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Abstract: A conversion method based on the inversion of Mel frequency cepstral coefficient (MFCC)
features was proposed to convert whispered speech into normal speech. First, the MFCC features of
whispered speech and normal speech were extracted and a matching relation between the MFCC
feature parameters of whispered speech and normal speech was developed through the Gaussian
mixture model (GMM). Then, the MFCC feature parameters of normal speech corresponding to
whispered speech were obtained based on the GMM and, finally, whispered speech was converted
into normal speech through the inversion of MFCC features. The experimental results showed that
the cepstral distortion (CD) of the normal speech converted by the proposed method was 21% less
than that of the normal speech converted by the linear predictive coefficient (LPC) features, the mean
opinion score (MOS) was 3.56, and a satisfactory outcome in both intelligibility and sound quality
was achieved.

Keywords: whispered speech conversion; MFCC feature inversion; Gaussian mixture model; cep-
stral distortion

1. Introduction

Whispered speech is a method of articulation different from normal speech [1]; it is
produced without vibration of the vocal cords at a low sound level, which causes the voiced
sound of whispered speech to have no fundamental frequency and an energy 20 dB less
than that of normal speech [2]. Because of these characteristics, whispered speech is widely
used in places where loud noises are prohibited such as conference rooms, libraries, and
concert halls. Because of its potential applications [3–6], in recent years, studies on whis-
pered speech (e.g., whispered speech emotion recognition, whispered speech enhancement,
whispered speech recognition, and whispered speech conversion) have gradually attracted
researchers’ attention. Among them, whispered speech conversion, a technique that con-
verts whispered speech to normal speech, has been widely used in mobile communication,
medical equipment, security monitoring, and crime identification [7–9]. For example, for
a laryngeal cancer patient who has undergone a laryngectomy, the conversion of whis-
pered speech to normal speech can greatly improve the patient’s speech communication
experience and efficiency [10].

At present, whisper speech conversion is mainly divided into two categories. One is
rule-based whisper conversion, mainly using empirical observation or statistical modeling
to generate transformation rules. The other one is machine learning based, which includes
Gaussian mixture model and neural network method [11]. In terms of the conversion of
whispered speech to normal speech, researchers used multiple excited linear prediction
method to implement Chinese speech reconstruction [12,13], in which normal speech is
reconstructed by adding fundamental frequencies to the speech energy based on a whis-
pered speech formant. However, the formant distribution of whispered speech is not
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identical to that of normal speech, and its formant frequencies are shifted to high frequen-
cies [14]; therefore, the sound quality of the reconstructed speech was poor. Perrotin et al.
adopted the mixed excitation linear prediction (MELP) model [15] to reconstruct whispered
speech, where the whispered speech is divided into five frequency bands. Of these five
frequency bands, four low-frequency bands were treated as voiced excitation, and the
high-frequency band was treated as unvoiced excitation, to which fundamental frequencies
are added based on the energy of speech, modifying the characteristics of the formant
spectrum. The advantage of this method is its easy application to communication systems;
however, because the added fundamental frequency is more monotonous than normal
speech, the reconstructed speech often sounds “metallic”. Sharifzadeh et al. improved the
code-excited linear prediction (CELP) method by adding a whispered speech preprocessing
module, a fundamental frequency-generation module and a formant modification module
to achieve the conversion of whispered speech to normal speech. Their model has very
limited effectiveness on continuous speech and is prone to generate quantization errors
when performing vector quantization on an excitation source [16]. Xu et al. proposed a
whispered speech reconstruction system based on homomorphic signal processing and
relative entropy segmentation [17,18], which can better eliminate the metallic sound caused
by adding fundamental frequencies, regardless of rhyme.

