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Abstract: Deep learning and additive manufacturing have progressed together in the previous couple
of decades. Despite being one of the most promising technologies, they have several flaws that a
collaborative effort may address. However, digital manufacturing has established itself in the current
industrial revolution and it has slowed down quality control and inspection due to the different
defects linked with it. Industry 4.0, the most recent industrial revolution, emphasizes the integration
of intelligent production systems and current information technologies. As a result, deep learning has
received a lot of attention and has been shown to be quite effective at understanding image data. This
review aims to provide a cutting-edge deep learning application of the AM approach and application.
This article also addresses the current issues of data privacy and security and potential solutions to
provide a more significant dimension to future studies.

Keywords: deep learning; additive manufacturing; image segmentation; algorithm; Industry 4.0

1. Introduction

Rapid prototyping (RP) is a collection of manufacturing techniques that may produce
a finished product straight from a 3D model in a layer-by-layer fashion. Because of its
numerous advantages, this technology has become a crucial component of the fourth indus-
trial revolution. Globally, technology is transforming the manufacturing industry. Despite
this, the industry’s adoption of this technology is hampered by layer-related flaws and
poor process reproducibility. The function and mechanical qualities of printed objects can
be significantly impacted by flaws such as lack of fusion, porosity, and undesirable dimen-
sional deviation, which are frequent occurrences [1,2]. Variability in product quality, which
poses a significant obstacle to its adoption in the production line, is one of the process’s key
downsides. To overcome this hurdle, inspecting and overseeing the additive manufacturing
(AM) process are essential. The importance of in-depth material and component analysis is
growing, which leads this technology toward the integration of data science and deep learn-
ing. These newly discovered data are invaluable for acquiring a fresh understanding of AM
processes and decision-making [3]. Unlike traditional manufacturing procedures, AM cre-
ates goods from digital 3D models layer-by-layer, line-by-line, or piece-by-piece [4,5]. AM
fabrication methods have been developed to print natural working objects using diverse
types and forms of materials, including fused filament fabrication (FFF), stereolithography
(SLA), selective laser sintering (SLS), selective laser melting (SLM), and laser-engineered
net shaping (LENS). The various techniques will be discussed in the further section. The
materials’ anisotropic character, porosity caused by inadequate material fusion, and warp-
ing due to residual tension brought on by the fast-cooling nature of additive manufacturing
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techniques are only a few of the particular difficulties that must be solved. Deep learning
(DL) has recently gained popularity in pattern recognition and computer vision due to its
dominance in feature extraction and picture interpretation. Convolutional neural networks
(CNNs) are one of the most widely employed techniques in deep learning, and they have
been extensively used for object detection, action recognition, and image classification [6].
CNN is widely used for computer vision task applications [7]. DL integrated design is used
for AM framework. In other words, deep learning simulates the input and output data for
the given part [8]. The review represents a new phase of AM-related data analysis, where
data gathering is the primary component of technological inspection. Many reviews on
additive manufacturing and AI have been published, but no specific article emphasizes the
deep learning perspective with additive manufacturing. Other fields, including medical
AM, have embraced deep learning as an essential component for analyzing deep learning in
conjunction with additive manufacturing. The literature review shows that many reviews
are available on various topics related to artificial intelligence and additive manufacturing.
However, no reviews were focused on deep learning and additive manufacturing. Various
reviews have been carried out on this work, which is somewhat broadly related to our
topic of interest. All the reviews of reviews used in this work are highlighted in Figure 1.
However, the work has been focused on deep learning and additive manufacturing because
much work has been conducted in this area from 2014 to October 2022 (shown in Figure 2).
Thus, the main aim of the present review is to give an overview of the various articles
associated with these two key technologies. The bar graph and citations index of all those
works is well illustrated in Figure 2.

Figure 1. Various review of the review for deep learning towards digital additive manufacturing.
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Figure 2. Number of publications and citations report.

Immense effort has been made while collecting articles from various well-known
databases such as (i) Google Scholar (ii) ScienceDirect, and (iii) IEEE Xplore. The various
keywords used for the searches were: additive manufacturing (AM), deep learning (DL),
Industry 4.0, design for additive manufacturing DFAM, big data, Internet of Things, com-
puter vision, data security, explainable AI, trustworthy AI, federated learning, digital twins
and sustainability. To focus on the goal of literature evaluation, the key technical terms
were merged to obtain pertinent research study resources. The prominent academic search
engine provided the majority of the research materials. The various research articles related
to this field were gathered, and co-occurrence analysis was conducted using VOS viewer [9].
The network, co-occurrence, and density visualization of various keywords associated
with it are shown in Figure 3. It is well illustrated in Figure 4 that the density of additive
manufacturing and deep learning is more correlated than machine learning. Any new man-
ufacturing technique needs early adopters or champions in the customer community to be
adopted for widespread use. In the early 1990s, AM experienced the same thing. The early
adopters, Dick Aubin at United Technologies, Pete Sferro at Ford Motor Company, and
Clint Atwood at Sandia National Laboratory, were the key players in this technique [10].
This idea is emerging because of the significant degree of design flexibility AM technology
offers. Design for additive manufacturing (DfAM) techniques or instruments are required
to benefit fully from the unique skills offered by AM processes [11]. DfAM is a general
term for design techniques or tools that allow the capabilities of additive manufacturing
technology to be fully utilized to enhance functional performance and other significant
product life-cycle aspects, such as dependability, manufacturability, and cost [12]. Due to
its theoretical ability to produce more complex parts in any shape without requiring more
work in the manufacturing processes, AM is given more design freedom. A consolidated
view of incorporating an additive manufacturing process chain with deep learning has
been illustrated in Figure 4. It demonstrates that quality control can be implemented in
a very efficient manner in synergy with deep learning. From the beginning to the end of
RP, data generation and input play a significant part in the AM process. Throughout this
process’s exclusive design and production cycle, enormous amounts of data are generated.
To optimize the AM process and make the process more efficient and dependable, this data
must be gathered and examined. Diverse research teams have attempted experiments com-
bining deep learning techniques with AM to enhance product quality, detect and forecast
various flaws and distortions in the made part, optimize process times, and cut costs [13].
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Figure 3. Network, co-occurrence, and density visualization of various associated keywords.

Figure 4. Incorporation of deep learning in AM cycle.

AM products must be produced using sophisticated quality control to demonstrate
and achieve their intended repeatability, reproducibility, reliability, and exactness before
being used as final products [10]. The widespread adoption of AM techniques needs
to be improved by dimensional errors and the existence of flaws. These variables give
rise to concern about the quality of the products created via additive manufacturing,
hence using quality control (QC) methodologies is essential to improving this developing
technology [14]. Both metal AM and welding undergo periodic partial melting, cooling, or
deposition during manufacturing. Metal AM and welded products frequently share similar
product quality concerns due to deposition, including layer misalignment, dimensional
inaccuracies, and residual stress generation [15].

