
Citation: Chavdarov, I.; Naydenov, B.

Algorithm for Determining the Types

of Inverse Kinematics Solutions for

Sequential Planar Robots and Their

Representation in the Configuration

Space. Algorithms 2022, 15, 469.

https://doi.org/10.3390/a15120469

Academic Editors: Shuai Li, Predrag

S. Stanimirovic, Dechao Chen,

Mohammed Aquil Mirza, Vasilios

N. Katsikis, Dunhui Xiao and

Frank Werner

Received: 19 September 2022

Accepted: 6 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Algorithm for Determining the Types of Inverse Kinematics
Solutions for Sequential Planar Robots and Their
Representation in the Configuration Space
Ivan Chavdarov 1,2,* and Bozhidar Naydenov 2,3

1 Faculty of Mathematics and Informatics, Department of Mechatronics, Robotics and Mechanics,
University of Sofia “St. Kliment Ohridski”, 1504 Sofia, Bulgaria

2 Institute of Robotics, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 1, 1113 Sofia, Bulgaria
3 DASSAULT SYSTEMES, Blvd. General I. Totleben 53-55, 1606 Sofia, Bulgaria
* Correspondence: ivannc@uni-sofia.bg

Abstract: The work defines in a new way the different types of solutions of the inverse kinematics
(IK) problem for planar robots with a serial topology and presents an algorithm for solving it. The
developed algorithm allows the finding of solutions for a wide range of robots by using a geometric
approach, representing points in a polar coordinate system. Inverse kinematics, which is one of the
most important, most studied and challenging problems in robotics, aims to calculate the values of the
joint variables, given the desired position and orientation of the robot’s end effector. Configuration
space is defined by joint angles and is the basis of most motion planning algorithms. Areas in the
working and configuration space are generated that are reachable with different types of solutions.
Programs are created that use the proposed algorithm for robots with two and three rotational
degrees of freedom, and graphically present the results in the workspace and configuration space.
The possibility of transitioning from one type of solution to another by passing through a singular
configuration is discussed. The results are important for planning motions in the workspace and
configuration space, as well as for the design and kinematic analysis of robots.

Keywords: inverse kinematics; robot; workspace and configuration space; singular configurations

1. Introduction

This paper presents an algorithm that examines the configuration spaces of planar
serial robots and uses this information to classify inverse kinematics solutions. Examples
are presented that show the benefit of dividing the workspace and configuration space into
zones with different types of solutions. The algorithm is implemented in AutoCAD and
can help visualize feasible trajectories. Advantages include finding solutions in singular
positions and automatically generating the configuration space along with the workspace.
Some limitations of the algorithm are that it is not applicable for real-time tasks and
currently can be used only for serial and planar robots.

1.1. Literature Review

Serial robots are the most common industrial manipulators. They are designed as a se-
ries of links connected by motor-actuated joints that extend from a base to an end-effector.
Robot kinematics deals with two types of problems—forward and inverse kinematics
problems. For serial robots the forward kinematics problem is straightforward, and a single
solution is easily found; the most popular method for the solution is proposed by Denavit
and Hartenberg [1]. Inverse kinematics (IK) is a much more difficult problem than forward
kinematics due to the presence of singularities and nonlinearities. Completely analytical
solutions exist only for a small class of kinematically simple manipulators [2]. For many

Algorithms 2022, 15, 469. https://doi.org/10.3390/a15120469 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15120469
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120469?type=check_update&version=1

Algorithms 2022, 15, 469 2 of 24

industrial robot designs, specific inverse kinematic solutions have been found using various
algorithmic approaches that do not involve direct analytical solutions.

Deriving kinematic models for robots with a serial topology is essential for analyzing,
researching and programming industrial robots. In [2], an analytical solution for a two-link
robot is described, as well as for the basic structure of the Stanford Manipulator. The
research in [3] investigates popular serial-structure mechanisms with two and three degrees
of freedom, whose inverse kinematics permit closed-form analytical solutions. A Python
program was developed for the serial-structure mechanisms. Geometric solutions of the
inverse kinematics problem for robots with three and six rotational degrees of freedom
are given in [4] and [5], respectively. The geometric approach is usually more intuitive
and significantly reduces the complexity and time for calculations of the IK. However, it
requires an individual approach to each different type of manipulator. In [6], a hybrid
algorithm is proposed that combines the geometric method with an analytical one and is
applied to an industrial robot PUMA 560. In [7], the inverse kinematics problem is solved
with a reduced set of equations, an appropriate choice of the coordinate system associated
with the end effector and an application of the principle of orthogonality in rotation. The
approach does not require the calculation of the forward kinematics problem and can be
used for manipulators with different geometries.

For redundant robots, determining analytically all solutions of the inverse kinematics
problem is a very difficult task [8–11]. Despite the complexity, [8–11] contain several
examples of finding solutions analytically. The Pioneer 2 robotic arm is a redundant robot
with five degrees of freedom. The analytical equations for its inverse kinematics are derived
in [8]. Article [9] presents solutions to the forward and inverse problems of a Power Cube
4-DOF redundant robot, using the Denavit and Hartenberg parameters, the law of cosines
and the method of vector coordinates. It is shown that the different position and the change
of an additional input variable have a significant influence on the robot configuration. The
human hand is modeled as a redundant serial manipulator in [10]. The null space of the
Jacobian matrix for the proposed model is determined. The results in [10] suggest that
the redundancy in the human hand is used to reduce errors in trajectory and anisotropy
arising from external disturbances. The authors of [11] propose a method for speeding
up calculations in analytical and numerical methods for solving the inverse kinematics
problem for a robot with seven degrees of freedom.

Numerical algorithms usually do not give all the solutions. In general, the choice
of initial value and the searching algorithm have a big influence on the accuracy of their
solution [6]. In [12], a numerical method for IK of serial robots is proposed which uses
a dual quaternion formulation of kinematics in a converging paths algorithm. According
to [12], the traditional algebraic, geometric and iterative methods are inadequate if the ma-
nipulator’s structure is more complex. As the complexity of the robot increases, the solution
of the inverse kinematics problem requires more computational time. In [13], the ability
of ANFIS (Adaptive Neuro-Fuzzy Inference System) to learn from training data is used
to solve the inverse kinematics problem. Computer simulations are conducted for robots
with two and three degrees of freedom that demonstrate the approach. Numerical methods
based on inverse differential kinematics are effective in solving the inverse kinematics
problem of robots with seven degrees of freedom with arbitrary geometric parameters.
However, they offer insufficient numerical stability and take time to determine a unique
solution. The research in [14] presents an approach that generates a general algorithm for
a n-link planar hyper-redundant robot. This method repeatedly uses the solution of the
inverse problem of a two-link robot on virtual joints, where the virtual joints are defined
after a geometric proposal. In [15], Locally Recurrent Neural Networks (LRNNs) are used
to solve the inverse kinematics problem. A MATLAB/Simulink simulation is presented
for a manipulator with six degrees of freedom by computing the inverse kinematics with
LRNN and applying complex motions. The authors of [16] present an analysis of the
performance of different approaches for solving inverse kinematics with neural networks
and the results are compared with the analytical approach. The main reason for using

Algorithms 2022, 15, 469 3 of 24

data-driven techniques such as neural networks to solve the inverse kinematics of robotic
manipulators, is that it can be extended to any number of joints without much effort,
while other methods have to consider the number of joints and the types of connections in
advance. In [17], neural network training datasets, are created with a simulation software
that uses a kinematic model of the robot. The solution of each neural network is evaluated
using an analytical solution of the forward kinematics problem of the robot.

Cyclic Coordinate Descent (CCD) is a numerical method that uses only geometric
considerations to derive subsequent iterations. The idea is to move each link independently,
so as to minimize the error between the end-effector and the target by repeating this over
all joints (repeating the process iteratively) [18,19]. This is a popular method for solving
inverse kinematics that finds application in computer characters animation [18,20] and
in robotics [19]. In [19], this method is combined with Newton’s method and applied
with six different known robot manipulators. The CCD algorithm can be easily applied
in robotics, but it can take a series of iterations before reaching a solution, and it can
also generate incorrect joint rotations. The findings of [20] present an algorithm that uses
a target triangle to determine the orientation and joint angles by eliminating the problems
associated with incorrect and large angular rotations. The authors of [21] propose a method
using the law of cosines that quickly determines the joint angles of a kinematic structure
when the target is given. It combines an analytical with a numerical method.

The research in [22] proposes a model of a structured artificial neural network (ANN)
and adaptive neural fuzzy inference system (ANFIS) in order to find the inverse kinemat-
ics solution of a robot. Since there is no unique inverse kinematics solution, predictive
models are applied to the initial configuration. In general, IK is affected by an incorrect
configuration of the links, which implies that the existence, uniqueness, and stability of
its solutions are not guaranteed [23]. In [23], the authors demonstrate the effectiveness of
applying network inversion with regularization, by which the incorrect positioning can be
reduced. An example is given with a robotic arm with multiple joints.

1.2. Background and Related Work

The configuration space is an important concept used in motion planning algorithms.
The main idea is to represent the robot as a point in a multidimensional space and to map the
obstacles [24–28]. The concept is applicable to both mobile [24] and stationary robots [25,28].
A configuration of a stationary robot uniquely defines the mutual arrangement of its links.
For this reason, this configuration is determined by the position of the controllable motors.
The set of all configurations that a robot can occupy defines its configuration space. Each
configuration of the robot in this space represents an n-dimensional point. Although tasks
are formulated in real Cartesian space, in order for the robot to understand and execute
them, they are translated in its configuration space. The movements of the robot are
represented by the movement of a point in this space. A map is created with free regions
and regions that are inadmissible due to collision with obstacles. The concept transforms
the problem of planning the motion of a robot in an environment with obstacles (where the
shape and dimensions of the robot and the obstacles must be considered) into a problem
of planning the motion of a point in the robot’s free configuration space. Configuration
space has played a crucial role in the development of many motion-planning algorithms for
environments with obstacles [26]. Many applications in robotics, computer-aided design,
and related fields can be reduced to computational problems with configuration spaces.
In [24], two important challenges related to configuration spaces are addressed: how
to efficiently compute an approximate representation of high-dimensional configuration
spaces; and how to efficiently perform geometric proximity queries and motion planning
in high-dimensional configuration spaces. Algorithms for building a configuration space,
ones based on machine learning and geometric approximation techniques, are presented.
The motion of a robotic arm in a rectangular tunnel and the corresponding configuration
space are studied in [25]. Techniques from geometric group theory are used to find the
optimal way to move the arm from one position to another. The authors of [26] propose

Algorithms 2022, 15, 469 4 of 24

a decomposition of the configuration space in order to check for collisions of the robot
with an obstacle. The algorithm is implemented for a robot with seven degrees of freedom.
The research in [27] presents a simple algorithm for approximating the free configuration
space of robots with a small number of DOFs. Various approaches are applied to planning
motions in the configuration space: network methods, Voronoi decomposition and artificial
potential fields. In [28], a configuration space warping method and the classic Rapidly-
exploring Random Tree (RRT) search method are compared in terms of their computation
time and path length.

The methods for finding a solution to IK presented in [2–11] can be defined as ana-
lytical or analytically geometric. Works [12–23] present numerical methods for finding
a solution to IK. Some of the presented works combine numerical, analytical and geometric
approaches. Inverse kinematics is the basis for determining the configuration space of
a robot. The investigations in [24–28] consider algorithms for generating a configuration
space in the presence of obstacles, which is important for the proper implementation of
robot control algorithms.

The analysis of redundant robots [9–13] shows that infinitely many IK solutions are
possible for a single position and orientation of the end effector. For classic industrial robots
such as [2–8], depending on their joint constraints, it is possible to have more than one
solution to the inverse problem, as shown in [2]. In practice, the presented approaches for
finding solutions [3–28], find only part of multiple possible solutions without classifying
them. The problem of determining the configuration space is important for motion planning
algorithms in complex environments [14–18]. Decomposition of the configuration space
can be useful for generating motions and avoiding collisions with obstacles [27]. These
conclusions are the main motivations for the present work.

Inverse kinematics has been studied extensively, with many available mathematical
and algorithmic techniques. However, unlike forward kinematics, inverse kinematics
cannot be solved with a closed-form expression (in general), i.e., cannot be described with
a finite number of standard mathematical operations. This problem may have no solutions,
multiple solutions, or even have an infinite number of solutions. As a result, the intricacies
of the IK must be understood in order to apply it effectively in practice. These problems
are clearly visible when looking at simple practical examples.

In [3], two types of solutions of the inverse problem are shown for a planar three-link
robot with the same orientation of the end effector. These two solutions are called: Elbow up
position and Elbow down position. Ref. [29] presents two analytical solutions for a SCARA-
type robot. They are named “Left side solution” and “Right side solution” and are reported
to be symmetric. Essentially, Refs. [3,29] highlight the same aspect—the non-uniqueness of
IK solutions. A large part of the studies [2,4–7] unfortunately do not consider all possible
solutions, but find only one of them. Thus, a better solution to a problem may be missed.
For redundant IK robots, there are countless solutions. The same point from the workspace
can be reached in different ways, i.e., with different types of configurations [9].

