraints (14), the price is ensured to vary within the predefined scope,

and it should be no greater than the highest price.

0 ≤ Pwth
ij ≤ Pwmaxh

ij , ∀i, j ∈ K, h ∈ H, w ∈W (14)

Demands satisfied by the CSCs and SAVs are restricted to be an integer in constraints (15)

Dwh
it jt′ ∈ Z+, t′ = t + δth

ij , ∀i, j ∈ K, h ∈ H, w ∈W (15)

The number of available sharing cars at each node should also take an integer
as below.

Aw
yt ∈ Z+, ∀yt ∈ X, y ∈ Y, w ∈W (16)

The number of parking spaces at each carsharing station should be an integer for SAVs
as shown in constraints (17).

Qa
y ∈ Z+, ∀y ∈ Y (17)

3.5. Solution Approach

One of the typical methods to transform a multiple-objective programming model into
a single-objective model is linear weighting. A parameter λ is used to show the importance
of one of the objective functions. Considering the importance of the operator’s profit and
all users’ costs in the hybrid carsharing system, λ can be set between 0 and 1. In this study,
it is set to be 0.5. It indicates that we take the operator and users equally. The transformed
single-objective function becomes the form of Equation (18).

Max θ = λ ∗π − (1− λ) ∗ϕ (18)

There is a logit model in constraints (5) and a price elasticity in Equation (3) in the
transformed programming model. Since the prices for each user cluster are decision
variables, it makes the model nonlinear. A genetic algorithm (GA) is applied to solve it, and
its coding is by Python. The prices, number of trips of each user cluster, and the number of
available sharing cars are all generated randomly as an initial solution. The pseudo-code of
the GA is listed in Table 4. M is the maximum number of iterations in the GA, and it is set
to be 200. N is the size of the population and takes 100. Pc and Pm are the crossover rate
and mutation rate, respectively, and the values are all set to be 0.5.
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Table 4. Pseudocode of the GA.

Step 1: Initialization

Set the iteration number m = 1, and initialize the prices, the number of trips, and the number

of available sharing cars randomly. Set Pwth,m,n
ij within

[
0, Pwmaxh

ij

]
, initialize am,n

yt within
[
0, Qw

y

]
,

initialize Dwh,m,n
it jt′ within

[
0, Qh

it jt′

]
, they are simplified as (Pm,n, am,n, Dm,n).

Step 2: Get the value of the objective function
Given (Pm,n, am,n, Dm,n), the objective function (19) can be calculated, and it is

recorded as θm.
Step 3: Update the maximum of the objective function

Sort the value of the objective function, update the maximal one and save it as θm∗ .
Step 4: Stop criteria

If m = M, stop. Otherwise, proceed to Step 5.
Step5: Crossover and mutation

Step 5.1: Crossover
If the random rate is lower than the crossover rate Pc, then crossover is performed. The

procedure of the crossover is as below:
Selecting two of the variables by tournament selection and intersecting at a rate of Pc, then

the new values are taken as the new generations for the next iteration.
Step 5.2: Mutation
New values for the next iteration are generated randomly if the random rate is lower than

the mutation rate Pm.
Step 6: Update the number of iterations

Set m = m + 1, and go back to Step 2.

4. Case Studies: Lanzhou, China
4.1. Setting Up the Case Studies

Case studies in Lanzhou, Gansu Province, China, are performed to testify to the
efficiency of the TPS for different user clusters. Operational data provided by the carsharing
operator in Lanzhou starts from 8 September 2018, to 24 March 2019. The data information
includes the data order, start and end time of each trip, pick-up and drop-off stations, travel
mileage, users’ ID, etc. There are 84 carsharing stations in total in the carsharing system.
Stations used rarely are erased, and the standard of rarely used is that the total number of
demands is less than 1000 during the seven months. There are 43 active carsharing stations
in the end, and the positions are all labeled in Figure 2. There are 162,158 valid data and
8117 users.

Stations’ sizes, which are the number of parking spaces of each conventional carsharing
station, are pre-known. The operational period from 6:00 a.m. to 24:00 a.m. is considered
the studied period. It is divided into 9-time steps with a duration of 2 h. Data required in the
model is the carsharing demand matrix, price matrix, and travel time matrix. These data all
come from real data in Lanzhou. It is noted that travel times for the same trip are different
for different user clusters, and it is influenced by the travel efficiency of each cluster.