Industry 4.0 uses the fusion of advanced information technology and intelligent
industrial systems. Due to its many advantages, including time and material savings, quick
prototyping, high efficiency, and decentralized production techniques, AM is a critical
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component of Industry 4.0 [16]. These encompass a number of the most recent technical
advancements, including artificial intelligence, cloud computing, digital twins, the Internet
of Things, and cyber-physical systems. The word “AM” is also used to refer to several
industrial processes that enable the production of things by stacking layers on top of one
another. Numerous studies and applications of these technologies have been conducted
to create homogenous and heterogeneous items with intricate geometries [17]. Intelligent
production systems and cutting-edge information technologies are being encouraged to
integrate through the implementation of Industry 4.0. This new movement is believed to
necessitate AM, which is considered a significant element [18]. The primary drawback
of AM-manufactured parts is their lower strength and related quality, together with the
expensive cost of the printing technology. The industry can manufacture novel products
with this disruptive technology, which can address various issues in the future production
system. Additive manufacturing is a new paradigm that will be utilized by Industry 4.0 to
accomplish the necessary objectives in this futuristic manufacturing system [19]. Therefore,
a consolidated view of the respective technology leads to the integration of this new field
viz additive manufacturing and deep learning. This has the potential to lead the automation
in Industry 4.0 sustainably. A representative diagram is shown in Figure 5.

Figure 5. Integration of additive manufacturing with deep learning.

This review revolves around a few major recent buzzwords, such as deep learning
(DL), Industry 4.0, AM, big data, the Internet of Things (IoT), and computer vision. In the
complete work, the authors have emphasized that the different DL algorithms have already
proved themselves in the AM domain. The paper is divided into seven sections. Section 1
introduces the crux of this review article.

Section 2 discusses the various error and defects associated with the AM. Major
importance is given to the generation of a dataset (defect) associated with the technology.
Section 3 provides an in-depth study of the various DL models used in the AM until
now. In Section 4, the DL has been correlated with the AM in three aspects: process,
material, and application. Section 5 discusses the concern about the challenges and solution
associated with the integration of two different technologies of the 21st century. Section 6
deals with the future thrust areas, which can be focused on developing the technology as a
whole. Finally, Section 7 concludes the overall review of the work. In a crux, the review
focuses on additive manufacturing industries in the era of Industry 4.0. In addition, in
the complete writeup, emphasis has been given to the incorporation of deep learning in
additive manufacturing which can lead to automation in the specified sector.

2. Classification and Correlation of Deep Learning with Additive Manufacturing

There is no question that every nation must participate in the global effort to develop
sustainable standards for every technology and industry. ASTM clause 2792-12 defines
AM as the technology that creates objects from 3D models by layer-by-layer addition of
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materials [20]. Future production will be individually customized and environmentally
friendly, depending on needs. The techniques involved in additive manufacturing range
from designing with any computer-aided design (CAD) software to producing the finished
product [21]. However, there are restrictions on how AM standards can be applied. Nu-
merous studies have shown that mechanical characteristics along the X-Y axis might differ
in the Z-axis, as in the case of the SLA process. PBF determines the finished product’s
mechanical qualities (powder bed fusion) and sintering, which depend on the laser power,
layer thickness, tolerances, and other factors [22].

AM techniques can be classified according to material type, solidification process, and
deposition methods [23]. Understanding the process and technology associated with this
term is essential before we delve into the deep learning part. Therefore, this section aims to
classify the AM process in all possible aspects and correlate it with deep learning.

2.1. Process-Based Classification

Additive manufacturing is growing and expanding with a wide range of technology
and applications. According to ASTM F 42, additive manufacturing has been classified
into seven categories, shown in Figure 6 with the associated technology [23]. There are
quite a few different techniques, tools, and materials included in each of the seven process
categories that additive manufacturing technologies fall under, and they may be used
to meet the requirements of a broad range of industries, from aerospace to healthcare.
Defining the mechanical characteristics of the final part is a necessity in industrial domains,
along with certification of the personnel participating in each manufacturing phase, the
product design stage, and so on [24].

Figure 6. Classification of additive manufacturing on ASTM F-42 and its associated technology.
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2.2. Application-Based Classification

The ability to manufacture complex structures, mass customization, waste reduction,
and design freedom are some of additive manufacturing’s (AM) main benefits [25]. Ad-
ditive manufacturing includes rapid development tools [26]. However, over the past ten
years, AM has advanced dramatically in technological competence and has been employed
increasingly in direct manufacturing [11]. This has led to new businesses specializing in
components’ rapid manufacture (RM) [27]. Various sections that have warmly embraced
this technology are summarized in Table 1.

Table 1. Application of additive manufacturing and deep learning in various fields.

Sector Application Modalities Use Material Process
Deep
Learning
Model

References

Medical

Orthopedics Anatomic
models Implant

Stainless
steel,
Titanium

Classification,
Segmenta-
tion

CNN, U NET [28–30]

Dental Crowns
Fixtures

Titanium,
MFH

Shape
deformation
in AM part

PredNet and
CompNet [31–33]

Pharma NA Drug
delivery Polymer Optimization LSTM [34,35]

Bioprinting
Extrusion-
based,
Inkjet

Tissue
engineering Bio ink Classification [36,37]

Automotive Production
flexibility Custom parts Metal,

Polymer

Optimization,
Quality
control

CNN, [38,39]

Aerospace

Electron
beam
melting,
Selective
laser melting,
and laser
deposition,

Microtrusses,
Multifunctional
Structures

Multi
materials,
Metals,
Titanium,
Ceramics

Parameter
optimization,
Segmentation

LSTM, CNN [40–42]

Defense
Defense
Support
Service

Delocalized
manufactur-
ing

NA Computer
vision

Deep
learning [43–45]

3. Errors and Defects Associated with Additive Manufacturing

Before delving into the discussion of deep learning in AM, it is a prerequisite for us to
know the kind of dataset associated with the techniques used in various printing methods.
Therefore, the cause of printing error, the technique used to acquire the defect in the parts,
and the type of defect associated with the technology must be overturned before moving to
its solution by AI.

3.1. Printing Errors

Printing errors are a tedious problem in AM. Printing errors will happen when the
physical part is printed. Thus, there must be some feedback mechanism while printing the
model, which can monitor the process while printing is ongoing. The printed error is also
further classified as minor and major errors. Minor errors can be neglected if the previous
or later layer of the print compensates for the defect. However, a significant error cannot
be compensated, and the part cannot reach the required accuracy [46]. The most popular
method of AM is fused deposition modeling (FDM). The name also illustrates the process
of layering the fused material to create a portion. When it comes to cost-effectiveness
and manufacturing speed, this is one of the most promising RP techniques. It is widely
utilized, and this method includes roughly half of all 3D printing devices [47]. According
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to Bochmann et al. [48] and another literature reason for various printing errors associated
with this technology is demonstrated in Figure 7.

Figure 7. The printing error associated with additive manufacturing.