Almost all numerical methods [12–22] search for a sequence of solutions for IK starting
from a previously known initial configuration and find only a part of the possible solutions.
In practice, the initial configurations can be different in type and this can have a significant
impact on the solution. This fact is taken into account in very few of the reviewed articles
and algorithms. Ref. [23] reports the incorrect configurations for a certain task, performed
by a multi-joint robotic arm.

The combination of joint angles for a particular position of the end effector may not
exist, as shown in Figure 1a. Figure 1b shows an example where there are a number of
combinations of joint angles θi that give the same solution, i.e., there is no unique solution.
If the target point requires a near-singular robot configuration, joint angle estimation is
difficult (Figure 1c; then the solution is unstable [23]. When multiple solutions exist, none
of the IK approaches specify which solution is “the best”. It is also important to note
that many of the solutions found with IK techniques may be unfeasible. For example, IK
solutions may fall outside the joint constraints, cause the robot to collide with itself, or

Algorithms 2022, 15, 469 5 of 24

make the robot encounter obstacles from the environment. The requirement to produce
high-quality solutions can be considered a soft constraint, while requirements such as joint
constraints and obstacles in the work area are considered hard constraints. Soft constraints
can be expressed as a demand of an IK solution that minimizes some scalar function. To
deal with soft constraints, in the analytical case, where multiple solutions exist, one can
simply go through all solutions. Hard constraints in the case of an analytical solution can
only be checked after all solutions have been found. In the numerical case, it is preferable
to use solution techniques that account for these additional constraints.

Algorithms 2022, 15, x FOR PEER REVIEW 5 of 25

is difficult (Figure 1c; then the solution is unstable [23]. When multiple solutions exist,
none of the IK approaches specify which solution is “the best”. It is also important to note
that many of the solutions found with IK techniques may be unfeasible. For example, IK
solutions may fall outside the joint constraints, cause the robot to collide with itself, or
make the robot encounter obstacles from the environment. The requirement to produce
high-quality solutions can be considered a soft constraint, while requirements such as
joint constraints and obstacles in the work area are considered hard constraints. Soft con-
straints can be expressed as a demand of an IK solution that minimizes some scalar func-
tion. To deal with soft constraints, in the analytical case, where multiple solutions exist,
one can simply go through all solutions. Hard constraints in the case of an analytical so-
lution can only be checked after all solutions have been found. In the numerical case, it is
preferable to use solution techniques that account for these additional constraints.

(a) (b) (c)

Figure 1. Problematic configurations in solving inverse kinematics for a planar robot with 3 DOF.
Incorrectly defined solutions with respect to (a) existence, (b) uniqueness, and (c) stability.

The configuration space is a key concept for planning robot movements in an envi-
ronment with obstacles. This is a space defined by the joint angles. The robot is repre-
sented as a point in the configuration space [24], which is extremely convenient for path
planning. A big challenge in inverse kinematics is that the mapping from configuration
space to workspace and back (which happens with both IK and the forward kinematic
problem) is non-linear. This means that straight lines in the joint space are converted to
curves in the workspace and vice versa. To some extent, the present work is a continua-
tion, complement and generalization of concepts for solving the inverse kinematics prob-
lem, [30-32] for a specific redundant 3D printed robot. The proposed algorithm uses ideas
presented in [23] and [30] and develops them to account for the solution types of the in-
verse problem and the joint constraints of a multi-link robot. The concept of solution types
in the presence of joint constraints for a particular robot is presented in [31]. The solutions
are divided into left-L and right-R, depending on whether the joint angles 𝜃ଶ and 𝜃ଷ are
positive or negative.

2. Definitions and Conditions for the Solution Types
Many of the stationary robots can be represented as planar [1,13]. For others, the spa-

tial motions are obtained after rotation or translation of a planar mechanism [29], which
means that the study of planar robots is important. Still, the preponderance of robots
mainly use rotational and translational joints, and a planar mechanism with a serial topol-
ogy can be schematically represented as in Figure 2a. Here, the axes of the rotational joints
are marked with green letters 𝑂, 𝑃ଵ, 𝑃ଶ, … 𝑃௡ the center of the gripper with P, and the
lengths of the links with 𝑎௜. The length of the gripper with 𝑎௚.

Figure 1. Problematic configurations in solving inverse kinematics for a planar robot with 3 DOF.
Incorrectly defined solutions with respect to (a) existence, (b) uniqueness, and (c) stability.

The configuration space is a key concept for planning robot movements in an environ-
ment with obstacles. This is a space defined by the joint angles. The robot is represented as
a point in the configuration space [24], which is extremely convenient for path planning.
A big challenge in inverse kinematics is that the mapping from configuration space to
workspace and back (which happens with both IK and the forward kinematic problem)
is non-linear. This means that straight lines in the joint space are converted to curves in
the workspace and vice versa. To some extent, the present work is a continuation, comple-
ment and generalization of concepts for solving the inverse kinematics problem, [30–32]
for a specific redundant 3D printed robot. The proposed algorithm uses ideas presented
in [23,30] and develops them to account for the solution types of the inverse problem and
the joint constraints of a multi-link robot. The concept of solution types in the presence of
joint constraints for a particular robot is presented in [31]. The solutions are divided into
left-L and right-R, depending on whether the joint angles θ2 and θ3 are positive or negative.

2. Definitions and Conditions for the Solution Types

Many of the stationary robots can be represented as planar [1,13]. For others, the
spatial motions are obtained after rotation or translation of a planar mechanism [29], which
means that the study of planar robots is important. Still, the preponderance of robots mainly
use rotational and translational joints, and a planar mechanism with a serial topology can
be schematically represented as in Figure 2a. Here, the axes of the rotational joints are
marked with green letters O, P1, P2, . . . Pn the center of the gripper with P, and the lengths
of the links with ai. The length of the gripper with ag.

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 25

(a) (b)

Figure 2. (а) Scheme of a planar serial robot with n rotational and translational degrees of freedom—
and (b) its analogous representation with only rotational joints.

The axis of a translational joint can pass through the axes of two adjacent rotational
joints, such as between points 𝑃ଵ and 𝑃ଶ, or be arbitrarily located relative to adjacent ro-
tations, such as the translation located between 𝑃௞ିଵ and 𝑃௞. However, for both cases it
can be said that the main effect of the translations is to change the distance 𝑎௞ between
their neighboring rotations. Similar considerations can be made even for cases where there
are several translations located between two rotational joints. For these reasons, in our
further reasoning, it is used a simplified equivalent model of a planar serial robot, one
which uses only rotational joints, and where there are translations, the effect is reflected
with a variable length of the link - 𝑣𝑎𝑟. 𝑎௞ Thus, three definitions are introduced for an n-
link robot, which can be represented as shown in Figure 2b.

Definition 1. Right-hand relative configuration of two adjacent links (for example 𝑎௞ and 𝑎௞ାଵ)
of the robot is called such a configuration, for which the relative angle 𝜃௞ோ, between the two links,
is within the range:

0 ± 2𝑖𝜋 < 𝜃௞ோ < 𝜋 ± 2𝑖𝜋; 𝑖 = 0,1,2,3, … , 𝑛. (1)

Such configuration is denoted with R (Figure 3а).

(a) (b)

Figure 3. (a) Right-hand relative configuration R between two links of a serial robot. (b) Intervals in
which the angle 𝜃௞ changes in the right-hand configuration represented on a numerical axis.

For example: Usually the angles of rotation of the links, relative to each other, are less
than a full revolution. Then, if the joint constraints of joint k are in the interval 0 < 𝜃௞ோ <𝜋, the configuration is right-hand, and it can be said that the angle 𝜃௞ோ is positive for a
right-hand relative configuration of the two adjacent links. If a person bends their right
arm, their shoulder and forearm will assume a right-hand configuration.

Definition 2. Left-hand relative configuration of two adjacent links (for example 𝑎௞ and 𝑎௞ାଵ)
of a robot is called such a configuration, for which the relative angle 𝜃௞௅ between the two links is
within the range:

Figure 2. (a) Scheme of a planar serial robot with n rotational and translational degrees of freedom—and
(b) its analogous representation with only rotational joints.

The axis of a translational joint can pass through the axes of two adjacent rotational
joints, such as between points P1 and P2, or be arbitrarily located relative to adjacent

Algorithms 2022, 15, 469 6 of 24

rotations, such as the translation located between Pk−1 and Pk. However, for both cases it
can be said that the main effect of the translations is to change the distance ak between their
neighboring rotations. Similar considerations can be made even for cases where there are
several translations located between two rotational joints. For these reasons, in our further
reasoning, it is used a simplified equivalent model of a planar serial robot, one which uses
only rotational joints, and where there are translations, the effect is reflected with a variable
length of the link- var. ak Thus, three definitions are introduced for an n-link robot, which
can be represented as shown in Figure 2b.

Definition 1. Right-hand relative configuration of two adjacent links (for example ak and ak+1) of
the robot is called such a configuration, for which the relative angle θkR, between the two links, is
within the range:

0± 2iπ < θkR < π ± 2iπ; i = 0, 1, 2, 3, . . . , n. (1)

Such configuration is denoted with R (Figure 3a).

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 25

(a) (b)

Figure 2. (а) Scheme of a planar serial robot with n rotational and translational degrees of freedom—
and (b) its analogous representation with only rotational joints.

The axis of a translational joint can pass through the axes of two adjacent rotational
joints, such as between points 𝑃ଵ and 𝑃ଶ, or be arbitrarily located relative to adjacent ro-
tations, such as the translation located between 𝑃௞ିଵ and 𝑃௞. However, for both cases it
can be said that the main effect of the translations is to change the distance 𝑎௞ between
their neighboring rotations. Similar considerations can be made even for cases where there
are several translations located between two rotational joints. For these reasons, in our
further reasoning, it is used a simplified equivalent model of a planar serial robot, one
which uses only rotational joints, and where there are translations, the effect is reflected
with a variable length of the link - 𝑣𝑎𝑟. 𝑎௞ Thus, three definitions are introduced for an n-
link robot, which can be represented as shown in Figure 2b.

Definition 1. Right-hand relative configuration of two adjacent links (for example 𝑎௞ and 𝑎௞ାଵ)
of the robot is called such a configuration, for which the relative angle 𝜃௞ோ, between the two links,
is within the range:

0 ± 2𝑖𝜋 < 𝜃௞ோ < 𝜋 ± 2𝑖𝜋; 𝑖 = 0,1,2,3, … , 𝑛. (1)

Such configuration is denoted with R (Figure 3а).

(a) (b)

Figure 3. (a) Right-hand relative configuration R between two links of a serial robot. (b) Intervals in
which the angle 𝜃௞ changes in the right-hand configuration represented on a numerical axis.

For example: Usually the angles of rotation of the links, relative to each other, are less
than a full revolution. Then, if the joint constraints of joint k are in the interval 0 < 𝜃௞ோ <𝜋, the configuration is right-hand, and it can be said that the angle 𝜃௞ோ is positive for a
right-hand relative configuration of the two adjacent links. If a person bends their right
arm, their shoulder and forearm will assume a right-hand configuration.

Definition 2. Left-hand relative configuration of two adjacent links (for example 𝑎௞ and 𝑎௞ାଵ)
of a robot is called such a configuration, for which the relative angle 𝜃௞௅ between the two links is
within the range:

Figure 3. (a) Right-hand relative configuration R between two links of a serial robot. (b) Intervals in
which the angle θk changes in the right-hand configuration represented on a numerical axis.

For example: Usually the angles of rotation of the links, relative to each other, are less
than a full revolution. Then, if the joint constraints of joint k are in the interval 0 < θkR < π,
the configuration is right-hand, and it can be said that the angle θkR is positive for a right-
hand relative configuration of the two adjacent links. If a person bends their right arm,
their shoulder and forearm will assume a right-hand configuration.

Definition 2. Left-hand relative configuration of two adjacent links (for example ak and ak+1) of
a robot is called such a configuration, for which the relative angle θkL between the two links is within
the range:

−π ± 2iπ < θkL < 0± 2iπ; i = 0, 1, 2, 3, . . . , n. (2)

Such configuration is denoted with L (Figure 4a).

Algorithms 2022, 15, x FOR PEER REVIEW 7 of 25

−𝜋 ± 2𝑖𝜋 < 𝜃௞௅ < 0 ± 2𝑖𝜋; 𝑖 = 0,1,2,3, … , 𝑛. (2)

Such configuration is denoted with L (Figure 4а).

(a) (b)

Figure 4. (a) Left-hand relative configuration L between two links of a serial robot. (b) Intervals in
which the angle 𝜃௞ changes in the left-hand configuration represented on a numerical axis.

Definition 3. Relative singularity configuration 𝜃௞௦, between two adjacent links of a robot, is
called such a configuration, which cannot be presented, neither as right-hand, nor as left-hand. For
this type, angle 𝜃௞ between the two links (𝑎௞ and 𝑎௞ାଵ) is equal to 0 or 𝜋 [𝑟𝑎𝑑], i.e.,: 𝜃௞௦ =0; ±𝜋; ±2𝜋; ±3𝜋; …

The relative singularity configurations between two links are denoted with 𝑆଴ if 𝜃௞௦ =0; ±2𝜋; ±4𝜋; ±6𝜋; …—fully stretched hand, and with 𝑆గ if 𝜃௞௦ = 𝜋; ±3𝜋; ±5𝜋; ±7𝜋; …- fully
folded hand.

