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Abstract: Unweighted Pair Group Method with Arithmetic Mean (UPGMA) is one of the most
popular distance-based methods to reconstruct an equidistant phylogenetic tree from a distance
matrix computed from an alignment of sequences. Since we use equidistant trees as gene trees
for phylogenomic analyses under the multi-species coalescent model and since an input distance
matrix computed from an alignment of each gene in a genome is estimated via the maximum
likelihood estimators, it is important to conduct a robust analysis on UPGMA. Stochastic safety radius,
introduced by Steel and Gascuel, provides a lower bound for the probability that a phylogenetic tree
reconstruction method returns the true tree topology from a given distance matrix. In this article, we
compute the stochastic safety radius of UPGMA for a phylogenetic tree with n leaves. Computational
experiments show an improved gap between empirical probabilities estimated from random samples
and the true tree topology from UPGMA, increasing confidence in phylogenic results.

Keywords: clustering method; distance-based method; phylogenetic tree reconstruction

1. Introduction

Phylogenetics is one of the oldest fields in biology to study the evolutionary history of
organisms using a phylogenetic tree, which is a tree representation of evolutionary history
among species (or taxa). In order to reconstruct a phylogenetic tree from genetic data,
researchers develop many statistical methods including maximum likelihood estimators,
Bayesian inference, and distance-based methods [1]. A distance-based method is one of
the most popular methods to reconstruct a phylogenetic tree for its computational speed
and relatively simple two-step procedure: (1) computing all pairwise distances between all
possible pair of sequences from the input alignment; and (2) reconstructing a phylogenetic
tree from all pairwise distances of sequences computed in Step (1) using combinatorics.

Maximum likelihood estimators under evolutionary models produce pairwise dis-
tances between all possible pairs of sequences and they form as a distance matrix. A distance
matrix is an input for a distance-based method to reconstruct a phylogenetic tree and we can
consider them as a multivariate random variable and these distance-based and probabilistic
methods do not always return the true phylogenetic tree topology. Therefore, we have to
measure the robustness of a method and one metric of the robustness of a distance-based
method for phylogenetic tree reconstruction is called the safety radius of the method. A
safety radius is a radius of all distance matrices such that a given distance-based method
returns the “true tree topology” of a phylogenetic tree. This means that all distance matrices
within the safety radius satisfy a precise combinatorial condition so that the distance-based
method is guaranteed to return the true tree topology [2].

In 2015, Steel and Gascuel introduced a notion of Stochastic safety radius in [2] for
analyzing the probability for a distance-based method to return the true tree topology from
a given distance matrix. In 2017, Xi et al. worked on developing a stochastic safety radius
using the neighbor-joining (NJ) method and balance minimal evolution method for trees
with number of leaves equal to 4 or 5 [3].

Phylogenomics is a new field, which applies tools from phylogenetics to genome data.
In phylogenomics, we often conduct the species tree and gene trees analyses using the
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multi-species coalescent model [4]. Under the multi-species coalescent model, we assume
that all gene trees, phylogenetic trees reconstructed from genes, are equidistant trees [4].
An equidistant tree is a rooted tree whose total branch length, from its root to each leaf,
is the same for all leaves (an example of an equidistant tree with three leaves is shown in
Figure 1).

In the past five years, there has been much work on the space of all equidistant trees for
phylogenomics [5–11]. However, these recent studies assume that all given equidistant
trees are true trees or close to true trees, which is often not true. Davidson and Sullivant
worked on variability of a distance-based method to reconstruct an equidistant tree from all
pairwise distances, called the Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
using polyhedral geometry [12]. They study how UPGMA project a given distance matrix
to the space of all equidistant trees so that their result is from the view of polyhedral
geometry and deterministic.

In this paper, therefore, we focus on the stochastic safety radius of the Unweighted
Pair Group Method with Arithmetic Mean (UPGMA), one of the most popular distance-
based methods and a lower bound of its probability that the UPGMA method returns the
true tree topology from a random input distance matrix with noise distributed from the
Gaussian distribution. Note that UPGMA is a hierarchical clustering method that builds a
dendrogram from a distance matrix which records pairwise “distances” defined by a user
input metric between all pairs of observations in a higher dimensional vector space [13].
In the application to a phylogenetic tree reconstruction, we use a distance matrix which
contains pairwise distances between all pairs of sequences in the input alignment via a user
input evolutionary model [1].