3.2. Data Acquisition

Three-dimensional shape measurement, also known as range imaging and depth
sensing, plays an essential role in many applications. The common approaches, however,
need to deliver precise and dense measurements for a trustworthy 3D reconstruction. The
secret to successful 3D scanning is to measure your thing accurately enough to record the
specifics required for an adequate duplication [49]. A few 3D scanning options can aid
with this and develop a 3D model almost instantly that is prepared for 3D printing. The
various data acquisition techniques have been summarized in Table 2, along with their
merits and demerits.

Table 2. Data acquisition technique.

Technique Description Quality Drawback Reference

Photogrammetry

Based on images collected from
various angles surrounding an
object and then “stitched”
together using software
applications

Low

The method requires a studio
setup because it involves a
complex camera system that can
be challenging to set up and is
not easily portable.

[50]

Light-based 3D
scanning

A structured–light 3D scanner
produces a light pattern of
parallel stripes on an object’s
surface. This projection is then
recorded by the scanner’s
camera and converted into a
digital duplicate.

High For small objects. [51]

CT scanning

CT scanning involves numerous
X-ray projections into an object,
producing images merged to
generate a computerized
3D model.

High
CT scanning is exceptional in
providing data on the exterior
and inside components.

[52]
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3.3. Defect Associated

In the past few decades, with the growth of the fourth industrial revolution, the
popularity of 3D-printed goods has grown, and they are also demonstrating financial and
time savings. From the CAD model, the additive manufacturing product is constructed
layer-by-layer. Nevertheless, the printed product from the AM technology is associated
with various defects due to the variation in properties and structure, which further lead
to the quality of the printed product [5]. The various defects associated with the AM are
summarized in Table 3, along with its cause and effect on the printed component. Recoater
streaking can further classify as micro–macro, depending on the grain type [6].

Table 3. Various defects associated with AM.

Anomaly Cause Affect References

Cracking
Small cavities, stress
buildup, and uneven
heating or cooling

Failure of a printed part. [53]

Porosity Inadequate printing
procedure or material

Cavities in the printed
component [53]

Material Shrinkage Property of the material
used.

Lead to the generation of
residual stress, which can
induce cracks in the
material.

[54]

Poor surface finish Technique and materials
used in printing

More time in
post-processing [55]

Stringing Printing technique and
material used

Extra material attached to
the part needs
post-processing

[56]

Residual Stress The print is rapidly
heated or cooled.

The excessive tensile
strength can result in the
creation of cracks or
flaws such as warpage.

[57]

Wrapping

Incorrect cooling of the
printed component or
because of the materials’
processing

The component swells
upward, causing a
change in form.

[58]

Blistering Lower layers need to be
adequately cooled.

Because of the weights of
the top layers, the lowest
layer swells outward.

[59]

Recoater Hopping
As a result of the recoater
blade impacting a
component

Lead to an
inhomogeneous
spreading of material

[60]

Recoater Streaking

It happened because the
recoater blade damaged
itself or because it
dragged a contaminant
across the powder bed.

Poor surface quality [61]

Super-Elevation
When a section bends or
coils upward through the
powder layer, this occurs.

The effect of leftover
thermal stresses or
swelling.

[60]
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Table 3. Cont.

Anomaly Cause Affect References

Incomplete Spreading

When not enough
powder is consistently
taken from the powder
dispenser, this error
happens.

As a result, there is a lack
of powder, the severity of
which is greatest near the
powder collector.

[62]

Lack of fusion

This flaw is a result of
improper laser power,
scanning speed, laser
spot radius, layer
thickness, hatch spacing,
and alloy choice, among
other factors.

Insufficient overlaps of
successive melt pools,
Lead o part rejection

[63–65]

Balling Molten pools break in the
separated island

Lead to a discontinuous
melting track [66,67]

4. Deep Learning Models in Additive Manufacturing

In the additive manufacturing sector, parts quality inspection is essential and can be
used to enhance products. However, the manual recognition used in the conventional
inspection procedure may be biased and low in efficiency. As a result, deep learning has
emerged as a reliable technique for quality inspection of the AM-built part. Deep learning
is a type of machine learning. The first step in the machine learning (ML) pipeline is the
manual extraction of pertinent characteristics from images. These characteristics are also
used to categorize the image based on particular characteristics. However, in deep learning,
the pertinent characteristic is automatically retrieved from the dataset rather than being
manually extracted [68]. The sector-wise representation of various deep learning models
associated with AM to date is presented in Figure 8. The various model of DL associated
with the AM has been discussed in this section elaborately.

Figure 8. Sector-wise representation of various deep learning models associated with AM.



Algorithms 2022, 15, 466 11 of 35

4.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks are one of the deep neural network types that have
received the most attention. Because of the rapid development in the amount of annotated
data and considerable advances in the capacity of graphics processor units, convolutional
neural network research has quickly developed and achieved state-of-the-art outcomes on
several applications [69]. CNNs are made up of neurons that learn to optimize themselves,
similar to traditional ANNs [70]. CNNs are frequently used in academic and commercial
projects due to their benefits, such as down sampling, weight sharing, and local connection.
A CNN model typically requires four components to be built. Convolution is an essential
step in feature extraction. Feature maps are the results of convolution. We will lose
boundary information if we use a convolution kernel of a specific size [71]. Padding is
thus used to increase the input with a zero value, which can modify the size indirectly.
Furthermore, the stride is employed to control the density of convolving. The density
diminishes as the stride size increases. Feature maps generated after convolution contain
many features, which might cause overfitting. Pooling (also known as aggregation) avoids
redundancy [72]. The basic architecture of CNN is presented in Figure 9. Table 4 provides a
summary of various literature on CNN. The deep CNN was accepted as the winning entry
in the ImageNet Challenge 2012 (LSVRC-2012), developed by Krizhevsky, Sutskever, and
Hinton. Since then, DL has been successfully used for several use cases, including, text
processing, computer visions, sentiment analysis, recommendation systems, etc. Besides
that, big businesses like Google, Facebook, Amazon, IBM, and others have established their
own DL research facilities [73]. In addition to that, AM has also incorporated it enormously.
As shown in Figure 8.

Figure 9. Basic architecture of CNN.

Table 4. Summary of various literature on the related CNN.

Type of
CNN

AM
Process Activation Loss Optimizer Accuracy References

CNN
Leaky-
Relu and
SoftMax

Cross
entropy Adam 99.3% [74]

Alex Net Powder
bed fusion

SoftMax
and Relu -

Momentum-
based
Stochastic
Gradient
Descent

97% [60]
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Table 4. Cont.