Property 1.—Symmetry. If 𝑃௞ିଵ and 𝑃௞ାଵ are two points in the plane where the axes k-1 and
k+1 of the robot are located, the lengths of the links are respectively 𝑎௞ = 𝑐𝑜𝑛𝑠𝑡 ≠ 0, 𝑎௞ାଵ =𝑐𝑜𝑛𝑠𝑡 ≠ 0 and the existence of left- and right-handed solutions for both links is possible, then these
two configurations for the links are symmetric with respect to a line passing through points 𝑃௞ିଵ
and 𝑃௞ାଵ, and the angles 𝜃௞ோ and 𝜃௞௅ are equal in magnitude and have opposite signs i.e., 𝜃௞ோ = −𝜃௞௅ (Figure 5).

Figure 5. Symmetry of left- and right-handed solutions.

This property can easily be proved using the equality of triangles ∆𝑃௞ିଵ𝑃௞ோ𝑃௞ାଵ ≡∆𝑃௞ିଵ𝑃௞௅𝑃௞ାଵ.

Property 2.—Uniqueness. If the distance d between the two points 𝑃௞ିଵ and 𝑃௞ାଵ is

𝑑௉ೖషభ,௉ೖశభ = หඥ(𝑃௞ାଵ,௫ − 𝑃௞ିଵ,௫)ଶ + (𝑃௞ାଵ,௬ − 𝑃௞ିଵ,௬)ଶห = 𝑎௞ + 𝑎௞ାଵ (3)

or 𝑑௉ೖషభ,௉ೖశభ = หඥ(𝑃௞ାଵ,௫ − 𝑃௞ିଵ,௫)ଶ + (𝑃௞ାଵ,௬ − 𝑃௞ିଵ,௬)ଶห = |𝑎௞ − 𝑎௞ାଵ| (4)

Figure 4. (a) Left-hand relative configuration L between two links of a serial robot. (b) Intervals in
which the angle θk changes in the left-hand configuration represented on a numerical axis.

Algorithms 2022, 15, 469 7 of 24

Definition 3. Relative singularity configuration θks, between two adjacent links of a robot, is
called such a configuration, which cannot be presented, neither as right-hand, nor as left-hand.
For this type, angle θk between the two links (ak and ak+1) is equal to 0 or π [rad], i.e.,:
θks = 0; ±π;±2π;±3π; . . .

The relative singularity configurations between two links are denoted with S0 if θks = 0;
±2π;±4π;±6π; . . .—fully stretched hand, and with Sπ if θks = π; ±3π;±5π;±7π; . . .—fully
folded hand.

Property 1.—Symmetry. If Pk−1 and Pk+1 are two points in the plane where the axes k − 1
and k + 1 of the robot are located, the lengths of the links are respectively ak = const 6= 0,
ak+1 = const 6= 0 and the existence of left- and right-handed solutions for both links is possible,
then these two configurations for the links are symmetric with respect to a line passing through
points Pk−1 and Pk+1, and the angles θkR and θkL are equal in magnitude and have opposite signs
i.e., θkR = −θkL (Figure 5).

Algorithms 2022, 15, x FOR PEER REVIEW 7 of 25

−𝜋 ± 2𝑖𝜋 < 𝜃௞௅ < 0 ± 2𝑖𝜋; 𝑖 = 0,1,2,3, … , 𝑛. (2)

Such configuration is denoted with L (Figure 4а).

(a) (b)

Figure 4. (a) Left-hand relative configuration L between two links of a serial robot. (b) Intervals in
which the angle 𝜃௞ changes in the left-hand configuration represented on a numerical axis.

Definition 3. Relative singularity configuration 𝜃௞௦, between two adjacent links of a robot, is
called such a configuration, which cannot be presented, neither as right-hand, nor as left-hand. For
this type, angle 𝜃௞ between the two links (𝑎௞ and 𝑎௞ାଵ) is equal to 0 or 𝜋 [𝑟𝑎𝑑], i.e.,: 𝜃௞௦ =0; ±𝜋; ±2𝜋; ±3𝜋; …

The relative singularity configurations between two links are denoted with 𝑆଴ if 𝜃௞௦ =0; ±2𝜋; ±4𝜋; ±6𝜋; …—fully stretched hand, and with 𝑆గ if 𝜃௞௦ = 𝜋; ±3𝜋; ±5𝜋; ±7𝜋; …- fully
folded hand.

Property 1.—Symmetry. If 𝑃௞ିଵ and 𝑃௞ାଵ are two points in the plane where the axes k-1 and
k+1 of the robot are located, the lengths of the links are respectively 𝑎௞ = 𝑐𝑜𝑛𝑠𝑡 ≠ 0, 𝑎௞ାଵ =𝑐𝑜𝑛𝑠𝑡 ≠ 0 and the existence of left- and right-handed solutions for both links is possible, then these
two configurations for the links are symmetric with respect to a line passing through points 𝑃௞ିଵ
and 𝑃௞ାଵ, and the angles 𝜃௞ோ and 𝜃௞௅ are equal in magnitude and have opposite signs i.e., 𝜃௞ோ = −𝜃௞௅ (Figure 5).

Figure 5. Symmetry of left- and right-handed solutions.

This property can easily be proved using the equality of triangles ∆𝑃௞ିଵ𝑃௞ோ𝑃௞ାଵ ≡∆𝑃௞ିଵ𝑃௞௅𝑃௞ାଵ.

Property 2.—Uniqueness. If the distance d between the two points 𝑃௞ିଵ and 𝑃௞ାଵ is

𝑑௉ೖషభ,௉ೖశభ = หඥ(𝑃௞ାଵ,௫ − 𝑃௞ିଵ,௫)ଶ + (𝑃௞ାଵ,௬ − 𝑃௞ିଵ,௬)ଶห = 𝑎௞ + 𝑎௞ାଵ (3)

or 𝑑௉ೖషభ,௉ೖశభ = หඥ(𝑃௞ାଵ,௫ − 𝑃௞ିଵ,௫)ଶ + (𝑃௞ାଵ,௬ − 𝑃௞ିଵ,௬)ଶห = |𝑎௞ − 𝑎௞ାଵ| (4)

Figure 5. Symmetry of left- and right-handed solutions.

This property can easily be proved using the equality of triangles ∆Pk−1PkRPk+1 ≡
∆Pk−1PkLPk+1.

Property 2.—Uniqueness. If the distance d between the two points Pk−1 and Pk+1 is

dPk−1, Pk+1 =

∣∣∣∣∣
√
(Pk+1,x − Pk−1,x)

2 +
(

Pk+1,y − Pk−1,y

)2
∣∣∣∣∣ = ak + ak+1 (3)

or

dPk−1, Pk+1 =

∣∣∣∣∣
√
(Pk+1,x − Pk−1,x)

2 +
(

Pk+1,y − Pk−1,y

)2
∣∣∣∣∣ = |ak − ak+1| (4)

Then these two points (Pk−1 and Pk+1) are reached by the axes of rotation for the two adjacent links with
only one single configuration, which is neither left nor right, i.e., it is a relative singular configuration.

Although this can be proven geometrically, here the property is explained from
a robotics perspective using the Jacobian matrix. If we imagine that the position of a rota-
tional joint Pk−1 is fixed and consider only part of the robot, represented by the links ak and
ak+1, a well-studied structure of a two-link robot [2] is obtained, whose Jacobian matrix J
has the form:

J =
[
−aksin(θk−1)− ak+1sin(θk−1 + θk) −ak+1 sin(θk−1 + θk)
akcos(θk−1) + ak+1cos(θk−1 + θk) ak+1 cos(θk−1 + θk)

]
(5)

The determinant of the Jacobian matrix is

det(J) = akak+1sin(θk) (6)

Since the lengths of the links are ak 6= 0 and ak+1 6= 0 then det(J) becomes 0 for
θk = 0; ±π;±2π;±3π; . . . a correspondence is then obtained between the generally ac-
cepted notion of singularity of a robot and the introduced relative singularity configuration
between its two adjacent links. Transition of links ak and ak+1 from left to right-hand

Algorithms 2022, 15, 469 8 of 24

configuration or vice versa is possible only by passing through a relative singularity config-
uration. When the robot has joint constraints and/or obstacles in its workspace, situations
are possible for which there are different types of solutions, but the transition between
them cannot be realized. This fact is important for planning robot movements.

We are looking for an algorithm to find the inverse kinematics of a planar robot
that can be represented by the equivalent diagram from Figure 2b, and it is necessary to
determine the type of solutions according to definitions 1 to 3 and take into account the
joint constraints. As an addition, it can be checked for collisions of the robot links with
obstacles. For the implementation of the algorithm to make sense, the robot must have at
least two rotational joints. The solution to this problem is useful for the following purposes:

- Detect and classify multiple inverse kinematics solutions for a single position and
orientation of the gripper;

- Generate IK solutions for a planar trajectory in the workspace with or without chang-
ing the gripper orientation;

- Generate the configuration space and regions of it corresponding to Definitions 1–3;
- Generate the workspace and regions of it corresponding to Definitions 1–3.

3. Materials and Methods

Consider the problem of finding the inverse kinematics at a fixed position P and
orientation of the gripper at angle α (Figure 6). The algorithm for finding IK, taking into
account the types of solutions, is based on the following main idea: Searching for a solution
from the gripper to the base of the robot.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 25

Then these two points (𝑃௞ିଵ and 𝑃௞ାଵ) are reached by the axes of rotation for the two adjacent
links with only one single configuration, which is neither left nor right, i.e., it is a relative singular
configuration.

Although this can be proven geometrically, here the property is explained from a
robotics perspective using the Jacobian matrix. If we imagine that the position of a rota-
tional joint 𝑃௞ିଵ is fixed and consider only part of the robot, represented by the links 𝑎௞
and 𝑎௞ାଵ, a well-studied structure of a two-link robot [2] is obtained, whose Jacobian ma-
trix J has the form: 𝐽 = ൤−𝑎௞𝑠𝑖𝑛(𝜃௞ିଵ) − 𝑎௞ାଵ𝑠𝑖𝑛(𝜃௞ିଵ + 𝜃௞) −𝑎௞ାଵ sin(𝜃௞ିଵ + 𝜃௞)𝑎௞𝑐𝑜𝑠(𝜃௞ିଵ) + 𝑎௞ାଵ𝑐𝑜𝑠(𝜃௞ିଵ + 𝜃௞) 𝑎௞ାଵcos (𝜃௞ିଵ + 𝜃௞) ൨ (5)

The determinant of the Jacobian matrix is det(𝐽) = 𝑎௞𝑎௞ାଵ𝑠𝑖𝑛(𝜃௞) (6)

Since the lengths of the links are 𝑎௞ ≠ 0 and 𝑎௞ାଵ ≠ 0 then 𝑑𝑒𝑡(𝐽) becomes 0 for 𝜃௞ = 0; ±𝜋; ±2𝜋; ±3𝜋; … a correspondence is then obtained between the generally ac-
cepted notion of singularity of a robot and the introduced relative singularity configura-
tion between its two adjacent links. Transition of links 𝑎௞ and 𝑎௞ାଵ from left to right-
hand configuration or vice versa is possible only by passing through a relative singularity
configuration. When the robot has joint constraints and/or obstacles in its workspace, sit-
uations are possible for which there are different types of solutions, but the transition be-
tween them cannot be realized. This fact is important for planning robot movements.

We are looking for an algorithm to find the inverse kinematics of a planar robot that
can be represented by the equivalent diagram from Figure 2b, and it is necessary to deter-
mine the type of solutions according to definitions 1 to 3 and take into account the joint
constraints. As an addition, it can be checked for collisions of the robot links with obsta-
cles. For the implementation of the algorithm to make sense, the robot must have at least
two rotational joints. The solution to this problem is useful for the following purposes:
− Detect and classify multiple inverse kinematics solutions for a single position and

orientation of the gripper;
− Generate IK solutions for a planar trajectory in the workspace with or without chang-

ing the gripper orientation;
− Generate the configuration space and regions of it corresponding to Definitions 1–3;
− Generate the workspace and regions of it corresponding to Definitions 1–3.

3. Materials and Methods
Consider the problem of finding the inverse kinematics at a fixed position P and ori-

entation of the gripper at angle α (Figure 6). The algorithm for finding IК, taking into
account the types of solutions, is based on the following main idea: Searching for a solu-
tion from the gripper to the base of the robot.

Figure 6. Determining solutions for the inverse kinematics from the gripper to the base.

