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Abstract: Capturing long-term statistics of signals and time series is important for modeling recur-
rent phenomena, especially when such recurrences are a-periodic and can be characterized by the
approximate repetition of variable length motifs, such as patterns in human gestures and trends in
financial time series or musical melodies. Regressive and auto-regressive models that are common
in such problems, both analytically derived and neural network-based, often suffer from limited
memory or tend to accumulate errors, making them sensitive during training. Moreover, such models
often assume stationary signal statistics, which makes it difficult to deal with switching regimes or
conditional signal dynamics. In this paper, we describe a method for time series modeling that is
based on adaptive symbolization that maximizes the predictive information of the resulting sequence.
Using approximate string-matching methods, the initial vectorized sequence is quantized into a
discrete representation with a variable quantization threshold. Finding an optimal signal embedding
is formulated in terms of a predictive bottleneck problem that takes into account the trade-off be-
tween representation and prediction accuracy. Several downstream applications based on discrete
representation are described in this paper, which includes an analysis of the symbolic dynamics of
recurrence statistics, motif extraction, segmentation, query matching, and the estimation of transfer
entropy between parallel signals.

Keywords: symbolic dynamics; discrete representation learning; predictive information bottleneck;
variable Markov oracle; music information dynamics

1. Introduction

In this paper, we describe a method for time series symbolization that allows novel
applications for various types of signals, such as audio, gestures, and more. Symbolization
involves the transformation of raw time series measurements into a series of discretized
symbols that are processed to extract information about the generating process. In this
paper, the problem of symbolization is formulated in information theoretical terms as a
information dynamics bottleneck that optimizes a trade-off between the representation
fidelity and predictive quality of the latent discrete representation. The algorithm developed
in this paper performs an embedding of the data in a vector space followed by a step of
quantization that maximizes a measure that we call information rate that uses approximate
string-matching methods to evaluate the mutual information between the signal in the past
and present. The move to symbolic data allows for capturing long-term structures that are
hard to model using real-valued autoregressive distribution estimation methods. Analysis
of data using symbolic dynamics allows the characterization of the time series by various
analysis methods, such as recurrent quantification analysis, motif finding, segmentation,
and querying, as well as novel methods for transfer entropy estimation between pairs
of sequences.

There are multiple works that describe the symbolization of time series. A general
feature of symbolic dynamics analysis is that it assumes the existence of so-called generating
partitions that divide the phase space of the time series trajectory into regions, such that
each unique trajectory in phase space is associated with a unique sequence of symbols.
Generating partitions can be constructed for certain models; however there is no general
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approach for constructing generating partitions from observations of an unknown system.
Accordingly, in the model-free case, various data aggregations techniques are used to
cluster nearby data points to induce such partitions. One such popular method, largely
due to its simplicity and intuitive nature, is the so-called “threshold-crossing” technique.
It operates by replacing real-valued data with symbolic indices based on the data values
falling within a certain numeric interval. In extreme cases, a single threshold is used to
create a binary representation with values above and below thresholds assigned 1’s and
0’s, respectively. An example of multi-threshold symbolization is the symbolic aggregate
approximation (SAX) [1], shown in Figure 1.
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Figure 1. Transforming a real-valued continuous or sampled time function into SAX representation
with alphabet a, b, c, d. Each time segment is turned into a symbol by taking the mean and looking
up the corresponding symbol on y-axis. The complete signal is translated into a word eight letters
long, as shown on the bottom of the graph.

In the SAX approach, a scalar quantization is performed along an amplitude axis using
an average value over a fixed time interval. First, the number of letters α and maximal
sequence length ω are manually chosen so as to have an overall small number of symbols
while not losing too much data detail. The quantization levels are found by fitting a normal
distribution to the data amplitude distribution aggregated over time and across multiple
data instances. Since the method is meant to be applied for time series databases, for a
given ω, some observations may not be ω letters long.

It is evident from this example that the choice of partition levels is paramount to
establishing a correspondence between the continuous-valued data and their symbolic
representation. As an extreme example, for a binary partition, setting a threshold outside
of the range of the data values will result in a trivial constant symbolic sequence. Errors
in coarse-grained partition relative to original system dynamics can lead to a gross mis-
representation of the dynamical system. In particular, one way to demonstrate sensitivity
to threshold change is by mapping the system dynamics into a graph structure where
each edge carries a label from the symbolic representation, and the vertices are labeled by
all possible words in a sequence of a certain length. Changing the partitioning threshold
effectively relabels the transitions between the possible words, changing the probabilities
of transitioning between the vertices or even forbidding some words from appearing. This
effect can be measured by considering the entropy over the word space and comparing it to
theoretical entropy in the case when an analytic equation of the system dynamics is known.
As shown in Refs. [2,3], the entropy of such language is often lower than the exact system
entropy. Moreover, the symbolic sequence entropy dependence on threshold displacement
is a non-monotonic function because some words that disappear for some threshold values
can reappear at other values.
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Rather than operating directly on the data values, some methods of signal or time series
analysis perform transformations of the data into more convenient or meaningful vector
spaces. It is evident that a suitable choice of such representation is critical for the success of
downstream applications, such as classification, data mining, or generative models. When
sequence dynamics is relatively simple, transforms, such as DFT, can be used to reveal
periodic properties, even if slight deviations from the transform principal patterns occur in
the signal. To address the time varying properties of a signal, transformation and change of
representation is often done over short segments of data. In special cases, such as in audio
signals, custom human-engineered features, such as mel frequency cepstral coefficients
(MFCC) or Chroma are often used. When high-dimensional feature representation is
efficiently translated into a low-dimensional space, the term “embedding” is used to denote
such reduced representation. From a practical perspective, embedding serves as a unique
identifier of a short data segment, represented as a vector in some space that maps similar or
related data segments to nearby points. The situation is further complicated by longer-term
signal dynamics that exhibit a-periodic repetitions with motifs of variable length with
partial and approximate repetitions. Combining embeddings with symbolic discretization
opens up the study of time series statistics to methods of information and dynamics theory,
automata theory, and other formal tools coming from computational modeling. Among the
common discretization methods are K-Means and a variety of so-called vector quantization
(VQ) methods in general that assign the same index or letter symbol to samples falling
within the same multi-dimensional partition. The K-Means algorithm is based on the
iterative partitioning of points into regions that are then matched to their centroids and
re-partitioned again, with the process repeating until convergence. Self-organizing maps
(SOM) are another popular data analysis and visualization tool based on neural networks
that bear close similarity to autoencoders (AE) that can learn a non-linear embedding of
the data. Clustering can be performed on the SOM nodes or AE latent codes to identify
groups of data points with similar metrics.