Type of
CNN

AM
Process Activation Loss Optimizer Accuracy References

CNN
Direct
energy
deposition

SoftMax
and Relu

Cross
entropy Adam 80 [75]

CNN
Selective
laser
melting

SoftMax
and Relu

Cross
entropy

Gradient
descent 99.4 [76]

CNN Metal AM SoftMax
and Relu

Cross
entropy Adam 92.1% [77]

ResNet 50 FDM 98 [78]

CNN PBF SoftMax
and Relu [79]

CNN LASER
PBF

ReLU and
sigmoid

Standard
mean
squared
error and
cross-
entropy

Adam 93.1 [80]

CNN
PBF (melt
pool classi-
fication)

Reply 9.84 [81]

CNN
Fused
filament
fabrication

SoftMax
and Relu 99.5 [82]

CNN

PBF (Melt
pool,
plume and
splatter)

SoftMax
and Relu

Mini batch
gradient
descent

92.7 [83]

4.2. Recurrent Neural Networks (RNNs), GRU and LSTM

Recurrent neural networks (RNN) are built to handle sequential or time series data.
Time series data can take the form of text, audio, video, and so on. The architecture of the
RNN unit demonstrates this. It uses the previous step’s input as well as the current input.
Tanh is the activation function here; alternative activation functions can be used in place of
tanh. RNNs have short-term memory issues. The vanishing gradient issue causes it. RNN
will not remember the long sequences of input [84]. To address this issue, two customized
variants of RNN were developed. They are as follows: (1) GRU (gated recurrent unit) (2)
LSTM (long-term memory). All the network is shown in Figure 10.

LSTMs and GRUs use memory cells to store the activation values of preceding words
in extended sequences [85]. The concept of gates enters the picture now. Gates are used in
networks to control the flow of information. Gates can learn which inputs in a sequence
are essential and retain their knowledge in the memory unit. They can provide data in
extended sequences and use it to generate predictions. The workflow of GRU is similar to
that of RNN. However, the distinction is in the operations performed within the GRU unit.
Table 5 summarizes the various literature on the sequences model.
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Figure 10. (a) Recurrent neural networks (RNNs),(b) GRU and (c) LSTM.

Table 5. Summary of various literature on sequences model.

Model AM Procedure Problem Outcome References

RNN +DNN Laser-based

Laser scanning patterns and the
thermal history distributions
correlated, and finding a
relationship is complex.

The created RNN-DNN model can
forecast thermal fields for any
geometry using various scanning
methodologies. The agreement
between the numerical simulation
results and the RNN-DNN
forecasts was more significant
than 95%.

[86]

RGNN
GNN DED

Specific model generalizability
has remained a barrier across a
wide range of geometries.

Deep learning architecture
provides a feasible substitute for
costly computational mechanics or
experimental techniques by
successfully forecasting long
thermal histories for unknown
geometries during the
training phase.

[87]

Conv-RNN Inkjet AM Height data from the
input–output relationship.

The model was empirically
validated and shown to
outperform a trained MLP with
significantly fewer data.

[88]

RNN, GRU DED

High-dimensional thermal
history in DED processes is
forecast with changes in
geometry such as build
dimensions, toolpath approach,
laser power, and scan speed.

The model can predict the
temperature history of each given
point of the DED based on a
test-set database and with
minimum training.

[89]
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Table 5. Cont.

Model AM Procedure Problem Outcome References

LSTM DED

To determine the temperature of
the molten pool, analytical and
numerical methods have been
developed; however, since the
real-time melt pool temperature
distribution is not taken into
account, the accuracy of these
methods is rather low.

Developed a machine
learning-based data-driven
predictive algorithm to accurately
estimate the melt pool
temperature during DED.

[90]

CNN,
LSTM DED Forecasting melt pool

temperature is layer-by-layer.

By combining CNN and LSTM
networks, geographical and
temporal information may be
retrieved from melt pool
temperature data.

[91]

CNN, LSTM SLS

Several factors determine the
energy consumption of AM
systems. These aspects include
traits with multiple dimensions
and structures, making them
difficult to examine.

A data fusion strategy is offered
for estimating energy
consumption.

[92]

PyroNet, IRNet,
LSTM

Laser-based
Additive
Manufacturing

Intends to advance awareness of
the fundamental connection
between the LBAM method
and porosity.

DL-based data fusion method that
takes advantage of the measured
melt pool’s thermal history as well
as two newly built deep learning
neural networks to estimate
porosity in LBAM sections.

[93]

LSTM FDM

It is investigated how equipment
operating conditions affect the
quality of the generated products
using standard data features
from the printer’s sensor signals
(vibration, current, etc.).

An intelligent monitoring system
has been designed in terms of
working conditions and
product quality.

[94]

LSTM PBF

During the printing process to
avoid an uneven and harsh
temperature distribution across
the printing plate

Anticipate temperature gradient
distributions during the
printing process

[95]

4.3. Generative Adversarial Networks (GANs) and Autoencoder

The GAN has recently gained popularity in the fields of computer science and man-
ufacturing, ranking among the most widely used deep learning approaches. The GANs
are used in computer vision applications in many areas such as medical, and industrial
automation. The generating network and the discriminative network are the two networks
that make up a GAN [13]. The generator generates the fake image and the decimator
differentiates the fake image from the original image. First, using a generator, we create
a fake image out of a batch of random vectors drawn from a Gaussian distribution. The
generated image does not mirror the real input distribution because the generator has
not been educated. We feed the discriminator batches of actual and created fake images
from the input distribution so that it can learn to distinguish between the two types of
images. An image-enhancement generative adversarial network (IEGAN) is created, and
the training procedure uses a new objective function. The thermal images obtained from an
AM method are used for image segmentation to confirm the superiority and viability of the
proposed IEGAN. Results of experiments show that the created IEGAN works better than
the original GAN in raising the contrast ratio of thermal images [27]. Figure 11 depicts the
GAN and autoencoder overview.
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Figure 11. (a) Generative adversarial networks (GANs) and (b) Autoencoder.

An autoencoder is used for unsupervised learning data encodings. An autoencoder
trains the network to identify the key elements of the input image to learn a lower-
dimensional representation (encoding) for higher-dimensional data, generally for dimen-
sionality reduction. Ironically, the bottleneck is the most crucial component of the neural
network. The autoencoder is widely applied in noise reductions in the image. The auto-
encode takes X as input and tries to generate X as output [96]. Table 6 summarizes the
various literature on GAN and autoencoders.

Table 6. Summary of various literature on GAN and autoencoders.

Model AM Procedure Problem Solution Ref

GAN DED Melt pool segmentation
The melt pool’s morphology is examined
by segmenting the collected thermal
images.

[97]

GAN NA Topology optimization

A deep learning-based system has been
successfully built to generate designs with
little compliance suited for additive
manufacturing.

[98]

CGAN PBF
Monitoring in-situ
layer-wise images for
unseen conditional inputs

Using the turbine blade data collection, a
CGAN was trained and used to produce
new in-situ layerwise images for unseen
conditional inputs.

[99]

GAN NA Topology design, concept
generation

Discusses avenues for further
developments that would enable the
engineering design community to further
leverage generative machine learning
techniques to their full potential.

[100]

GAN, a bag of
features

Mimicking–biomimicking
porous structures.

Within the same resolution, created
structures demonstrated consistency in
compressive properties; however,
reducing resolution considerably affects
resultant properties. The structures
developed have the potential to be scaled
and employed with various materials and
additive manufacturing techniques.

[101]
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Table 6. Cont.