IK seeks an answer to the question of what joint coordinates the robot must have, in
order for the gripper to reach a certain known position and orientation. Then, if a robot
can be presented with an equivalent structural diagram, such as Figure 2b, the coordinates
of point Pn, which is the axis of rotational joint n, are easily determined. The set of points
Pc(n−1,j) (j = 1, 2, . . . , k), that the axis Pn−1 of the n − 1th rotational link could reach, will lie
on a circle with center Pn and radius Rn = an—the length of link n. Therefore, if the rest of
the robot can reach any of these points, there will be a solution for IK. Similar considerations
can be applied to determine which points can be reached by the axes Pn−2, Pn−3, Pn−4,
until a potential set of points Pc(3,j) is obtained, which will belong to a circle with center P3
and radius R3 = a3 (Figure 6). Thus, a two-link mechanism (a1, a2) is obtained, for which
IK is well known. Therefore, it is necessary to check whether point Pc(3,j) is a solution of
IK. If it is, the configuration is saved as a possible solution. It is necessary to create several
nested loops to generate the set of points to be tested in sequence. In the event that the
robot has a translational joint (for example, link an−2 from Figure 6) it is necessary to vary
the corresponding radius, for example Rn−1 as shown in Figure 6. The structure of the
algorithm is given in Figure 7.

Algorithms 2022, 15, 469 9 of 24

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 25

Figure 6. Determining solutions for the inverse kinematics from the gripper to the base.

IK seeks an answer to the question of what joint coordinates the robot must have, in
order for the gripper to reach a certain known position and orientation. Then, if a robot
can be presented with an equivalent structural diagram, such as Figure 2b, the coordinates
of point 𝑃௡, which is the axis of rotational joint n, are easily determined. The set of points 𝑃௖(௡ିଵ,௝) (j = 1, 2, …, k), that the axis 𝑃௡ିଵ of the n-1th rotational link could reach, will lie
on a circle with center 𝑃௡ and radius 𝑅௡ = 𝑎௡—the length of link n. Therefore, if the rest
of the robot can reach any of these points, there will be a solution for IK. Similar consid-
erations can be applied to determine which points can be reached by the axes 𝑃௡ିଶ, 𝑃௡ିଷ, 𝑃௡ିସ, …. until a potential set of points 𝑃௖(ଷ,௝) is obtained, which will belong to
a circle with center 𝑃ଷ and radius 𝑅ଷ = 𝑎ଷ (Figure 6). Thus, a two-link mechanism (аଵ, аଶ)
is obtained, for which IK is well known. Therefore, it is necessary to check whether point 𝑃௖(ଷ,௝) is a solution of IK. If it is, the configuration is saved as a possible solution. It is
necessary to create several nested loops to generate the set of points to be tested in se-
quence. In the event that the robot has a translational joint (for example, link 𝑎௡ିଶ from
Figure 6) it is necessary to vary the corresponding radius, for example 𝑅௡ିଵ as shown in
Figure 6. The structure of the algorithm is given in Figure 7.

Figure 7. Basic steps of the algorithm for solving IK.

Step 1. Input data.
The number of rotational joints n is known. Input: The lengths of the links 𝑎௜ (if there

are translational connections, it is necessary to determine the change of the corresponding
lengths 𝑎௞௠௜௡ ≤ 𝑎௞ ≤ 𝑎௞௠௔௫); The joint constraints 𝜃௜௠௜௡ ≤ 𝜃௜ ≤ 𝜃௜௠௔௫ of the rotational
joints; The coordinates 𝑃௫ and 𝑃௬ of point P from the gripper; If it is necessary to take
into account the orientation of the gripper, the angle α is entered, otherwise it is assumed
that point 𝑃௡ ≡ 𝑃.

Step 2. Determining point 𝑃௡.
If angle α is set, the coordinates of point 𝑃௡ are:

Figure 7. Basic steps of the algorithm for solving IK.

Step 1. Input data.
The number of rotational joints n is known. Input: The lengths of the links ai (if there

are translational connections, it is necessary to determine the change of the corresponding
lengths akmin ≤ ak ≤ akmax); The joint constraints θimin ≤ θi ≤ θimax of the rotational joints;
The coordinates Px and Py of point P from the gripper; If it is necessary to take into account
the orientation of the gripper, the angle α is entered, otherwise it is assumed that point
Pn ≡ P.

Step 2. Determining point Pn.
If angle α is set, the coordinates of point Pn are:∣∣∣∣Pnx = Px + agcosα

Pny = Py + agsinα
(7)

Step 3. Checking if point Pn is reachable
Reachability is a problem that depends on the lengths of the links, i.e., the proportions

between them and the joint constraints. It is assumed that initially no joint restrictions are
imposed and the problem is divided into two parts: maximally distant points—external
reachability limit—and points that cannot be reached with folded links—internal reach-
ability limit (Figure 8). The condition for external reachability to point P_n can be intu-
itively determined: √

P2
nx + P2

ny ≤ R = ∑n
i=1 ai + ag (8)

Point Pn is reachable if inequality (8) is satisfied. Here, Pnx and Pny are the coordinates
of a point Pn, that the robot is trying to reach. This inequality (8) defines a circle with center
at the base of the robot and radius R.

Algorithms 2022, 15, 469 10 of 24

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 25

ฬ𝑃௡௫ = 𝑃௫ + 𝑎௚𝑐𝑜𝑠𝛼𝑃௡௬ = 𝑃௬ + 𝑎௚𝑠𝑖𝑛𝛼 (7)

Step 3. Checking if point 𝑃௡ is reachable
Reachability is a problem that depends on the lengths of the links, i.e., the propor-

tions between them and the joint constraints. It is assumed that initially no joint re-
strictions are imposed and the problem is divided into two parts: maximally distant
points—external reachability limit—and points that cannot be reached with folded links—
internal reachability limit (Figure 8). The condition for external reachability to point P_n
can be intuitively determined: ඥ𝑃௡௫ଶ + 𝑃௡௬ଶ ≤ 𝑅 = ∑ 𝑎௜ + 𝑎௚௡௜ୀଵ (8)

Point 𝑃௡ is reachable if inequality (8) is satisfied. Here, 𝑃௡௫ and 𝑃௡௬ are the coordi-
nates of a point 𝑃௡, that the robot is trying to reach. This inequality (8) defines a circle with
center at the base of the robot and radius R.

The second condition—of internal reachability—is more complicated to define. If the
longest link 𝑎௜௠௔௫ is shorter than the sum of all other links and no joint constraints are
imposed, all points of the circle with radius R (8) are reachable. An inner circle centered
at the base of the robot, which is not reachable, appears if 𝑎௜௠௔௫ is longer than the sum of
all other links (Figure 8). The radius r of this circle is calculated from: ඥ𝑃௡௫ଶ + 𝑃௡௬ଶ ≥ 𝑟 = 𝑎௜௠௔௫ − ∑ 𝑎௜௡௜ୀଵ + 𝑎௚ (9)

In this case, point 𝑃௡ is reachable if inequalities (8) and (9) are satisfied.

Figure 8. Reachable points without taking into account joint constraints.

In this step, a check can also be performed for a unique solution, which occurs if 𝑃௡ lies on a circle defined by Equations (8) or (9).
Step 4. Setting the number and distribution of points on the circles.
The number of circles for which points must be generated depends on the number n

of robot links. It also determines the number of nested loops. Thus, if there are no transla-
tional connections, the number of nested loops k will be: 𝑘 = 𝑛 − 2 (10)

Since it is not necessary to rotate the gripper and the first two links of the robot.
The number of points and the manner of their distribution on the generated circles is

set. A simple option is to set evenly distributed points along the circle. The number of
points increases the precision of the algorithm, but also increases the calculations and the
time for its execution.

Figure 8. Reachable points without taking into account joint constraints.

The second condition—of internal reachability—is more complicated to define. If the
longest link aimax is shorter than the sum of all other links and no joint constraints are
imposed, all points of the circle with radius R (8) are reachable. An inner circle centered at
the base of the robot, which is not reachable, appears if aimax is longer than the sum of all
other links (Figure 8). The radius r of this circle is calculated from:√

P2
nx + P2

ny ≥ r = aimax −∑n
i=1 ai + ag (9)

In this case, point Pn is reachable if inequalities (8) and (9) are satisfied.
In this step, a check can also be performed for a unique solution, which occurs if Pn

lies on a circle defined by Equations (8) or (9).
Step 4. Setting the number and distribution of points on the circles.
The number of circles for which points must be generated depends on the number n of

robot links. It also determines the number of nested loops. Thus, if there are no translational
connections, the number of nested loops k will be:

k = n− 2 (10)

Since it is not necessary to rotate the gripper and the first two links of the robot.
The number of points and the manner of their distribution on the generated circles

is set. A simple option is to set evenly distributed points along the circle. The number of
points increases the precision of the algorithm, but also increases the calculations and the
time for its execution.

Step 5. Nested loops for defining points of interest.
Points Pc(i,j), belonging to a circle with center Pi and radius Ri = ai, are defined. In

the algorithm given in Figure 7 this is done using polar coordinates and increasing the
angle γ (see Figure 6). Syntax from Visual LISP for AutoCAD is used, which has built-in
functions for working with geometric objects. For example, the function {polar < point
angle distance>} defines a new point relative to a previous one using polar coordinates.
This step only defines the idea of generating multiple points, located on a circle, using
nested loops without limiting how they are obtained. Depending on the programming
language used, the implementation can be adapted accordingly.

Step 6. Solution of the inverse kinematics problem for the two-link mechanism.
Finding solutions for a two-link mechanism is a classic problem that has been stud-

ied in numerous books and articles. However, most articles do not consider all possible
solutions [2,4,5]. Figure 9 shows a block diagram of the complete algorithm that deter-
mines the type of IK solution for a two-link mechanism, according to Definitions 1–3.

Algorithms 2022, 15, 469 11 of 24

dO, P2 =

∣∣∣∣√(P2x −Ox)
2 +

(
P2y −Oy

)2
∣∣∣∣ is the distance between points O and P2. It is as-

sumed that the base is located at point O(0,0) which is in the origin of a fixed coordinate system.

Algorithms 2022, 15, x FOR PEER REVIEW 11 of 25

Step 5. Nested loops for defining points of interest.
Points 𝑃௖(௜,௝), belonging to a circle with center 𝑃௜ and radius 𝑅௜ = 𝑎௜, are defined. In

the algorithm given in Figure 7 this is done using polar coordinates and increasing the
angle γ (see Figure 6). Syntax from Visual LISP for AutoCAD is used, which has built-in
functions for working with geometric objects. For example, the function {polar < point
angle distance>} defines a new point relative to a previous one using polar coordinates.
This step only defines the idea of generating multiple points, located on a circle, using
nested loops without limiting how they are obtained. Depending on the programming
language used, the implementation can be adapted accordingly.

Step 6. Solution of the inverse kinematics problem for the two-link mechanism.
Finding solutions for a two-link mechanism is a classic problem that has been studied

in numerous books and articles. However, most articles do not consider all possible solu-
tions [2,4,5]. Figure 9 shows a block diagram of the complete algorithm that determines
the type of IK solution for a two-link mechanism, according to Definitions 1–3. 𝑑ை,௉మ =หඥ(𝑃ଶ௫ − 𝑂௫)ଶ + (𝑃ଶ௬ − 𝑂௬)ଶห is the distance between points O and 𝑃ଶ. It is assumed that
the base is located at point O(0,0) which is in the origin of a fixed coordinate system.

Figure 9. Algorithm for finding an IK solution for a two-link mechanism and determining its type
according to Definitions 1–3.

The block “Compute two solutions” (from Figure 9) can be done in different ways.
Appendix A presents a geometric solution that uses built-in functions of Visual Lisp for
AutoCAD and avoids trigonometric functions. The idea boils down to determining the
intersection points (𝑃ଵோ and 𝑃ଵ௅) of two circles with radii 𝑅ଵ = 𝑎ଵ and 𝑅ଶ = 𝑎ଶ, located
according to Figure 10. First the distance 𝐿 = 𝑂𝑃ଶതതതതത between points O and 𝑃ଶ is deter-
mined. From the law of cosines, it follows: 𝑎ଶଶ = 𝑎ଵଶ + 𝐿ଶ − 2𝑎ଵ𝐿𝑐𝑜𝑠(𝛽) (11)

Distance 𝑂𝑃௛തതതതത = 𝑡 = 𝑎ଵ𝑐𝑜𝑠(𝛽) and, considering (11), for t it follows that: 𝑡 = ௔భమା௅మି௔మమଶ௅ (12)

Figure 9. Algorithm for finding an IK solution for a two-link mechanism and determining its type
according to Definitions 1–3.

The block “Compute two solutions” (from Figure 9) can be done in different ways.
Appendix A presents a geometric solution that uses built-in functions of Visual Lisp for
AutoCAD and avoids trigonometric functions. The idea boils down to determining the
intersection points (P1R and P1L) of two circles with radii R1 = a1 and R2 = a2, located
according to Figure 10. First the distance L = OP2 between points O and P2 is determined.
From the law of cosines, it follows:

a2
2 = a2

1 + L2 − 2a1Lcos(β) (11)

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 25

Figure 10. Determination of IK for a two-link mechanism using a geometric approach.

The height ℎ = 𝑃௛𝑃ଵோതതതതതതത = 𝑃௛𝑃ଵ௅തതതതതതത is found from the Pythagorean theorem. ℎ = ඥ𝑎ଵଶ − 𝑡ଶ (13)

Using the Visual LISP commands Polar and Angle, the points 𝑃ଵோ and 𝑃ଵ௅ are
found. The Angle command allows you to determine the angle of inclination of a segment,
defined by two points (see Appendix A).