Recently, generative deep neural models have become the primary tools for representa-
tion learning in multiple domains. The compelling idea of machine learning is that various
modeling and inference tasks, including embeddings, representation, and encodings of data
collected from the world, are captured using vector spaces that map statistical structures
into mathematical space. In particular, the powerful idea of generative modeling is that in
order to effectively represent the data, the learning system needs to be able to effectively
reproduce similar data. Mathematically, this means that the goal of learning is to be able
to approximately simulate the statistics of the data from an internal representation that
the learning system constructs. Once such statistical representation is constructed, various
operations can be performed directly on the model’s parameters rather then on the data
themselves. For instance, probabilistic clustering is done by an iterative procedure called
expectation maximization (EM), which bears close relation to a variational method called
evidence lower bound (ELBO), which was adopted using the reparametrization method
in variational autoencoders (VAE). The VAE framework represents the data in terms of
the multidimensional Gaussian distribution of latent factors, from which the data samples
can be recovered. Although a detailed explanation of VAE architecture and its learning
procedure by maximizing ELBO is beyond the scope of this paper, we show the general
architecture of such a model in Figure 2 .

The important components of the VAE method is that it assumes a probabilistic
representation of the latent space, which is learned by an encoder followed by estimating
the mean and variance of the encodings as Gaussian distribution. Reconstruction of the data
is done by sampling from a normal distribution and “reparametrizing it” by multiplying
it with appropriate variance, adding a mean shift to the random sample, and passing it
through a learned decoder. The learning process comprises the network parameters so as
to achieve a minimization of two criteria, namely the reconstruction loss at the output of
the decoder, and a statistical loss written in terms of Kullback–Leibler statistic divergence
between the estimated Gaussian distribution of the latent vectors and a prior normal
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distribution. This second loss can also be viewed as a regularization penalty, trying to
find the simplest random distribution of the latent encoding by trying to make it fit a
normal distribution. Recently, VAE representation was further extended into a quantized
version named VQ-VAE, becoming a powerful and popular alternative method for so-called
“discrete neural representation”. In Figure 3, an audio signal is encoded into a series of
codes at three different resolutions as part of a larger system that uses transformers to
generate high-fidelity and diverse musical materials that are several minutes long [4].
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Figure 2. VAE architecture showing the encoder–decoder structure with estimation of the mean
and variance using the normal distribution reparametrization trick, and the two loss functions
components of the ELBO criterion. See text for more details.
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Figure 3. VQ-VAE discrete neural architecture that uses codes to represent and reconstruct audio.

The input audio is segmented and encoded into latent vectors ht, which are then
quantized to the closest codebook vector ek. The decoder then reconstructs the audio from
a sequence of codebook vectors.

In the following, we describe a different method of quantization and symbolization
that is based on a lossy encoding of VAE latent codes. Unlike existing methods, where a
quantization procedure is used to directly obtain a discrete or symbolized version of the
data, the method proposed in this paper focuses on symbolization that maximizes the pre-
dictive information of the symbolic sequence. This predictive information, defined in terms
of mutual information between the past and the present of the time series, is measured
by “information rate”. By taking the information dynamics into consideration, we hope
to obtain a symbolization that better matches the dynamics of the original data. Limiting
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the amount of information in data representation based on predictive criteria is sometimes
called a “predictive bottleneck“. Moreover, prior to the symbolization step, the complexity
of the continuous representation is reduced by applying a bit-rate reduction. This lossy
encoding helps remove noise from the continuous latent vectors by allocating fewer bits
or even completely removing part of the encoding dimensions that carry little information
about the data. During the symbolization step, the amount of predictive information
depends on a threshold parameter that is used for distinguishing between the similar
versus distinct latent vectors. Analogous to the threshold-crossing method described above,
the information rate dependence on a threshold parameter is a non-monotonic function,
with a zero information rate occurring at very low and very high thresholds and with
several local maxima possible at intermediate threshold values. We use a threshold value
that gives the global maximum of information rate as a symbolization choice. An additional
use of lossy encoding is in exploring transfer entropy between simultaneous time series.
The intuition is that causal relations between separate data streams that originate from
related sources might be better revealed by reducing the fidelity of their data representation.
To summarize the concepts and methods presented in the paper, in Section 2, we define
the general framework of information dynamics; in Section 3, we describe the predictive
quantization and time series symbolization using information rate; in Section 4, we dis-
cuss representation learning and the use of bit allocation for rate reduction; in Section 5,
we develop a symmetric transfer entropy estimator using information rate and mutual
information measures; and in Section 6, we describe applications for motif finding and a
symbolic version of recurrent quantification analysis.

2. Information Dynamics

Information dynamics considers the information passing between the data past X and
the present observation Y, formally defined in terms of mutual information I(X, Y). In
this paper, we extend the notion of information dynamics to aspects of data representation
by providing a theoretical model and an analysis framework for exploring the relations
between four factors in a time series: the data past X and a present observation Y versus
their representation in terms of latent variables Z and T, respectively.

This relationship between the four factors X, Y, Z, and T is illustrated in Figure 4,
schematically shown for an example of musical observations, with latent states schemati-
cally drawn near a brain-like icon. It should be noted that this representation is schematic
only—there is no assurance that the latent representation follows similar dynamics to
the data or that later on its symbolized version induces correct generating partitions.
Nevertheless, we assume that finding a representation that maximizes the information
dynamics of the resulting sequence is intuitively a good approach to discover meaningful
structures present in the original data. We further assume that the following Markov
relations exist between the variables: Z is assumed to be a hidden cause of X, which in
turn causes Y, which is further encoded into T. In other words, the triplet X, Y, Z obeys
the following generative Markov relation p(X, Y, Z) = p(Y|X)p(X|Z)p(Z), and similarly
p(X, Y, Z, T) = P(T|Y)p(Y|X)p(X|Z)p(Z) includes the probability for the next encoding.

The significance of the Markov relation is that it specifies the assumptions about how
information in a time series evolves according to the manner in which probabilities of the
different variables depend on each other. Based on the Markov relation between Z−X−Y,
our model comprises two competing factors: quality of data representation in terms of
latent variables versus the prediction ability of the latent variables in time. Our model is
defined as a minimization problem of the discrepancy between data prediction based on
complete information about the past observation X versus prediction based on the latent
encoding of the past Z. This discrepancy is averaged over all possible encoding pairs X, Z,
which is stated as follows:

Lemma 1. For Markov relation Z− X−Y, the following relation holds

〈DKL(p(Y|X)||p(Y|Z))〉p(X,Z) = I(X, Y|Z) = I(X, Y)− I(Z, Y) (1)
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where, DKL(·, ·) is the Kullback–Liebler (KL) divergence and I(·, ·) is mutual information.

Figure 4. Schematic graph of statistical dependencies between the different model variables. The letter
“e” represents an embedding created by encoding. Later on we will use VAE as our encoding method.
The complexity of the embedding will be controlled by bit-rate allocation. The resulting dynamics of
the latent representation are not assured to be in exact correspondence to the dynamics of the data.