A phylogenetic tree is a weighted tree with labeled external nodes, called leaves, and
unlabeled internal nodes. These labels represent species or taxa at the present time and
each internal node represents a common ancestor for all of the leaves below this internal
node. A weight on each branch (or edge) of a phylogenetic tree represents a mutation rate
combined with its evolutionary time from an ancestor to its descendent. A phylogenic tree
can be rooted or unrooted. For more details, see [1].

Example 1. Suppose we have a label set for leaves X = {1, 2, 3} which represents a set of species
at the present time. Suppose we have a rooted phylogenetic tree T shown in Figure 1.

Figure 1. Example of a phylogenetic tree T on the label set of leaves X = {1, 2, 3}.

Internal nodes on T do not have labels. The internal node of the ancestor of leaves 1, 2 represents
the most common ancestral species of species 1, 2 and the root of T is the most common ancestor of
all species 1, 2, 3. Each branch length on a branch represents the mutation rate combined with its
evolutionary time. A distance matrix computed from this tree shown in Figure 1 is a 3× 3 matrix
such that dij, the (i, j)th cell of the matrix d is the total branch length from a leaf i ∈ X to a leaf
j ∈ X, that is,
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d =

1 2 3
1 0 e1 + e2 e1 + w + e3
2 e1 + e2 0 e2 + w + e3
3 e1 + w + e3 e2 + w + e3 0

.

Since d is computed from a phylogenetic tree, d is a tree metric. Not all n× n symmetric matrices
with diagonal elements equal to 0 are not tree metrics.

Through this paper, we assume that binary phylogenetic trees and the smallest branch
length wmin of an internal edge in a binary phylogenetic tree are strictly positive. In this
paper, we focus on equidistant trees which are rooted phylogenetic trees with branch lengths
such that the total branch length from its root to each leaf is the same.

Example 2. We consider a rooted phylogenetic tree on the label set of leaves X = {1, 2, 3} shown
in Figure 1 with w > 0. If w + e1 = w + e2 = e3, then T is an equidistant tree.

In this paper, our main contribution is that we show a lower bound of the probability
of UPGMA to return the true equidistant tree on the set of leaves X = {1, 2, . . . , n} for
n ≥ 3 from a set of random pairwise distances of all possible pairs of sequences. Then we
conduct some computational experiments using a statistical software R to see how tight
this lower bound is in practice for n = 4, . . . , 10.

This paper is organized as follows: Section 2 reminds the reader of the basics of
tree metrics and random variables representing pairwise distances of all possible pairs of
sequences. Then it adds a notion of stochastic safety radius defined by Steel and Gascuel
in [2]. In Section 3, we compute the stochastic safety radius of the three point condition for
equidistant trees using a lower bound of the probability of returning the tree topology
based on the three point condition. Then in Section 4, we compute a lower bound of the the
probability of returning the tree topology from UPGMA and in Section 5, we show some
results from our computational experiments with R. In Section 6, we end this paper with
some discussion.

2. Stochastic Safety Radius

Let Z≥0 be the set of all non-negative integers. Let X = {1, . . . , n} be the set of labels
for given species (or taxa) and let T be a rooted phylogenetic tree with leaves X.

Definition 3. Let D ∈ Zn×n
≥0 be an n× n matrix with non-negative elements. If D is a symmetric

matrix with its diagonal equal to 0, then we call D a distance matrix or dissimilarity maps.
Let dij ∈ Z≥0 be the (i, j)th element of a distance matrix D. If dij satisfies

• dij = dji for any i, j ∈ X,
• dii = 0 for all i ∈ X,
• dik + dkj ≥ dij for all i, j, k ∈ X,

then we call D a metric.
If D is a metric and if there exist a phylogenetic tree with leaves X such that dij is the total

distance of branch lengths of the path from a leaf i to a leaf j for all i, j ∈ X, then D is called a
tree metric.

Suppose D is a metric on X. Then if D satisfies

max{dij, dik, djk} and is achieved at least twice, (1)

for distinct i, j, k ∈ X, then D is called an ultrametric.

Definition 4. Suppose we have a rooted phylogenetic tree T with a leaf label set X. If a distance
from its root to each leaf i ∈ X is the same distance for all i ∈ X, then we call T an equidistant tree.
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Theorem 5 ([14]). Suppose we have an equidistant tree T with a leaf label set X and suppose dij
for all i, j ∈ X is a distance from a leaf i to a leaf j. Then, D is an ultrametric if and only if T is an
equidistant tree.