Model AM Procedure Problem Solution Ref

CGAN SLM

The difficulty is gathering
enough data to
characterize the internal
microstructures to evaluate
their physical attributes, as
the laser passes at high
speeds over powder grains
at a micrometer scale.

The fake data can be generated using
generative models with the same qualities
as the experimental photographs could be
generated.

[102]

GAN PBF

Limited defect monitoring
data, difficulties acquiring
and integrating AM
process data during
fabrication

Generative adversarial network
(GAN)-based off-axis camera mounted on
top of the machine to detect faults in
real-time and automatically provide
synthetic images for dataset augmentation

[103]

Autoencoder Laser Engineered
Net Shaping

Surface profiles are often
highly nonlinear; (2) a
significant number of
outliers and missing
regions may occur in the
observed surface profile.

A technique based on convolutional
autoencoders is used to extract useful
features from surface profiles.

[104]

fused filament
fabrication (FFF)

Monitoring and effectively
detecting cyber-physical
threats has become a
significant hurdle to the
widespread use of AM
technology.

To detect unexpected process/product
changes caused by cyber-physical attacks,
a data-driven feature extraction strategy
based on the LSTM-autoencoder is
developed.

[105]

4.4. Restricted Boltzmann Machines (RBMs) and Deep Belief Networks (DBNs)

Geoffrey Hinton also developed RBMs, which have a wide range of applications
including feature engineering, collaborative filtering, computer vision, and topic model-
ing [106]. RBMs, as their name suggests, are a minor variation of Boltzmann machines.
They are simpler to design and more effective to train than Boltzmann machines since their
neurons must form a bipartite network, which means there are no connections between
nodes within a group (visible and hidden). Particularly, this connection constraint enables
RBMs to adopt training methods that are more effective and sophisticated than those
available to BM, such as the gradient-based contrastive divergence algorithm.

A strong generative model known as a deep belief network (DBN) makes use of a
deep architecture made up of numerous stacks of restricted Boltzmann machines (RBM).
Each RBM model transforms its input vectors nonlinearly (similar to how a standard
neural network functions) and generates output vectors that are used as inputs by the
subsequent RBM model in the sequence. DBNs now have a lot of flexibility, which
also makes them simpler to grow. DBNs can be employed in supervised or unsuper-
vised contexts using a generative model. In numerous applications, DBNs may per-
form feature learning, extraction, and classification [107]. Table 7 summarizes various
literature on DBNs.
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Table 7. Summary of various literature on DBN.

Model AM Problem Solution Ref

DBN SLM

Due to the addition of several phases
during defect identification using
conventional classification algorithms,
the system becomes fairly complex.

The DBN technique might achieve a
high defect identification rate among
five melted states without signal
preprocessing. It is implemented
without feature extraction and signal
preprocessing using a streamlined
classification structure.

[108]

DBN SLM Melted state recognition during the
SLM process. [109]

4.5. Other Deep-Learning Networks

In addition to the above-described deep learning model, there are a few more DL
algorithms that have been used, such as radial basis function networks (RBFNs), self-
organizing maps (SOMs), multilayer perceptrons (MLPs), etc. However, a significantly less
prominent use case was present while doing a literature survey on these models. Much
work has been done using MLP, but it has some limitations over CNN. Object detections
and segmentations are used in defect detections in AM.

Li et al. used the YOLO object detection deep learning model for defect detection
in adaptive manufacturing. It enables rapid and precise flaw identification for wire and
arc additive manufacturing (WAAM). Yolo algorithm performances are compared with a
traditional object detections algorithm. It shows that it can be used in real-world indus-
trial applications and has the potential to be used as a vision-based approach in defect
identification systems [110].

Chen et al. discuss how we improve classifying the product quality in AM by using
the YOLO algorithm. The outcome shows that 70% of product quality is classified in
Realtime video. The YOLO algorithm performances are compared with different version
from version 2 to version 5 and the YOLO algorithm reduces the labor cost [111].

Wang et al. developed center net-based defect detection for AM. The center net uses
object size, a heatmap, and a density map for defect detection. The suggested model, Center
Net-CL, outperforms traditional object detection models, such as one-stage, two-stage, and
anchor-free models, in terms of detection performance. Although this strategy worked
effectively, it is only applicable in certain sectors [112].

The semantic segmentation framework for additive manufacturing can improve the
visual analysis of production processes and allow the detection of specific manufacturing
problems. The semantic segmentation work will enable the localization of 3D printed
components in picture frames that were collected and the application of image processing
techniques to its structural elements for further tracking of manufacturing errors. The use
of image style transfer is highly valuable for future study in the area of converting synthetic
renderings to actual photographs of 3D printed objects [113].

Wong et al. reported the challenges of segmentations in AM. The image size is very
small and the appearance of defect variations is also very small, so it is very difficult to
detect defects in AM. Three-dimensional CNN achieved good performances in volumetric
images. A 3D U-Net model was used to detect errors automatically using computed
tomography (XCT) pictures of AM specimens [114].

Wang et al. presented anunsupervised deep learning algorithm for defect segmenta-
tions in AM. The unsupervised models extract local features as well as global features in
the image for improving the defect segmentations in AM. A self-attention model performs
better than the without-self-attention model for defect detection in AM [115].

Job scheduling is the biggest problem in AM. The order in which the job is scheduled
is to be decided for the better performance of AM. Deep reinforcement learning can be
applied to decide the job orders. Traditional approaches need a lot of time since they
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can only find the best answer at a particular moment and must start again if the state
changes. Deep reinforcement learning (DRL) is employed to handle the problem of job
scheduling AM. The DRL approach uses proximal policy optimization (PPO) to identify
the best scheduling strategy to address the state’s dimension disaster [116].

Abualkishik et al. discussed how natural language processing can be applied to
customer satisfaction and improve the process of the AM. Graph pooling and the learning
parameter can be applied as proof of customer satisfaction [117].

5. Challenges and Solution
5.1. Data Privacy

Demands for personalized and individualized products are surging, necessitating new
production paradigms that keep up with the transformation. In the framework of Industry
4.0, pervasive connectivity, digitization, and sharing offer a chance for the next-generation
production paradigm. By utilizing the benefits of connectivity and sharing across the
product life-cycle, customized production refers to a customer-centric production paradigm
in which specific demands and preferences are translated into individualized goods and
services at a reasonable price [118]. A manufacturing company may ship physical objects,
blueprints, or STL files to domestic and foreign locations based on the client’s demands,
requirements, and specifications [119]. There are numerous devices connected to the IoT
network in 3D printers. Therefore the main concerns are related to communication and
design elements’ security and privacy [120]. Frustaci et al. [121] have classified the threat
in the digital world into three-layer, application, transportation, and perception levels,
respectively. The main security threats within this layer are as follows.

• Data leakage: by being aware of the service or application’s flaws, the attacker can
steal data (including user data, such as user passwords).

• Denial of service attack: attackers have the power to eliminate an application’s or
service’s availability.

• Malicious code injection: through the use of known vulnerabilities, attackers can
upload malicious code into software applications.