Proof. From the definitions of DKL(·, ·) as the Kullback–Liebler distance between different
distributions and I(·, ·) as the mutual information between their random variables, we
write

DKL(P, Q) =
∫

p(x) log
p(X)

q(X)
dX (2)

and

I(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y) (3)

with signal entropy given by

H(X) = −
∫

p(X) log p(X)dX (4)

Using the following relation between KL distance and mutual information

I(X, Y) = DKL(p(X, Y), p(X)p(Y)) = DKL(p(Y|X)p(X), p(X)p(Y)) , (5)

and taking into account the Markov relations Z−X−Y, we have the following conditional
independence between the variables p(Y, X, Z) = p(Y|X, Z)p(X, Z) = p(Y|X)p(X, Z).
Averaging over P(X, Z), we obtain

〈DKL(p(Y|X)||p(Y|Z))〉p(X,Z)

=
∫

p(X, Z)(
∫

p(Y|X) log
p(Y|X)

p(Y|Z) dY)dX dZ

=
∫

p(Y, X, Z) log(
p(Y|X)p(X)

p(X)p(Y)
p(Y)p(Z)

p(Y|Z)p(Z)
)dYdX dZ

=
∫

p(Y, X, Z) log(
p(Y, X)

p(X)p(Y)
dYdXdZ−

∫
p(Y, X, Z) log(

p(Y)p(Z)
p(Y, Z)

dYdX dZ

= I(X, Y)− I(Z, Y)

To complete the proof, we need to show that I(X, Y|Z) = I(X, Y)− I(Z, Y). This can be
shown by considering the definition of mutual information as
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I(X, Y) = H(Y)− H(Y|X)

I(Z, Y) = H(Y)− H(Y|Z) .

Using the Markov relation H(Y|X, Z) = H(Y|X) we see that I(X, Y|Z) = H(Y|Z) −
H(Y|X, Z) = H(Y|Z) − H(Y|X) = H(Y) − H(Y|X) − H(Y) + H(Y|Z) = I(X, Y) −
I(Z, Y).

Since I(X, Y) is independent of Z, minimizing the KL divergence happens when
I(Z, Y) is maximized, with zero KL being obtained when I(Z, Y) = I(X, Y). In other words,
we postulate that a goal of the time series model and the machine learning algorithm is
finding a latent representation Z that “explains out” most of the time series information
dynamics I(X, Y). This principle is expressed as the minimization of I(X, Y|Z), i.e., finding
a latent Z so that there will be very little remaining information passing between the past
X and the present Y of the time series observations data themselves.

To complete our model, some additional constraints on Z need to be specified, since if
Z = X, this minimization condition is trivially satisfied. Accordingly, in the next paragraph,
we add constraints that require the latent variable representation to be as compact or as
simple as possible. In the following sections we will use variational autoencoding (VAE)
as a possible representation learning method. In the process of VAE learning, the latent
representation is regularized by bringing its distribution to be as close as possible to a
Gaussian uncorrelated noise. Additionally, in this study, we introduce an additional step of
lossy compression of Z given a pre-trained VAE. This step will be accomplished using a bit
allocation procedure from rate–distortion theory.

2.1. Adding Simplicity Requirement of the Latent Representation

As mentioned above, our formulation of the time series modeling goal is to find a
meaningful latent Z that best approximates the next observation Y. Since minimizing KL
could be trivially satisfied by taking Z = X, in order to avoid such a trivial solution, we add
a constraint on Z by requiring it to be the most compact or simplest latent “explanation”
derived from the observation X. In information theoretical terms, we can write the criteria
as a minimization of I(X, Z). In terms of coding, we look for the least amount of bits
of information about X to be contained in Z. We also need a third constraint to prevent
I(X, Z) from going to zero. This is achieved by adding a fidelity requirement or bound on
distortion between X and Z, denoted as D(X, Z). It is important to note that this distortion
D is not the same as a KL divergence; rather, it is some physically motivated distortion,
such as mean square error (MSE) or some other fidelity measure between the “compressed”
representation of X, as expressed by Z, and the original data X. For the moment, we
will ignore this fidelity constraint and only consider the first competing relations between
maximizing I(Z, Y) and minimizing I(Z, X). Combining the two goals, we arrive at the
target function for our learning system

max
P(Z|X)

{I(Z, Y)− λI(X, Z)} (6)

This formulation bears a close resemblance to the idea of the information bottleneck
(IB) [5]. The formulation of the IB is to say that a goal of a learning system is to find the
most compact representation Z of X that still provides most information about a different
variable Y. Accordingly, a predictive IB looks at a combination of factors when predicting
the next observation Y from Z, which can be solved separately from the encoding of X by
Z. In the following, we will use the symbolic dynamics of the latent representation to solve
the predictive IB criteria using VAE representation learned from X.

To summarize what we have discussed so far, we presented the following competing
criteria for our time series model, combining three factors I(X, Z), I(Y, Z), and D(X, Z)

• Finding a compact representation Z of X from which X can be recovered with minimal
distortion D(X, Z) (i.e., reconstruction qualify);
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• Finding a representation Z of past data X that is most informative about the next
sample Y (i.e., time information).

2.2. Latent Information Rate

A central goal of representation learning that stems from the information dynamics
principle is maximizing the amount of information passing between the encoded past Z
and the next data sample Y. Using the second set of Markov relations shown in Figure 4, we
would like to consider here the information passing between the latent variables Z and T
themselves. We express I(Z, Y) = I(Z, T)− I(Z, T|Y) as a measure of the ability to predict
the future of the time series, and the next observation Y from past embedding Z, compared
with the information dynamics of the latent embedding time series itself. From these
information relations, we see that the amount of information that past encoding Z carries
out about the future observation Y is less than the amount of information carried between
the past and future of the embeddings Z and T themselves. The term I(Z, T) can be
considered as latent predictive information, or latent information dynamics, corresponding
to some sort of a latent anticipation.

Ignoring I(Z, T|Y) (or assuming it is zero) means that the next data observation Y
causes the latent representations of the past and present to be independent. In such a case,
the information I(Z, Y) contained in the latent encoding of the past Z about the present
data Y is the same as the information contained in the past and present data observations
X and Y directly. In such a case, the maximization of the information dynamics in the
latent space I(Z, T) is sufficient for maximizing the predictive ability of the model. This
assumption allows us to formulate yet another more tractable version of the predictive
latent bottleneck problem

max
P(Z|X),P(T|Y)

{I(Z, T)− λI(X, Z)} (7)

where the encoding of the past and the present observations are represented by probability
distributions P(Z|X) and P(T|Y), respectively. In the case when the past is encoded data
point by data point independently in time, the same encoder, and thus same probability
function P(x, z) = P(y, t), is used throughout the whole time series. In such a case, we can
separately learn an encoder over the whole time series first; then, in the next step, we can
evaluate the information dynamics of the sequence of latent variables. When performed
in a iterative manner by computing the predictive information using symbolization and
further altering an existing encoding using rate–distortion, an optimal final model can be
found by an exhaustive search over the bit-rate and quantization threshold parameters.