In this paper, we focus on equidistant trees with leaves X. In practice, we compute a
distance matrix from an observed alignment. When we compute a distance matrix from
an alignment via a maximum likelihood estimation, usually a distance matrix is not a
tree metric [1]. Therefore, in this paper, we investigate a probability that we obtain the
tree topology of the true phylogenetic tree from a distance matrix obtained from an input
alignment using stochastic safety radius [2].

Definition 6 (Stochastic safety radius). Let σ = c2

log(n) for some positive c ∈ R. For any η > 0,
we say that a distance-based tree reconstruction method M has η-stochastic safety radius s = sn
if for every binary phylogenetic X-tree T on n leaves, with minimum interior edge length wmin > 0,
and with the distance matrix δ on X described by the random errors model, we have

c < s · wmin =⇒ P(M(δ) = T) ≥ 1− η.

In this paper, we focus on the stochastic safety radius of a distance-based method,
Unweighted Pair Group Method with Arithmetic Mean (UPGMA).

In reality, if we obtain all pairwise distances from a genetic data set, then we rarely
have an ultrametric. Instead, we usually have dissimilarity maps. In order to infer an
equidistant tree from dissimilarity maps, we can use UPGMA [15], which is a weighted
least squared method to estimate the closest ultrametric in the space of ultrametrics [16].

Example 7. In order to demonstrate Algorithm 1, consider an equidistant tree with X = {1, 2, 3, 4}
shown in Figure 2.

Algorithm 1 UPGMA [15]

Input: Dissimilarity map D ∈ Re on X.
Output: An estimated equidistant tree T on X.
Set S := X and T = ∅.
for k = 1, . . . , n− 1, do

Pick smallest Dij for all pair of (i, j) ∈ S with i 6= j. Set x as a parent node for the node
i and j, compute branch length from i to x and j to x, and then record them in a tree T.

Set a new node x with Dxk =
1
2 (Dik + Djk) for all k ∈ X with k 6= i and k 6= j.

Remove i, j from S and add x to S.
end for
Record the branch lengths from the root to each leaf in the two leaves.
return T.

Figure 2. Example for Algorithm 1.
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A distance matrix computed from the tree shown in Figure 2 is

d =

1 2 3 4
1 0 1.6 4 4
2 1.6 0 4 4
3 4 4 0 2.4
4 4 4 2.4 0

.

Note that

• For i = 1, j = 2, k = 3:
max{d12, d13, d23} = 4

and
d13 = d23 = 4.

• i = 1, j = 2, k = 4:
max{d12, d14, d24} = 4

and
d14 = d24 = 4.

• i = 1, j = 3, k = 4:
max{d13, d14, d34} = 4

and
d13 = d14 = 4.

• i = 2, j = 3, k = 4:
max{d23, d24, d34} = 4

and
d23 = d24 = 4.

Therefore, d satisfies Equation (3). Thus, this 4× 4 matrix is an ultrametric.
With UPGMA algorithm shown in Algorithm 1, we have

• For k = 1, we pick a pair of leaves (1, 2) with d12 = 1.6. Set x1 as the parent node of (1, 2).
Assign the branch length from x1 to 1 as 1.6/2 = 0.8 and assign the branch length from x1 to
2 as 1.6/2 = 0.8. Now we add x = (1, 2) as a leaf set X. Thus we have X = {x, 3, 4} with

dx3 =
1
2
(d13 + d23) =

1
2
(4 + 4) = 4

and
dx4 =

1
2
(d14 + d24) =

1
2
(4 + 4) = 4.

• For k = 2, we pick a pair of leaves (3, 4) with d34 = 2.4. Set x2 as the parent node of (3, 4).
Assign the branch length from x2 to 3 as 2.4/2 = 1.2 and assign the branch length from x2 to
4 as 2.4/2 = 1.2. Now we add y = (3, 4) as a leaf set y. Thus we have X = {x, y} with

dxy =
1
2
(dx3 + dx4) =

1
2
(4 + 4) = 4.

After the for-loop, we record the branch length from the root to the leaf x and the leaf y as 4/2 = 2.
From this, we can compute the branch length from the root to x1 by 2− 0.8 = 1.2 and the branch
length from the root to x2 by 2− 1.2 = 0.8.

