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Abstract: A high-quality and secure touchdown run for an aircraft is essential for economic, oper-
ational, and strategic reasons. The shortest viable touchdown run without any skidding requires
variable braking pressure to manage the friction between the road surface and braking tire at all
times. Therefore, the manipulation and regulation of the anti-skid braking system (ABS) should be
able to handle steady nonlinearity and undetectable disturbances and to regulate the wheel slip ratio
to make sure that the braking system operates securely. This work proposes an active disturbance
rejection control technique for the anti-skid braking system. The control law ensures action that is
bounded and manageable, and the manipulating algorithm can ensure that the closed-loop machine
works around the height factor of the secure area of the friction curve, thereby improving overall
braking performance and safety. The stability of the proposed algorithm is proven primarily by
means of Lyapunov-based strategies, and its effectiveness is assessed by means of simulations on a
semi-physical aircraft brake simulation platform.

Keywords: aircraft anti-skid braking; active disturbance rejection controller; particle swarm
optimization; semi-physical simulation

1. Introduction

The aircraft anti-skid braking system (ABS) is an important aircraft subsystem to
ensure the safe landing of the aircraft. With the development of the aviation industry, the
aircraft is developing in the direction of high speed and large tonnage, using stable and
efficient anti-skid braking control. The ABS strategy is of great significance to improve the
ground safety of the aircraft [1]. The braking process of the aircraft is a process with strong
nonlinearity, including changes in runway conditions, changes in the braking environment,
and so on [2], and the aircraft landing time is very short. According to domestic and
foreign statistical data, accidents in the landing and braking stage account for as high as
49.1% of all aircraft safety accidents [3]. This poses a serious challenge to the design of
aircraft anti-skid braking systems. The anti-skid braking device (ABS) performs a crucial
function in the aircraft landing system. In fact, ABS can noticeably enhance the protection
of an aircraft in intense circumstances, as it maximizes the longitudinal tire/road friction,
while preserving the massive lateral forces that support aircraft steerability [3]. One of the
essential challenges in designing ABS is to deal with two sizeable sources of uncertainty
affecting the overall landing dynamics, that is, the surprisingly nonlinear tire/road friction
forces and the dynamic load switch between the front and rear axle [4].

Many efforts have been committed to adjusting the control of the slip ratio and regu-
lating the reference deceleration rate to achieve proper monitoring of the best adhension
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coefficient of ABS [5]. However, some inherent characteristics, such as complicated nonlin-
earity and steady stochastic disturbance, make progress in the design of ABS difficult. For
a strong real-time and highly nonlinear system such as ABS, the unmodeled dynamics and
parametric uncertainty may lead to serious performance degradation [6]. Therefore, model-
free control technology has gradually attracted the attention of anti-skid system researchers.
The model-free control techniques are also known as data-driven techniques [7], because
a large amount of test data is needed to design the controller. Currently, a pressure-bias-
modulated (PBM) aircraft anti-skid braking system is the most commonly used braking
system, which is an improved algorithm of PID control. It retains the advantages of a
simple and easy-to-understand PID controller and does not require an accurate system
model of the controlled object. Although a large number of new anti-skid control algo-
rithms have emerged in recent years, it is still the most widely used and installed anti-skid
control algorithm. Active disturbance rejection control technology (ADRC) is a new prac-
tical technology that adapts to the trend of digital control, absorbs the achievements of
modern control theory, develops and enriches the essence of PID thought, and develops
and utilizes special nonlinear effects. Therefore, in all occasions where conventional PID
can be used, as long as it can be digitized, the use of ADRC will fundamentally improve
its control quality and control accuracy. Especially in occasions where high-speed and
high-precision control is required in harsh environments, ADRC technology is superior.
ADRC is a fairly high-quality method for the manipulation and disturbance rejection of
nonlinear systems. This methodology has obtained massive interest in the literature. The
philosophy underlying ADRC was outlined by [8,9]. More recently, the methodology was
introduced in English through a series of scientific papers [10–12].

