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Abstract: In this paper, we continue an earlier study of the regularization procedures of linear
copositive problems and present new algorithms that can be considered as modifications of the
algorithm described in our previous publication, which is based on the concept of immobile indices.
The main steps of the regularization algorithms proposed in this paper are explicitly described and
interpreted from the point of view of the facial geometry of the cone of copositive matrices. The results
of the paper provide a deeper understanding of the structure of feasible sets of copositive problems
and can be useful for developing a duality theory for these problems.

Keywords: linear copositive programming; normalized immobile index set; regularization algorithm;
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1. Introduction

The problems of copositive programming (CoP) form a special class of conic optimiza-
tion problems in which the images of feasible sets belong to a convex cone of the so-called
copositive matrices (i.e., matrices that are positive semidefinite on the non-negative orthant).
Copositive models exist for many important applications, including NP-hard problems.
For references on the motivations and applications of CoP, see, e.g., [1–4].

In linear CoP, the objective function is linear and the constraints are formulated using
linear matrix functions. Linear copositive problems are closely related to linear semi-infinite
programming (SIP) and semidefinite programming (SDP). Although copositive and semidefinite
problems are special cases of SIP problems, CoP deals with more complex and less studied
problems than SDP. There are many publications devoted to the theory and methods of SIP,
CoP, and SDP. We refer interested readers to [1,3,5–7], and the references therein.

In convex and conic optimization, optimality conditions and duality results are usually
formulated when certain regularity conditions, the so-called constraint qualifications (CQ),
are met (see, for example, [6–8]). Such conditions should guarantee the fulfillment of
Karush–Kuhn–Tucker (KKT)-type optimality conditions and the property of strong duality
which consists of the fact that when the primal problem and the corresponding Lagrangian
dual problem are consistent, the optimal values of these problems are equal and the dual
problem reaches its maximum. Strong duality is the cornerstone of convex optimization
and plays a particularly important role in the stability of numerical methods. One of the
most used CoP regularity conditions is the Slater CQ. The most efficient and popular SIP
and SDP software is based either on interior point methods or on the discretization approach
and the assumption that the Slater regularity condition is satisfied.

Unfortunately, even for linear copositive problems, the regularity conditions cannot
always be guaranteed. In the cases where regularity conditions are not met, there is no
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guarantee that an optimal solution satisfies the KKT-type optimality conditions, the first-
order optimality conditions of the Fritz–John-type become degenerate (they are satisfied
for all feasible solutions and hence are not informative), and the strong duality relation
may fail. This creates numerical difficulties in solving problems.

As a rule, the violation of a CQ is caused by an inconvenient description of the
feasible set of the optimization problem. Thus, the idea of regularization arises quite
naturally. Regularization aims to improve the modeling of an optimization problem by
obtaining an equivalent and more convenient reformulation of this problem with some
given regularity properties.

In the literature there are several approaches to the regularization of conic optimization
problems. In [9,10], the concept of the minimal cone of constraints was used by Borwein
and Wolkowicz to regularize abstract convex and conic convex problems for which any CQ
fails. The algorithm proposed there to describe the minimal cone is based on the gradual
reduction of the faces of the constraints’ cone, and the authors called it the facial reduction
algorithm (FRA). Another approach, dual regularization, was proposed by Luo, Sturm, and
Zhang (see [11] and the references therein). This approach aims to reduce the duality gap
(the differences between the primal and dual optimal values) of regularized problems
by expanding the dual constraints’ cone. On iteration of the FRA proposed by Waki and
Muramatsu in [12], the faces of a given conic problem are transformed in such a way that
each reduced face is dual to the cone generated in the corresponding dual regularization
step from [11].

The facial reduction approach has been successfully applied to SDP and second-
order cone programming problems, and to certain classes of optimization problem over
symmetric (i.e., self-dual and homogeneous) and nice cones (see, for example, [13–16]).
At the same time, the question of the effectiveness of such an approach to other classes of
problems remains open. This is because the known FRAs are more conceptual than practical.

In [17], using our previous results published in [18,19], and others, we proposed a
different approach to the regularization of linear CoP problems. This approach is based on
the concept of immobile indices (i.e., indices of the constraints that are active for all feasible
solutions) originally introduced for SIP and SDP problems. We used this approach to
develop two finite algorithms for the regularization of linear CoP problems: one method is
called one-step regularization and the another is the iterative algorithm REG-LCoP (regular-
ization of linear copositive problems). The first method consists of one step, but certain
difficulties may arise when applying it, since it is based on a priori possession of some
additional information about some finite subset of immobile indices. Unlike the one-step
regularization, the algorithm REG-LCoP does not require any additional information in
advance. Comparing this algorithm with other algorithms, we showed that it is more
constructive because its iterations (using the concept of immobile indices) can be more
explicitly described than the iterations of other FRA-based algorithms (which use the
concept of the minimal cone).

As far as we know, the algorithm REG-LCoP is the first constructive regularization pro-
cedure developed specifically for linear copositive problems. This algorithm is important
not only because it is based on previously unexplored properties of copositive problems,
but also conceptually, since new algorithms and methods can be developed on its basis.

In this paper, we propose three new algorithms that are modifications of REG-LCoP.
Although these algorithms have structures similar to that of the REG-LCoP algorithm,
they do not require either the feasibility of the original optimization problem or the initial
knowledge of a set of immobile indices and can be considered as developments in the
approach to the regularization of copositive problems, started in [17].

All the algorithms presented in the paper use the properties of the copositive problem
established here and are based on alternative representations of its feasible set that are
obtained using the concept of normalized immobile indices. The algorithms are finite and
their iterations are explicitly described.



Algorithms 2022, 15, 59 3 of 17

The main differences between the modifications of the REG-LCoP algorithm presented
here consist in the auxiliary problems that are solved in their iterations and in the prop-
erties of their solution sets. According to their specific needs, a user can choose the most
appropriate version of the main algorithm.

It is important to emphasize that the algorithms described in the paper are important
not only from the point of view of applications, but also as they contribute to the theoretical
study of the structural properties of copositive problems. The main steps of the algorithms
are interpreted in the paper from the point of view of the facial geometry of the cone of
copositive matrices. Therefore, the results of the paper allow a deeper understanding of
the structure of the feasible set of a given copositive problem and can serve as a basis for
new types of optimality conditions and various forms of dual problems that satisfy strong
duality relations.