According to previous studies [18,37,38], the walking time is set to be 5 min for all
users who choose the service of CSCs, and the waiting time is also set to be 5 min for
users who choose SAVs. The coefficients used in the study are listed in Table 5. Due to the
limitation of the operational data, the walking cost (αh = 0.1 ¥/min) and the waiting cost
per minute (µh = 0.2 ¥/min) for all clusters are assumed the same. The price elasticity Eh

is mainly used to reflect the reactions of different clusters to the price variations, and the
values for all clusters are already given in Table 2. For the service of CSCs and the service
of SAVs, the initial prices Pw0h

ij and the highest prices Pwmaxh
ij are all set to be the same, and

they are 0.5 ¥/min and 1.0 ¥/min, respectively.
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Table 5. Parameters for the case studies.

Parameters Cw
m

(¥/parking place)
Cw

z
(¥/car day)

Cw
v

(¥/min)

CSCs 2 7 0.007
SAVs 5 7 0.050

4.2. Experiments and Results

Influences of the TPS are explored by comparing the models with the TPS (Model I)
and without the TPS (Model II). Model II is the same as the transformed model in Equation
(18) and constraints (4), (7), (8) and (11)–(18), but the price elasticities EH for all user clusters
are set to be 1.5. The iteration procedures for the models are shown in Figure 3. The fitness
of the GA changes little when the iteration number M reaches 200. The proposed GA can
always converge in several minutes.
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4.2.1. Performance of the Hybrid Carsharing System

When users are not clustered, which means the operator does not apply the TPS in the
hybrid carsharing system, then a uniform price is given to all users. In other words, the
operator assumes that there is only one type of user. When the TPS is applied based on the
clustering results of users, differential prices are given to different clusters. Relevant results
are listed in Table 6 to show the advantages of the TPS. It is apparent that the operator’s
profit, all users’ costs, and the system planning are different, considering there are different
clusters of users. It is essential to take into account the diversity of users.

Table 6. Performance of the hybrid carsharing system with or without the TPS.

Indicators TPS (¥) No TPS (¥)

Carsharing
operator

Revenue 88,602.79 77,392.83
Profit 85,378.79 74,428.83

Depreciation cost of sharing cars 768 588
Maintenance cost of the parking places 2456 2376

Number of parking spaces for SAVs 410 392

Fleet size
CSC 132 124
SAV 154 121

Users

Rental fee
CSC 39,873.56 36,854.75
SAV 51,695.78 43,952.23

Walking cost of CSC users 3100.23 3049.56
Waiting cost of SAV users 2056.63 2049.56

All Users’ costs 96,726.2 85,906.1

Several indicators in Table 6 are used to evaluate the performance of the carsharing
system with or without the TPS. Revenue corresponds to the first three parts of the objective
function (9). It is equal to all rental fees the operator collects from users minus the driving
cost the operator needs to pay. The depreciation cost of sharing cars is linearly related to the
number of sharing cars, as is the maintenance cost of the parking places and the number
of parking places. As for profits, it is the objective function (10). The number of parking
spaces is the number of new parking spaces built for SAVs. The fleet size of CSCs or SAVs
is the number of sharing cars.

Additionally, five indicators are built to describe the users’ behaviors. The rental cost
of CSC users is the cost paid by all the users under the service mode of CSCs. The walking
cost of CSC users means the extra walking cost users need to pay between CSC station
and destination (origin). The rental cost of SAV users is the rental cost that the SAV users
should pay between their origins and destinations. The waiting cost of SAV users is the
cost users need to pay when they are waiting for the SAVs driving from SAV stations to
their origins to pick them up. All users’ costs correspond to the objective function (10).

4.2.2. Efficiency of the TPS

Table 6 provides indicators of the efficiency of the TPS. In Table 6, when users are
clustered and offered a tailored price by the TPS, the profit is 11,209.96 ¥ (14.48%) higher
than the profit in the system without the TPS. In the meantime, the cost of all users is
lowered with the application of the TPS. Eighteen extra parking spaces, eight more CSCs,
and thirty-three more SAVs are needed when users are clustered. This phenomenon
reveals that the increase in profit is highly connected with the expansion of the SAVs
under this condition. The depreciation cost of sharing cars and the maintenance cost of the
parking places increase too, while not much. It indicates that the carsharing operator can
significantly increase the profit without investing too much.

As for the users, the cost they need to pay is indeed getting more, especially for the
users who choose SAVs, as these users do not need to walk to pick up cars or walk to
destinations after the drop-off under the service mode of SAVs. In terms of the rental fee, it
is higher for trips with SAVs than that of CSCs.
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After the clustering, what is the reaction of each cluster of users? As shown in Table 7,
it is evident that users of cluster 1 (loyal users) contribute a large proportion no matter in
the CSC system or the SAV system. Users of cluster 2 (losing users) and 3 (potential users)
are comparable. Compared with the losing users, the potential users can always bring more
revenue to the operator while with the least other costs. All in all, loyal users are the key
for the carsharing operator. They should retain this cluster of users as much as possible
and try every effort to convert the other two kinds of users into loyal users.