3. Symbolization Dynamics

Given a time series or multi-variable observations of a signal X = x1, x2, . . . , xn, . . . , xT ,
the goal of symbolization is to find a sequence S = s1, s2, . . . , sn, . . . , sT of the same length
T, where each observation xn is labeled by a symbol sn coming from a finite-sized alphabet
si ∈ Σ. The essential step in the symbolization algorithm described below is finding a
threshold value θ that partitions the space of observations into categories based on repeated
sub-sequences of motifs. For each new observation, a threshold θ is used to determine if
the incoming xn is sufficiently similar to an observation that appears as a continuation to
an earlier-identified repeated sub-sequence pointed to by a suffix link from a previous step
n− 1. The recursive procedure of finding repeated suffixes is based on a string-matching
algorithm called Factor Oracle (FO hereafter), which will be explained next. Using a
repeated suffix link, the algorithm assigns two data points that appear as continuations of
the two linked sub-sequences, xi and xj, and the same label si = sj ∈ Σ if ||xi − xj|| ≤ θ.
In extreme cases, setting θ too low leads to assigning different labels to every observation
in X, while setting θ too high leads to assigning the same label to every observation in X.

The basis for the selection of a threshold is an analysis of the predictive properties
of the suffix structure (also called the oracle structure) found at each threshold value. We
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define information rate (IR hereafter) as a measure that is used to select the optimal θ for
an individual time series. We show an example of the oracle structure with extreme θ
values in Figure 5. It should be noted that the alphabet of the symbolization is constructed
dynamically, as new symbols are added when an input sample cannot be assigned to one
of the existing clusters that were labeled earlier. We will denote the resulting alphabet for a
given θ as Σθ .

In the process of IR analysis, the system is performing a search over different θ values,
where for each threshold value, a different suffix structure is constructed for each resulting
symbolization of the same time series, as shown in Figure 5. To select the symbolization with
the most informative oracle structures, IR is used to measure the average relative reduction
of uncertainty of the current sample in a time series when past samples are known.

Let the past samples of a time series be denoted by xpast = {x1, x2, . . . , xn−1}; the cur-
rent samples xn and H(x) = −∑ P(x) log2 P(x) with the entropy of x with P(x) and the
distribution of x; and the statistical definition of IR is the mutual information between xpast
and xn,

I(xpast, xn) = H(xn)− H(xn|xpast). (8)

In Ref. [6], the above statistical definition of IR was replaced by an algorithmic notion
of compression gain using a measure of code length C(·) instead of the entropy term H(·)
in (8). The IR algorithm searches over all possible values of the quantization threshold θ (9)
to find the highest IR value

IR(xpast, xn) = max
θ,st∈Σθ

[C(sn)− C(sn|spast)]. (9)

The IR measure has been used extensively in the analysis of music information con-
tents, known as music information dynamics [7,8].

Figure 5. Two oracle structures with extreme values of θ. The letters near each forward links represent
the assigned labels. (Top) The oracle structure with θ = 0 or extremely low. (Bottom) The oracle
structure with a very high θ value. It is obvious that in both cases the oracles are not able to capture
any structures of the time series.

The value of the algorithmic IR defined in (9) can then be robustly calculated by
complexity measures associated with a compression algorithm with C(sn)—the number
of bits used to compress sn independently—and C(sn|spast)—the number of bits used to
compress sn using spast. In Ref. [9], a lossless compression algorithm, Compror, based
on FO, is provided. The detailed formulations of how Compror and IR are combined are
provided in Ref. [6]. In the context of time series patterns and structure discovery with
VMO, the VMO with a higher IR value indicates that more of the repeating sub-sequences
(ex. patterns, motifs, themes, gestures, etc.) are captured than the ones with a lower IR
value.
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3.1. Variable Markov Oracle

Here, we present a generalization of Factor Oracle (FO) algorithm to the case of a
time series with approximate repeated sequence discovery that we called Variable Factor
Oracle (VMO hereafter). An example of FO structure in the format of VMO for a sequence
of labeled states is shown in Figure 6. More examples and details for this structure are
demonstrated in Ref. [10].

0 1 2 3 4 5 6 7 8 9 10 11
a b b c a b c d a b c

0 0 1 0 1 2 2 0 1 2 3

b c
c d

d

Figure 6. A VMO structure with symbolized signal {a, b, b, c, a, b, c, d, a, b, c}. Upper (normal) arrows
represent forward links with labels for each frame and lower (dashed) are suffix links. Values outside
of each circle are the lrs value for each state.

Given a sequence of labels, forward links are used to retrieve any of the sub-sequences
from X. An oracle structure has two types of forward links. The first is an internal
forward link, which is a pointer from state t− 1 to t labeled by the symbol xt, denoted as
δ(t− 1, xt) = t. The other forward link is an external forward link, which is a pointer from
state t to t + k labeled by xt+k with k > 1. An external forward link δ(t, xt+k) = t + k is
created when

xt+1 6= xt+k

xt = xt+k−1

δ(t, xt+k) = ∅.

In other words, an external forward link is created between xt and xt+k when the pair of
symbols {xt+k−1, xt+k} is seen for the first time in X and with xt being linked to xt+k−1 via
suffix links, thus both sharing the same label.

An oracle structure carries two kinds of links: forward links and suffix links. A suffix
link is a backward pointer that links state t to k with t > k without a label and is denoted
by s f x[t] = k.

s f x[t] = k ⇐⇒ the longest repeated suffix of

{x1, x2, . . . , xt} is recognized in k.

Suffix links are used to find the longest repeated suffix in X. In order to track the longest
repeated suffix at each time index t, the length of the longest repeated suffix at each state t
is denoted by lrs[t] and is computed by the algorithm described in Ref. [11]. The parameter
lrs is part of the on-line construction algorithm of the oracle automaton [11].

3.2. Symbolization Algorithm

It should be noted the the oracle structure found in the previous section contains T + 1
states Oracle(o0, o1, o2, . . . , 0T), with the time series observation located along the direct
transitions between the states, which are also called internal forward links. Direct links
are links to the immediate next state to the right (next step in time) of the oracle structure.
For example, s1 is a label of the transition between o0 and o1, and st is between ot−1 and ot.
Once the construction of the oracle structure is completed, the symbolization of the time
series is described in Algorithm 1.
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Algorithm 1 Symbolization

Require: Oracle(o0, o1, o2, . . . , oT)
Following the first direct link and all forward links from state o0, assign a unique symbolic
label si ∈ Σ to each of the links.

for n = 1 : T do Follow the suffix link from state on.
if forward external link exists from s f x(on) then

label sn by the symbol that was used to label that link,
else

label sn by the symbol of the direct internal link from s f x(on).
end if

end for

To summarize, the VMO algorithm comprises a combination of the following innovations:

• Extension of the FO algorithm to operate on time series with an approximate matching
up to a given threshold;

• Symbolization of the time series according to forward links emerging from state zero.
Forward links from state zero point to places in the time series where novel data
observations were first encountered and these observations could not be included
into continuations of existing suffixes since their distance from previously labeled
observations exceeded a set threshold;

• Use of Compror to estimate the information rate at each threshold by considering the
difference in coding length without and with Compror;

• Selection of the oracle with the highest information rate and using its symbolization
as the best discrete representation of the time series.