In this paper, we use UPGMA in order to investigate their stochastic safety radius and
lower bounds for the probability for UPGMA to return the true tree topology if the input
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distance matrix is not ultrametric. Here we assume that the multivariate random variable δ
is defined as follows:

δij = dij + εij (2)

where εij ∼ N(0, σ) are independently and identically distributed for fixed σ > 0 and for
all i < j ∈ X and

δji = δij

for all i < j ∈ X.

Remark 8. In order to make it simple, we assume that the height of an equidistant tree T on leaves
X, which is the total branch length from each leaf i ∈ X to its root, is equal to 1.

3. Probability on the Three Point Condition

From Equation (1), we have the three point condition which is defined below: for all
distinct leaves i, j, k ∈ X we have

dij ≤ dik (3)

dij ≤ djk

and, by Theorem 5, if d is an ultrametric and is a tree metric of an equidistant tree T, then
Equation (3) satisfies for all distinct leaves i, j, k ∈ X.

Suppose a subtree of T is a tree shown in Figure 3. Then we have the following:

dij = ei + ej, (4)

dik = ei + ek + w,

djk = ej + ek + w.

Figure 3. Equidistant tree with three leaves on labels X = {i, j, k}. w, ei, ej, ek > 0 are branch lengths.

In addition, from Equation (4), we have

δij = ei + ej + εij, (5)

δik = ei + ek + w + εik,

δjk = ej + ek + w + εjk.

Therefore, by Equation (5) and Equation (4), we have the following: for all distinct
leaves i, j, k ∈ X we have

ei + ej + εij ≤ ei + ek + w + εik (6)

ei + ej + εij ≤ ej + ek + w + εjk.
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Then we have

ej + w + εij ≤ ek + 2w + εik (7)

ei + w + εij ≤ ek + 2w + εjk.

Since ei + w = wk and ej + w = wk, we have

εij ≤ 2w + εik (8)

εij ≤ 2w + εjk.

Therefore, we have

εij − εik ≤ 2w (9)

εij − εjk ≤ 2w.

Since εij, εik, εjk are independently and identically distributed (i.i.d.) from the normal
distribution N(0, σ), εij − εik and εij − εjk are i.i.d. from the normal distribution N(0, 2σ).
Therefore, we have

P(min{εij − εik} ≤ 2w) for all i, j, k ∈ X (10)

= 1− P(min{εij − εik} > 2w) for all i, j, k ∈ X

= 1− P(
min{εij−εik}

2 > w) for all i, j, k ∈ X

= 1− P( ε′
2 > w)(

n
3) where ε′ ∼ N(0, 2σ)

= 1− P(ε > w)(
n
3) where ε ∼ N(0, σ)

= 1− P( ε
w > 1)(

n
3) where ε ∼ N(0, σ)

= 1− P(ε > 1)(
n
3) where ε ∼ N

(
0,

σ

w

)
.

Let w = wmin where wmin is the smallest branch length for an internal edge in an
equidistant tree T on leaves X. Then we have

P(M(δ) = T) ≥ 1− P(ε > 1)(
n
3),

where ε ∼ N(0, σ
wmin

). Let σ = c2

log(n) for c > 0 and η = P(ε > 1)(
n
3). Let c = s · wmin. Then

we have (
σ

wmin

)
=

(
s2 · wmin

log(n)

)
<

(
s2

log(n)

)
by Remark 8.

4. Probability Distribution of the Output Tree via Upgma
4.1. Case for n = 3

For n = 3, we have X = {1, 2, 3}. Suppose d12 < d13 and d12 < d23. from Equation (9),
we have

P(min{ε12 − ε13} ≤ 2w) = 1− P(ε > 1) where ε ∼ N
(
0, σ

w
)
. (11)

4.2. Case for n = 4

For n = 4, we have X = {1, 2, 3, 4}.
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Case
1

If we have a case in the left picture in Figure 4 for i = 1, j = 2, k = 3, l = 4. The
probability that δ12 is chosen first is

1− P(ε > 1) where ε ∼ N
(

0, σ
wmin

)
. (12)

let x be the new label merging leaves 1, 2. Then

δ3x = d13 + ε (13)

δ4x = d14 + ε where ε ∼ N(0, σ).

Then the probability that δx3 is chosen is

1− P(ε > 1) where ε ∼ N
(

0, σ
wmin

)
. (14)

Therefore, the probability that UPGMA returns the true tree topology is

(1− P(ε > 1))2

where ε ∼ N
(

0, σ
wmin

)
.