The above methods are all rule-based whispered speech conversion techniques. In
recent years, an increasing number of scholars have begun to use the statistical distribution
characteristics of speech features to convert speeches and adopt probabilistic methods
to achieve the prediction of target feature vectors from source feature vectors. Among
them, the Gaussian mixture model (GMM) is the most widely used. Toda et al. applied
the GMM-based speech conversion methods to whispered speech conversion for the first
time [19–23], making it possible to convert whispered speech to normal speech. In addition,
Chen et al. proposed to build a continuous probability model for the spectral envelope of
whispered speech using a probability-weighted GMM [24] to obtain the mapping relations
of channel parameters between the whispered speech and the corresponding normal
speech. The probability-weighted GMM can theoretically obtain a reasonable mapping
relation between the source and target feature vectors, but it is still difficult for GMM to
build a model because of the many dimensions of the spectral envelope. Therefore, it
is important to choose speech features when converting whispered speech using GMM.
Compared with other feature parameters, the Mel frequency cepstral coefficient (MFCC)
simulates the hearing characteristics of the human ear. Boucheron et al. used MFCC feature
inversion to synthesize speech, and the perceptual evaluation of speech quality (PESQ) of
the synthesized speech was over 3.5 [25]. To consider the sparseness of speech, in this study,
we used the L1/2 algorithm to reconstruct speech based on the research by Boucheron
et al., which improved the reconstruction effectiveness.

In this paper, we report a method for converting whispered speech to normal speech
based on MFCC and GMM. In the model establishment stage, we extracted the MFCC
parameters of each frame of whispered speech and reference normal speech from the
parallel corpus; we then used the GMM to establish the joint probability distribution
between the frame feature parameters. In the conversion stage, we first input the frame
feature parameters of whispered speech into the model. After estimating the feature
parameters of normal speech, we used the MFCC feature parameter inversion method to
directly reconstruct normal speech. Compared with existing GMM-based whispered speech
conversion methods, the GMM developed in this study took into account the correlation
between adjacent frames of speech, and the proposed method does not require fundamental
frequency estimation when reconstructing speech.
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2. Whispered Speech Conversion Process
2.1. GMM-Based Whispered Speech Conversion Model

GMM-based whispered speech conversion reconstructs normal speech from whispered
speech by estimating the acoustic parameters of normal speech. As shown in Figure 1, the
method has two stages: the model establishment stage and the conversion stage. In the first
stage, the MFCC parameters of each frame of normal speech and whispered speech were
extracted, and then the reference normal speech and whispered speech were processed with
dynamic time warping (DTW). The normal speech-whispered speech joint MFCC feature
distribution model was then constructed using GMM. In the second stage, the MFCC
features of whispered speech were converted to the MFCC features of normal speech using
the established GMM from the first stage, and the normal speech was then synthesized
using the MFCC features of normal speech.
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The probability density function of an M-order GMM was obtained by a weighted
summing of M Gaussian probability density functions as follows:

P(X/λ) =
M

∑
i=1

wibi(X) (1)

where X is a D-dimensional random vector; bi(Xt) is the subdistribution (i = 1, . . . , M); wi
is the mixed weight (i = 1, ..., M). Each subdistribution is a D-dimensional joint Gaussian
probability distribution, which can be expressed as follows:

bi(X) =
1

(2π)D/2|Σi|1/2 exp
{
−1

2
(X− µi)

tΣ−1
i (X− µi)

}
(2)

where µi is the mean vector, and Σi is the covariance matrix.
Assuming that the source feature vector and the target feature vector conform to the

joint Gaussian probability distribution, the GMM was used to model the mixed MFCC
feature parameters as follows:
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where N
((

x
y

)
, µm, Σm

)
is the mth Gaussian component, where µm and Σm are the mean

and the covariance, respectively, of the mth Gaussian component of the GMM; µx
m, µ

y
m are

the source feature vector corresponding to the mth Gaussian component and the mean
vector of the target feature vector, respectively; Σxx

m , Σyy
m are the autocorrelation matrixes of

the source target feature vector and the target feature vector, respectively, corresponding
to the mth Gaussian component; Σxy

m , Σyx
m are the covariance matrixes of the source target

feature vector and the target feature vector, respectively, corresponding to the mth Gaussian
component; am is the probability weight of the mth Gaussian component.