Table 7. Performance of each user cluster (¥).

Cluster
Revenue Walking Cost

(CSCs)
Waiting Cost

(SAVs)CSCs SAVs

1 22,634.25 28,693.23 1213.25 809.25
2 7681.31 10,466.79 948.67 658.67
3 8237.67 10,889.54 881.64 581.64

The variations of the price discount (p) during the studied period (6:00 a.m. to
24:00 a.m.) are shown in Figure 4a,b. When the TPS is not applied, the price discount
directly equals the price divided by the maximal price (pwh

ij = Pwth
ij /Pwmaxh

ij ). Since there
is only one type of user when TPS is not applied, h = 1. When the TPS is used, the
price discount is calculated after weighted (pw = ∑

h∈H
Pwth

ij ∗ Dwth
ij ). For example, the price

discounts are 0.2, 0.8, and 1.0 for user cluster 1, 2, 3, respectively. Moreover, the number of
trips that each user cluster accounts for is 0.6, 0.2, and 0.2, respectively. Then, the weighted
price discount is 0.48 (0.6 × 0.2 + 0.2 × 0.8 + 0.2 × 1.0).
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The red line means the price discount given to all users in the hybrid carsharing system
without the TPS. For CSCs (Figure 4a) and SAVs (Figure 4b), the rental fee that the operator
charges from users of cluster 1 (loyal users) is very close with the TPS or without the TPS.
While for users of cluster 2 and cluster 3, the prices are much lower in the system with the
TPS. It shows that the operator charges less for the users except for loyal users.

As shown in Figure 4c, the number of carsharing trips in each time step is higher when
the TPS is applied. The total number of carsharing trips during the studied period is also
much higher (Figure 4d). It testifies the efficiency of the TPS. Furthermore, the increase in
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the number of carsharing trips is particularly high at time step 3 (10:00–12:00) and time
step 7 (18:00–20:00). The loyal users contribute the most to the total number of trips, and
the corresponding prices are also the highest. This phenomenon reveals that the demands
during 10:00–12:00 and 18:00–20:00 are great, and the loyal users would choose sharing cars
even if the price is relatively higher during peak hours than at other times. Figure 4e,f show
the number of carsharing trips for both the CSCs and SAVs of each user cluster. Regardless
of the service mode, the loyal users always count the most in each time step. As for the
other two user clusters, there are no big differences in the number of carsharing trips, while
the potential users can still make more profits for the operator (Table 6).

4.2.3. Performance of the Hybrid Carsharing System

When SAVs are added to the carsharing systems only with the CSCs (named the
conventional carsharing systems), what impact could it make? The performances of the
conventional carsharing systems and the hybrid carsharing systems with the user clustering
strategy are compared mutually. The model only with the conventional carsharing system
is nearly the same as the bi-objective model in this study; the only difference is that there is
only one service mode in the service mode set (W = {s}). The solution algorithm is still
the GA. The converging process is shown in Figure 5.
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The obvious advantage of the hybrid carsharing systems is that the profits could be
improved. The carsharing operators can earn ¥85,378.79 in hybrid carsharing systems,
while it is only ¥50,978.43 in the conventional carsharing system, mainly because more trips
are satisfied in the hybrid carsharing system. As shown in Figure 6a, when the SAVs are
added to the carsharing system, some CSC users are attracted by the SAVs and then turn to
SAV users. Furthermore, many potential carsharing users also join in with the adoption of
SAVs. Therefore, the SAVs can help the carsharing operator attract more carsharing users
and is worthy of bringing in.