The main problems encountered in the study of aircraft anti-skid braking are the
complexity of the braking system and the uncertainty of braking conditions. Domestic
brake system designs mainly adopt a hydraulic control system, and the algorithm is mainly
based on the multi-threshold PID+PBM control algorithm of the slip speed control type.
The use of this control law can ensure that the system has enough time to maintain the
brake pressure at a low level after each slippage is released to prevent secondary slippage.
However, in complex runway conditions, the effect is obviously worse, and there is a
phenomenon of low-speed skidding. Active disturbance rejection technology has been
practically applied in many fields, such as power systems, motor speed regulation, aircraft
attitude control, and robot control, and it has achieved significant social and economic
benefits. Therefore, it is a practical engineering attempt to apply the ADRC control concept
to the aircraft anti-skid braking system, design the corresponding controller, and compare
its advantages and disadvantages with those of classical control. In this work, In order to
deal with the nonlinearity and uncertainties mentioned above, using the active disturbance
rejection control technique proposed by Han [10], we design an active disturbance rejection
controller (ADRC) for an aircraft anti-skid braking system and assess its effectiveness via
simulation of a certain type of aircraft on a semi-physical simulation platform.

2. System Description

In order to verify the anti-skid braking scheme, this paper uses a semi-physical simula-
tion platform. The models used in the semi-physical simulation mainly include the aircraft
aerodynamic model and tire/ground friction model.

2.1. Aircraft Landing System Dynamics

Without loss of generality, in this paper, the aircraft body and landing gear are regarded
as rigid bodies, and the earth is regarded as an inertial coordinate system. In addition, the
curvature of the earth is ignored by [13]. Under this assumption, the dynamic model of the
aircraft can be described by Equation (1), and the interaction of forces is shown in Figure 1.
See Table 1 for parameter descriptions.
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Table 1. Parameters for the aircraft model.

Name Description

m Aircraft mass
v Aircraft longitudinal velocity
T0 Engine residual thrust
Fxa Aerodynamic drag
Fy Aerodynamic lift
Fs Parachute drag
Fx Braking force
Fam Support force of main landing gear
Fa f Support force of nose landing gear
n Number of main wheels
hc Height of center of gravity
hs Distance between parachute drag line and gravity center
a Distance between main wheel and gravity center
b Distance between front wheel and gravity center
ρ Air density
Cx Aerodynamic drag coefficient
Cy Aerodynamic lift coefficient
Csx Parachute drag coefficient
Sx Aerodynamic drag coefficient
Sy Aerodynamic lift coefficient
Ssx Parachute area
Kt Velocity coefficient of engine
T0−ini Velocity coefficient of engine

mv̇ = T0 − Fxa− Fs − nFx (1)

Fy + Fz f + nFzm = mg (2)

Fz f b− nFx hc − nFzm a + Fs hs − T0 ht = 0 (3)

where
Fx =

1
2

ρCxsxv2, Fy =
1
2

ρCysyv2, Fx =
1
2

ρCsxssxv2, T0 = T0−ini + Ktv

The angular velocity of the braking wheel is described as follows:

Jwω̇ = −Bw ω + Fx r− Tb (4)

where ω, Jw, and r are the wheel angular velocity, wheel moment of inertia, and wheel
radius, respectively, while Bw is the friction torque coefficient, and Tb is the brake torque
generated by the brake device [14].

Figure 1. Force analysis of fuselage.
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2.2. Aircraft Tire Dynamics

The friction characteristic between the tire and the ground is the main factor affecting
the process of aircraft landing and braking. In fact, the bonding force between the tire and
the road surface is the most important force that makes the aircraft decelerate. Moreover,
the tires transfer the vertical load Fz into longitudinal friction Fx, as illustrated in Figure 2.
In fact, Fx depends on a large number of features of the road, tire, and suspension. Most
often, they can be described as follows:

Fx = f (Fzm, α, γ, λ) (5)

Figure 2. Aircraft landing roll force.