Pearce et al. presented a use case in which they designed and researched a harmful
Trojan for AVR-based Marlin-compatible 3D printers to further illustrate the risk. They
demonstrated the Trojan’s capacity to evade programming tools. It can degrade the quality
of prints produced through additive manufacturing even with strict design restrictions and
diminish tensile strengths by up to 50% [122].

5.2. Model Generalization

Deep learning models have recently demonstrated excellent performance in a vari-
ety of fields, including computer vision, text, and speech processing. However, despite
their cutting-edge performance, it still needs to be a determined generalized model for
applications [123]. Zhang et al. [124] state that, despite their massive size, successful deep
ANN can show a minimal difference in training and test performance. Conventional wis-
dom attributes minor generalization errors to either model family properties or training
regularization techniques.

5.3. Computational Time

Due to its capacity to outperform other methodologies and even humans at many
issues, DL is swiftly emerging as the go-to tool for many artificial intelligence problems.
Even though deep learning is very popular, we are still attempting to estimate how long
it will take to train a network to tackle a certain problem. This training period can be
calculated as the product of the number of epochs needed to reach the desired degree of
accuracy and the training period per epoch. However, this relationship is not sincere and
worsens as other tasks take up the execution time. For instance, the amount of time it
takes to load data from memory or the performance degradation brought on by inefficient
parallel processing [125]. The number of floating-point operations limits how long it takes
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for a neural network to execute during a forward pass (FLOPs). The deep neural network
architecture and the volume of data define the FLOPs. The time needed for each of these
FLOPs depends on the device specification. Similar to data size, communication times are
linearly related to them when memory bandwidth is used and data transfers are properly
controlled [126]. Thompson et al. state that deep learning has recently achieved great
success, from defeating humans in the game of Go to world-leading performance in picture
classification, speech recognition, translation, and other tasks. However, this development
has been accompanied by an insatiable need for processing power. The fundamental
question for deep learning’s future is how performance scales up or how much the field’s
performance improves as processing power increases. It has become fashionable to employ
optimization to develop network topologies that are computationally efficient to train while
still performing well on a subset of learning challenges [67,127]. Designers take advantage
of the fact that many datasets are comparable, allowing for the usage of previously trained
models in meta-learning and transfer learning [128].

5.4. Trustworthiness

The study of artificial intelligence has been revitalized by recent developments in
machine and deep learning, which have sparked optimism that AI will play a crucial role in
everyday life, with no exception for smart manufacturing as well as additive manufacturing.
However, the quick spread of AI will lead to several ethical, societal, and legal problems.
It undermines the public’s trust in its systems [129]. The majority of users perceive AI
systems as invisible black boxes with no information about how they make decisions within.
Therefore, queries such as “why should I trust you?” are frequently directed toward AI
or deep learning systems [130–133]. Because of this, various research suggests necessary
criteria, principles, or mechanisms raise the level of AI system trust. Trustworthy AI (TAI)
concepts have been prevalent in this new domain [134–137]. To the highest degree possible,
AI must be trusted in its creation, application, and use if it is to contribute to human and
societal wellbeing [138]. Table 8 shows the summaries of the necessary criteria, principles,
or mechanisms of TAI.

Table 8. Summaries of the necessary criteria, principles, and mechanisms of TAI.

Reference Necessary Criteria, Mechanisms, or Frameworks of TAI

Floridi [133]

Criteria of TAI

Floridi [133]

(1) Human agency and oversight
(2) Robustness and safety
(3) Privacy and data governance
(4) Transparency
(5) Diversity, nondiscrimination, and fairness
(6) Societal and environmental well-being
(7) Accountability
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Table 8. Cont.

Reference Necessary Criteria, Mechanisms, or Frameworks of TAI

M. Brundage et al. [134]

Mechanism of TAI

M. Brundage et al. [134]

(1) Institutional mechanisms: Largely pertain to values, incentives,
and accountability. Institutional mechanisms influence or make
clear the incentives of those who work on AI development and
provide us with a better understanding of how they behave,
including their efforts to create AI systems which are fair, safe,
and privacy-preserving.

(2) Software mechanisms: Particular AI systems and their
characteristics are significantly relevant to software
mechanisms. Software mechanisms can be used to support
formal and informal claims about the characteristics of certain
AI systems, facilitating better comprehension and control. The
software mechanisms include privacy-preserving machine
learning, interpretability, and audit trails.

(3) Hardware mechanisms: Physical computational resources and
their characteristics are significantly relevant to hardware
mechanisms. Hardware mechanisms can justify claims about
how an organization is using its general-purpose computing
capabilities by offering better confidence about the privacy and
security of AI systems. They can also be used to support
verifiable claims. The hardware mechanisms concentrate on
high-precision computing measurement, hardware security
features for machine learning, and computing power support
for academic institutions.

Trusted AI Project [135]

Framework of TAI

Trusted AI Project [135]

(1) Reproducibility
(2) Robustness
(3) Equitability
(4) Privacy
(5) Explainability
(6) Accountability
(7) Transparency
(8) Security

Thiebes et al. [136]

Criteria of TAI

Thiebes et al. [136]

(1) Beneficence
(2) Non-maleficence
(3) Autonomous
(4) Justice
(5) Explicability

Table 8 shows that the majority of earlier investigations provided comparable sum-
maries. In order for AI systems to be referred to as trustworthy AI systems, they must
adhere to the aforementioned concepts or requirements. The Trusted AI project from the
Linux Foundation AI [135] proposed a very good open-source framework to achieve TAI
in the technical approach. KServe [139] has incorporated this framework, but due to the
original framework’s numerous methods, only a small number of algorithms have been
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added to KServe for the current version. The Trusted AI Project consists of three primary
parts: AI Explainability (AIX360) [140], AI Fairness (AIF360) [141], and an Adversarial
Robustness Toolbox (ART) [142]. Further explanation will be provided.

5.5. AI Explainability (AIX)

AI Explainability’s primary goal is to enlighten on how and why predictions are
made by AI models while retaining high levels of predictive performance. People who
use the system and are affected by it could have a solid comprehension of the system, its
applications, and its limitations with the right explanation [132,143]. Additionally, it will
respond to the query “Why should I trust you?” that was previously raised, and systems
will win over users’ increased trust. Or, depending on the explanation, people would
understand when and why they should not trust the AI models [130]. Figure 12 shows
that traditional AI models, particularly black box models, do not explain their output.
It causes users to not understand why the model produces such an output with a given
input. On the other hand, AIX provides methods that explain every given input, allowing
users to gain a better understanding of the AI output. Several AIX methods, such as
LIME (local interpretable model-agnostic explanations) [2], SHAP [144], Grad-CAM [145],
Protodash [146], etc., have been put out in earlier research. TAI requirements, such as
explainability, transparency, and accountability, will have a greater chance of being met
with AIX implementation. In additive manufacturing, for example, AIX can help to explain
defect classification on 3D printed products using deep learning. AIX can show an extended
explanation of why the product is classified as a certain defect or why not [147]. Further,
it will help to explain what AI models have learned during their training and how they
distinguish the defect class. A useful survey on how and where AIX is used in Industry 4.0
was published by Ahmed et al. [148].