The paper is organized as follows. Section 1 hosts the Introduction. In Section 2,
we formulate the problem, and introduce basic notation and some preliminary results.
The properties of the set of normalized immobile indices for the copositive problem under
investigation are considered in Section 3. In Section 4, we describe and justify three versions
of the REG-LCoP algorithm from [17]. A comparison of these methods among each other
and with one method from the literature is provided. Section 5 contains conclusions, and
some technical proofs are given in the Appendix A.

2. Problem Statement, Basic Notation, and Some Preliminary Results

Given an integer p > 1, denote by Rp
+ the set of all p vectors with non-negative

components (the non-negative orthant in Rp); let S p and S p
+ be the space of real symmetric

p× p matrices and the cone of symmetric positive semidefinite p× p matrices, respectively;
and let COP p stay for the cone of symmetric copositive p× p matrices:

COP p := {D ∈ S p : t>Dt ≥ 0 ∀t ∈ Rp
+}.

Consider a linear copositive programming problem

min
x∈Rn

c>x, s.t. A(x) ∈ COP p, (1)

where x = (x1,. . . , xn)> is the vector of decision variables. The data of the problem above
consist of the vector c ∈ Rn and the constraints matrix function A(x) in the form

A(x) :=
n

∑
j=1

Ajxj + A0, (2)

with given matrices Aj ∈ S p, j = 0, 1, . . . , n.
It is well known (see, e.g., [5]) that the copositive problem (1) is equivalent to the

following convex SIP problem:

min
x∈Rn

c>x, s.t. t>A(x)t ≥ 0 ∀t ∈ T, (3)

with a p- dimensional compact index set T. We define this set as a simplex

T := {t ∈ Rp
+ : e>t = 1}, (4)

where e = (1, 1,. . . , 1)> ∈ Rp.
Denote by X the feasible set of the equivalent problems (1) and (3):

X := {x ∈ Rn : A(x) ∈ COP p} = {x ∈ Rn : t>A(x)t ≥ 0 ∀t ∈ T}. (5)

Evidently, either the set X is convex or it is empty.
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Let us reformulate some standard definitions for the cone COP p. A convex subset F
of the cone COP p is its face if for any x ∈ COP p and y ∈ COP p, the inclusion x + y ∈ F
implies x ∈ F, y ∈ F. Notice that any face of a cone is also a cone. A faceF of COP p is called
exposed if it can be presented as the intersection of COP p with a supporting hyperplane.

Given the copositive problem COP p, let Fmin be the smallest (by inclusion) face of
COP p containing the image set D of the constraints of this problem defined as follows:

D := {A(x), x ∈ X}. (6)

The face Fmin will be called here the minimal face of the optimization problem (1).
According to the commonly used definitions, the constraints of the copositive

problem (1) satisfy the Slater condition if

∃x̄ ∈ Rn such that A(x̄)∈ int COP p ={D ∈ S p : t>Dt > 0 ∀t ∈ Rp
+, t 6= 0}, (7)

where int C stays for the interior of a set C and 0 denotes the null vector in the corresponding
finite dimensional space.

As it was mentioned in the Introduction, in [17] we described a regularization algo-
rithm REG-LCoP specially designed for problems in the form (1). In this paper we go
further and develop new modifications of the algorithm REG-LCoP that are more explicit
and have less additional requirements. To justify these modified algorithms, we need some
preliminary results.

In what follows, to simplify notation, for y = (y1,. . . , yn)> ∈ Rn, y0 ∈ R, and µ ∈ R,
the vector (y>, y0)

> ∈ Rn+1 will be denoted as (y, y0) ∈ Rn+1, and the vector (y>, y0, µ)> ∈
Rn+2 as (y, y0, µ) ∈ Rn+2.

Introduce a matrix function B(y, y0) :=
n

∑
j=1

Ajyj + A0y0 and consider the set

Z :={(y, y0) ∈ Rn+1 : B(y, y0) ∈ COP p, y0 ≥ 0}
={(y, y0) ∈ Rn+1 : t>B(y, y0)t ≥ 0 ∀t ∈ T, y0 ≥ 0}.

(8)

Notice that Z 6= ∅.

Given the sets X 6= ∅ and Z defined in (5) and (8), respectively, following [19], we
define here the corresponding sets of (normalized) immobile indices Tim(X) and Tim(Z):

Tim(X) := {t ∈ T : t>A(x)t = 0 ∀x ∈ X}, (9)

Tim(Z) := {t ∈ T : t>B(y, y0)t = 0 ∀(y, y0) ∈ Z}. (10)

Generally speaking, the set of immobile indices of a given optimization problem is
defined by the indices of constraints which are active for all feasible solutions.

Based on Lemma 1 and Proposition 1 in [19], let us formulate the following lemma.

Lemma 1. Given the linear copositive problem (1), suppose that X 6= ∅. Then

(i) the Slater condition (7) is equivalent to the emptiness of the set of normalized immobile indices
Tim(X),

(ii) The set Tim(X) is either empty or can be presented as a union of a finite number of convex
closed bounded polyhedra.

For a vector t = (tk, k ∈ P)> ∈ Rp
+ with P := {1, 2,. . . , p}, define the index set

P+(t) := {k ∈ P : tk > 0}.
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Given a set C ⊂ Rp and a vector l ∈ Rp, denote by ρ(l, C) the distance between this
set and the vector, ρ(l, C) := min

τ∈C
∑

k∈P
|lk − τk|, and by convC, the convex hull of the set C.

Here and in what follows, for a vector τ ∈ Rp, we denote by τk, k ∈ P, its components.
Consider a finite non-empty subset W of the simplex T defined in (4). Without loss of

generality, we suppose that the elements of the set W are indexed as follows:

W = {τ(i), i ∈ I} ⊂ T, 0 < |I| < ∞, (11)

where I is an index set. For the set W, define the number

σ(W) := min{τk(i), k ∈ P+(τ(i)), i ∈ I} > 0, (12)

and the sets

Ω(W) := {t ∈ T : ρ(t, convW) ≥ σ(W)}, (13)

X (W) := {x ∈ Rn : A(x)τ(i) ≥ 0 ∀i ∈ I; t>A(x)t ≥ 0 ∀t ∈ Ω(W)}, (14)

Z(W) :={(y, y0) ∈ Rn+1 : B(y, y0)τ(i) ≥ 0 ∀i ∈ I;

t>B(y, y0)t ≥ 0 ∀t ∈ Ω(W), y0 ≥ 0}.
(15)

Suppose that the constraints of problem (1) do not satisfy the Slater condition; i.e.,
the set of normalized immobile indices Tim(X) of this problem is not empty.