The Pacejka model, represented in Equation (3), is perhaps the most well-known tire
friction model [15]. This is because the model matches the experimental data well and is
easy to implement. The expression of the tires has the following form:

f (Fzm; α; γ; λ) = cos(Cxtarctan(Bxtλ))Fx0 (6)

where the expressions of the different terms appearing in Equation (6) depend on Fz, α, γ, λ,
and several constant parameters, which are determined by the structural characteristics of
the tire and can be easily identified from experimental data [15]. In this work, the aircraft
is assumed to be symmetric during the braking process, and in the rest of this work, the
design of the control algorithm is performed under the assumptions of small side slip and
camber angles (i.e., t = 0 and γ = 0), which is to say that only longitudinal forces of the
tire are of concern. Thus, Equation (4) can be simplified into the following:

Fx = Fzµ(λ) (7)

Based on the Pacejka model, the longitudinal coefficient between the tire and the
ground has the following form [16,17]:

µ(λ) = Dsin(Carctan(Bλ)) (8)

The parameters of the three most commonly used runway models are depicted in
Table 2, while µ− λ curves of the friction coefficient and wheel slip ratio are shown in
Figure 3.

Table 2. The parameters of the three most commonly used runway models.

Road Condition B C D

Dry 14.0326 1.5344 0.8
Wet 8.2098 2.0192 0.4
Ice 7.201788 2.0875 0.2
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Figure 3. Relationship between adhesion coefficient µ and slip rate λ.

3. Problem Formulation

In this work, we only consider braking control (hence v > ωr); thus, the slip rate can
defined as:

λ = (v− r)/v (9)

Substitute Equations (7) and (8) into Equations (1) and (2) yields the following:

v̇ =
T0 − Fxa − Fs

m
− µ(λ)

m
(mgb− Fyb + Fshs − T0ht)

a + b + µ(λ, Vx)hc
(10)

ω̇ = (Bw + Fzmrµ(λ))/Jw − Tb/Jw (11)

Taking the time derivative of Equation (9) yields:

λ̇ = −(r/v) ω̇ + (rω/v2)v̇ (12)

Substituting Equations (10) and (11) into Equation (12) yields:

λ̇ = f (λ) + r/Jwv Tb (13)

where f (λ) = (1−λ)
v ( (T0−Fxa−Fs)

m − µ(λ)
m

(mgb−Fyb+Fshs−T0ht)

(a+b+µ(λ)hc)
)− r

Jwv [−Bwω + Fzmrµ(λ)].
Under the assumption that aircraft speed v is a slowly varying parameter, and express-

ing v as v = ωr/(1− λ), the system dynamics can be given as follows:

λ̇ = −((1− λ)/Jω)(ψ(λ)− Tb) (14)

where ω > 0 and

Ψ(λ) =− Bwω + Fzmrµ(λ)− J(1− λ)

r

(
(T0 − Fxa − Fs)

m
− (µ(λ))

m(
mgb− Fyb + Fshs − T0ht

)
(a + b + µ(λ)hc)

) (15)

4. Controller Design

The main purpose of this work is to design a control law, so that the anti-skid braking
system of the aircraft can be stabilized near the optimal value of the slip rate to improve
the efficiency and safety of the braking process.
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4.1. Design and Parameter Optimization of Aircraft Anti-Skid Braking Active Disturbance
Rejection Controller

The performance of aircraft braking systems is mainly dependent on the tire/road
characteristics and actuator dynamics. Accordingly, the main purpose of the control algo-
rithm will be to maintain the system slip rate near optimal values, thus improving braking
efficiency. To solve this problem, this work designs an active disturbance rejection controller,
starting from the analysis of tire/road friction characteristics and system equilibrium.

Figure 4 is a schematic diagram of the balance point of the system when the control
input of the controller is constant (i.e., Tb = Tss

b ). The system variable λ exhibits equilibrium
points, which can be seen in Figure 4:

(1) If Tss
b > λmaxψ(λ), that is, if the brake torque is greater than the maximum friction

value the tire can generate at the time, then the slip rate has a tendency of increasing, so the
unique equilibrium point is λss = 1.