By using an exhaustive search over a range of threshold values, an oracle with the
highest information rate is retained as the optimal representation.

3.3. Query-Matching with VMO

For various purposes to be discussed later in this paper, such as applications of
symbolization for signal matching or transfer entropy estimation, there is a need to find a
recombination of factors in the original time series that is closest to another time series that
is provided as a query into the oracle structure. The query-matching algorithm tracks the
progress of traversing the oracle using forward and backward links, finding the optimal
path via a dynamic programming algorithm. For full details, the reader is referred to
Ref. [12]. We provide the pseudo-code in Algorithm 2 for the sake of completeness.

Algorithm 2 Query-Matching
Require: Target signal in VMO, Oracle(S = s1, s2, . . . , sT , X = x1, x2, . . . , xT) and query time series R =

r1, r2, . . . , rN
Get the number of clusters, M← |Σ|
Initialize cost vector C ∈ RM and path matrix P ∈ RM×N .
for m = 1 : M do

Pm,1 ← Find the state, t, in the mth list from Σ
with the least distance, dm,1, to r1

Cm ← dm,1
end for
for n = 2 : N do

for m = 1 : M do
Pm,n ← Find the state, t, in lists with labels

corresponding to forward links from state
Pm,n−1 with the least distance, dm,n to R[n]

Cm += dm,n
end for

end for
return P[(C)], min(C)
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4. Representation

As mentioned earlier in the chapter, a suitable choice of time series representation is
critical for the analysis of time series. Transforms, such as DFTs and wavelets, or adaptive
transforms, such as SVD, are commonly used to find an embedding of the signal in another
space that better captures some salient aspect of the data. In other cases, feature extractors
are designed to represent the time series in terms of the special parameters of interest.
The symbolization technique presented above is feature agnostic and can be applied to any
sequence of features if an appropriate distance function is provided to measure feature or
embedding similarity. To avoid the step of feature engineering or the choice of appropriate
transforms, it would be desirable to have a method that allows learning a representation
with sufficient quality and predictability according to the information dynamics objective
that was defined in Section 2.

Recently, generative deep neural models have become the primary tools for represen-
tation learning in multiple domains. The compelling idea of representation learning is that
various aspects of modeling data from the world are captured using vector spaces that map
statistical structures into mathematical space. The information dynamics objective states the
goal of representation learning as a minimization of the problem of the mutual information
between the data and a latent state, namely minP(Z|X) I(X, Z), which can be subject to a
distortion constraint D(X, Z). Such an approach is also known as a rate–distortion problem
in information theory.

The relation between variational encoding and rate distortion was made explicit in the
“Broken ELBO” paper [13]. The authors show there that the mutual information between
the input X and the latent code Z is bounded below and above by two factors D and R that
comprise the ELBO, as follows

H − D ≤ Ie(X, Z) ≤ R (10)

where H is the data entropy, D is the distortion measured as reconstruction log likelihood,
and R is the model encoding rate (not the optimal Shannon rate, which is the mutual
entropy) measured by KL divergence between the encoding distribution and the learned
marginal approximation. The reader is referred to the appendix for a short summary of
the results, and to Ref. [13] for more complete detail. The important point here is that this
expression can be rewritten as a Lagrange optimization by adding D to all terms or the
above inequality, giving

H ≤ Ie(X, Z) + D ≤ R + D = −ELBO. (11)

Moreover, allowing for different weight of the distortion D, we have

Ie(X, Z) + βD ≤ R + βD = −ELBO(β). (12)

where β = 1 gives the original VAE ELBO expression and ELBO(β) corresponds to β-VAE
model. This expression is an unconstrained version of the rate distortion,

L = I(X, Z) + β〈d(X, Z)〉 (13)

where minimizing for β value gives a point on the rate–distortion curve.
Changing β is important for dealing with two known problems in VAE encoding:

Information Preference and Exploding Latent Space problems. The first refers to vanishing
of the mutual information between Z and X, or in other words Z and X becoming indepen-
dent due to a powerful decoder. The second problem refers to over-fitting of the output
likelihood by matching individually each data point when the training data is finite. #This
also effectively causes the latent states to become irrelevant.

One of the approaches proposed in this paper is applying the variational autoencoder
(VAE) [14] as an embedding of the time series into a sequence of latent variables. Unlike
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standard autoencoders that translate data into a more desirable latent representation
found in the activation of the hidden layers, VAE explicitly constrains the latent variables
Z so that they should be random variables distributed according to some prior p(z).
The input X and latent code Z can then be seen as jointly distributed random variables
Z ∼ p(Z), X ∼ p(X|Z). The VAE consists of an encoder probability qλ(Z|X), which
approximates the posterior probability p(Z|X), and a decoder probability pθ(X|Z), which
parametrizes the likelihood p(X|Z). In practice, the approximate posterior and likelihood
distributions are parametrized by the weights of connections between neurons in the VAE
network. Posterior inference is performed by minimizing the KL divergence between the
encoder and the true posterior. It can be proved that this optimization problem is same as
maximizing the evidence lower bound (ELBO):

ELBO = E[log pθ(X|Z)]− KL(qλ(Z|X)||p(Z)) ≤ log p(X) (14)

Another important insight about VAE is that it is a generative model, where the latent
variables Z are used to “drive” the decoder into producing novel samples of data X. In a
statistical sense, VAE is used to learn the distribution P(X) rather then simply encode the
observations X.

4.1. Rate Reduction

Rate–Distortion is studied as a way of extracting useful or meaningful information
from noisy signals, and is also motivated by aspects of human cognition [15]. Reduced
representation was also explored in the context of deep neural network learning theory
using the information bottleneck principle [5]. In deep learning, some attempts to consider
predictive information through the use of a bottleneck or noisy representation in temporal
models, such as RNNs have recently appeared in the literature[16,17]. An important
distinction between these works and the proposed framework is that these works are using
rate limitation as part of the learning process. Here, we propose applying bit reduction
to a pre-trained encoder–decoder network in order to reduce the complexity of the latent
representation prior to decoding. This allows experimenting with various bit-rate regimes
for a fixed embedding without retraining the representation network. For this purpose,
we borrow bit allocation technique from the rate–distortion theory of lossy information
processing. The reduced latent representation is subjected to information rate analysis
using symbolization methods as previously explained.