By following the proof of Theorem 5 in [18], we can prove the next theorem.

Theorem 1. Consider problem (1) with the feasible set X 6= ∅ given in (5) and the set Z given
in (8). Then

(i) For any set W ⊂ Tim(X) in the form (11), the equality X = X (W) holds true, where the set
X (W) is defined in (14).

(ii) For any set W ⊂ Tim(Z) in the form (11), the equality Z = Z(W) holds true, where the set
Z(W) is defined in (15).

This theorem gives us alternative representations of the related sets X and Z on
the basis of a given finite set (11). This theorem and the results of the next section form
a basis for new regularization algorithms that will be described below. Each of these
algorithms successively generates a finite sequence of finite sets Wm = {τ(i), i ∈ Im} ⊂ T,
m = 1,. . . , m∗, and hence the corresponding representations Z(Wm) of the non-empty set
Z . At the final iteration of the algorithm, a set Wm∗ is constructed which allows one either
to recognize the infeasibility of the problem (1) or to obtain an equivalent representation
X(Wm∗) of the feasible set X satisfying the regularity condition.

3. Properties of the Set of Normalized Immobile Indices

In this section, we consider a copositive problem in the form (1) with the corresponding
sets X, Z , Tim(X), and Tim(Z) defined in (5) and (8)–(10), respectively. The propositions
below describe the properties of these sets, show the relations between the sets, and allow
one to recognize the infeasibility of the problem (1). These results are then used in the
next section to construct the algorithms for regularization of the CoP problem without a
feasibility assumption.

Proposition 1. If Tim(Z) = ∅, then X 6= ∅ and Tim(X) = ∅.

Proof. Note that the set Z defined in (8) is not empty. Since Tim(Z) = ∅, there exist a
vector (ỹ, ỹ0) ∈ Z and a number µ such that

t>B(ỹ, ỹ0)t ≥ µ > 0 ∀t ∈ T. (16)
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If ỹ0 > 0, consider vector x̄ := ỹ/ỹ0. From (16), it follows that t>A(x̄)t ≥ µ/ỹ0 > 0
for all t ∈ T. Hence, X 6= ∅ and Tim(X) = ∅.

Suppose now that ỹ0 = 0. Then relations (16) take the form

t>
( n

∑
j=1

Ajỹj

)
t ≥ µ > 0 ∀t ∈ T.

Set: α0 := min
t∈T

t>A0t and θ :=
{

1 if α0 ≥ 0,
−2α0/µ if α0 < 0,

and consider the vector

x̄ := θỹ. Calculate

min
t∈T

t>A(x̄)t ≥ θ min
t∈T

t>
( n

∑
j=1

Ajỹj

)
t + α0 ≥ θµ + α0 =

{
µ + α0 > 0, if α0 ≥ 0,
−α0 > 0, if α0 < 0.

This implies that x̄ ∈ X 6= ∅ and Tim(X) = ∅. The proposition is proved.

Proposition 2. If X 6= ∅, then Tim(X) = Tim(Z).

Proof. Let us, first, show that
Tim(X) ⊂ Tim(Z). (17)

Suppose the contrary: there exists t̄ ∈ Tim(X) such that t̄ 6∈ Tim(Z). The latter relation
implies the following condition:

∃ (ỹ, ỹ0) ∈ Z : t̄>B(ỹ, ỹ0)t̄ > 0, ỹ0 ≥ 0.

In the case ỹ0 > 0, let us set x̄ := ỹ/ỹ0 and in the case ỹ0 = 0, set x̄ := x∗ + ỹ, where
x∗ is an arbitrary vector from X.

It is easy to check that by construction, we have x̄ ∈ X and t̄ >A(x̄)t̄ > 0, but this
contradicts the assumption t̄ ∈ Tim(X). Hence, inclusion (17) is proved.

Now let us show that
Tim(Z) ⊂ Tim(X). (18)

Suppose the contrary: there exists t̄ ∈ Tim(Z) such that t̄ 6∈ Tim(X). Then for some
x̄ ∈ X, it holds that t̄ >A(x̄)t̄ > 0.

Consider vector z̃ := (ỹ = x̄, ỹ0 = 1). By construction, z̃ ∈ Z and t̄ >B(z̃)t̄ > 0,
but this contradicts the assumption t̄ ∈ Tim(Z). Hence, inclusion (18) is valid and the
proposition is proved.

Proposition 3. Given τ(i) ∈ Tim(Z), i ∈ I, suppose that the set

∆X := {x ∈ Rn : A(x)τ(i) ≥ 0 ∀ i ∈ I} (19)

is empty. Then the set X is empty too.

Proof. Suppose the contrary: ∆X = ∅ but X 6= ∅.
Since X 6= ∅, then by Proposition 2 we have τ(i) ∈ Tim(X), i ∈ I. Hence, according

to Proposition 2 in [20], the following inequalities hold true: A(x)τ(i) ≥ 0 ∀ i ∈ I, for
all x ∈ X. However, this contradicts the assumption that ∆X = ∅. The proposition is
proved.
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Proposition 4. Given a finite set {τ(i), i ∈ I} ⊂ Tim(Z), suppose that there are numbers and
vectors γi > 0, τ(i) ∈ T, i ∈ ∆I, λ(i) ∈ Rp

+, i ∈ I, such that

∑
i∈∆I

γi(τ(i))>Ajτ(i) + ∑
i∈I

(λ(i))>Ajτ(i) = 0 ∀j = 1, ..., n;

∑
i∈∆I

γi(τ(i))>A0τ(i) + ∑
i∈I

(λ(i))>A0τ(i) =: η < 0.
(20)

Then, X = ∅.

Proof. Suppose the contrary: relations (20) hold true and there exists x∗ ∈ X. Then from
Proposition 2 it follows that τ(i) ∈ Tim(X) ∀i ∈ I, and hence

A(x∗)τ(i) ≥ 0 ∀i ∈ I, t>A(x∗)t ≥ 0 ∀t ∈ T. (21)

Denote
β∗ := ∑

i∈∆I
γi(τ(i))>A(x∗)τ(i) + ∑

i∈I
(λ(i))>A(x∗)τ(i).