Figure 12. General overview of AI Explainability.

5.6. AI Fairness

The AI model does not always deliver fair decisions, according to several earlier stud-
ies. Unfair deep-learning algorithms may have serious consequences for certain groups
or people. Some individuals have even suffered significant losses as a result of these
unfair decisions or predictions. Tolan et al. [149] discovered that machine learning models
produce inaccurate predictions of juvenile recidivism risk for certain groups. According to
Dastin [150], the AI model for hiring tools created by Amazon gave all female candidates a
negative rating and favored male candidates. This is because the dataset used in the train-
ing was based on the existing staff statistics, which show that men outnumber women. As a
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result, their AI model unintentionally learned that men candidates are chosen first. Accord-
ing to these studies [151–154] embedding-based machine learning systems can exacerbate
biases and discriminate against users, especially those who belong to underprivileged
social groups.

As seen in Figure 13, several possible nodes can cause bias or unfairness in a machine
or deep learning workflow. The first node was the dataset. If the dataset was imbalanced,
then it would have a high possibility of producing an AI model with embedded bias or only
being accurate for a certain prediction class [153]. The second node was model training,
to be exact in the processes of feature selection (feature engineering), data cleaning, and
data preprocessing [155]. This step needs to be handled carefully; otherwise, if sensitive
features such as gender, race, region, etc. are not handled properly, it will also increase the
possibility of producing an unfair AI model [153]. The last node was the AI model itself.
If we could ensure the previous two-step is correct, then the possibility that an AI model
could give an unfair prediction might be because of external attacks [156–160]. The attacks
will be further discussed in the next subsection.

Figure 13. Deep learning workflow and possible sources of unfairness.

In the field of AM, an imbalance in the data can prevent the AI model from correctly
classifying. For instance, there is an unbalanced amount of data on normal products and
defective products. When these data are used for training, they can cause the model to
be wrong or unable to classify product defects properly [161]. Or, when the model is
only trained using defective product data and does not include normal product data, the
model will tend to continue to detect defects even though the true results are normal.
As a result, the predicted results are inaccurate and cause losses for both customers and
business owners [162].

The aforementioned problems require a variety of approaches to be solved. For
instance, good data governance could aid in reducing the problems with accountabil-
ity, fairness, discrimination, and trust [163]. From the beginning to the end of the sys-
tem lifecycle, the system must be completely monitored and validated for data flow by
good data governance. AIF360’s bias mitigation algorithms [141] may be utilized to ad-
dress these problems as well. Additionally, several approaches can be used, such as
FairALM [153], to mitigate issues with fairness in image classification situations, or Fair-
Grad [154], which enforces fairness using a reweighting scheme that iteratively learns group-
specific weights based on whether or not they are disadvantaged. How to defend machine
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learning models and applications from attacks is a topic we will cover in more detail in the
following subsection.

5.7. Adversarial Robustness Toolbox (ART)

It is crucial to assess a deep learning model’s robustness and reliability as we strive
to deploy them outside of virtual and controlled domains. This analysis should focus
less on the model’s accuracy or the fact that it generally works. A very robust model is
necessary to assure security and boost trustworthiness because deep learning algorithms
are sensitive to adversarial attacks [164–167]. The adversarial robustness toolbox (ART) [13]
is a comprehensive set of tools for academicians and software developers to defend and
evaluate machine learning models. Figure 14 depicts the four categories of attack in deep
learning. Researchers have been developing several adversarial attack methods to assess
deep learning models, so based on the results, solutions to defend against those kinds of
attacks are also presented [34,168]. With the help of ART, the model can be trained under
adversarial training in the hope of increasing model robustness [157,164,169]. As a result,
the trained model could detect and defend against adversarial attacks.

Figure 14. Four categories of attack in deep learning [142].

A perfect study case to illustrate the importance of model robustness would be quality
control in AM that uses computer vision to identify defective products. Assume the deep
learning defect detection model has been effectively attacked. The model is then said to
classify the fault with a high degree of accuracy. Every input the model received was
incorrectly classified as a result of the attack; either a defective product was labeled as a
normal one or vice versa. Of course, both consumers and business owners will suffer losses
as a result. A defective product could be sent to customers. Business owners would receive
numerous complaints and lose their devoted customers. It makes sense, given this example,
that efforts to make the model more robust are crucial.

6. Future Thrust Areas in Additive Manufacturing

In this section, different future trust technologies, how to use these technologies
in additive manufacturing, and research directions of additive manufacturing in terms
of technologies are addressed. According to emerging research (a market research and
strategy consulting company) report 2021, the top five companies which are in the advanced
stage of Industry 4.0 development are Intel Corporation, General Electric Company, IBM
Corporation, Siemens AG, and Cisco Systems Inc. However, there are lot of new companies
those who are in the early stage of acquiring Industry 4.0 in their product process cycle.
Some of the new companies associated with the early stage of Industry 4.0 are Indu 4.0
and Scale AI.
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6.1. Big Data Analytics and IoT

The impact of Industry 4.0 on mass personalization and customization is significant.
While AM technologies allow for the customization of final products, they cannot be
used for the large-scale mass manufacturing of 3D-printed objects. While this is going
on, big data research provides a suitable approach for handling the enormous volumes of
data produced by AM techniques [170]. Apart from its contributions to AM research and
production, Big Data analysis approaches can also be used to assist designers and engineers
by gathering helpful information from clients and customers [171]. In recent work, Francis
et al. have created a unique DL technique that accurately predicts distortion within LBAM
tolerance limits by considering local heat transfer for pointwise distortion prediction. The
DL technique provides accurate predictions and fits into the Industry 4.0 framework of
evaluating massive data with many sensors [172].

Kevin Ashton, co-founder of the Auto-ID center at Massachusetts Institute of Tech-
nology in the United States, created the term “Internet of Things” in 1999 [173]. The IoT
offers greater individualization, less material waste, and faster manufacturing in AM pro-
cesses [174]. The use of 3D printing and cyber-physical systems in production, design, and
maintenance procedures is possible. The 3D printer and other cloud platforms can both
access this content. No matter how far away the user is from the AM machine, they may
still access the collected content [175].

6.2. Digital Twins

Digital twinning provides virtual copies of physical locations, plant processes, business
processes, and assets. Combined with AI, it allows plant operators to discover value in
plant data, which they can use to drive improvement across multiple operations [176].
According to recent investigations and research, building a first-generation digital twin
of AM is feasible. However, this technology is still in its early stages and faces numerous
research obstacles [177]. Digital twin (DT) implementations can assist smart manufacturing
by linking the physical and cyber spaces [178]. Artificial intelligence (AI) applications
based on machine learning (ML) are considered promising manufacturing technology.
However, ML methods necessitate a significant number of high-quality training datasets,
and hand labeling is frequently required in the case of supervised ML [179]. Recently
Alexopoulos et al. [180] have suggested a framework for putting the pr DT-driven approach
to building ML models into practice. A real-world use case has been used to implement the
proposed framework.