Step 7. Check for joint constraints and configuration type.
After performing step 6, two configurations 𝑞ଵ௅ = [𝜃ଵ௅, 𝜃ଶ௅, 𝜃ଷ, 𝜃ସ …]் and 𝑞ଵோ =[𝜃ଵோ, 𝜃ଶோ, 𝜃ଷ, 𝜃ସ …]் are obtained, which claim to be an IK solution. We note that the angles 𝜃௜ are relative, i.e., are measured with respect to the axis of the previous link in a counter-

clockwise direction. Thus, depending on definition 1 to 3, the remaining joint angles 𝜃ଷ, 𝜃ସ … can also be classified by assigning them indices L, R, 𝑆௢ or 𝑆గ.
A check is made to see if the joint angles fall within the permissible limits. As a result,

one or both solutions can be rejected or accepted. Here it can also be checked for collision
with an obstacle and self-collision of the robot links, if necessary. The type of configuration
is taken into account and the angles 𝜃௜ of the approved solutions are recorded. Defining
collisions between bodies is a separate topic that is beyond the scope of this work. Thus,
after executing one cycle of the algorithm, one of the following results is obtained:
− The reviewed configuration is not an IK solution.
− There is only one solution, classified according to definitions 1, 2 and 3; for example: 𝑞ଵ௅ = [𝜃ଵ௅, 𝜃ଶ௅, 𝜃ଷோ, 𝜃ସ௅, 𝜃ହ௦଴ …]்.
− There are two solutions, classified according to definitions 1, 2 and 3; for example: 𝑞ଵ௅ = [𝜃ଵ௅, 𝜃ଶ௅, 𝜃ଷோ, 𝜃ସ௅ …]் and 𝑞ଵோ = [𝜃ଵோ, 𝜃ଶோ, 𝜃ଷோ, 𝜃ସ௅, 𝜃ହ௦గ …]்.

After executing the entire program for one position and orientation of the gripper, a
set of classified configurations is determined, which is the solution to the inverse kinemat-
ics problem.

4. Results
4.1. Example 1

Figure 11a shows a 3D printed model of a SCARA type robot. Its structure consists
of two links and a base connected by rotational joints, so that the main movements take
place in the plane. We are not interested in the vertical translation at this stage. The lengths
of the links are respectively аଵ = 0.15[𝑚]; аଶ = 0.1[𝑚]; and the joint constraints are: − గଶ ≤ 𝜃ଵ ≤ గଶ ; −𝜋 ≤ 𝜃ଶ ≤ గଶ [rad].

Figure 10. Determination of IK for a two-link mechanism using a geometric approach.

Algorithms 2022, 15, 469 12 of 24

Distance OPh = t = a1cos(β) and, considering (11), for t it follows that:

t =
a2

1 + L2 − a2
2

2L
(12)

The height h = PhP1R = PhP1L is found from the Pythagorean theorem.

h =
√

a2
1 − t2 (13)

Using the Visual LISP commands Polar and Angle, the points P1R and P1L are found.
The Angle command allows you to determine the angle of inclination of a segment, defined
by two points (see Appendix A).

Step 7. Check for joint constraints and configuration type.
After performing step 6, two configurations q1L = [θ1L, θ2L, θ3, θ4 . . .]T and

q1R = [θ1R, θ2R, θ3, θ4 . . .]T are obtained, which claim to be an IK solution. We note that the
angles θi are relative, i.e., are measured with respect to the axis of the previous link in
a counter-clockwise direction. Thus, depending on definition 1 to 3, the remaining joint
angles θ3, θ4 . . . can also be classified by assigning them indices L, R, So or Sπ .

A check is made to see if the joint angles fall within the permissible limits. As a result,
one or both solutions can be rejected or accepted. Here it can also be checked for collision
with an obstacle and self-collision of the robot links, if necessary. The type of configuration
is taken into account and the angles θi of the approved solutions are recorded. Defining
collisions between bodies is a separate topic that is beyond the scope of this work. Thus,
after executing one cycle of the algorithm, one of the following results is obtained:

- The reviewed configuration is not an IK solution.
- There is only one solution, classified according to definitions 1, 2 and 3; for example:

q1L = [θ1L, θ2L, θ3R, θ4L, θ5s0 . . .]T .
- There are two solutions, classified according to definitions 1, 2 and 3; for example:

q1L = [θ1L, θ2L, θ3R, θ4L . . .]T and q1R = [θ1R, θ2R, θ3R, θ4L, θ5sπ . . .]T .

After executing the entire program for one position and orientation of the gripper,
a set of classified configurations is determined, which is the solution to the inverse kine-
matics problem.

4. Results
4.1. Example 1

Figure 11a shows a 3D printed model of a SCARA type robot. Its structure consists
of two links and a base connected by rotational joints, so that the main movements take
place in the plane. We are not interested in the vertical translation at this stage. The
lengths of the links are respectively a1 = 0.15[m]; a2 = 0.1[m]; and the joint constraints are:
−π

2 ≤ θ1 ≤ π
2 ;−π ≤ θ2 ≤ π

2 [rad].

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 25

(a) (b)

Figure 11. (а) 3D printed model of a SCARA type robot; (b) Reachability area with left- and right-
hand configuration and workspace.

Figure 11b shows the left 𝑈௅ and right 𝑈ோ hand reachability zones for this robot.
The union of these two areas represents the robot’s workspace: 𝑤 = 𝑈௅ ∪ 𝑈ோ (14)

Section f represents a region where both left-handed and right-handed solutions can
exist. 𝑓 = 𝑈௅ ∩ 𝑈ோ (15)

There is an area 𝑓௅, the points from which can only be reached with left-hand con-
figuration: 𝑓௅ = 𝑤 − 𝑈ோ (16)

And area 𝑓ோ which is reachable only with right-hand configuration: 𝑓ோ = 𝑤 − 𝑈௅ (17)

Of course, 𝑤 = 𝑓௅ ∪ 𝑓ோ ∪ 𝑓 Figure 12 (right) illustrates those areas in Cartesian space.

Figure 12. Configuration and workspace of a RR robot.

Figure 12 (left) shows a graphical representation of the configuration space. What
happens at the boundaries of the configuration space, and when 𝜃ଶ = 0?

The solution of the forward problem in this case is simple. The coordinates of point
P are determined (see Figure 11 on the right):

Figure 11. (a) 3D printed model of a SCARA type robot; (b) Reachability area with left- and right-hand
configuration and workspace.

Algorithms 2022, 15, 469 13 of 24

Figure 11b shows the left UL and right UR hand reachability zones for this robot. The
union of these two areas represents the robot’s workspace:

w = UL ∪UR (14)

Section f represents a region where both left-handed and right-handed solutions
can exist.

f = UL ∩UR (15)

There is an area fL, the points from which can only be reached with left-hand configuration:

fL = w−UR (16)

And area fR which is reachable only with right-hand configuration:

fR = w−UL (17)

Of course, w = fL ∪ fR ∪ f Figure 12 (right) illustrates those areas in Cartesian space.

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 25

(a) (b)

Figure 11. (а) 3D printed model of a SCARA type robot; (b) Reachability area with left- and right-
hand configuration and workspace.

Figure 11b shows the left 𝑈௅ and right 𝑈ோ hand reachability zones for this robot.
The union of these two areas represents the robot’s workspace: 𝑤 = 𝑈௅ ∪ 𝑈ோ (14)

Section f represents a region where both left-handed and right-handed solutions can
exist. 𝑓 = 𝑈௅ ∩ 𝑈ோ (15)

There is an area 𝑓௅, the points from which can only be reached with left-hand con-
figuration: 𝑓௅ = 𝑤 − 𝑈ோ (16)

And area 𝑓ோ which is reachable only with right-hand configuration: 𝑓ோ = 𝑤 − 𝑈௅ (17)

Of course, 𝑤 = 𝑓௅ ∪ 𝑓ோ ∪ 𝑓 Figure 12 (right) illustrates those areas in Cartesian space.

Figure 12. Configuration and workspace of a RR robot.

Figure 12 (left) shows a graphical representation of the configuration space. What
happens at the boundaries of the configuration space, and when 𝜃ଶ = 0?

The solution of the forward problem in this case is simple. The coordinates of point
P are determined (see Figure 11 on the right):

Figure 12. Configuration and workspace of a RR robot.

Figure 12 (left) shows a graphical representation of the configuration space. What
happens at the boundaries of the configuration space, and when θ2 = 0?

The solution of the forward problem in this case is simple. The coordinates of point P
are determined (see Figure 11 on the right):∣∣∣∣xp = a1 cos(θ1) + a2 cos(θ1 + θ2)

yp = a1 sin(θ1) + a2 sin(θ1 + θ2)
(18)

When θ2 = 0 and θ2 = −π are obtained for points from the configuration space that
belong to lines in this space (the red horizontal lines in Figure 12, left), they are transformed
into points of circles in the real space (the red arcs on the right of Figure 12). We can verify
this from the analytic dependencies as well. Indeed, from (18), for θ2 = 0 it follows:∣∣∣∣xp = (a1 + a2) cos(θ1)

yp = (a1 + a2) sin(θ1)
(19)

After raising to the second degree and summing the two equations from system (19) it
is obtained:

x2
p + y2

p = (a1 + a2)
2
(

sin(θ1)
2 + cos(θ1)

2
)

(20)

Algorithms 2022, 15, 469 14 of 24

or
x2

p + y2
p = (a1 + a2)

2 (21)

This is an equation of a circle with radius R = (a1 + a2) and center (0,0).
When θ2 = −π, following similar considerations, it is obtained:

x2
p + y2

p = (a1 − a2)
2 (22)

This is an equation of a circle with radius R = (a1 − a2). Not all points from these red
circles (Figure 12-right) are fully reachable by the robot due to the joint constraints. The
points from these arcs can be reached with only one singular configuration of the robot,
which means that there exists only one unique solution to both the forward and the inverse
kinematics problems. In this case the arm is either fully extended or the links overlap
one another.

Let us now investigate what happens to the points from the configuration space that
lie on the line θ1 = π

2 . From (19) it follows that:∣∣∣∣ xp = a2 cos
(
θ2 +

π
2
)

yp = a1 + a2 sin
(
θ2 +

π
2
) (23)

Analogously, it is obtained an equation of a circle:

x2
p +

(
yp − a1

)2
= a2

2 (24)

Similarly for θ1 = −π
2 , it follows:

x2
p +

(
yp + a1

)2
= a2

2 (25)

These circles correspond to the blue arcs on Figure 12 (right), and are on the boundaries
of the workspace. Similarly, the equation of the green arc can be determined, which serves
as the boundary of solutions with right-hand configurations.

Since the workspace of the robot is divided into areas where point P can be reached in
two ways (left and right-hand—f) and those reachable with only one type of solution (fR
and fL), the configuration space should also be divided in a similar way. The algorithm
from Figure 9 and Appendix A are used to find IK solutions.

For a point P(180[mm], 120[mm]) (Figure 11, right), two solutions of the inverse prob-
lem are found: for the left-hand it is obtained qR(1.06[rad],−1.07[rad]) and for the right-
hand qL(0.17[rad], 1.07[rad]) respectively. The result is presented graphically in Figure 12.

Using the proposed algorithm, multiple solutions are found for the inverse kinematics
from the robot’s workspace. Using polar coordinates, a set of points, located in the reachable
zone according to Figure 8, is generated. The results are given in Figure 13.

The algorithm removes the points outside the joint constraints. The solutions that are
only possible with the left-hand (L) are depicted with small blue circles; those of type R
are magenta; and where both types of solutions are possible, they are represented with
green circles. Thus, the solution of the inverse problem yields a region q(ABCDEF) in the
configuration space, inside which both left and right-handed solutions are possible. It can
be noted that AB is a vertical segment, BC is a horizontal segment, CD is a curved line, DE
is a vertical segment, EF is a horizontal segment and FA is again a curved line. Areas from
the workspace are transformed into the configuration space, respectively:∣∣∣∣∣∣∣∣

fL
IK→ qL

f IK→ q

fR
IK→ qR

(26)

Algorithms 2022, 15, 469 15 of 24

In Figure 13 (right) two trajectories t1 and t2 are given, which connect point P1 ∈ fL
with point P2 ∈ fR. Both trajectories fall entirely within the robot’s workspace. Using the
algorithm, points from t1 and t2 are transformed into the configuration space.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 25

Using the proposed algorithm, multiple solutions are found for the inverse kinemat-
ics from the robot’s workspace. Using polar coordinates, a set of points, located in the
reachable zone according to Figure 8, is generated. The results are given in Figure 13.

Figure 13. Solutions of the inverse kinematics problem and determination of zones with the pro-
posed algorithm for a two-link mechanism from Figure 11. Transformation of trajectories.