It follows from relations (21) that β∗ ≥ 0. On the other hand, from (20) we can
conclude that β∗ = η < 0. The resulting contradiction implies that X = ∅. The proposition
is proved.

Proposition 5. Given a set W := {τ(i), i ∈ I} ⊂ Tim(Z), the corresponding number σ(W), and
the sets Ω(W), X (W) defined in (12) –(14), suppose that the set ∆X defined in (19) is not empty
and for some vector (ỹ, ỹ0) ∈ Rn+1, it holds

ỹ0 ≥ 0, B(ỹ, ỹ0)τ(i) ≥ 0, i ∈ I; t>B(ỹ, ỹ0)t ≥ µ > 0 ∀t ∈ Ω(W). (22)

Then X (W) = X 6= ∅ and there exists x̄ ∈ X such that

t>A(x̄)t > 0 ∀t ∈ Ω(W). (23)

Proof. First, let us show that X 6= ∅ and there exists x̄ ∈ X such that inequalities (23) hold
true. From (22) and Theorem 1, it follows that (ỹ, ỹ0) ∈ Z . Consider the following cases: (a)
ỹ0 > 0 and (b) ỹ0 = 0.

In the case (a), set x̄ := ỹ/ỹ0. It is easy to see that, by construction, x̄ ∈ X and
inequalities (23) hold true.

Now consider the case (b). Here relations (22) take the form( n

∑
j=1

Ajỹj

)
τ(i) ≥ 0 ∀ i ∈ I; t>

( n

∑
j=1

Ajỹj

)
t ≥ µ > 0 ∀t ∈ Ω(W). (24)

For a fixed x∗ ∈ ∆X, set:

α∗ := min
t∈Ω(W)

t>A(x∗)t and θ :=
{

1, if α∗ ≥ 0,
−2α∗/µ > 0, if α∗ < 0,

and consider vector x̄ := x∗ + θỹ. Taking into account relations (24) and the inclusion
x∗ ∈ ∆X, we obtain

A(x̄)τ(i) ≥ 0, i ∈ I, t>A(x̄)t ≥ α∗ + θµ =

{
α∗ + µ > 0, if α∗ ≥ 0,
−α∗ > 0, if α∗ < 0,

∀t ∈ Ω(W).

From the relations above and from Theorem 1 in [18], it follows that x̄ ∈ X and
inequalities (23) hold true.
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Since X 6= ∅, from Proposition 2 we deduce that Tim(X) = Tim(Z). This means
that W ⊂ Tim(X), and hence according to Theorem 1, we conclude that X = X (W).
The proposition is proved.

4. Regularization Algorithms Based on the Concept of Immobile Indices

In this section, we present further developments of the approach proposed in [17],
and construct and justify new explicit algorithms for regularization of linear copositive
problems that are modifications of the algorithm REG-LCoP. These modifications are
designated here as algorithms RLCoP-1, RLCoP-2, and RLCoP-3.

Notice that the modified algorithms have a structure similar to that of the algorithm
REG-LCoP, but they do not require the feasibility of the original optimization problem
due to the use of the properties of the copositive problem (1) established in this paper and
based on the alternative representations of its feasible set. Although these representations
are based on the properties of immobile indices, at the iterations of the algorithms we do
not need to know in advance either the set of immobile indices or its convex hull.

4.1. Regularization Algorithm RLCoP-1

Based on the results of the previous section, we describe here in detail the iterations of
the algorithm RLCoP-1.

Iteration # 0. Given the copositive problem in the form (1), consider the following
regular SIP problem:

SIP1
0 : max

(y,y0,µ)∈Rn+2
µ, s.t. t>B(y, y0)t− µ ≥ 0 ∀t ∈ T, y0 ≥ 0,

with the compact index set T defined in (4).
If there exists a feasible solution (ȳ, ȳ0, µ̄) of the problem (SIP1

0) with µ̄ > 0, then set
m∗ := 0 and go to the Final step.

Otherwise the vector (y = 0, y0 = 0, µ = 0) is an optimal solution of this problem.
By construction, in the problem (SIP1

0 ), the index set T is compact, and the constraints
satisfy the Slater condition. Hence, (see, e.g., [21]), it follows from the optimality conditions
for the vector (y = 0, y0 = 0, µ = 0) that there exist indices and numbers

τ(i) ∈ T, γ(i) > 0 ∀i ∈ I1, |I1| ≤ n + 2, (25)

such that
∑
i∈I1

γ(i)(τ(i))>Ajτ(i) = 0 ∀j = 1, ..., n; ∑
i∈I1

γ(i) = 1, (26)

∑
i∈I1

γ(i)(τ(i))>A0τ(i) =: η0 ≤ 0. (27)

If η0 < 0, then STOP: from Proposition 4, it follows that X = ∅.
Suppose that η0 = 0. From the relations (26) and (27) (with η0 = 0), one can conclude

that I1 6= ∅ and τ(i) ∈ Tim(Z) ⊂ T for all i ∈ I1. Go to the next iteration with the set of
indices W1 := {τ(i), i ∈ I1}.

Iteration # m, m ≥ 1. By the beginning of the iteration, we have the index set
Wm := {τ(i), i ∈ Im}, where

τ(i) ∈ Tim(Z) ∀i ∈ Im.

Consider a SIP problem

max
(y,y0,µ)∈Rn+2

µ,

SIP1
m : s.t. t>B(y, y0)t− µ ≥ 0 ∀t ∈ Ω(Wm);

B(y, y0)τ(i) ≥ 0 ∀i ∈ Im, y0 ≥ 0,
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where the set Ω(Wm) is constructed by the rules (12) and (13) with W = Wm.
Since Wm is a subset of the set of immobile indices of Z , according to Theorem 1, we

conclude that Z(Wm) = Z , where the set Z(W) is defined in (15).
Notice that by the definition of the set Ω(Wm), it holds

ρ(t, convWm) ≥ σ(Wm) > 0 ∀t ∈ Ω(Wm).

If the problem (SIP1
m) admits a feasible solution (ȳ, ȳ0, µ̄) with µ̄ > 0, then go to the

Final step with m∗ := m or else, the vector (y = 0, y0 = 0, µ = 0) is an optimal solution of
this problem.