(2) If Tss
b < λmaxψ(λ), then the system has at most three equilibria, namely λss

1 = 1,
λss

2 = λ2, and λss
3 = λ3, where λ2 and λ3 are the two possibly coincident solutions of

Tss
b = ψ(λ), as shown in Figure 4. To facilitate the analysis of system dynamics with control

action, in this section we assume the braking torque of the actuator as Tb = Ku. The system
trajectories under control can be seen in Figure 5.

Figure 4. Equilibrium points for aircraft anti-skid braking model.

Where K = −r, 0, r. Therefore, the slip rate change rate concerning actuator dynamics
yields the following second-order equation:{

λ̇ = −((1− λ)/Jω)(Ψ(λ)− Tb)
Ṫb = u

(16)

Accordingly, the control system will maintain the wheel slip ratio around the accept-
able values by generating a suitable value of variable r. To achieve this goal, this work
designs an active disturbance rejection controller Figure 6.
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(a) u = k (b) u = 0

(c) u = −k

Figure 5. System trajectories of states λ and Tb when K = r (a), K = 0 (b), and K = −r (c).

Figure 6. The structure of the ADRC.

(1) According to system dynamics, the input v of the controller is the desired slip rate,
so we arrange the transient process of the controller as follows:

eλ = v1 − v
f h = f han(eλ, v2, r0, h)
v1 = v1 + Hv2
v2 = v2 + H f h

(17)

(2) Then, we track and estimate the states and disturbance of the system by output y
and input v. 

e = z1 − y
f e = f al(e, 0.5, δ)
f e1 = f al(e, 0.25, δ)
z1 = z1 + h(z2 − β01e)
z2 = z2 + h(z3 − β02 f e + b0u)
z3 = z3 + h(−β03 f e1)

(18)
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(3) The nonlinear state error feedback is as follows:
e1 = v1 − z1
e2 = v2 − z2
u0 = β1 f al(e1, α1, δ) + β2 f al(e2, α2, δ)

(19)

(4) The disturbance compensation process is as follows:

u = u0 − (z3(t))/b0 (20)

4.2. Optimization of Control Parameters Based on Improved Particle Swarm Optimization

Although it is easy to implement in industry, the parameter adjustment of ADRC is
more complicated than other algorithms. There are more than ten parameters, and there is
no specific standard for selecting parameters. The selection of parameters depends on the
experience of the designer, so it can be time consuming, laborious, and limited in effect.
In this paper, the improved PSO is used to adjust the parameters of the anti-skid braking
active disturbance rejection controller. A flow chart of the particle swarm optimization is
shown in Figure 7.

Figure 7. Flow chart of particle swarm optimization.

The basic PSO algorithm can be expressed as:{
Vij(t + 1) = Vij(t) + c1r1

(
Pij − Xij

)
+ c2r2

(
Pgj − Xij

)
Xij(t + 1) = Xij(t) + Vij(t + 1)

(21)

For more on the basic particle swarm optimization algorithm, refer to the literature.
The basic particle swarm algorithm needs to adjust few variables, and it is simple and

convenient to use. However, there are also shortcomings. The most prominent problem is
that it is easy to converge prematurely, and the more the algorithm iterates later, the easier it
is to converge prematurely. As researchers’ understanding of particle swarm optimization
has continued to deepen, inertial weights have been proposed, which can represent the
trend of particles’ past motion and expand the search space of particles. The size of the
weight affects the search ability and the accuracy of the particle swarm. When the weight
is increased, the algorithm focuses on the global search; when the inertia weight is reduced,
the algorithm focuses on the local search accuracy. The standard particle swarm algorithm
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uses linearly decreasing weights. The principle is to use larger weights in the early stage,
while in the later stages of the algorithm, the weights will be automatically adjusted to be
linearly decreasing. The velocity formula after adjusting the inertia weight is as follows:

Vij(t + 1) = ωVij(t) + c1r1
(
Vij − Xij

)
+ c2r2

(
Pgj − Xij

)
(22)

where ω decreases linearly:

ω = ωstart −
ωstart −ωend

tmax
× t (23)

where ωstart is the starting weight, ωend is the ending weight, ωstart > ωend, and ωstart
eventually decays linearly to ωend as the iteration progresses. In the initial stage of the
algorithm iteration, a larger inertia weight can prevent the particle harvesting speed from
being too fast, resulting in prematurely obtaining a local optimal solution. In the later stage
of the algorithm, the smaller inertia weight can improve the convergence accuracy of the
algorithm. Usually, you can assume ωstart = 0.9, and ωend = 0.4. In a standard particle
swarm, linearly decreasing inertia weights are used, and the learning factors c1 and c2 are
not improved. In this paper, a new form of inertia weight is selected on the basis of the
standard particle swarm, and the learning factor of the particle swarm is readjusted. The
following nonlinear functions are optimized, and the effects of different weight forms and
learning factors on the optimization process are compared and analyzed.

For the comparison and simulation of linearly decreasing weight and adaptive adjust-
ment weight, the form of the linearly decreasing weight is as follows:

ωk = ωend + (ωstart −ωend )

(
1− k

T

)
(24)

In the above formula, K is the current number of iterations, and T is the maximum
number of iterations. The adaptive adjustment weights are as follows:

ω =

{
ωmin − (ωmax −ωmin)

f− fmin
f̄− fmin

f ≤ f̄
ωmax f > f̄

(25)

In the above formula, f is the current fitness value, f̄ is the average fitness value, and
fmin is the minimum fitness value, while ωmax and ωmin are the maximum and minimum
weights, respectively. This paper improves the standard particle swarm. The concept
behind the improvement is to adjust the inertia weight and the learning factor of the
particle swarm, and to introduce the natural selection mechanism. The steps for obtaining
the minimum value problem of the improved particle swarm are as follows:

A. Set the size of the particle swarm, that is, how many particles there are in the swarm,
and set the starting position and speed of the particles. Set the maximum and minimum
values of the learning factor. Specify the maximum and minimum weights.

B. Calculate the fitness of each particle. Store the particle position and fitness value
at the moment in the individual extreme value in Pbest. Among all the individual extreme
values, the particle with the lowest fitness is selected by comparison. Store the particle’s
position and fitness value in the global extremum gbest.

C. Use the synchronous learning factor to update the speed of the particle:
c1 = c2 = cmax − (cmax − cmin)

t
T

Vij(t + 1) = ωVij(t) + c1r1
(

Pij − Xij
)
+ c2r2

(
Pgj − Xij

)
Xij(t + 1) = Xij(t) + Vij(t + 1)

(26)

D. Perform adaptive weights adjustment:

ω =

{
ωmin − (ωmax −ωmin)

f− fmin
f̄− fmin

f ≤ f̄
ωmax f > f̄

(27)
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In the above formula, f is the current fitness value, f̄ is the average fitness value, and
fmin is the minimum fitness value, while ωmax and ωmin are the maximum and minimum
weights, respectively. It can be seen from Figure 4 that the optimization process is as follows:
First, a particle swarm is generated, and the swarm particles are assigned to the parameters
k1, k2, β1, β2, and β3. Then, the model of the control system is run to obtain the performance
index corresponding to the set of controller parameters. Then, the performance index is
transferred to the particle swarm as the fitness value of the current particle. Finally, it is
judged whether the termination condition is met. The error performance index adopts the
ITAE criterion, so the fitness function form of the particle swarm algorithm is as follows:

fitness =
∫ ∞

0
t|e(t)|dt (28)

The tuned parameters are the observer gains β1, β2, and β3, and the gain coefficients
k1 and k2 in the control law. Therefore, the particle swarm algorithm is initialized to
5 dimensions, the initial scale is 50 particles, the termination condition is 50 iterations, the
inertia weights are ωmax = 0.9 and ωmin = 0.36, and the learning factors are cmax = 2.2
and cmin = 0.8. The initialization parameters are shown in Table 3. The fitness curves of the
standard particle swarm and the improved particle swarm algorithm are shown in Figure 8.
We can see that the improved particle swarm algorithm has a faster convergence speed and
better optimization effect (the fitness value is smaller).