4.2. Bit-Rate-Limited Encoding

As mentioned above, in this study we consider a particular case of reduced repre-
sentation that is based on rate–distortion theory. Rate–distortion theory offers an optimal
solution for finding the most compact (least-rate) encoding for a given limit on the dis-
tortion or reconstruction error. Equivalently, distortion–rate finds the best encoding in
terms of least distortion for a given rate. Algorithms for optimal bit allocation according
to the rate–distortion theory are so called bit allocation methods that we describe below.
By using a rate-limited channel between the encoder and decoder of the VAE, we are able
to control the complexity of the encodings using a bit allocation algorithm. In our case,
we use rate as the free parameter to find the least-distortion codes under the assumption
that latent codes in VAE are distributed as multi-variate uncorrelated Gaussians. The rate–
distortion function that provides the lower limit on the achievable rate R as a function of
the maximal-allowed distortion level D, is given by

R(D) =

{
1
2 log2

σ2

D , if 0 ≤ D ≤ σ2

0, if D > σ2.
(15)

where R is the rate and D is the distortion value. This rate–distortion function can be
converted into a distortion–rate function D(R) = σ22−2R that gives the lower limit on
distortion D that is achievable for a given rate R. This ideal lower limit (i.e., least distortion)
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can be efficiently achieved for a particular type of signal that is known in communica-
tion theory as a “multivariate Gaussian channel”. We adopt this channel model for our
experiments without further justification. What is special about this type of channel is
that an optimal bit reduction can be achieved by using the so-called reverse water-filling
algorithm [18]. This algorithm starts with a predefined bit-rate R and successively allocates
one bit at a time to the strongest component, repeating the process until all bits in the bit
pool are exhausted. One should note that channels (i.e., latent variables in our case) with
variance less than allowed distortion, or channels that run out of bits for a given rate, are
given zero bits and, thus, are eliminated from the transmission.

A schematic representation of channel inclusion in the autoencoder architecture is
given by Figure 7.

Figure 7. Noisy channel between encoder and decoder.

Encoding the latent components at a rate R changes the mean and variance of the VAE
as follows [19]

Q(zd|ze) = Normal(µd, σ2
d ) (16)

µd = ze + 2−2R(µe − ze) (17)

σ2
d = 2−4R(22R − 1)σ2

e (18)

This process requires some explanation: for a given rate R we obtain the bit-rate for
each of the latent variables according to the reverse water-filling procedure. This gives us
different numbers of bits for each latent dimension, where the high-variance dimensions
tend to grab the bits first, often leaving the weak (small-variance) latent variables with zero
bits. Next, we proceed by sampling a value from the encoder distribution according to the
original VAE mean and variance parameters, µe and σ2

e . Then, using the rate R and the
original mean and variance parameters for each latent variable, we derive a new mean
and variance µd and σ2

d . We use these probability parameters to sample a reduced-bit-rate
value and use it as our new input to the decoder. One can see from Equation (18) that latent
variables that are allocated zero bits need not be transmitted. More precisely, the value
that the decoder needs is the mean value of that latent variable that is independent of the
particular instance being transmitted. This mean value can be obtained a priori and thus
can be “hard coded” into the decoder ahead of time, with no need to transmit it. Channels
allocated a very high rate will transmit an (almost) unaltered value of the latent variable
that was sampled in the VAE encoder.

4.3. Combined Optimization

The algorithm for combined predictive and representation optimization that accom-
plishes the information dynamics objective (7) is given in Algorithm 3. This algorithm



Algorithms 2022, 15, 484 15 of 21

consists of an inner symbolization loop that finds the best quantization threshold for pro-
viding latent representation quality, and an outer loop that uses bit allocation to reduce the
fidelity of a previously learned encoding. Although not a fully end-to-end representation
and prediction method, we propose this algorithm as a way to search over lossy variants of
previously learned high-rate representation encoding, taking into account the predictive
properties of the encoded time series using symbolic dynamics.

Algorithm 3 Combined Rate-Prediction

Require: Given a time series X = (x1, x2, . . . , xT), an element-wise encoder–decoder pair
z = Enc(x), x̂ = Dec(z), with Z = (z1, z2, . . . , zT), an error function Dist(x, x̂), a bit-
allocation procedure with total rate parameter R, ẑ = Bitalloc(z, R), and a symbolization
oracle with threshold θ, S = Oracle(Z, θ)
Perform an encoding Z = Enc(X) = (z1 = Enc(x1), z2 = Enc(x2), . . . , zT = Enc(xT))
for rate R from Rmax to Rmin with decrements δ do

Compute the reduced rate latent code Ẑ = Bitalloc(Z, R)
Compute the mean error D = E(Dist(X, Dec(Ẑ))
Normalize the sequence Z so that the maximal distance between samples of Z is 1
for threshold θ from 0 to 1 with increments ε do

Compute θ∗ = argmax(IR(θ))
Store the result in a Loss Matrix L(R, θ∗) = IR(θ∗)− λD

end for
end for
For best model select R∗, θ∗∗ = argminR,θ∗L(R, θ∗). return a symbolic encoding S of the
original time series X, S = Oracle(Bitalloc(Enc(X), R∗), θ∗∗)

5. Transfer Entropy Estimation

Transfer entropy between two sequences is the amount of information passing from the
past of one sequence to another when the dependencies of the past of the other sequence
(sequence’s own dynamics) have been already taken into account. To distinguish the
notation from that of previous sections, we will denote the two time series as data X and
context C, and their past as X̄ and C̄, respectively. This gives TEC→X = I(X; C̄|X̄) Similarly
TEX→C = I(C; X̄|C̄). Writing mutual information in terms of entropy

I(C; X̄) = H(C)− H(C|X̄)

I(C; X̄|C̄) = H(C|C̄)− H(C|X̄, C̄)

Adding and subtracting H(C):

I(C; X̄|C̄) = H(C|C̄)− H(C|X̄, C̄)− H(C) + H(C) = I(C; X̄, C̄)− I(C; C̄) (19)

Additionally:
I(X; C̄|X̄) = I(X; C̄, X̄)− I(X; X̄) (20)

We consider a sum of these expressions, calling it symmetrical transfer entropy (SymTE):

SymTE = I(C; X̄|C̄) + I(X; C̄|X̄) (21)

Lemma 2. Given time series X and C, the symmetrical transfer entropy is given by

SymTE = I((C, X); (C, X))− I(C; X|(C, X)) + I(C, X)− I(X, X̄)− I(C, C̄) , (22)

where we used a notation for the past of the joint pair (C̄, X̄) = (C, X).