In the problem (SIP1
m), the constraints B(y, y0)τ(i) ≥ 0 ∀ i ∈ Im, are linear, the index

set Ω(Wm) is compact, and the following Slater type condition is satisfied:

∃ (ŷ, ŷ0, µ̂) such thatB(ŷ, ŷ0)τ(i) ≥ 0 ∀i ∈ Im;

t>B(ŷ, ŷ0)t− µ̂ > 0 ∀t ∈ Ω(Wm), ŷ0 ≥ 0.

Due to these properties, the optimality of the vector mentioned above provides
(see [22]) that there exist indices, numbers, and vectors

τ(i) ∈ Ω(Wm), γ(i) > 0, i ∈ ∆Im, 1 ≤ |∆Im| ≤ n + 2; λm(i) ∈ Rp
+, i ∈ Im, (28)

satisfying the following conditions:

∑
i∈∆Im

γ(i)(τ(i))>Ajτ(i) + ∑
i∈Im

(λm(i))>Ajτ(i) = 0 ∀j = 1, ..., n; (29)

∑
i∈∆Im

γ(i)(τ(i))>A0τ(i) + ∑
i∈Im

(λm(i))>A0τ(i) =: ηm ≤ 0. (30)

Moreover, by applying the procedure DAM described in [20], to the data presented in
(28), it is possible to ensure that the following conditions are met:(

P \ P+(τ(i))
)
∩ P+(τ(j)) 6= ∅ ∀i ∈ ∆Im, ∀j ∈ Im. (31)

If ηm < 0, then STOP: it follows from Proposition 4 that X = ∅.
Suppose that ηm = 0. Then from (29) and (30) we get τ(i) ∈ Tim(Z) ∀i ∈ ∆Im. Go to

the next iteration #(m + 1) with the new index set

Wm+1 := {τ(i), i ∈ Im+1 := Im ∪ ∆Im}. (32)

It follows from (31) that the RLCoP-1 algorithm executes a finite number m∗ of itera-
tions, during which it either recognizes that X = ∅ or proceeds to the final step.

Final step. At this step, we have that for some m∗ ≥ 0, the problem (SIP1
m∗) has a

feasible solution (ȳ, ȳ0, µ̄) with µ̄ > 0. Observe that by Theorem 1, it holds (ȳ, ȳ0) ∈ Z .
If m∗ = 0, then the set Tim(Z) is empty. From Proposition 1, we conclude that X 6= ∅

and Tim(X) = ∅. Hence, problem (1) is regular (its constraints satisfy the Slater condition).
Suppose now that m∗ > 0. By construction, the following inequalities hold true for

the found vector (ȳ, ȳ0) ∈ Z :

ȳ0 ≥ 0, B(ȳ, ȳ0)τ(i) ≥ 0, i ∈ Im∗ ; t>B(ȳ, ȳ0)t ≥ µ > 0 ∀t ∈ Ω(Wm∗), (33)

where the sets Wm∗ = {τ(i), i ∈ Im∗} and Ω(Wm∗) are the same as in the problem (SIP1
m∗).

Consider the set

∆X∗ := {x ∈ Rn : A(x)τ(i) ≥ 0 ∀ i ∈ Im∗}. (34)

If ∆X∗ = ∅, then from Proposition 3 it follows that X = ∅.
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Suppose that ∆X∗ 6= ∅. Taking into account (33) and Proposition 5, we conclude that
X (Wm∗) = X 6= ∅ (recall that the set X (W) is defined in (14)) and

∃ x̄ ∈ X such thatt>A(x̄)t > 0 ∀t ∈ Ω(Wm∗). (35)

Consider a SIP problem

RP : min
x∈Rn

c>x, s.t. t>A(x)t ≥ 0 ∀t ∈ Ω(Wm∗), A(x)τ(i) ≥ 0 ∀i ∈ Im∗ .

This problem is equivalent to the copositive problem (1) and can be considered as its
regularization since, by construction,

• X (Wm∗) = X, and hence the problems (1) and (RP) have the same feasible sets;
• relations (35) hold true, and hence the first group of constraints in (RP) satisfies the

Slater condition;
• the inequalities in the second group of constraints are formulated in terms of linear

functions and the number of these constraints is finite.

Therefore, the regularized problem is constructed and the algorithm is described.
Thanks to the above-mentioned properties of the problem (RP), it is easy to formulate

for this problem the KKT optimality conditions and the Lagrange dual problem satisfying
the strong duality relations. It is widely known (see, e.g., [23–25]) that all of these properties
are quite useful for creating numerical methods (such as methods based on discretization
and interior point methods).

To give a different interpretation of the RLCoP-1 algorithm and facilitate the compar-
ison of this method with other FRAs and the modifications of the REG-LCoP algorithm
described in what follows, let us display some additional constructions for its iterations.

Set F 1
0 := COP p.

Suppose that m∗ ≥ 1. For all m : 1 ≤ m ≤ m∗, at the beginning of Iteration # m, we
have the index set Wm = {τ(i), i ∈ Im}. Let us denote

F 1
m := {D ∈ COP p : Dτ(i) ≥ 0 ∀i ∈ Im}.

By construction, all the sets F 1
m, are convex cones such that D ⊂ F 1

m ⊂ F 1
m−1 for

m = 1,. . . m∗, where the set D is defined in (6). Note that in general, for m = 0, 1,. . . , m∗,
the cone F 1

m ⊂ COP p is not a face of COP p.

4.2. Regularization Algorithm RLCoP-2

To get another one modification of the algorithm REG-LCoP, let us introduce the
following changes to the RLCoP-1 algorithm presented above.

For m ≥ 1, replace the auxiliary problem (SIP1
m) with the following one:

max
(y,y0,µ)∈Rn+2

µ,

SIP2
m : s.t. t>B(y, y0)t− µ ≥ 0 ∀t ∈ Ω(Wm); y0 ≥ 0,

e>k B(y, y0)τ(i) = 0, k ∈ P+(τ(i)),

e>k B(y, y0)τ(i) ≥ 0, k ∈ P \ P+(τ(i)), ∀ i ∈ Im,

where {ek, k ∈ P} is the canonic basis of Rp.
If for this problem there is a feasible solution (ȳ, ȳ0,µ̄) with µ̄ > 0, then proceed to the

final step which coincides with the final step of the algorithm RLCoP-1; if not, the vector
(y = 0, y0 = 0, µ = 0) is an optimal solution of (SIP2

m) and therefore there are indices,
numbers, and vectors.