The algorithm removes the points outside the joint constraints. The solutions that are
only possible with the left-hand (L) are depicted with small blue circles; those of type R
are magenta; and where both types of solutions are possible, they are represented with
green circles. Thus, the solution of the inverse problem yields a region q(ABCDEF) in the
configuration space, inside which both left and right-handed solutions are possible. It can
be noted that AB is a vertical segment, BC is a horizontal segment, CD is a curved line, DE
is a vertical segment, EF is a horizontal segment and FA is again a curved line. Areas from
the workspace are transformed into the configuration space, respectively:

ተተ𝑓௅ ூ௄→ 𝑞௅𝑓 ூ௄→ 𝑞𝑓ோ ூ௄→ 𝑞ோ
 (26)

In Figure 13 (right) two trajectories 𝑡ଵ and 𝑡ଶ are given, which connect point 𝑃ଵ ∈ 𝑓௅
with point 𝑃ଶ ∈ 𝑓ோ. Both trajectories fall entirely within the robot’s workspace. Using the
algorithm, points from 𝑡ଵ and 𝑡ଶ are transformed into the configuration space.

Trajectory 𝑡ଵ is an arc of a circle with radius R = 90 [mm] and center (x = 60 [mm], y
= 116 [mm]). Each point of this arc corresponds to two solutions in the configuration space,
which form two red curves 𝑞௧ଵ௅ and 𝑞௧ଵோ. Parts of these two curves go outside the joint
constraints.

The trajectory 𝑡ଶ is a spline that passes through point 𝑃ଷ, which lies on the boundary
of the workspace. Each point from 𝑡ଶ corresponds to two points in the configuration
space except point 𝑃ଷ, for which there is only one solution because it is reached with a
singularity configuration of type 𝑆଴. The two curves in which 𝑡ଶ is transformed are given
in green—𝑞௧ଶ௣ and blue—𝑞௧ଶ௜ color, respectively.

After solving the IK, point 𝑃ଵ is transformed into two points 𝑞௉ଵ௅ and 𝑞௉ଵோ in the
configuration space, where 𝑞௉ଵோ is outside the joint constraints (not defined).

Point 𝑃ଶ is transformed into two points 𝑞௉ଶ௅ and 𝑞௉ଶோ in the configuration space,
where 𝑞௉ଶ௅ is outside the joint constraints (not defined).

Figure 13. Solutions of the inverse kinematics problem and determination of zones with the proposed
algorithm for a two-link mechanism from Figure 11. Transformation of trajectories.

Trajectory t1 is an arc of a circle with radius R = 90 [mm] and center (x = 60 [mm],
y = 116 [mm]). Each point of this arc corresponds to two solutions in the configuration
space, which form two red curves qt1L and qt1R. Parts of these two curves go outside the
joint constraints.

The trajectory t2 is a spline that passes through point P3, which lies on the boundary
of the workspace. Each point from t2 corresponds to two points in the configuration space
except point P3, for which there is only one solution because it is reached with a singularity
configuration of type S0. The two curves in which t2 is transformed are given in green—qt2p
and blue—qt2i color, respectively.

After solving the IK, point P1 is transformed into two points qP1L and qP1R in the
configuration space, where qP1R is outside the joint constraints (not defined).

Point P2 is transformed into two points qP2L and qP2R in the configuration space, where
qP2L is outside the joint constraints (not defined).

Point P3 is transformed into a single point qP3, which lies on the axis θ1. At this point,
the curves qt2p and qt2i intersect. It can be said that each of the two trajectories t1 and t2
from the workspace is transformed into two trajectories in the configuration space, and
only one of them qt2p (in green) falls entirely within the joint constraints of the robot.

4.2. Example 2

Figure 14 shows a 3D printed model of a redundant robot with 4 parallel axes of rotation.
The main movements take place in the plane. The rotation θ4 is used to change the

orientation of the gripper, and θ1, θ2, θ3 to define its position. Here, only the gripper
position is of interest and the configuration space is considered as three-dimensional. The
dimensions and joint constraints of the robot are given in Figure 15a.

Algorithms 2022, 15, 469 16 of 24

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 25

Point 𝑃ଷ is transformed into a single point 𝑞௉ଷ, which lies on the axis 𝜃ଵ. At this
point, the curves 𝑞௧ଶ௣ and 𝑞௧ଶ௜ intersect. It can be said that each of the two trajectories 𝑡ଵ
and 𝑡ଶ from the workspace is transformed into two trajectories in the configuration space,
and only one of them 𝑞௧ଶ௣ (in green) falls entirely within the joint constraints of the robot.

4.2. Example 2
Figure 14 shows a 3D printed model of a redundant robot with 4 parallel axes of

rotation.

(a) (b) (c)

Figure 14. (a) Model and (b) prototype of a 3D printed educational robot. (c) Three-dimensional
configuration space divided by types.

The main movements take place in the plane. The rotation 𝜃ସ is used to change the
orientation of the gripper, and 𝜃ଵ, 𝜃ଶ, 𝜃ଷ to define its position. Here, only the gripper po-
sition is of interest and the configuration space is considered as three-dimensional. The
dimensions and joint constraints of the robot are given in Figure 15a.

(a) (b) (c)

Figure 15. (a) Dialog window for setting the basic geometrical parameters of the robot. (b) Dialog
window for generating points in polar coordinates. (c) Generated workspace divided by type of
available solutions.

Octants and Types of Solutions in the Configuration Space
The joint angles 𝜃ଵ, 𝜃ଶ, 𝜃ଷ are independently controllable, defining three mutually

perpendicular axes and planes that define a three-dimensional configuration space. The

Figure 14. (a) Model and (b) prototype of a 3D printed educational robot. (c) Three-dimensional
configuration space divided by types.

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 25

Point 𝑃ଷ is transformed into a single point 𝑞௉ଷ, which lies on the axis 𝜃ଵ. At this
point, the curves 𝑞௧ଶ௣ and 𝑞௧ଶ௜ intersect. It can be said that each of the two trajectories 𝑡ଵ
and 𝑡ଶ from the workspace is transformed into two trajectories in the configuration space,
and only one of them 𝑞௧ଶ௣ (in green) falls entirely within the joint constraints of the robot.

4.2. Example 2
Figure 14 shows a 3D printed model of a redundant robot with 4 parallel axes of

rotation.

(a) (b) (c)

Figure 14. (a) Model and (b) prototype of a 3D printed educational robot. (c) Three-dimensional
configuration space divided by types.

The main movements take place in the plane. The rotation 𝜃ସ is used to change the
orientation of the gripper, and 𝜃ଵ, 𝜃ଶ, 𝜃ଷ to define its position. Here, only the gripper po-
sition is of interest and the configuration space is considered as three-dimensional. The
dimensions and joint constraints of the robot are given in Figure 15a.

(a) (b) (c)

Figure 15. (a) Dialog window for setting the basic geometrical parameters of the robot. (b) Dialog
window for generating points in polar coordinates. (c) Generated workspace divided by type of
available solutions.

Octants and Types of Solutions in the Configuration Space
The joint angles 𝜃ଵ, 𝜃ଶ, 𝜃ଷ are independently controllable, defining three mutually

perpendicular axes and planes that define a three-dimensional configuration space. The

Figure 15. (a) Dialog window for setting the basic geometrical parameters of the robot. (b) Dialog
window for generating points in polar coordinates. (c) Generated workspace divided by type of
available solutions.

Octants and Types of Solutions in the Configuration Space

The joint angles θ1, θ2, θ3 are independently controllable, defining three mutually
perpendicular axes and planes that define a three-dimensional configuration space. The
three coordinate planes divide space into eight parts, and each part is known as an octant.
In Figure 14c, the octants are marked with Roman numerals. The sign of the coordinates of
a point in this space depends on the octant in which it is located. If the rotational joints are
rotated by an angle −π < θi < π, each different type of solution will fall into a precisely
defined octant. The angle θ1 does not affect the solution type, therefore one solution type
can fall into two adjacent octants. Table 1 presents the signs of the coordinates of the joint
angles and the solution types according to the octants.

Relative singularity configuration types are easier to define in the configuration space.
The parameter θ2 = 0 means that the singularity configurations S0,2 fall in the coordi-
nate plane determined by the axes θ1 and θ3, and θ3 = 0 sets S0,3 in the plane O, θ1, θ2
(see Figure 14c).

Using the proposed algorithm, a Visual LISP for AutoCAD program is created to
determine IK solutions and divide them into types. The program runs in AutoCAD and
uses dialog boxes to set the input parameters. The results are presented in the AutoCAD
model space.

Algorithms 2022, 15, 469 17 of 24

Table 1. Decision types and octants in the robot’s configuration space.

Solution Type→ RR LR RL LL
Octants→

Coordinates
↓

I II III IV V VI VII VIII

θ1 + - - + + - - +
θ2 + + - - + + - -
θ3 + + + + - - - -

In the “Geometric Parameters” dialog box, Figure 15a, the lengths of the robot’s links
are set, as well as the joint constraints. This is where the scope of the solution is determined,
either to find a single point, to find multiple points from a segment or arc, or to define the
robot’s workspace. If the “Include obstacles” option is selected, the program will check
for collisions with obstacles. To define the workspace, multiple points are generated in
polar coordinates. They are entered with the dialog window “Positions of end effector”
(Figure 15b). The last line “Number of radial points 2” sets the number of points at which
link a3 will be rotated according to the algorithm. The result, based on the parameters
set by the dialog windows, is given in Figure 15c. The types of solutions are represented
with small circles placed in different layers with different diameter and color. For clarity,
Figure 16 shows the individual types of solutions separately.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 25

In Figure 14c, the octants are marked with Roman numerals. The sign of the coordinates
of a point in this space depends on the octant in which it is located. If the rotational joints
are rotated by an angle −𝜋 < 𝜃௜ < 𝜋, each different type of solution will fall into a pre-
cisely defined octant. The angle 𝜃ଵ does not affect the solution type, therefore one solu-
tion type can fall into two adjacent octants. Table 1 presents the signs of the coordinates
of the joint angles and the solution types according to the octants.

Table 1. Decision types and octants in the robot’s configuration space.

Solution Type→ RR LR RL LL
Octants →

Coordinates ↓
I II III IV V VI VII VIII

𝜃ଵ + - - + + - - + 𝜃ଶ + + - - + + - - 𝜃ଷ + + + + - - - -

Relative singularity configuration types are easier to define in the configuration
space. The parameter 𝜃ଶ = 0 means that the singularity configurations 𝑆଴,ଶ fall in the co-
ordinate plane determined by the axes 𝜃ଵ and 𝜃ଷ , and 𝜃ଷ = 0 sets 𝑆଴,ଷ in the plane 𝑂, 𝜃ଵ, 𝜃ଶ (see Figure 14c).

Using the proposed algorithm, a Visual LISP for AutoCAD program is created to
determine IK solutions and divide them into types. The program runs in AutoCAD and
uses dialog boxes to set the input parameters. The results are presented in the AutoCAD
model space.

In the “Geometric Parameters” dialog box, Figure 15a, the lengths of the robot’s links
are set, as well as the joint constraints. This is where the scope of the solution is deter-
mined, either to find a single point, to find multiple points from a segment or arc, or to
define the robot’s workspace. If the “Include obstacles” option is selected, the program
will check for collisions with obstacles. To define the workspace, multiple points are gen-
erated in polar coordinates. They are entered with the dialog window “Positions of end
effector” (Figure 15b). The last line “Number of radial points 2” sets the number of points
at which link 𝑎ଷ will be rotated according to the algorithm. The result, based on the pa-
rameters set by the dialog windows, is given in Figure 15c. The types of solutions are
represented with small circles placed in different layers with different diameter and color.
For clarity, Figure 16 shows the individual types of solutions separately.

Figure 16. Basic types of IK solutions. Their union represents the robot’s workspace.

If the cross-section of these four main types of solutions (singularity configurations
are not taken into account for now) is plotted, 10 regions numbered from 1 to 10 and given
in Figure 17 are obtained. Since the resulting type map is symmetrical, the areas 1 through
6 are examined in more detail.

Figure 16. Basic types of IK solutions. Their union represents the robot’s workspace.

If the cross-section of these four main types of solutions (singularity configurations
are not taken into account for now) is plotted, 10 regions numbered from 1 to 10 and given
in Figure 17 are obtained. Since the resulting type map is symmetrical, the areas 1 through
6 are examined in more detail.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 25

Figure 17. Mapping the robot’s workspace according to the type of solution.

The “Point” option from the “Geometric parameters” dialog box (Figure 15a is used
to find solutions for point P from the corresponding regions. The program calculates and
draws multiple configurations in the workspace, as well as the corresponding points in
the configuration space (Figure 18). Since 𝜃ଵ does not influence the solution type, the con-
figuration space is represented in the plane 𝑂, 𝜃ଶ, 𝜃ଷ.

Figure 18. Result of applying the algorithm for point P, located in areas 1 to 6, according to Figure
17.

Region 1—only RR type configurations are possible (illustrated in Figure 18). These
solutions fall into the first and second octants of the configuration space. In the symmetric

Figure 17. Mapping the robot’s workspace according to the type of solution.

The “Point” option from the “Geometric parameters” dialog box (Figure 15a is used
to find solutions for point P from the corresponding regions. The program calculates and
draws multiple configurations in the workspace, as well as the corresponding points in

Algorithms 2022, 15, 469 18 of 24

the configuration space (Figure 18). Since θ1 does not influence the solution type, the
configuration space is represented in the plane O, θ2, θ3.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 25

Figure 17. Mapping the robot’s workspace according to the type of solution.