Table 3. Initialization parameter of particle swarms.

Parameter k1 k2 β1 β2 β3

Position upper limit 300 300 200 1000 4000
Position lower limit 0.5 0.5 50 50 50
Velocity upper limit 1 1 2 5 5
Velocity lower limit −1 −1 −2 −5 −5

Figure 8. Particle swarm algorithm fitness value change curve.

4.3. Stability Analysis

Stability may be the most important indicator of a control system, especially for aircraft
anti-skid braking systems. The stability of ADRC is also one of the key points of academic
attention, and many landmark achievements have emerged [18–21]. Stability analysis of an
ADRC system was performed via the describing function method by D. Wu et al. [22,23].
In addition, time domain convergences of the ADRC system were proven [22,24]. However,
for typical nonlinear ADRC systems, there is still no suitable Lyapunov function, and there
are many restrictions on the parameters, which makes the method difficult to apply. In this
work, we adapt the absolute stability method to prove the stability of the ADRC designed
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for aircraft anti-skid braking system. Moving forward, we work under the following
assumptions:

(A1) The input of TD is 0 (i.e., v = 0); hence, the output value of TD v1 is also zero.
(A2) Nonlinear state error feedback is converted to linear state error feedback by

first-order approximation.

u =
n

∑
i=1

kizi − z(n + 1)/b (29)

(A3) The nonlinear function ϕ(x) is chosen in the design of ESO, such that for all
x0, xϕ(x) > 0, and ϕF(µ1, µ2) The following two requirements are introduced: ϕ(0) = 0;
∃0 < µ1 < µ2 for ∀x0, µ1x2 < xϕ(x) < µ2x2 (i.e., ϕ(x)F(0,+]). Then, the output of ESO
can be rewritten as: 

ż1 = z2 − β1 ϕ(z1 − y)
...

żn = z(n+1) − βn ϕ(z1 − y) + bu
ż(n + 1) = −(n + 1)ϕ(z1 − y))

(30)

(A4) Let the object system under control be a linear time-invariant system. Then, the
state space form of the controlled object can be expressed as:

ẋ1 = x2
...
ẋn = −anx1 − a(n−1)x2 − . . .− a1xn + bu
ż(n + 1) = −(n + 1)ϕ(z1 − y) )

(31)

Substituting Equation (29) into Equation (31) yields:{
Ẋ = A11X + A12Z + a13z(n + 1)
y = x1

(32)

where X = [x1, x2, . . . , xn]
T , Z = [z1, z2, . . . , Zn]

T , a13 = [0, . . . , 0,−1]T ∈ Rn

A11 =


0 1 0 · · · 0
0 0 1 0 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · a1

 A12 =


0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0
−bk1 · · · −bkn


Substituting Equation (29) into Equation (30), yields:

Ẋ = A11X + A12Z + a13z(n + 1)
Ż = A22Z + b2u
ż(n + 1) = β(n + 1)u
u = −ϕ(y)
y = cT

1 X + cT
2 Z

(33)

Let Y = A11X + a13z(n + 1), z(n + 1)′ = z(n + 1)/β(n+1), and we get:
Ẏ = A11Y + A11 A12Z + a13β(n + 1)u
Ż = A22Z + b2u
ż(n + 1) = u
u = −ϕ(y)
y = cT

1 A11
−1Y + cT

2 Z− cT
1 A11

−1a13β(n + 1)z(n + 1)′

(34)
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Equation (34) conforms to one standard form of the first critical situation of absolute
stability [25], that is, 

ẋ = Ax + bu
ε = u
u = −ϕ(y)
y = cTx = pε

(35)

where A =

[
A11 A12 A12
0 A22

]
b =

[
a13βn+1

b2

]
CT =

[
cT

1 A11
−1 cT

2
]

ρ = −cT
1 A−1

11 a13β(n + 1) = β(n + 1)/an

Theorem 1. The necessary condition of absolute stability of Equation (35) in regard to F(0;+1]
is Reλ(A) < 0; ρ > 0 [26]. If the linear time-invariant object mentioned above is asymptotically
stable (i.e., all the eigenvalues of A11 have a negative real part), at the same time we can ensure all
the eigenvalues of A12 have a negative real part by choosing an appropriate value of parameter ki.
Hence, all the eigenvalues of A have a negative real part; thus, we get the following theorem.