Case
2

If we have a case in the right picture in Figure 4 for i = 1, j = 2, k = 3, l = 4. The
probability that δ12 is chosen first is

1− P(ε > 1) where ε ∼ N
(

0, σ
wmin

)
. (15)

let x be the new label merging leaves 1, 2. Then

δ3x = d13 + ε (16)

δ4x = d14 + ε where ε ∼ N(0, σ).

Then the probability that δ34 is chosen is

1− P(ε > 1) where ε ∼ N
(

0, σ
wmin

)
. (17)

Therefore, the probability that UPGMA returns the true tree topology is

(1− P(ε > 1))2

where ε ∼ N
(

0, σ
wmin

)
.

Remark 9. For X = {1, . . . , n}, there are (2n− 3)!! = 1 · 3 · 5 . . . · (2n− 3) many different tree
topologies of rooted phylogenetic trees on leaves X [1].

By Remark 9, there are (2 · 4− 3)!! = 1 · 3 · 5 = 15. Thus, we have the probability that
UPGMA returns the tree topology is

15(1− P(ε > 1))2

where ε ∼ N
(

0, σ
wmin

)
.
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Figure 4. Two cases for equidistant trees without labels.

4.3. General Case

For n ≥ 3, we have X = {1, . . . , n}. Using the same way with the case on n = 4, by
recursive computations and by Remark 9, we can obtain the probability of UPGMA to
return the true tree topology is

(2n− 3)!!(1− P(ε > 1))(n−2)

where ε ∼ N
(

0, σ
wmin

)
.

Theorem 10. Suppose we have a distance matrix δ defined by Equation (2) with a tree metric
associated with the binary true phylogenetic tree T on the set of leaves X = {1, . . . , n} with the
smallest internal branch length wmin > 0. Then the probability for UPGMA to return the true tree
topology on X is bounded by

(2n− 3)!!(1− P(ε > 1))(n−2)

where ε ∼ N
(

0, σ
wmin

)
.

Proof. For n = 3, it is trivial. For n > 3, then suppose the statement holds for n− 1. Then
we want to show that the statement holds for n. First, we fix the tree topology. Let i, j, k be
subsets of X = {1, . . . , n} and form a partition on X. Then suppose dij < dik and dij < djk.
from Equation (9), we have

P(min{εij − εik} ≤ 2w) = 1− P(ε > 1) where ε ∼ N
(
0, σ

w
)
. (18)

Since we assume that the statement holds for n− 1, for this particular tree topology, we
have that the probability for UPGMA to return the true tree topology on X is bounded by

(1− P(ε > 1))(n−2)

where ε ∼ N
(

0, σ
wmin

)
. Since there are (2n − 3)!! many tree topologies for n, we have

the result.

5. Computational Experiments

In this computational experiment, we use the ape [17] and the phangorn packages [18,19]
R packages for phylogenetic tree data structures, generating random trees, and UPGMA.

First, in order to compare Theorem 10 and the space of ultrametrics, namely Theorem 5
computationally with n = 3 so that we can visualize the results. We generated 1000 random
points δ = (δ12, δ13, δ23) where δij = dij + ε for i, j, k ∈ {1, 2, 3} and ε ∼ N(0, σ). We
vary σ = 0.01, 0.1, 0.5, 1.0. The results show in Figure 5. Black points are ultrametrics
d = (d12, d13, d23) and red points are δ = (δ12, δ13, δ23).
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Figure 5. Red points are randomly generated δ = (δ12, δ13, δ23) and black points are ultrametrics
which are equivalent to equidistant trees. The top left figure is for σ = 0.01. The top right figure is for
σ = 0.1. The bottom left figure is for σ = 0.5. The bottom right figure is for σ = 1.

We estimate the probability for UPGMA to return the true tree topology using
Algorithm 2 for n = 4, . . . , 10 and for σ = 0.1, 0.5, 1, 2, 5, and then we compare these
estimated probabilities with lower bounds which we obtained in Theorem 10. These re-
sults are shown in Tables 1 and 2. These results show that lower bounds computed in
Theorem 10 might not be tight. In all cases, the lower bound computed by Theorem 10 is
an order of magnitude less than the estimated probability for UPGMA to return the true
tree topology with a random sample. This suggests that although the presence of a lower
bound defines a boundary for the likelihood of the having the true tree topology, it also
presents a challenge in the magnitude of gap.