The expectation-maximization (EM) algorithm was used to estimate the parameters
of the Gaussian probability distribution. In each Gaussian component, a linear relation
between the source feature vector and the target feature vector was developed as follows:

ŷt =
M

∑
m=1

p(cm|xt)(Amxt + Bm) (5)

where p(cm|xt) is the posterior probability of the tth frame feature vector in the mth Gaus-
sian component; Am is the conversion matrix of the mth Gaussian distribution; Bm is the
offset vector. Solving Am and Bm using the least square error criterion yields the following:

Am = Σyx
m Σxx−1

m , Bm = µ
y
m − A∗Mµx

m (6)

p(cm|xt) =
amN(xt, µx

m, Σxx
m )

M
∑

m=1
amN(xt, µx

m, Σxx
m )

(7)

where am is the probability weight of the mth Gaussian component, and xt is the source
feature parameter vector of the tth frame.

2.2. Inversion of Speech Features

The MFCC analysis is based on the mechanism of human hearing characteristics, i.e.,
the analysis of the speech spectrum based on the results of human hearing experiments.
For this process, it is a common practice to pass the speech signal through a series of filter
banks, which are called Mel filter banks. When the speech signal passes through the filter
banks, the output is the power spectrum at the Mel frequency. By performing a discrete
cosine transform (DCT) on all the log operation of filter bank outputs, we obtain the MFCC
as follows:

m f cc = DCT{log(z)} (8)

where Z is the energy spectrum of the Mel filter as follows:

z = Φy (9)

The weight matrix Φ ∈ RK×(N/2+1) of the Mel frequency scale is the tone frequency
based on the perception by the human ear. The value of the Mel frequency scale exhibits
a roughly logarithmic distribution corresponding to the actual frequency. The speech
frequency can be divided into a series of triangular filter sequences, i.e., the Mel filter banks,
in which K is the spectral line of the Mel filter banks, y is the power spectrum of speech
sound x and X is the frequency domain data of speech by STFT, as follows:

y = |X|2 = |F{x}|2 (10)



Algorithms 2022, 15, 68 5 of 12

To obtain the reconstructed speech by the inverting MFCC, the process of obtaining
MFCC features was inverted. Since the DCT, log, and squaring operations are all reversible,
when Z and Φ are known, it is possible to more accurately estimate the energy spectrum y
of the speech from the MFCC features and its phase spectrum [26,27] to obtain the inverted
speech frame.

1. Estimation of energy spectrum Y

Because of the sparse characteristics of speech signals, the use of sparse characteristics
in their decomposition can effectively avoid interference from some noises, which is of
great significance for signal reconstruction. Xu et al. [28] conducted an in-depth study on
the sparse decomposition of signals and demonstrated the advantages of the L1/2 norm in
the sparseness of signal decomposition, which has achieved good results when applied to
the reconstruction of sparse signals. In this study, we propose an L1/2 + 2 double sparse
constraint-based signal reconstruction model and a solution for y with known Z and Φ.
The objective function model is as follows:

min
y
{||Φy− z||22 + ∑N

i (λ2 ||yi||1/2
1/2 + λ1||yi||22)} (11)

where λ1 and λ2 are the regularization parameters that control the sparseness and smooth-
ness, respectively, of the coefficient vector, satisfying λ1 > 0 and λ2 > 0. From Equation (4),
we obtain the updated formula for y as follows:

y = (I + µλ2
2 || · ||

1/2
1/2)

−1
((1− λ1µ)y + µΦT(z−Φy))

⇒ y = Hλ2,µ,1/2(Bµ(y))
(12)

where∇(|| · ||1/2
1/2) is the gradient of ||y||1/2

1/2; ΦT is the transpose of Φ; (I + µλ2
2 || · ||

1/2
1/2)

−1
is the

operator of y; Hλ2,µ,1/2(·) =
(

I + λ2µ
2 ∇(|| · ||

1/2
1/2)

)−1
; Bµ(y) = (1− λ1µ)y + µΦT(z−Φy).