τ(i) ∈ Ω(Wm), γ(i) > 0, i ∈ ∆Im, 1 ≤ |∆Im| ≤ n + 1;

λm(i) ∈ Rp, λm
k (i) ≥ 0 ∀k ∈ P \ P+(τ(i)), i ∈ Im,
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satisfying conditions (29) and (30).
If ηm < 0 (see (30)), then STOP: X = ∅. Otherwise, go to the next Iteration #(m + 1)

with the new index set Wm+1 defined in (32). The algorithm is described.

As before, for comparison, we will present additional constructions.
Set F 2

0 := COP p. Suppose that m∗ ≥ 1. Then for any m : 1 ≤ m ≤ m∗, using the
index set Wm = {τ(i), i ∈ Im} available at the beginning of Iteration #m, we may construct
a set

F 2
m := {D ∈ COP p : e>k Dτ(i) = 0 ∀k ∈ P+(τ(i)), ∀i ∈ Im}.

Notice here that by construction, all the sets F 2
m, m = 0, 1,. . . , m∗, are exposed faces of

COP p (see Remark 1 in [18]) and D ⊂ F 2
m ⊂ F 2

m−1 for all m = 1, 2,. . . , m∗.

4.3. Regularization Algorithm RLCoP-3

Iteration # 0 of this modification of the REG-LCoP algorithm coincides with Iteration
# 0 of the algorithm RLCoP-1.

For m ≥ 1, let Wm = {τ(i), i ∈ Im} be the index set found at the end of Iteration
#(m− 1) and available at the beginning of Iteration #m. Denote

Z(m) := {(y, y0) ∈ Rn+1 : B(y, y0)τ(i) ≥ 0 ∀i ∈ Im; y0 ≥ 0}, (36)

Lm(i) := {k ∈ P : e>k B(y, y0)τ(i) = 0 ∀(y, y0) ∈ Z(m)},
Sm(i) := P \ Lm(i), i ∈ Im.

(37)

Note that the set Z(m) is polyhedral. Hence, given i ∈ Im, to construct the set Lm(i) it is
enough to solve p0 (with p0 < p) linear programming problems.

Consider the following semi-infinite problem:

max
(y,y0,µ)∈Rn+2

µ,

SIP3
m : s.t. t>B(y, y0)t− µ ≥ 0 ∀t ∈ Ω(Wm), y0 ≥ 0;

e>k B(y, y0)τ(i) = 0, k ∈ Lm(i),

e>k B(y, y0)τ(i) ≥ 0, k ∈ Sm(i), ∀ i ∈ Im.

If for this problem there is a feasible solution (ȳ, ȳ0,µ̄) with µ̄ > 0, then set m∗ := m
and go to the final step, which is the same as that of the RLCoP-1 algorithm.

Otherwise, the vector (y = 0, y0 = 0, µ = 0) is an optimal solution of the problem
(SIP3

m) and therefore there are indices, numbers, and vectors

τ(i) ∈ Ω(Wm), γ(i) > 0, i ∈ ∆Im, 1 ≤ |∆Im| ≤ n + 2;

λm(i) ∈ Rp, λm
k (i) ≥ 0 ∀k ∈ Sm(i), i ∈ Im, (38)

satisfying conditions (29) and (30).
If ηm < 0, then STOP: X = ∅. Otherwise, go to the next Iteration #(m + 1) with the

new index set Wm+1 defined in (32). The algorithm is described.

Set F 3
0 := COP p. Suppose that m∗ ≥ 1. For m : 1 ≤ m ≤ m∗, using the index set

Wm = {τ(i), i ∈ Im}, available at the beginning of Iteration #m, and the sets Lm(i), i ∈ Im,
defined in (37). Then we may construct the set

F 3
m := {D ∈ COP p : e>k Dτ(i) = 0 ∀k ∈ Lm(i), ∀i ∈ Im}. (39)

In the Appendix A.2, it is shown that P+(τ(i)) ⊂ Lm(i), i ∈ Im, and hence (see
Proposition 2 in [18]) all the sets F 3

m, m = 0, 1,. . . , m∗, are faces of COP p.
By construction, D ⊂ F 3

m ⊂ F 3
m−1 for all m = 1, 2,. . . , m∗.
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Remark 1. For all modifications of the algorithm REG-LCoP described above in this section,
the number of iterations required to either recognize the fact that X = ∅ or obtain a regularized
problem may be different, but to simplify the presentation, we will denote everywhere the number of
iterations by m∗.

The following proposition and lemma characterizing properties of the proposed
algorithms are proved in the Appendices A.1 and A.3.

Proposition 6. Suppose that X 6= ∅. Let Wm∗ = {τ(i), i ∈ Im∗} be the set of indices constructed
at the final iteration of the algorithm RLCoP-k, where k ∈ {1, 2, 3}. Then the following inclusion is
satisfied:

{τ∗(j), j ∈ J} ⊂Wm∗ , (40)

where {τ∗(j), j ∈ J} is the set of all vertices of the set conv Tim(X).

Lemma 2. Suppose that X 6= ∅, and let m∗ be the number of the final iteration of the algorithm
RLCoP-3. Then F 3

m∗ = Fmin, where F 3
m∗ is the set defined by the rules (39) and Fmin is the minimal

face containing the set D given in (6).

Note that in [17], it was shown that in iterations of the algorithm REG-LCoP, some
sets, Fm, m = 0, 1,. . . , m∗, are constructed. These sets are subcones of COP p and it holds
that D ⊂ Fm ⊂ Fm−1 for m = 1,. . . , m∗.

The main differences between the algorithm RLCoP-k, k = 1, 2, 3, described in this
paper, and the algorithm REG-LCoP from [17], are the auxiliary problems that are solved in
their iterations and the properties of the setsF k

m, k = 1, 2, 3, Fm, m = 0, 1,. . . , m∗, constructed
on the basis of solutions to these problems.

Suppose that X 6= ∅, and let F k
m∗ , k = 1, 2, 3, Fm∗ be the sets constructed in the final

iterations of algorithms RLCoP-k, k = 1, 2, 3, and REG-LCoP. It was shown that F 3
m∗ is the

minimal face containing the set D defined in (6), the set F 2
m∗ is an exposed face (in general,

it is not the minimal exposed face containing the set D), the set F 1
m∗ ⊂ COP

p is a cone (in
general, it is not a face of COP p), and the set Fm∗ ⊂ COP p is a face (in general it is not a
minimal face containing D). It is easy to prove that

D ⊂ F 3
m∗ ⊂ Fm∗ ⊂ F 2

m∗ ⊂ F
1
m∗ .