Theorem 2. The necessary conditions of absolute stability of the ADRC system equation (i.e., Equa-
tion (34)) are that the linear time-invariant object is asymptotic and the control parameters are positive,
while at the same time ensuring that Reλ(A22) < 0. Consider now the candidate Lyapunov function:
U(x, y) = xT Px + α

(
y− cTx

)2
+ β

∫ y
0 ϕ(y)dy. If P is chosen as positive definite matrix, then func-

tion U(x, y) is a zero solution. Take the time derivative of Equation (36) and substitute Equation (35)
into the derivative equation U̇(x, y) = −xTQx− 2dTxϕ(y) + γϕ2(y) + 2αρyϕ(y), where Q =
−PA− AT P, d = Pb−

(
αρc + 1/2βATc

)
, γ = β

(
ρ + cTb

)
as yϕ(y) > 0, ρ = β(n+1)/an > 0,

provided α ≥ 0, and the former three terms of Equation 30 are negative quadratic forms of x and ϕ.
Then, U̇ is negative, thus guaranteeing the global asymptotic stability of Equation (35).

Lemma 1. Let Q = QT ∈ Rn, γ ∈ R, d ∈ Rn, CT =

[
Q d
dT γ

]
be positive definite if and only

one of the following two conditions hold:
(1) Q > 0, γ− dTQ−1d > 0;
(2) γ > 0, Q− 1

γ ddT > 0;

Theorem 3. Suppose that λ and β are non-negative real numbers that are not equal to zero at
the same time, and P is a positive definite matrix that can make Q and d satisfy the conditions
of Lemma 1. If this is the case, then the zero solution, according to F(0;+1] of Equation (35), is
absolute stable (Bochun Feng, Shumin Fei. 1990).

Theorem 4. Suppose that α and β are non-negative real numbers that are not equal to zero at
the same time. This makes T(s) = (2αρ + βS)W(s) a positive real function, where W(s) =
cT(sI − A)−1b + ρs is the transfer function of the system represented in Equation (35). Moreover,
two additional factors need to be met: (1) T(s) has at least one negative real part pole; (2) when
α = 0 for all 0 < ε < +1, the linearized system φ(y) = εy is asymptotically stable. Then, the
zero solution of system Equation (30), according to F(0;+1], is absolute stable. As for the aircraft
anti-skid braking system, according to the first approximation, Equation (16) can be approximated as:

ẋ1 = x2
ẋ2 = −a1x1 − a2x2 + g(x1, x2) + bu
y = x1

(36)

where x1 = λ, x2 = −((1−λ)/Jwω)(Ψ(λ)− Tb), and term g(x1, x2) only contains terms higher
than one degree of xi.
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Through transformation we can get the following:
Ẋ = A11X + A12Z + a13zn+1 + a14g(Y)
Ż = A22Z + b2u
żn+1 = βn+1u
u = −ϕ(y)
y = cT

1 X + cT
2 Z

(37)

Comparing this with Equation (35), the only difference is that Equation (37) has a
nonlinear function item g(Y), and g(Y) only contains items higher than one degree. Thus,
we can draw a conclusion that is similar to that of the first approximation theorem [27]
(i.e., Theorem 5).

Theorem 5. If the zero solution of the linear control object system represented in Equation (35)
is absolute stable, then the zero solution of the nonlinear control object (aircraft anti-skid braking
system) Equation (37) is asymptotically stable.