The “Point” option from the “Geometric parameters” dialog box (Figure 15a is used
to find solutions for point P from the corresponding regions. The program calculates and
draws multiple configurations in the workspace, as well as the corresponding points in
the configuration space (Figure 18). Since 𝜃ଵ does not influence the solution type, the con-
figuration space is represented in the plane 𝑂, 𝜃ଶ, 𝜃ଷ.

Figure 18. Result of applying the algorithm for point P, located in areas 1 to 6, according to Figure
17.

Region 1—only RR type configurations are possible (illustrated in Figure 18). These
solutions fall into the first and second octants of the configuration space. In the symmetric

Figure 18. Result of applying the algorithm for point P, located in areas 1 to 6, according to Figure 17.

Region 1—only RR type configurations are possible (illustrated in Figure 18). These
solutions fall into the first and second octants of the configuration space. In the symmetric
region 10, there will be only LL solutions. Regions 1 and 10 are obtained by subtracting the
solution set RR from LL, or vice versa (LL-RR)—see Figure 16.

Region 2—there are both RR and RL types of solutions.
Region 3—solution types are distributed across LR, RR and RL.
Region 4—solution types are distributed across LL, RR and RL.
Region 5—there are only symmetric solutions: LL and RR.
Region 6—all types of solutions are possible.
Determining the regions for which it is possible to have a relative singularity configu-

ration, it is easier if the forward kinematics problem is used. Since either θ2 = 0 = const or
θ3 = 0 = const, the mechanism can be considered as a two-link, which significantly sim-
plifies the task. Considerations from Example 1 are used and the areas given in Figure 19
are obtained.

In the configuration space, these are part of the coordinate planes—O, θ1, θ3 for rela-
tive singularity configurations of type S0,2 and plane—O, θ1, θ2 for type S0,3, determined
by joint constraints.

When both θ2 = 0 and θ3 = 0, the whole robot is in a singularity configuration, i.e.,
det(J) = 0 and the possible positions in the workspace are on the red arc in Figure 19,
right. These singular configurations (θ2 = 0 and θ3 = 0) are presented as a segment
(−π

2 ≤ θ1 ≤ π
2) along the θ1 axis, see Figure 14 on the right. Note that this line is an exact

intersection of the relative singularity planes S0,2 and S0,3.

Algorithms 2022, 15, 469 19 of 24

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 25

region 10, there will be only LL solutions. Regions 1 and 10 are obtained by subtracting
the solution set RR from LL, or vice versa (LL-RR)—see Figure 16.

Region 2—there are both RR and RL types of solutions.
Region 3—solution types are distributed across LR, RR and RL.
Region 4—solution types are distributed across LL, RR and RL.
Region 5—there are only symmetric solutions: LL and RR.
Region 6—all types of solutions are possible.
Determining the regions for which it is possible to have a relative singularity config-

uration, it is easier if the forward kinematics problem is used. Since either 𝜃ଶ = 0 = 𝑐𝑜𝑛𝑠𝑡
or 𝜃ଷ = 0 = 𝑐𝑜𝑛𝑠𝑡, the mechanism can be considered as a two-link, which significantly
simplifies the task. Considerations from Example 1 are used and the areas given in Figure
19 are obtained.

Figure 19. Areas reachable with relative singularity configurations of type 𝑆଴,ଶ, 𝑆଴,ଷ (left and cen-
ter) and their location relative to the other areas (right).

In the configuration space, these are part of the coordinate planes—𝑂, 𝜃ଵ, 𝜃ଷ for rela-
tive singularity configurations of type 𝑆଴,ଶ and plane—𝑂, 𝜃ଵ, 𝜃ଶ for type 𝑆଴,ଷ, determined
by joint constraints.

When both 𝜃ଶ = 0 and 𝜃ଷ = 0, the whole robot is in a singularity configuration, i.e., det(𝐽) = 0 and the possible positions in the workspace are on the red arc in Figure 19,
right. These singular configurations (𝜃ଶ = 0 and 𝜃ଷ = 0) are presented as a segment
(− గଶ ≤ 𝜃ଵ ≤ గଶ) along the 𝜃ଵ axis, see Figure 14 on the right. Note that this line is an exact
intersection of the relative singularity planes 𝑆଴,ଶ and 𝑆଴,ଷ.

5. Discussion
5.1. Discussion of Definitions

The introduced Definitions 1–3 exhaust the possible cases of searching for different
IK solutions for robots with the structure from Figure 2b and clarify what is meant by a
type of solution. Singularity configurations of the robot prevent it from realizing some
movements. They depend on the number of joints, their types (translational or rotational)
and their geometric arrangement. Singularities occur when the calculation of IK for veloc-
ity fails (for example, when division by zero occurs) and should therefore be avoided. For
each robot, a Jacobian matrix J can be defined that assigns transfer functions between the
joint angle velocities and the end effector velocity. Mathematically, a singularity occurs
when 𝑑𝑒𝑡(𝐽) = 0. Thus, for a particular robot, it is possible that the relative singularity
configuration does not match any of the calculated singularity configurations of the entire
robot. However, due to the presence of joint constraints (in some cases also when working
in an environment with obstacles), some of the robot’s links are blocked and its structure
changes. It is in such a case that the consideration of the newly introduced relative singu-
larity configurations is useful. Another case for which it is useful to know the relative

Figure 19. Areas reachable with relative singularity configurations of type S0,2, S0,3 (left and center)
and their location relative to the other areas (right).

5. Discussion
5.1. Discussion of Definitions

The introduced Definitions 1–3 exhaust the possible cases of searching for different IK
solutions for robots with the structure from Figure 2b and clarify what is meant by a type of
solution. Singularity configurations of the robot prevent it from realizing some movements.
They depend on the number of joints, their types (translational or rotational) and their
geometric arrangement. Singularities occur when the calculation of IK for velocity fails (for
example, when division by zero occurs) and should therefore be avoided. For each robot,
a Jacobian matrix J can be defined that assigns transfer functions between the joint angle ve-
locities and the end effector velocity. Mathematically, a singularity occurs when det(J) = 0.
Thus, for a particular robot, it is possible that the relative singularity configuration does not
match any of the calculated singularity configurations of the entire robot. However, due
to the presence of joint constraints (in some cases also when working in an environment
with obstacles), some of the robot’s links are blocked and its structure changes. It is in such
a case that the consideration of the newly introduced relative singularity configurations is
useful. Another case for which it is useful to know the relative singular configurations is
when the robot’s end effector needs to execute a trajectory and it is necessary to go from
a relative left to a relative right configuration or vice versa. This transition is possible only
when the robot is in an area where relative singularity is possible for the respective links.
This is illustrated below in the discussion of the examples. The relative singularities are also
related to the possibilities of the end effector to realize different orientations in one point
(angle of service). For example, in areas three and six of Figure 18, it is shown that the
angle of possible orientations at a point is continuous. This corresponds to a region where
there is an intersection of two relative singularity configurations from Figure 19. In the
areas without relative singularity configurations, this angle is either significantly limited
(Figure 18 area 1) or divided into sectors (Figure 18 area 5). The breaking of sectors is due
to the impossibility of changing the type of the solution from left-handed to right-handed
and vice versa.

5.2. Discussion of Example 1

The proposed algorithm serves to determine the areas reachable by left-(L) and right-
(R) hand configurations for a robot with two degrees of freedom. These areas in the
workspace can be easily determined analytically, but in the configuration space, even for
this simple case, this is not an easy task. The algorithm generates multiple points in the
configuration space (Figure 13) and defines the three zones qL, qR, q in which solutions
of type L, R and a combination of the two are present. The location of the points in the
configuration space is not uniform due to the non-linear nature of the IK and the setting of
the points in polar coordinates.

Algorithms 2022, 15, 469 20 of 24

Even if a trajectory falls entirely within the workspace of the robot, it may not be
executed by the robot (for example, trajectory t1). The transition from zone fL to fR or vice
versa is possible only if passing through a singularity configuration (trajectory t2). Singular
configurations lie on the outer boundary of f and therefore the robot must pass through
this region. Only a trajectory (for example, qt2p) that falls entirely within the configuration
space of the robot can be executed (Figure 13). The size and shape of the regions depends
on the lengths of the links and is strongly influenced by the joint constraints. Graphical
representation of trajectories in the configuration space helps to understand problems in
motion planning or optimization.

Although it is possible to realize joints without constraints, in practice, such cases are
very rare in robotics. When rotating at an angle close to or greater than 2π[rad], many
problems arise: a cantilever bearing of the joint between the two links is required, which is
less favorable for the distribution of forces; the transmission of signals and energy becomes
difficult due to the twisting of the cables; finally, control is difficult because it is necessary
to check which direction of rotation is closer to the target angle and to record the rotation
history. As can be seen from the examples, especially in the presence of joint constraints,
the questions related to the type of initial and final desired configuration are essential.

5.3. Discussion of Example 2

Representing a configuration space with more than two dimensions is not an easy task.
In the general case, it has the form of an n-dimensional parallelepiped with side lengths
determined by the joint constraints. Example 2 considers a three-dimensional case. As
dimensionality increases, the analytical mapping of spaces becomes complex. In such cases,
it is believed that the proposed method is useful because the algorithm generates sets of
points that form the map.

For the robot from Figure 14, whose dimensions and joint constraints are given in
Figure 15, with the help of the proposed algorithm and the created program, 10 different
main regions (Figure 17) are obtained in which the robot has different qualities. For example,
if the robot moves only in region 1 or 10, it will reach the target point only with an RR or an
LL configuration type, respectively.

Region 2 can be reached with both RR and RL configurations, and a transition between
the two configurations is possible without the robot having to leave region 2—Figure 18.
When transitioning from RR to RL, the robot passes through a relative singularity of type
S0,3. This is also confirmed by Figure 19 where it is shown that region 2 is a subset of the
region with singularities of type S0,3.

Points in region 3 can be reached with three main configuration types: RR, RL and
LR. A transition through singularities of type S0,2 and S0,3 is possible between the different
types of solutions, as the robot stays in the same region.

In the small region 4, solutions RR, RL and LL are possible. The transition between
RR and RL is possible in the same area through S0,3 (see also Figure 19). However, the
transition between RR and LL or RL and LL cannot take place until the gripper is out of
that region. In Figure 19, it can also be seen that region 4 is not part of region S0,2.

Region 5—RR and LL types of solutions are possible here and it is not possible to
switch from one type to the other without leaving the region.

Region 6—All solution types are possible as well as transitioning between them
without leaving the zone. Analogous considerations are made for mirror zones 7,8,9 and 10.

From Figure 19, conclusions are drawn regarding the possibility of realizing trajectories
that pass through several regions. The robot links can move by changing different types of
configurations between the areas that are simultaneously covered by S0,2 and S0,3; these
are in region 3, and a large part of 6 and 8. A trajectory that goes from 1 to 10, through 5, or
vice versa cannot take place. To go from region 10 to 1 or vice versa the robot must pass
through a region covered by S0,2 and S0,3.

Algorithms 2022, 15, 469 21 of 24

5.4. Advantages of the Algorithm

- Finds a set of points in the configuration space that can reach a given point in the
workspace and sorts them by type. This can be used to determine the service coefficient
and the robot’s mobility factor.

- Transforms trajectories from the workspace into a corresponding set of points with
possible solutions in the configuration space. This gives completeness to the solutions,
unlike some numerical methods known so far, which find only one solution, one that
is affected by the initial configuration;

- Can be used to define regions from the workspace and configuration space with differ-
ent types of solutions. Once created, a region map for a particular robot (environment
with obstacle), can be used repeatedly by motion planning algorithms with different
initial and target configurations.

- Finds an IK solution even in singular configurations. Numerical methods based on
the Jacobian matrix do not deal with this problem.

- The algorithm is applicable to planar robots with a serial structure.
- The resulting regions are useful for planning the placement of objects in the workspace

of the robot.

5.5. Disadvantages of the Algorithm

- It is not applicable (or difficult to apply) to real-time tasks.
- In order to obtain a detailed and correct map for robots with more degrees of freedom

or for complex obstacles in the workspace area, it is necessary to increase the number
of checked points and algorithm cycles.

- The algorithm is only suitable for robots with a serial structure. It is not applicable to
parallel robots and closed structure robots.

- The even distribution of survey points on circles requires multiple reachability checks
for points that are sometimes clearly unreachable. We believe that this process can be
optimized in the future.

Currently, the algorithm seeks the solutions to IK by going through every possible
configuration of the robot. However, it could be determined in advance that some configu-
rations are clearly unfeasible, which could reduce the total calculations and optimize the
algorithm. In addition, if the obstacles in the environment do not change, the configuration
space map for a particular robot is generated once and can be used repeatedly to determine
different trajectories, even executed in real time. Often in robot control, it is not necessary
to map the types of solutions. In such cases, the algorithm could be simplified to seek
singular solutions by testing only a couple of configurations (which could be randomly
chosen). This could improve the speed of the algorithm.

6. Conclusions

The paper presents an idea for finding and classifying multiple solutions of IK using
a geometric approach. Definitions are introduced that clearly distinguish the types of
solutions. An approach is proposed to determine regions in which the robot can occupy
relative singularity configurations. In regions with different solution types, the robot is
expected to possess qualitatively different properties.