To finalize, let us compare the modifications of the algorithm REG-LCoP proposed in
this section with the FRA algorithm from [12], which is the most suitable comparison for
our method that can be found in the literature.

Given the copositive problem (1), the FRA algorithm from [12] generates a set of
smaller faces Fm, m = 0, 1,. . . , m∗ of COP p until it stops with the minimal face Fmin.

Being reformulated for problem (1), the whole algorithm from [12] takes only few lines
and consists of the following steps.

Step 1: Set m: = 0 and F0 := COP p.

Step 2: If KerA∩ H−c ∩ F∗m ⊂ span{Y1,. . . , Ym}, then STOP: Fmin = Fm.

Step 3: Find Ym+1 ∈ KerA∩ H−c ∩ F∗m \ span{Y1,. . . , Ym}.
Step 4: If trace(A0Ym+1) < 0, then STOP. The problem (1) is infeasible.

Step 5: Set Fm+1: = Fm ∩ {Yi+1}⊥, m := m + 1, and go to step 2.

Here F∗m is the cone dual to Fm, KerA := {Y ∈ S p : trace(AjY) = 0 ∀j = 1,. . . , n},
H−c = {Y ∈ S p : trace(A0Y) ≤ 0}.

It should be noted that the description of this algorithm looks rather simple, but in
practice, its implementation presents serious difficulties, since there is no explicit descrip-
tion of the dual cone F∗m and there is no information concerning how to find a matrix Ym+1
at the step 3, where m is the number of the current iteration.
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Unlike the FRA algorithm from [12], using the output data of Iteration # m, of each
algorithm RLCoP-k, k = 1, 2, 3, described here, the subcone F k

m of the cone COP p can be
constructed on the basis of the optimality conditions for the feasible solution (x = 0, µ = 0)
in the corresponding regular semi-infinite problem (SIPk

m).
For a more detailed comparison of the basic algorithm REG-LCoP and the FRA algo-

rithm ([12]), the interested reader can see the discussion in [17].
The purpose of this work was to develop a theoretical and constructive basis for

further development of theory and explicit regularization algorithms for CoP. The results
of the paper and the form in which the modified algorithms were constructed permit us
to stress the algorithmic aspects of our approach. On other hand, we still need to develop
several new computational procedures that allow practical implementations and numerical
testing of our methods. In particular, at iterations of the algorithms RLCoP-k, k = 1, 2, 3, we
solve the corresponding regular SIP problems (SIPk

m). Although there already exist some
SIP solvers, for effective numerical implementation of our algorithms, we will need special
solvers taking into account the specific structures of the corresponding SIP problems.

5. Conclusions

The main contributions of the paper were further developments of the regularization
approach for linear CoP. This approach is based on the concept of immobile indices previ-
ously introduced for semi-infinite and semidefinite optimization problems. It is important
to stress that, at the moment, no constructive regularization procedures are known for
linear copositive problems. The modifications we presented of the regularization algorithm
REG-LCoP from [17] are new and take into account the specific features of CoP problem.
An important property of these modified algorithms is that they require neither the feasi-
bility of the problem nor additional information about the immobile index set. In future,
these algorithms could be implemented in the form of computational algorithms and also
used for further study of CoP problems. In particular, for linear copositive problems, the
results of this paper allow one to formulate and prove CQ-free optimality conditions and
develop a strong duality theory based on the explicit representation of the “regularized”
feasible cones.
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Appendix A

Appendix A.1.

In this subsection we give a proof of Proposition 6.
First of all, notice that since X 6= ∅, the set ∆X∗ defined in (34) is not empty and from

Proposition 5 it follows that Tim(X) = Tim(Z) and relations (35) hold true.
Suppose that on the contrary to (40), there exists j0 ∈ J such that τ∗(j0) 6∈Wm∗ . Since

τ∗(j0) ∈ Tim(X) and by construction relations (35) hold true, we conclude that

ρ(τ∗(j0), conv Wm∗) < σ(Wm∗).

Hence, from Proposition 1 in [18], it follows that there exists i0 ∈ Im∗ such that

P+(τ∗(j0)) ⊂ P+(τ(i0)) and τ∗(j0) 6= τ(i0).

Then for all x ∈ X, it holds that

(τ∗(j0))>A(x)τ(i0) = ∑
k∈P+(τ∗(j0))

τ∗k (j0)e>k A(x)τ(i0) = 0, (A1)

where τ∗k (j0) is the k-th component of the vector τ∗(j0).
For a sufficiently small θ > 0, consider a vector τ̄ := (τ(i0)− θτ∗(j0))/(1− θ). It is

evident that τ̄ ∈ T. Taking into account (A1), we conclude that for all x ∈ X, it holds that

τ̄>A(x)τ̄ =(1− θ)−2[(τ(i0))>A(x)τ(i0)

− 2θ(τ∗(j0))>A(x)τ(i0) + θ2(τ∗(j0))>A(x)τ∗(j0)] = 0,

and therefore, τ̄ ∈ Tim(X). As a result, we have

τ∗(j0) = (1− θ)τ̄ + θτ(i0) with τ̄ ∈ Tim(X), τ(i0) ∈ Tim(X), τ̄ 6= τ∗i0 and θ ∈ (0, 1),

which contradicts the assumption that τ∗(j0) is a vertex of the set conv Tim(X). The propo-
sition is proved.

Appendix A.2.

Consider the algorithm RLCoP-3 and suppose that m∗ > 0. Let us show that for all
m = 1,. . . , m∗, it holds that

P+(τ(i)) ⊂ Lm(i) ∀i ∈ Im. (A2)

At the end of Iteration #0 we have data (25) satisfying relations (26) and (27) with
η0 = 0. It follows from these relations that

∑
i∈I1

γ(i)(τ(i))>B(y, y0)τ(i) = 0 ∀(y, y0) ∈ Rn+1. (A3)

Consider the set Z(1) := {(y, y0) ∈ Rn+1 : B(y, y0)τ(i) ≥ 0, i ∈ I1}. It is evident that
by construction,

(τ(i))>B(y, y0)τ(i) ≥ 0 ∀ i ∈ I1, ∀(y, y0) ∈ Z(1).