Proof. Symmetric transfer entropy (SymTE) between two sequences X and C,

SymTE = I(C; X̄|C̄) + I(Xi; C̄|X̄)
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equals to

SymTE = I((C, X); (C, X))− I(C; X|(C, X)) + I(C, X)− I(Xi, X̄)− I(C, C̄) ,

where we used a notation for the past of the joint pair (C̄, X̄i) = (C, Xi). Using the relation

I(X; C̄|X̄) = H(X|X̄)− H(X|X̄C̄) = H(X|X̄)− H(X) + H(X)− H(X|X̄C̄) = I(X; C̄X̄)− I(X, X̄)

and similarily
I(C; X̄|C̄) = I(C; X̄C̄)− I(C, C̄)

We sum both of the above expressions to derive the symmetrical TE:

SymTE =I(C; X̄|C̄) + I(X; C̄|X̄) = I(C; X̄C̄)− I(C; C̄) + I(X; X̄C̄)− I(X; X̄)

= I(C; X̄C̄) + I(X; X̄C̄)− I(C; C̄)− I(X; X̄)

Continuing the derivation

I(C; X) = H(C) + H(X)− H(C, X)

I(C; X̄C̄) = H(C)− H(C|X̄C̄)

I(X; X̄C̄) = H(X)− H(X|X̄C̄)

I(CX; X̄C̄) = H(C, X)− H(C, X|X̄C̄) = −I(C, X) + H(C) + H(X)− H(C, X|X̄C̄)

= −I(C, X) + H(C) + H(X)− H(C, X|X̄C̄)− H(C|X̄C̄) + H(C|X̄C̄)− H(X|X̄C̄) + H(X|X̄C̄)

= −I(C, X) + H(C)− H(C|X̄C̄) + H(X)− H(X|X̄C̄)− H(C, X|X̄C̄) + H(C|X̄C̄) + H(X|X̄C̄)

= −I(C, X) + I(C, X̄C̄) + I(X, X̄C̄) + I(C, X|X̄C̄)

This gives the equality:

I(C, X̄C̄) + I(X, X̄C̄) = I(CX, X̄C̄)− I(C, X|X̄C̄) + I(C, X)

Plugging back into SymTE gives:

SymTE =I(C, X̄|C̄) + I(X, C̄|X̄)

=I(C, X̄C̄) + I(X, X̄C̄)− I(C, C̄)− I(X, X̄)

=I(CX, X̄C̄)− I(C, X|X̄C̄) + I(C, X)− I(C, C̄)− I(X, X̄)

If we assume that the generation of X is independent of C given their joint past (C, X),
then I(C; X|(C, X)) = 0, resulting in

SymTE ≈ I((C, X); (C, X))− I(X, X̄)− I(C, C̄) + I(C, X) , (23)

which is a sum of the IR of the joint pair (C, X) and the mutual information between
C and X regardless of time, minus the IR of the separate time series. In other words,
the symmetrical TE is a measure of surprisal present in the joint time series minus the
surprisal of each of its components, plus the mutual information (lack of independence)
between their individual components. This captures the difference between surprisal when
considering the compound time series versus surprisal when considering them separately,
with an added component of mutual information between the observations of the two time
series regardless of time.

5.1. Border Cases

If C = X, and since H(X, X) = H(X), we obtain I((X, X); (X, X)) = IR(X) and
SymTe = I(X, X)− IR(X) = H(X)−H(X)+ H(X|X̄) = H(X|X̄), which is the conditional
entropy of X given its past. So, the TE of a pair of identical streams is its entropy rate. If C
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and X are independent, then SymTE = 0. This is based on the ideal case of the IR estimator
of the joint sequence I((C, X); (C, X)) being able to reveal the IR of the individual sequences
and additionally capture any new emerging structure resulting from their joint occurrence.
In theory, if C and X are independent, H(C, X) = H(C) + H(X) and H(C, X|(C, X)) =

H(C|C̄) + H(X|X̄); therefore, I((C, X); (C, X)) = I(X, X̄) + I(C, C̄). Thus, a combination
of two time series may add additional information; however, in practice, it could be that
VMO will not be able to find sufficient motifs or additional temporal structures when such
a mix is performed. In such a case, it can be that the SymTE estimate becomes negative.

5.2. Mutual Information Neural Estimation

Theoretically, computing the mutual information between two variables is a hard
problem. The computation is only tractable if two variables are discrete or if two variables’
probability distributions are known. For the latent variables sampled from a VAE, we
cannot directly compute the mutual information since it is intractable to marginalize the
probabilities from the whole latent space.

Mutual information neural estimation (MINE) [20] is a framework that allows us to
use a neural network output to approximate the mutual information between two variables.
Suppose that we want to estimate the mutual information between X and C, we first
construct the joint data points (x1, c1), (x2, c2), ...., (xN , cN), where for each n, the tuple
(xn, cn) hypothesizes that these two variables are related. Then, we create a new group
of data points (x1, ca1), (x2, ca2), ...., (xN , caN), where (a1, a2, ..., aN) is a randomly shuffled
index sequence from 1 to N. Next, we feed these two groups of data points into a neural
network Tθ to converge by a loss function:

L(θ) =
1
N

N

∑
n=1

Tθ(xn, cn)− log(
1
N

N

∑
n=1

eTθ(xn ,can )) (24)

where minimizing this loss is able to find a tighter lower bound that can approximate the
true mutual information using the Donsker–Varadhan representation of the KL divergence.
Generally, the mutual information estimation is performed by finding a mapping between
two sets of data points, so it is a “point-wise” mutual information that is not easily appli-
cable to time series or predictive information. In the following experiments, we will use
MINE to analyze the mutual information between the latent variables of the generative
model data X versus the context C.

6. Applications

In this section, we mention some of the applications of the information dynamics
analysis and the use of symbolization and rate-reduction methods in the areas of audio and
other time series analysis. These works point to the significant potential of using symbolic
dynamics to capture non-linear dynamical statistics in complex time series and sequences
of signal features.

6.1. Information Rate and Volatility

The intuition behind information dynamics can be seen by examining how IR corre-
sponds to volatility in a financial time series. In Figure 8, the volatility in stock prices is
shown together with an instantaneous information rate plot. The data are taken from the
daily returns of the S&P500 stock index from 1 October 1983 to 30 August 1991. The volatility
of the series was estimated by taking the root of the five-day average of squared returns,
as described in Ref. [21]. One should note that the application of information rate analysis is
performed here on a short time basis, depending on the length of the repeated suffix at each
data point in time.
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Figure 8. S&P500 stock prices shown together with information rate graph.

One can visually observe that regions of extreme change in the stock price correspond
to drops in the instantaneous information rate graph. When changes in the stock index are
unpredictable, or in other words, when patterns of price change cannot be attributed to the
repetition of previous sub-sequences, the information rate significantly diminishes. Such a
measure can be used for change detection or segmentation.

6.2. Motif Finding

Discovering musical patterns (motifs, themes, sections, etc.) is an important task for
musical analysis, song cover identification, composition, and more. One can also consider
this as a general time-series problem of identification of salient repeated sub-sequences that
might be important for the characterization of data. In music the task of motif finding is
defined as identifying salient musical patterns that approximately repeat within a piece.
These patterns could potentially be overlapping with each other, and their repetitions could
be inexact in terms of variations of various musical parameters such as harmony, rhythm,
melodic contours, etc.