According to the literature [29], we set the following:

y =

{
4
3 [B(y)]i ∗ (cos(π

3 −
φλ2,µ(yi)

3 ))
2
, |[B(y)]i| >

3√54
4 (λ2µ)

2
3

0, otherwise
(13)

where φλ2,µ(yi) = arccos
(

λ2µ
8 ( |yi |

3 )
− 3

2
)

, and i is the number of iterations (i = 1, 2, 3 · · · ).
By the method, the energy spectrum can be directly calculated from the MFCC spectrum
without fundamental frequency estimation.

2. Phase spectrum estimation

We used the least squares method to estimate the speech frame from the power
spectrum, i.e., the power spectrum was square-rooted and then converted into an amplitude
spectrum. An appreciable amount of phase information is lost when obtaining the power
spectrum by feature extraction; thus, it is important to recover the phase spectrum. The least
square method with the inverse short-time Fourier transform magnitude (LSE-ISTFTM)
algorithm was used to modify the discrete Fourier transform (DFT) and inverse discrete
Fourier transform (IDFT) to estimate the phase spectrum [30], which, in combination with
the given amplitude spectrum, was then used to estimate the speech for each frame in
the time domain. Finally, the speech was reconstructed by adding and overlapping the
sequence of speech frames. The LSE-ISTFTM Algorithm 1 process is as follows:
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Algorithm 1 LSE-ISTFTM

1: Input: Amplitude spectrum,
∣∣∣X̃∣∣∣; Number of iterations, M

2: Output: Estimated speech frame, x̂
3: Initialize x̂(1) to white noise
4: While k ≤ M, do
5: X̂(k) ← F{x̂(k)}
6: X̂(k) ←

∣∣∣X̃∣∣∣ej∠X̂(k)

7: x̂(k+1) ← F−1{X̂(k)}
8: k← k + 1
9: End while

3. Simulation Experiment
3.1. Experimental Conditions

The experiment was performed on a PC with a Core i5 3.2 GHz processor and 4 G
memory, using the MATLAB 2013a simulation software. To verify the effectiveness of the
proposed algorithm, we used 100 sentences that had been recorded in a quiet environment.
There were 10 speakers (five females and five males), each with 10 sentences, covering
five subjects such as stock market, catering, tourism, sports and film. The length of each
sentence was approximately 2 s, with a sampling rate of 8 kHz and a precision of 16 bit.
The frame segmentation was performed on the signals, with a frame length of 512 sampling
points and an interframe overlap of 50%, three frames of whispered speech and one frame
of normal speech constituted a joint feature vector. We randomly selected 90% whispered
speech sentences and the corresponding parallel corpus as training data, the rest (10%)
was used as test data. The model does not consider speaker relevance. Because the speech
information of the current frame of speech has a close relationship with the frame before
and after the current frame, to achieve better conversion effectiveness, we not only used
the current speech frame after DTW but also considered the frames before and after the
speech frame. Also, under the condition that the pronunciation is standard Chinese, if the
training set and test set are different subjects, even unseen speaker, it has little impact on
the final result.

To verify the effectiveness of the proposed L1/2 algorithm, we compared it with the
L2 algorithm; the results are shown in Figure 2, which the number of EM iterations is 300.

The data in Figure 2 show that the effectiveness of the proposed algorithm on speech
reconstruction has been greatly improved compared to that of the L2 algorithm. We
generated the spectrograms of the two algorithms after the inversion to further validate the
advantages of the proposed method, as shown in Figure 3.

The data in Figure 3 show that compared to the L2 algorithm, the reconstructed
speech using the proposed algorithm was clearer, with reduced interference from noise.
The proposed method obtained the spectrograms similar to the reference normal speech
without estimating the fundamental frequency. The harmonic component can be clearly
seen from the spectrograms, indicating that the proposed method can obtain the spectro-
grams estimation of normal speech. We thus performed subsequent experiments using the
proposed algorithm.
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In the next experiment, we examined the performance of the proposed method both
subjectively and objectively. The subjective test mainly used the auditory characteristics of
the human ear to evaluate the converted speech from multiple aspects, such as propensity,
intelligibility, and naturalness, using the mean opinion score (MOS) scale. The MOS scale
categorizes speech quality into five levels, i.e., 1: Bad, unbearable annoying; 2: Poor,
obviously distorted and annoying; 3: Fair, perceivably distorted and slightly annoying;
4: Good, slightly distorted; 5: Excellent, no perceivable distortion. The subjects were asked
to score the converted speech based on the above scale to assess its quality. For the objective
test, we used the cepstral distortion (CD), which is calculated by the following formula:

CD =
10

log 10

√√√√2
D

∑
d=1

(Cd − Cd
′)2 (14)

where Cd and Cd
′ are the dth dimensional Mel frequency cepstra of the converted speech

and the target speech, respectively, and d is the number of speech frames. The average
value of the frames is used as the CD value of the speech segment.

The number of Gaussian components of GMM (M) must be determined first, and it is
difficult to deduce the optimal M theoretically; however, that number can be experimentally
obtained based on different data sets. It is generally set to 4, 8, 16, etc. In this study, from
the results in Figure 4, we found the optimal conditions are as follows: multiframe speech
and M = 32. Thus, in subsequent experiments, these conditions were adopted.
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3.2. Experimental Results

When using the MOS score for a subjective evaluation, the higher the MOS score, the
higher the intelligibility and naturalness of the converted speech. In the MOS evaluation,
we invited five testers to score 10 converted speeches from each conversion direction.
The results are shown Table 1 in which LPC [31] was used to extract partial correlation
coefficients and build signal generation models for synthesis, the network configurations
of DNN-based [11] were 60-120-60-120-60, MFCC represents the result from using only
the current frame for feature conversion, and MFCCs represents the result from using
both the current frame and the previous and subsequent frames (i.e., multiple frames) for
feature conversion.



Algorithms 2022, 15, 68 9 of 12

Table 1. Comparison of the MOS scores for four methods.

Conversion Method Linear Predictive Coefficient (LPC) DNN MFCC MFCCs

MOS mean 3.02 3.22 3.45 3.56

The results in Table 1 show that using multiple frames is more effective than using a
single frame. At the same time, the MOS scores of the converted whispered speech using
the MFCC feature inversion are all greater than 3, indicating the conversion is very effective
in recognizing whispered speech.

CD is an objective evaluation standard, especially for evaluating the performance
of cepstral feature conversion. According to the formula, the smaller the distance (d),
the closer the converted speech to normal speech. As shown in Figure 5, the speech
reconstructed using the proposed method was more similar to normal speech, indicating
that the feature inversion algorithm is a feasible method for whispered speech conversion.
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speeches using LPC, DNN, MFCC and MFCCs. (b) MOS with 95% confidence w.r.t LPC, DNN,
MFCC and MFCCs.

To more visually show the conversion effectiveness, a spectrogram case is shown in
Figure 6, in which the speech sentence is “gu min sang shi xin xin” (“shareholders have lost
confidence”). The data in Figure 6 show that the MFCC feature inversion-based method
proposed in this study achieved a better conversion between formant and spectral envelope.
The whispered speech is a voiced sound with an energy approximately 20 dB lower than
that of normal speech; however, the sound energy is increased significantly in the converted
speech. The speech converted using the proposed method also exhibits a clearer harmonic
phenomenon than whispered speech, with significant horizontal bars of the harmonics and
distinct alternation of voiced and unvoiced sounds, indicating that the spectrogram of the
converted speech is more similar to that of normal speech.
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DNN; (e) speech converted using MFCC; (f) speech converted using MFCCs.



Algorithms 2022, 15, 68 11 of 12

4. Conclusions

To consider the sparseness of speech, we proposed to use the L1/2 algorithm to invert
the MFCC features, which generates a good hearing effect. We used the GMM to jointly
model the feature parameters of whispered speech and normal speech, we obtained a
conversion model that converted whispered speech features to normal speech features,
and lastly, we adopted feature inversion to reconstruct the converted speech. Experiments
showed that the proposed method was very effective in converting whispered speech, with
significant improvement in sound quality
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