A program has been created that uses the proposed algorithm. It works in the Au-
toCAD environment, which is convenient for visualizing the results in two-dimensional
and three-dimensional space. Examples from the implementation of the program are
also analyzed.

The algorithm is suitable for applications that do not work in real time. It can be
applied in conjunction with collision detection algorithms to obtain maps that are used by
algorithms to operate in a given environment with obstacles and multiple target requests.
The obtained results can be useful for the design, research and motion planning of robots
with a serial structure. The algorithm is useful for teaching students and Ph.D. students,
because the results are presented graphically, which makes the processes easier to under-

Algorithms 2022, 15, 469 22 of 24

stand. The main steps are presented without specifying the way of their implementation,
which allows for further development and improvement of the algorithm.

Singular configurations of robots are generally undesirable due to difficulties related
to their control. The examples discussed show situations where traversing singular config-
urations is useful because it increases the reachability of the robot gripper.

The achieved results provide a foundation for further development of this work and
can assist other research working in related fields. Future applications will be sought to gen-
erate multi-dimensional configuration spaces in the presence of obstacles in the workspace.
The presented examples consider only a small portion of the possible applications and
focus on investigating the position of the robot’s end effector. The properties of robots
related to gripper orientation tasks will be investigated with the created program. The
work can be developed further to solve the forward and inverse kinematics problems for
robots with closed and open-closed topologies.

Author Contributions: Conceptualization, I.C.; methodology, I.C.; software, I.C.; validation, I.C.
and B.N.; formal analysis, I.C. and B.N.; investigation, I.C. and B.N.; data curation, I.C. and B.N.;
writing—original draft preparation, I.C. and B.N.; writing—review and editing, I.C. and B.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Regional Development Fund within the OP
“Science and Education for Smart Growth 2014–2020”, Project CoC “Smart Mechatronic, Eco- And
Energy Saving Systems And Technologies”, № BG05M2OP001-1.002-0023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

VisualLISP for AutoCAD programming code. Creates a function that finds the joint
angles θ1L; θ1R; θ2L; θ2R with left (t1L, t2L) and right (t1R, t2R) hand of the inverse kine-
matics problem for a two-link robot. The input variables are the lengths of the links a1 and
a2, the location of the base (point Point0) and point Point2, that is reachable by the robot,
see Figure 10.

;;; IK_two_link—Inverse kinematics function of a two-link mechanism
;;;Point0—Rotary joint 0 at the base
;;;Point2—Rotary joint 2
;;;rad1 = a1—length of link 1
;;;rad2 = a2—length of link 2
(defun IK_two_link (Point0 Point2 rad1 rad2/L ang ttt hhh ip1 ip2 spt)
(setq L (distance Point0 Point2) ang (angle Point0 Point2)
ttt (/ (- (+ (* rad1 rad1) (* L L)) (* rad2 rad2)) (* 2 L))
hhh (sqrt (abs (- (* rad1 rad1) (* ttt ttt))))
spt (polar Point0 ang ttt)
ip1 (polar spt (+ ang (/ pi 2)) hhh)
ip2 (polar spt (- ang (/ pi 2)) hhh)
t1L (angle Point0 ip1)
t1R (angle Point0 ip2)
t2L (- (angle ip1 Point2) t1L)
t2R (- (angle ip2 Point2) t1R)); end setq
(if (> t2L 0.0) (setq t2L (- t2L (* 2.0 pi)))) (if (< t2R 0.0) (setq t2R (+ (* 2.0 pi) t2R)))
(if (> t1L pi) (setq t1L (- t1L (* 2.0 pi)))) (if (> t1R pi) (setq t1R (- t1R (* 2.0 pi))))
); end defun

Algorithms 2022, 15, 469 23 of 24

Nomenclature

IK Inverse kinematics
DOF Degrees of freedom
CAD Computer aided design
3D Three dimensional
J Jacobian matrix
Pi Point, center of joint i
w Workspace
q Configuration
fL, fR Area, only reachable with a left (right) hand configuration
f Area, reachable with both left and right-hand configurations
dPk−1,Pk+1 Distance between points
sπ,i, s0,i Relative singularity configuration
ai Link length
ag Gripper length
UL Area, reachable with a left-hand configuration
UR Area, reachable with a right-hand configuration

Greek Symbols

θ Joint angle
α Orientation angle of the gripper

Subscripts

i, k Link and joint identifiers
L Left-hand relative configuration
R Right-hand relative configuration
π, 0 Relative singularity configuration of type π, 0

References
1. Denavit, J.; Hartenberg, R. A kinematic notationfor lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 1951, 22,

215–221. [CrossRef]
2. Kucuk, S.; Bingul, Z. Robot Kinematics: Forward and Inverse Kinematics. In Industrial-Robotics-Theory-Modelling-Control;

Cubero, S., Ed.; IntechOpen: Berlin, Germany, 2006.
3. Venkata Neeraj Kumar, R.; Sreenivasulu, R. Inverse Kinematics (IK) Solution of a Robotic Manipulator using PYTHON.

J. Mechatron. Robot. 2019, 3, 542–551. [CrossRef]
4. Ayush, G. A Geometric Approach to Inverse Kinematics of a 3 DOF Robotic Arm. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6,

3524–3530.
5. Tokarz, K.; Kieltyka, S. Geometric approach to inverse kinematics for arm manipulator. In Proceedings of the 14th WSEAS

International Conference on Systems: Part of the 14th WSEAS CSCC Multi Conference—Volume II, Corfu, Greece, 22–24 July 2010.
6. Wang, P.; Zhou, Y.; Yan, N. An Inverse Solution Algorithm for Industrial Robot. J. Phys. Conf. Ser. 2022, 2173, 012085. [CrossRef]
7. Manseur, R.; Doty, K.L. A Fast Algorithm for Inverse Kinematic Analysis of Robot Manipulators. Int. J. Robot. Res. 1988, 7,

52–63. [CrossRef]
8. Gan, J.Q.; Oyama, E.; Rosales, E.M.; Hu, H. A complete analytical solution to the inverse kinematics of the Pioneer 2 robotic arm.

Robotica 2005, 23, 123–129. [CrossRef]
9. Li, Y.; Wang, L. Kinematic Model and Redundant Space Analysis of 4-DOF Redundant Robot. Mathematics 2022, 10, 574. [CrossRef]
10. Ghosal, A. Resolution of redundancy in robots and in a human arm. Mech. Mach. Theory 2018, 125, 126–136. [CrossRef]
11. Xie, S.; Sun, L.; Wang, Z.; Chen, G. A speedup method for solving the inverse kinematics problem of robotic manipulators. Int. J.

Adv. Robot. Syst. 2022. [CrossRef]
12. Heidari, O.; Gracia, A.P. Inverse Kinematics Using a Converging Paths Algorithm. Adv. Robot Kinemat. 2020, 2020, 15. [CrossRef]
13. Alavandar, S.; Nigam, M.J. Inverse Kinematics Solution of 3DOF Planar Robot using ANFIS. Int. J. Comput. Commun. Control

2008, 3, 150–155.
14. Jamali, A.; Khan, R.; Rahman, M.M. A new geometrical approach to solve inverse kinematics of hyper redundant robots with

variable link length. In Proceedings of the 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia,
17–19 May 2011. [CrossRef]

15. Al-Mashhadany, Y.I. Inverse Kinematics Problem (IKP) of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs). In
Proceedings of the International Conference on Management and Service Science, Wuhan, China, 24–26 August 2010. [CrossRef]

16. Semwal, V.B.; Gupta, Y. Performance Analysis of Data-Driven Techniques for Solving Inverse Kinematics Problems.
Intell. Syst. Appl. 2021, 294, 85–99. [CrossRef]

http://doi.org/10.1115/1.4011045
http://doi.org/10.3844/jmrsp.2019.542.551
http://doi.org/10.1088/1742-6596/2173/1/012085
http://doi.org/10.1177/027836498800700304
http://doi.org/10.1017/S0263574704000529
http://doi.org/10.3390/math10040574
http://doi.org/10.1016/j.mechmachtheory.2017.12.008
http://doi.org/10.1177/17298806221104602
http://doi.org/10.1007/978-3-030-50975-0_2
http://doi.org/10.1109/ICOM.2011.5937183
http://doi.org/10.1109/ICMSS.2010.5577613
http://doi.org/10.1007/978-3-030-82193-7_6

Algorithms 2022, 15, 469 24 of 24

17. Köker, R.; Çakar, T.; Sari, Y. A neural-network committee machine approach to the inverse kinematics problem solution of robotic
manipulators. Eng. Comput. 2014, 30, 641–649. [CrossRef]

18. Kenwright, B. Inverse Kinematics—Cyclic Coordinate Descent (CCD). J. Graph. Tools 2012, 16, 177–217. [CrossRef]
19. Chen, Y.; Luo, X.; Han, B.; Jia, Y.; Liang, G.; Wang, X. A General Approach Based on Newton’s Method and Cyclic Coordinate

Descent Method for Solving the Inverse Kinematics. Appl. Sci. 2019, 9, 5461. [CrossRef]
20. Song, W.; Hu, G. A Fast Inverse Kinematics Algorithm for Joint Animation. Procedia Eng. 2011, 24, 350–354. [CrossRef]
21. Müller-Cajar, R.; Mukundan, R. Triangulation: A New Algorithm for Inverse Kinematics. Proc. Image Vis. Comput. 2007, 181–186.

Available online: https://ir.canterbury.ac.nz/bitstream/handle/10092/743/12607089_ivcnz07.pdf;sequence=1 (accessed on
18 September 2022).

22. Panchanand, J.; Biswal, B.B. Inverse Kinematic Solution of 5R Manipulator Using ANN and ANFIS. Int. J. Robot. Autom. IJRA
2015, 4, 109–123.

23. Takehiko, O.; Hajime, K. Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion. J. Robot. 2010, 2010. [CrossRef]
24. Pan, J.; Manocha, D. Efficient Configuration Space Construction and Optimization for Motion Planning. Engineering 2015, 1,

46–57. [CrossRef]
25. Ardila, F.; Bastidas, H.; Ceballos, C.; Guo, J. The configuration space of a robotic arm in a tunnel. SIAM J. Discret. Math. 2017, 31,

2675–2702. [CrossRef]
26. Verghese, M.; Das, N.; Zhi, Y.; Yip, M. Configuration Space Decomposition for Scalable Proxy Collision Checking in Robot

Planning and Control. IEEE Robot. Autom. Lett. 2020, 7, 3811–3818. [CrossRef]
27. Varadhan, G.; Kim, Y.J.; Krishna, S.; Manocha, D. Topology preserving approximation of free configuration space. In Proceedings of

the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3041–3048. [CrossRef]
28. XieRui, Y.; Zhou, Z.; Yang, Y. Improved Distorted Configuration Space Path Planning and Its Application to Robot Manipulators.

Sensors 2020, 20, 6060. [CrossRef]
29. Uk, M.; Sajjad Ali Shah, F.B.; Soyaslan, M.; Eldogan, O. Modeling, control, and simulation of a SCARA PRR-type robot manipulator.

Sci. Iran. 2020, 27, 330–340. [CrossRef]
30. Chavdarov, I.; Nikolov, V.; Naydenov, B.; Boiadjiev, G. Design and Control of an Educational Redundant 3D Printed Robot. In

Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia,
19–21 September 2019. [CrossRef]

31. Miteva, L.; Chavdarov, I.; Yovchev, K. Trajectory Planning for Redundant Robotic Manipulators with Constrained Joint Space. In
Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Hvar, Croatia,
23–25 September 2020. [CrossRef]

32. Miteva, L.; Yovchev, K.; Chavdarov, I. Preliminary Study on Motion Planning with Obstacle Avoidance for Hard Constrained
Redundant Robotic Manipulators. In Proceedings of the International Conference on Computer Systems and Technologies
’21 (CompSysTech ’21), Ruse, Bulgaria, 18–19 June 2021. [CrossRef]

http://doi.org/10.1007/s00366-013-0313-2
http://doi.org/10.1080/2165347X.2013.823362
http://doi.org/10.3390/app9245461
http://doi.org/10.1016/j.proeng.2011.11.2655
https://ir.canterbury.ac.nz/bitstream/handle/10092/743/12607089_ivcnz07.pdf;sequence=1
http://doi.org/10.1155/2010/870923
http://doi.org/10.15302/J-ENG-2015009
http://doi.org/10.1137/16M1089411
http://doi.org/10.1109/LRA.2022.3147458
http://doi.org/10.1109/ROBOT.2006.1642164
http://doi.org/10.3390/s20216060
http://doi.org/10.24200/sci.2018.51214.2065
http://doi.org/10.23919/SOFTCOM.2019.8903825
http://doi.org/10.23919/SoftCOM50211.2020.9238296
http://doi.org/10.1145/3472410.3472438

	Introduction
	Literature Review
	Background and Related Work

	Definitions and Conditions for the Solution Types
	Materials and Methods
	Results
	Example 1
	Example 2

	Discussion
	Discussion of Definitions
	Discussion of Example 1
	Discussion of Example 2
	Advantages of the Algorithm
	Disadvantages of the Algorithm

	Conclusions
	Appendix A
	References