Proof. If the zero solution of Equation (35) is absolute stable, consider the candidate
Lyapunov function:

U̇(x, y) =− xTQx− 2dTxϕ(y)− γϕ2(y)− 2αρyϕ(y)

+ 2xT PG,(x) + βcTG′(x)ϕ(y)
(38)

where G′(x) =

[
a′14g′(Y)

0

]
only contains items higher than one degree of x, and the

definitions of Q, d are given by Equation (32). According to Lemma 1, M =

[
Q d
dT γ

]
is

positive definite, and as G′(x) only contains items higher than one degree of x, the sign
of U̇(x, y) around the neighborhood of the origin only depends on the situation of M (i.e.,
negative definite). Thus, Equation (35) of the aircraft anti-skid braking system with ADRC
is origin asymptotically stable.

5. Simulation Study for Hybrid Runway Conditions

The performance of the algorithm proposed in this paper is verified by an aircraft
anti-skid semi-physical simulation platform Figure 9.

(a) (b)

(c)

Figure 9. Semi-physical simulation platform of anti-skid braking system: (a) electrical console;
(b) hydraulic pump and piping; (c) overall configuration.
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Without loss of generality, we choose the mixed runway case as the simulation case
for the proposed controller. The mixed runway layout is shown in Figure 10.

Figure 10. Schematic diagram of mixed runway layout.

In this test, the initial speed of the anti-skid braking process is 72 m/s, and the failure
speed is 7 m/s. Aircraft speed and tire speed are two important variables in the process of
anti-skid braking, and they are also two dynamic characteristics to be considered in the
design of the controller. The speed at which the body speed decreases to a large extent
represents the braking efficiency of the anti-skid controller, and the difference between
the tire speed and the body speed can roughly reflect the degree of tire slippage. If deep
skidding occurs at high speed, it may lead to a tire blowout phenomenon, and this is an
important problem that needs to be prevented in the design of the anti-skid controller.

As can be seen from Figure 11, under the control of the controller designed in this
paper, the speed of the aircraft body and the wheel speed both drop steadily, and there is
no deep skid phenomenon. When the runway changes, the controller can quickly perform
anti-skid action to prevent wheel lock caused by the instantaneous reduction of ground
friction, which reflects a good control effect.

Figure 12 is a graph of the system slip rate. The slip rate is the most important variable
in the anti-skid control, because the slip rate is the most important factor affecting the
ground bond coefficient. Generally speaking, 0.08–0.12 means that the system slip rate
is relatively good. In this interval, the system stability is better, and the ground friction
force utilization rate is higher. It can be seen from Figure 12 that under the control of the
controller in this paper, the system slip rate can be maintained in the range of 0.08–0.12
most of the time, and there is no deep slip phenomenon during the whole braking process.

Figure 11. Aircraft speed and wheel speed curve on hybrid runway.
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Figure 12. Aircraft slip rate curve on hybrid runway.

Figure 13 is a graph of the braking torque of the system. It can be seen that at the
moment of runway switching (10 s, 20 s), the torque output by the controller can be adjusted
quickly, because the runway is set to switch from a high-coefficient runway to a ground-
coupling coefficient runway, so the controller quickly decompresses when the runway is
switched, which avoids the problem of deep skidding and reflects the good adaptability to
the runway state.

Figure 13. Brake torque curve on hybrid runway.

6. Conclusions

ADRC is a very high-quality approach for the manipulation and disturbance rejection
of nonlinear systems. In this work, ADRC is designed to control the anti-skid braking
progress of aircraft, and in order to better adjust the controller parameters, this paper also
proposes an improved particle swarm optimization algorithm. It can be seen from Figure 8
that compared with the ordinary particle swarm algorithm, the improved particle swarm
algorithm shows a faster convergence speed and better fitness.

This paper also proves the stability of the designed controller based on the Lyapunov
method. The proposed algorithm was tested on an aircraft anti-skid braking semi-physical
platform, and the result showed that the ADRC controller keeps the system operating
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in a stable region without deep skidding. Moreover, the tracking error of the adhesion
coefficient converges to a small neighborhood around zero for each simulation.
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