In Ref. [7], the VMO algorithm was used to discover patterns in audio recording
using a special feature called a chromagram that aggregates the signal energy from differ-
ent frequencies into 12 bins that correspond to 12 basic musical pitches (pitch classes).
The chromagrams were specially processed so as to match the beat structure of the music.
To consider transposition, the distance function used in the VMO is replaced by a cost
function with transposition invariance. The algorithm for pattern discovery is presented
in Ref. [7]. The only parameter it requires is a minimum pattern length. The VMO perfor-
mance was SOTA compared with other existing methods as tested on a musical benchmark
that was produced by human experts as the ground truth for motif analysis. Further uses
of this method allowed us to construct motif-grams (plots of repeated motifs that occur
in music over the time course of the musical piece). An example of a motif-gram for a
recording of a Bach musical piece is shown in Figure 9.

The x-axis corresponds to time, counted in terms of frames of audio analysis, and the y-
axis shows the motif count with black horizontal lines corresponding to the time frames
during which the motif appeared. In this specific case, the special chroma feature that is
designed to detect tonal or chord-like patterns in music, invariant to the exact notes that
are being played, found the most repeating motifs. MFCC features that capture the sound
timbre or color show the least amount of repetitions, indicating that changes in sound
color are not a significant structural feature in this musical piece. The VAE representation
finds an intermediate amount of motifs; however, it is not the optimal feature for this type
of data. This example demonstrates the limited ability of representation learning to find
very specific or highly sophisticated structures in specialized types of data. Nevertheless,
when no human engineering features or prior knowledge is available to find a custom
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representation, VAE can still be used as a way to learn a useful representation. These motif-
finding methods were applied for a comparative analysis of musical cultures in Ref. [22],
showing that the VMO algorithm has “tuned” itself to different levels of quantization in
different cultures, thus suggesting that the basic salient elements of musical expression
differ according to different cultures. To give a concrete example, comparing the music
of Bach or Telemann played on a recorder (wooden flute) to Japanese Shakuhachi music
suggested that the latter musical style had many more musical inflections and shorter
patterns in sound, such as noise and pitch variations, compared with the two Western
composers, who organized their music into longer and more clearly defined note sequences.
The query-matching algorithm that was presented above in the context of transfer-entropy
estimation has been previously applied for sequence identification in the case of human
gestures. In Ref. [12], multiple oracle structures were constructed for human gestures using
a manually engineered representation of skeletal positions recorded from a depth camera.
Using a count of the number of recombinations of a new query, the oracle with the least
number of recombinations was chosen as the closest reference gesture to the new input.
This method of gesture classification showed better performance compared with the DTW
and HMM models and was on par with SVM trained on special features (covariances
between joints as features).
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Figure 9. Motifs found in Bach recording for different features.

6.3. Recurrent Quantification Analysis

Another field of application for symbolic dynamics is non-linear time series analysis
(NLTSA). When applied to human voices, NLTA characterizes disorders in voices that are
depicted in their temporal dynamics rather then in their instantaneous acoustic properties.
Numerous studies try to characterize non-linear phenomena in vocal signals with evidence
of non-linear dynamical behavior in speech signals and pathological voices. In a series of
works [23,24], we have applied VMO as a pre-processing step for the extraction of non-linear
features using so-called recurrent quantification analysis (RQA). RQA extracts features or
statistics from a recurrence plot (RP) that is a two-dimensional binary representation of the
distances between signal trajectories in phase space over time, where a Heaviside function
(0 or 1 mapping) is applied to the distances between points in the phase space at any given
pair of time points to determine if it is below or above that distance threshold. Instead of the
classical time-delay embedding of the signal, VMO is used for a short-term spectral analysis
of the acoustic signal, resulting in optimal symbolic representation that renders itself to
a simple recurrent analyzer from its oracle suffix structure. Simply described, a repeated
suffix found by the oracle is equivalent to a recurrence diagonal sequence in a RP.The use
of symbolization not only automates the process of finding approximate repetition but it
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also solves the issue of finding the optimal threshold for generating the RP. The combined
VMO-RQA method was applied to various acoustic signals, from the detection of emotions
and affect in speech and audio to the detection of COVID-19 in vocalizations of coughs and
sustained vowels. Slightly different audio features were extracted in each case (constant
Q or CQT transform, and mel frequency cepstral MFCC, in the affect and COVID-19
applications, respectively).

6.4. Creative Application

SymTE was used to select between generative models of musical style trained as
multiple VMO models. It is beyond the scope of this paper to describe how VMO is used
in a generative manner; however, broadly speaking, novel musical data can be generated
by the recombination of phrases from an existing musical piece by following the suffix
links in an oracle structure found in a VMO analysis of that piece. Such recombinations
can be performed in a random manner to create a random improvisation in a given piece
of music or to create an accompaniment to another musical piece by using it as a query
on a pre-trained oracle. In Ref. [25], the SymTE metric was shown to successfully select
the best improvisation model to match a reference musical input, outperforming other
sequence-matching methods.

In a different work, rate reduction was used in a creative way to compose a musical
piece by encoding–decoding a set of musical pieces using a VAE trained on a different
musical piece of a related genre. Details of that work are described in Ref. [26]. A video
of the performance can be seen at https://www.youtube.com/watch?v=NSw1XfKuraw.
(accessed on 26 November 2022).

7. Summary and Discussion

In this paper, we surveyed a set of methods and algorithms that allow an analysis
of information dynamics in a continuous time series or in signal data by a process of
symbolization. The problem is discussed by addressing the steps of representation learning,
embedding by reduction of the representation complexity using lossy coding, and finally
the quantization of the continuous embedding into a discrete representation by maximizing
the predictive information of the resulting symbolic sequence. The process of quantiza-
tion is performed by setting a threshold for similarity between the embedding vectors
for searching repeated sequences by following a chain of approximately similar suffixes.
The resulting suffix–links structure is then used to derive a measure of predictive infor-
mation by using the suffixes as a way to preform data compression by recopying blocks
of current data points from their earlier occurrences. The extent of such compression is
then used as a measure of the conditional entropy of the data based on their past. By per-
forming an exhaustive search over possible threshold values, a sequence with maximal
difference between its unconditional and conditional entropy, which comprises its predic-
tive information measure, is chosen as the optimal symbolization sequence. The task of
designing features for embedding time series data is one of the more challenging steps in
this analysis. To address this challenge, applying methods of learning representation by
neural embeddings, followed by a step of compression by rate reduction to optimize the
temporal structure, can be a significant step towards more fully automating such complex
signal analysis tasks. Investigating the trade-off between the fidelity and quality of data
representation is formulated in terms of a predictive bottleneck that combines both the
symbolic information rate of the latent representation at different encoding rates and the
accuracy of the encoding–decoding scheme at each such rate. The survey concludes by
showing several applications of symbolization, including an extension to transfer entropy
estimation between two parallel sequences. It should be noted that the proposed symbol-
ization method is not assured to achieve a generating partition, for which the topological
entropy of a dynamical system achieves its supremum. Nevertheless, we hope that by
carefully representing the data and maximizing the predictive qualities of the symbolized
approximation, meaningful aspects of the data structure can be efficiently found.

https://www.youtube.com/watch?v=NSw1XfKuraw
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