6.3. AI-Enabled Human-Centred AM

AM of human-centered goods begins with the design phase. As a result, design for AM
(DfAM) has been widely researched using the principle of designing and optimizing the
product and the manufacturing processes to achieve the required quality and performance
while minimizing time and cost [181]. DfAM must account for several design variables
and their complex interactions since AM products typically have complex geometries
(mainly the human-centered AM mentioned in this section). As a result, traditional design
methodologies face a substantial challenge. To address this difficulty, DfAM has seen an
increase in AI and machine learning use in recent years. Designers, for example, have
used AI to optimize the geometry of AM goods [8,182]. In recent work, Tang et al. [183]
investigated the customization of porous lattice shoe soles, where machine learning was
applied as a surrogate model. In the meantime, these studies have shown the need for
quality evaluation in AM, particularly for manufacturing human-centered customized
items, which are frequently of high quality [184,185] in the AM.

6.4. Federated Learning

The industry’s 4.0-based approach to digital transformation in smart manufacturing is
fully interconnected, autonomous, and monitored using advanced artificial intelligence
and machine learning techniques [186]. The main limitations of artificial intelligence
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and machine learning are that data is centralized, no data privacy, no model training in
real-time, and no personalization in smart manufacturing. The advanced decentralized
machine learning technique, called federated learning, helps to solve the above-mentioned
limitations in smart and additive manufacturing [187]. Decentralized federated learning
with IIOT provides a smart solution to different problems in the industry [188]. The IIOT
helps to optimize the process, provide effective resource allocation, manage the load, and
task management, and minimize the cost using federated learning [189], and in addition,
confidential data distribution in the industry to increase productivity using federated
learning [190]. In particular, industrial internet federated learning [191], managing defects
in design and manufacturing [192], data analysis and storage [193], privacy and effective
model sharing for design [194], cognitive computing in the industry [195], and future
industry collaboration for effective design model and defect updating in AM are some of
the main supporting research directions using the federated learning technology [196]. The
structure of the industry-based federated learning representation is shown in Figure 15.

Figure 15. General federated learning framework.

6.5. Sustainability

AM has been rapidly evolving, revealing a significant promise for energy-saving and
cleaner environmental production through reduced material and resource consumption.
Sustainability in terms of industries production, design, technologies, the life cycle of AM,
and managing the environment are considered in AM [27]. Representation of the different
AM sustainability factors is shown in Figure 16. Sustainable and smart additive manufac-
turing is a new concept that combines the fundamental principles of smart manufacturing,
sustainable manufacturing, and additive manufacturing (SSAM) [197]. SSAM particularly
focuses on energy consumption and environmental impacts.
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Figure 16. Additive manufacturing toward sustainability.

In examining the life cycle of SAM, it is apparent the entire life cycle needs to reduce
energy consumption over design, preparation of materials, manufacturing, real-time us-
age, and end treatment of materials [198]. Energy optimization methods help to reduce
the energy usage. Sustainability of AM from the recycling of materials and based on
recycling an economy is also one of the main researches to consider in AM [199]. The
role of environmental sustainability in managing the wastage of raw materials, energy
usage, and managing pollution emissions in Industry 4.0 needs consideration in AM [200].
For sustainability, many techniques are used in AM. Technological [201] sustainability is
grouped into two types, technical and policies. The machinery, materials, and designs
are all taken into account in the technical design [202]. The standard rules and behaviors
are considered in the policy [203]. Different processes are also considered for sustain-
able AM. Process specification-relevant technologies such as direct metal and selective
metal sintering are used to evaluate the energy consumption in AM [204]. The different
effective frameworks are considered for sustainable AM. For improving quality [205] and
improving the life cycle of sustainability [206], different effective frameworks need to be
considered. Different performance indicators are also considered to manage sustainability,
such as the amount of consumption (energy, water), efficiency, availability, recycling, value
recovery, etc. [207,208].

Finally, all the work has been summarized in a sustainable pyramid, where manufac-
turing will lead the foundation of Industry 4.0. Above that, deep learning will create the
pillars for achieving sustainability. The sustainable pyramid is shown in Figure 17.

Figure 17. Sustainable pyramid for smart digital manufacturing.
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7. Conclusions

In the year 2015, various leaders from 193 countries of the world met together to face
the future. They agreed to 17 global goals (officially known as the Sustainable Development
Goals or SDGs), which aim to create a better world by 2030. The United Nations Devel-
opment Program (UNDP) is helping countries to achieve this goal. Goal 12 is to ensure
“responsible consumption and production”, which is the main aim of this review. As a
result of the fragmented coordination of the AM community, it is necessary to include all
stakeholders, including those from government, academia, and industry, in a workshop to
discuss important issues that affect all organizations and markets.

The primary objective of this article is to outline current research in deep learning
and additive manufacturing. There are several evaluations on these two issues that are
given individually. However, much effort has been expended in the integration of the same.
While writing this evaluation, it was discovered that none of the articles highlighted the
research conducted in these two fields over the previous decade. As a result, all the research
on applying deep learning in additive manufacturing has been collected and summarized
in this review article. This will assist readers in comprehending the trend and benefits of
combining the two essential technologies. Furthermore, several future endeavors (such
as digital twins, XAI, federated learning, and so on) that can be implemented into this
technology have been emphasized. Moreover, all the challenges and solutions using deep
learning are outlined, which can assist new researchers entering this sector.

Additive manufacturing has several advantages in terms of prototypes, personalized
products, energy savings, and material waste. As a result, smaller start-ups with new ideas,
less space, and less inventory in the warehouse can enter the market. Various limitations in
this sector can be addressed by adding deep learning. By integrating these two technologies,
quality control may be entirely atomized, increasing the operation’s overall productivity.
Furthermore, the entire process may be remotely watched by using it as a digital twin.
Many new developing companies provide end-to-end 3D printing software packages that
cover everything from the design process to post-print validation, as well as correcting
software faults and hardware compatibility issues.

Many datasets are associated with the process, so implementing deep learning would
be easy for this technology. It is known that deep learning is an essential element of
Industry 4.0. Thus, incorporating deep learning into it would lead to automation in digital
manufacturing as the quality control and process parameter would be optimized through
the feedback control loop with the help of deep learning. There are certain drawbacks to
implementing DL in the design, process, or production of AM, as with two sides of the same
coin. Therefore, in this review AM is discussed from scratch (from model building to dataset
generation) and how deep learning can be implemented. Various kinds of defects are also
listed, together with the respective technology. However, in the later section, different deep
learning techniques have been discussed along with specific AM technologies, which will
give researchers ideas on implementing two key technologies of deep learning: XAI and
federated learning. The first explains the black box model of deep learning, and the latter
emphasizes data security. Federated learning also reduces data handling, which can also
help in data preprocessing.

In a nutshell, the sole purpose of this review is to achieve sustainability through
manufacturing so that, as a research community, we can contribute towards the United
Nations Sustainable Development Goals and create a better world by 2030.
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