From the inequalities above and equality (A3), it follows that:

(τ(i))>B(y, y0)τ(i) = 0 ∀i ∈ I1, ∀(y, y0) ∈ Z(1),

wherefrom we get

e>k B(y, y0)τ(i) = 0 ∀k ∈ P+(τ(i)), ∀i ∈ I1, ∀(y, y0) ∈ Z(1).
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This implies that P+(τ(i)) ⊂ L1(i) ∀i ∈ I1.

Suppose that at the beginning of Iteration #m, 1 ≤ m < m∗, we have the sets Z(m),
Sm(i), Lm(i), i ∈ Im, constructed by the rules (36) and (37), such that

e>k B(y, y0)τ(i) = 0 ∀k ∈ Lm(i), ∀(y, y0) ∈ Z(m), P+(τ(i)) ⊂ Lm(i), ∀i ∈ Im. (A4)

At the end of this iteration, we have the data presented in (38) which satisfy rela-
tions (29) and (30) with ηm = 0. These relations imply the equalities

∑
i∈∆Im

γ(i)(τ(i))>B(y, y0)τ(i) + 2 ∑
i∈Im

(λm(i))>B(y, y0)τ(i) = 0 ∀(y, y0) ∈ Rn+1. (A5)

Set Im+1 := Im ∪ ∆Im, and consider the set

Z(m + 1) := {(y, y0) ∈ Rn+1 : B(y, y0)τ(i) ≥ 0 ∀i ∈ Im+1, y0 ≥ 0}.

Notice that by construction, Z(m + 1) ⊂ Z(m). The latest inclusion and (A4) imply

e>k B(y, y0)τ(i) = 0 ∀k ∈ Lm(i),

e>k B(y, y0)τ(i) ≥ 0 ∀k ∈ Sm(i), ∀i ∈ Im, ∀(y, y0) ∈ Z(m + 1),

(τ(i))>B(y, y0)τ(i) ≥ 0 ∀i ∈ ∆Im, ∀(y, y0) ∈ Z(m + 1).

From the latter relations, conditions (38), and equalities (A5), it follows that

(τ(i))>B(y, y0)τ(i) = 0 ∀i ∈ ∆Im, ∀(y, y0) ∈ Z(m + 1),

wherefrom we get

e>k B(y, y0)τ(i) = 0 ∀k ∈ P+(τ(i)), ∀i ∈ ∆Im, ∀(y, y0) ∈ Z(m + 1). (A6)

From the relation Z(m + 1) ⊂ Z(m), it follows that Lm(i) ⊂ Lm+1(i) ∀i ∈ Im. Taking
into account these inclusions, relations (A4) and (A6), we conclude that P+(τ(i)) ⊂ Lm+1(i)
∀i ∈ Im+1. Relations (A2) are proved.

Appendix A.3.

The aim of this subsection is to prove Lemma 2. The proof is based on Proposition 6
and the following one.

Proposition A1. Suppose that X 6= ∅. Let W∗ := {τ∗(j), j ∈ J} be the set of all vertices of the
set conv Tim(X). Consider the sets

Z∗ := {x ∈ Rn : A(x)τ∗(j) ≥ 0, j ∈ J},
M(j) := {k ∈ P : e>k A(x)τ∗(j) = 0 ∀x ∈ Z∗}, j ∈ J.

Then the set

F∗ := {D ∈ COP p : e>k Dτ∗(j) = 0, k ∈ M(j), j ∈ J} (A7)

is the minimal face containing the set D defined in (6).

Proof. In our previous works, it has been shown (see Theorem 4 in [18]) that the minimal
face Fmin containing the set D can be presented as follows:

Fmin = {D ∈ COP p : e>k Dτ∗(j) = 0, k ∈ M(j), j ∈ J}, (A8)

where M(j) = {k ∈ P : e>k A(x)τ∗(j) = 0 ∀x ∈ X}, j ∈ J.
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Since X ⊂ Z∗, M(j) ⊂ M(j) for all j ∈ J. Let us prove that

M(j) = M(j) ∀j ∈ J. (A9)

Suppose the contrary: there exist j0 ∈ J and k0 ∈ M(j0) such that k0 6∈ M(j0). In this
case, there exists x̃ ∈ Z∗ such that

A(x̃)τ∗(j) ≥ 0 ∀j ∈ J, e>k0
A(x̃)τ∗(j0) > 0. (A10)

It was shown in [18] (see Theorem 2 there) that there exists x̄ ∈ X such that

t>A(x̄)t > 0 ∀t ∈ Ω(W∗), A(x̄)τ∗(j) ≥ 0 ∀j ∈ J. (A11)

For a sufficiently small θ > 0, let us consider a vector x(θ) := (1− θ)x̄+ θx̃. From (A10)
and (A11) we get

t>A(x(θ))t ≥ 0 ∀t ∈ Ω(W∗), A(x(θ))τ∗(j) ≥ 0 ∀j ∈ J, (A12)

e>k0
A(x(θ))τ∗(j0) > 0. (A13)

From (A12) and Theorem 1 in [18], it follows that x(θ) ∈ X. Then from (A13), taking
into account the definition of the set M(j0), we conclude that k0 6∈ M(j0). However,
this contradicts the assumption that k0 ∈ M(j0). The resulting contradiction proves that
equalities (A9) hold true.

Now we are ready to prove Lemma 2. In fact, under the assumption X 6= ∅, from
Propositions 2 and 6 it follows that

Tim(X) = Tim(Z) and {τ∗(j), j ∈ J} ⊂ {τ(i), i ∈ Im∗} ⊂ Tim(Z).

Hence, {τ(i), i ∈ Im∗} ⊂ conv{τ∗(j), j ∈ J}. Using this inclusion, it is easy to show
that Z∗ = Z(m∗). From the latest equality, the inclusion {τ∗(j), j ∈ J} ⊂ {τ(i), i ∈ Im∗},
and the definitions of the sets F 3

m∗ and F∗ (see (39) and (A7)), it follows that F 3
m∗ ⊂ F∗ and

both faces, F∗ and F 3
m∗ , contain the set D.

On the other hand, Proposition A1 states that F∗ is the minimal face containing the set
D. This implies that F 3

m∗ = F∗ = Fmin. Lemma 2 is proved.
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