The reason why more users are attracted to the hybrid carsharing system is compli-
cated. We should analyze this from the perspective of CSCs and SAVs. In the hybrid
carsharing system, the price discounts for CSCs are much lower than that of the conven-
tional carsharing system. As users have more choices in the hybrid carsharing system, a
lower price should be offered to retain the most CSC users. As for the price discounts of
SAVs users, they are much higher than that of CSCs in the same system. In the meantime,
these discounts are comparable with the price discounts of SAVs in the conventional car-
sharing system. It tells us that SAVs have a higher pricing power than CSCs, but it still
needs to obey the basic market rule and cannot exceed the market price too much. When
we put the price discounts of the conventional carsharing system and the weighted price
discounts of the hybrid carsharing system together, the average price in the mixed hybrid
carsharing system is lower than the price in the conventional carsharing system. When the
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carsharing operator provides varieties of services, users can benefit from it and finish their
trips at a lower price.
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Further, details about the carsharing trips and price discounts for all clusters are
shown in Figures 7 and 8. In Figure 7, the numbers of carsharing trips of each cluster in the
conventional carsharing system and the hybrid carsharing system are all given. The losing
users (cluster 2) are affected deeply by the adoption of SAVs, and a large part of them may
turn into potential users (cluster 3). Meanwhile, most potential users are inclined to try
SAVs in the hybrid carsharing system. The loyal users (cluster 1) not only have the courage
to try SAVs, but the total number of carsharing trips is also increased. It might be because
part of potential users turn into loyal users when the SAVs are added to the system. In sum,
the adoption of SAVs in the carsharing system is good for loyal users and potential users. It
can also speed up the process of converting the losing users into the potential users and the
potential users into the loyal users.
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The price discounts offered to all clusters are shown in Figure 8. At each time step,
the price discount the operator provides to the SAV users is much lower than that of the
CSC users in both carsharing systems. As the service mode of SAVs determines the total
rental fee of SAVs, it is much higher than the rental fee of CSCs. If the operator still charges
a lot, there would be fewer SAV users, and then the adoption of SAVs is meaningless.
Price discounts given to the loyal users are higher among all the clusters in both systems
(Figure 8a), especially for the price discount of the SAV users in the hybrid carsharing
system is the highest. It means that the loyal users make the greatest contributions to the
operator. The operator should pay more attention to them.

In a word, when the carsharing operator adopts SAVs to the conventional carsharing
system, it is great for most users in the system, especially for the loyal users, and there
would be more of them. The losing users are also greatly affected, and they could turn into
potential users.

5. Conclusions

In hybrid one-way carsharing systems, a tailored pricing strategy (TPS) for different
types of users is proposed to maximize the operator’s profit and minimize all users’ costs
simultaneously. Autonomous vehicles and conventional sharing cars are incorporated
into hybrid carsharing systems. Users can be clustered into three types based on the
operational data by the K-means algorithm. They are the loyal users, losing users, and
potential users, respectively. A bi-objective nonlinear programming model is established
and then transformed to a single-objective model by weighting each objective function. A
genetic algorithm is applied to solve it. In order to testify to the efficiency of the TPS, case
studies in Lanzhou, China, are performed. The main contributions of this study can be
listed below:

(1) Considering that not all demands can be satisfied by the hybrid carsharing system. A
penalty coefficient is defined to reflect the potential effect of unsatisfied demands for
each cluster on the profit. It is incorporated into the objective function. It combines
travel potential, consumption potential, travel efficiency, and average revenue. The
penalty coefficient for loyal users is the highest. It shows the importance of loyal users
on the profit.

(2) Differential prices are offered to different users by considering the unique characteris-
tic of each user cluster. The price elasticity combines the price variations and demand
variations, and it is used to distinguish different clusters. The carsharing operator
can get 14.48% more profit at less extra costs. The loyal users contribute the most to
the carsharing operator’s profit and the number of trips, while they pay the highest
prices, especially during peak hours. The numbers of carsharing trips for the other
two clusters are nearly the same. Compared with the losing users, the potential users
can make more profit. The carsharing operator should pay the most attention to loyal
users, then the potential users.

(3) Compared with the carsharing system only with conventional cars, the performance
of the hybrid carsharing system is explored. It reveals that the adoption of the
SAVs benefits the operator and the users, especially the loyal users. Therefore, the
conventional carsharing operator should embrace the new technology (referring to
AVs in this study).

These results can be the potential directions for the carsharing operator. For example,
attaching great importance to the operational data and then analyzing the characteristics
of users. Based on the details of the users in the system, the operator can provide many
personalized services at different prices; not only more users can be attracted, and more
loyal users there would be, but also higher profit and service levels.

There are still many details worthy of discussion. Due to the limitations of the op-
erational data, indicators like “walking cost” and “waiting cost per minute” for all user
clusters are assumed to be the same. For simplicity, there are some restrictions on sharing
autonomous vehicles like “one sharing autonomous vehicle can only serve one user per
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trip” and “it needs to return to carsharing stations when a trip is finished”. To further make
the model more realistic, the characteristics of users should be explored deeply. Moreover,
one sharing autonomous vehicle can pick up more users per trip, and a corresponding
price mechanism should be given in the future. Further, there are many competitors for
sharing cars, i.e., ride-sharing, taxis, etc. Various traffic modes should be considered to
compete with sharing cars.
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