Table 1. Comparison between empirical probabilities with lower bounds computed by Theorem 10.
The notation a(b) in each cell represents two parts: a represents the estimated probability for UPGMA
to return the true tree topology with a random sample of sample size 1000 and (b) represents a
lower bound computed by Theorem 10. We repeated this process 100 time and take an average for
computing estimated probabilities. For example, we consider the cell for σ = 0.1 and n = 4. In this
cell, 0.902 is an estimated probability computed by Algorithm 2 and 0.334 is a lower bound from
Theorem 10 with n = 4 and σ = 0.1.

σ/ n 4 5 6 7

0.1 0.902 (0.334) 0.802 (0.447) 0.682 (0.381) 0.545 (0.260)
0.5 0.650 (0.160) 0.420 (0.055) 0.246 (0.035) 0.144 (0.014)
1 0.446 (0.060) 0.214 (0.006) 0.093 (0.001) 0.049 (<0.0001)
2 0.261 (0.015) 0.080 (0.001) 0.027 (<0.0001) 0.007 (<0.0001)
5 0.129 (0.004) 0.031 (<0.0001) 0.007 (<0.0001) 0.001 (<0.0001)

σ/ n 8 9 10

0.1 0.477 (0.226) 0.357 (0.137) 0.320 (0.118)
0.5 0.084 (0.001) 0.046 (<0.0001) 0.019 (<0.0001)
1 0.021 (<0.0001) 0.009 (<0.0001) 0.003 (<0.0001)
2 0.002 (<0.0001) 0.001 (<0.0001) <0.001 (<0.0001)
5 <0.001 (<0.0001) <0.001 (<0.0001) <0.001 (<0.0001)
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Table 2. Differences estimated probabilities minus lower bounds in Theorem 10 computed in our
computational experiments shown in Table 1.

σ/ n 4 5 6 7 8 9 10

0.1 0.568 0.355 0.302 0.286 0.251 0.220 0.203
0.5 0.491 0.365 0.211 0.130 0.082 0.046 0.019
1 0.386 0.208 0.092 0.048 0.020 <0.001 <0.001
2 0.246 0.079 0.027 0.007 0.002 <0.001 <0.001
5 0.125 0.031 0.007 0.001 <0.001 <0.001 <0.001

Algorithm 2 Computational experiments for estimating the probability for UPGMA to
return the true tree topology

Input: The number of leaves n, standard deviation σ > 0.
Output: Estimated probability for UPGMA to return the true tree topology.
for i = 0, . . . , 100, do

Generate a random tree T with n leaves X = {1, . . . , n} using a multispecies coalescent
model [4] via the function coal from the ape package.

Set pi = 0.
for k = 0, . . . , 1000, do

Generate a random distance matrix with

δij = dij + εij,

where dij is the total branch length from a leaf i to a leaf j in T and εij ∼ N(0, σ) for all
i, j ∈ X.

Use UPGMA to reconstruct a tree T̂ from δ via the function upgma from the
phangorn package.

Compare tree topology between T and T̂ using the function all.equal in the ape
package.

if T and T̂ have the same tree topology, then
p = p + 1.

end if
end for
pi = pi/1000.

end for
return p = ∑100

i=1 pi
100 .

6. Conclusions

UPGMA is a hierarchical clustering method to reconstruct a phylogenetic tree from
a distance matrix. In general, it is unlikely that a given distance matrix is a tree metric so
that, in this paper, we focus on the case when an input distance matrix is written as a linear
combination of the true tree metric and an error term which is generated from the Gaussian
distribution around 0 with the standard deviation σ > 0. In addition, we show a lower
bound of the probability for UPGMA to return the true tree topology if we have an input
distance matrix δ defined by Equation (2).

Then we conduct computational experiments so that our lower bounds are close to
the empirical probabilities estimated from random samples shown in Tables 1 and 2. These
computational results suggest our lower bounds are not tight. Thus, for a future direction
of this research, we have the following questions:

Problem 11. Can we compute tighter lower bounds for UPGMA to return the true tree topology
from a distance matrix δ defined in Equation (2)? If our bounds are tight for some situations, what
are the conditions that our lower bounds are tight?
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In addition, using the idea of computing lower bounds of the probability, we might be
able to compute a “confidence interval” of the estimated phylogenetic tree from a given
distance matrix via UPGMA.
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