
Citation: Yang, B.; Arshad, M.H.;

Zhao, Q. Packet-Level and

Flow-Level Network Intrusion

Detection Based on Reinforcement

Learning and Adversarial Training.

Algorithms 2022, 15, 453. https://

doi.org/10.3390/a15120453

Academic Editor: Mustafa Demetgül

Received: 5 October 2022

Accepted: 25 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Packet-Level and Flow-Level Network Intrusion Detection
Based on Reinforcement Learning and Adversarial Training
Bin Yang †, Muhammad Haseeb Arshad † and Qing Zhao *

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
* Correspondence: qingz@ualberta.ca; Tel.: +1-780-492-5792
† These authors contributed equally to this work.

Abstract: Powered by advances in information and internet technologies, network-based applications
have developed rapidly, and cybersecurity has grown more critical. Inspired by Reinforcement
Learning (RL) success in many domains, this paper proposes an Intrusion Detection System (IDS)
to improve cybersecurity. The IDS based on two RL algorithms, i.e., Deep Q-Learning and Policy
Gradient, is carefully formulated, strategically designed, and thoroughly evaluated at the packet-level
and flow-level using the CICDDoS2019 dataset. Compared to other research work in a similar line
of research, this paper is focused on providing a systematic and complete design paradigm of IDS
based on RL algorithms, at both the packet and flow levels. For the packet-level RL-based IDS,
first, the session data are transformed into images via an image embedding method proposed in
this work. A comparison between 1D-Convolutional Neural Networks (1D-CNN) and CNN for
extracting features from these images (for further RL agent training) is drawn from the quantitative
results. In addition, an anomaly detection module is designed to detect unknown network traffic. For
flow-level IDS, a Conditional Generative Adversarial Network (CGAN) and the ε-greedy strategy are
adopted in designing the exploration module for RL agent training. To improve the robustness of the
intrusion detection, a sample agent with a complement reward policy of the RL agent is introduced
for the purpose of adversarial training. The experimental results of the proposed RL-based IDS show
improved results over the state-of-the-art algorithms presented in the literature for packet-level and
flow-level IDS.

Keywords: reinforcement learning; intrusion detection; convolutional neural network; generative
adversarial network

1. Introduction

Modernizing the economy requires a strong network: business, scientific research,
entertainment, and education demand a dependable and secure network infrastructure. If
the network infrastructure is broken, personal information will be disclosed, and society
will be in disarray. In April 2020, the World Health Organization (WHO) unveiled an uptick
in cyber intrusions, exposing 450 email addresses and passwords. Cybersecurity research
is therefore vital for society’s progress and stability. Traditionally, firewalls are used to
safeguard network infrastructure and data confidentiality. An Intrusion Detection System
(IDS), however, analyses network traffic in real-time and alerts or reacts to questionable
traffic and thus can provide necessary information for preventing harmful assaults that
could destroy IT infrastructure. Packet-level and flow-level analyses are two fundamental
methods for designing IDS; however, flow-level-based IDS research is relatively more
predominant than packet-level-based IDS research.

Conventional IDSs (Con-IDS) rely on pattern matching, which requires user-defined
filtering criteria [1]. Setting up perfect filtering rules is challenging, even for specialists, thus
limiting the use of Con-IDS to small networks. Hackers may easily bypass manually defined
rules. Furthermore, there is no mechanism for proper rule updating. Seeing the success of

Algorithms 2022, 15, 453. https://doi.org/10.3390/a15120453 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120453
https://doi.org/10.3390/a15120453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2036-1642
https://orcid.org/0000-0001-8205-9708
https://doi.org/10.3390/a15120453
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120453?type=check_update&version=1

Algorithms 2022, 15, 453 2 of 21

Artificial Intelligence (AI) in many research fields, network engineers and researchers are
investigating its applications in cybersecurity. Using AI in IDS can effectively minimize
issues related to Con-IDS [2–7]. Deep Neural Networks (DNNs) can learn typical properties
of network assaults and apply categorization or detection, eliminating the need for explicit
user-defined rules [8]. Because neural networks are a type of black box to everyone, hackers
cannot acquire what kind of patterns and relationships are captured by the neural networks.
Therefore, it is more challenging for hackers to create unique assaults that can evade
detection. In particular, there has been a push towards agent-based IDS solutions that can
learn from their surroundings and adapt to new threats in ways that humans cannot (e.g.,
by acting appropriately in response to a given or a novel threat) [9].

Reinforcement Learning (RL) is the prominent method of using automated agents for
detection and classification problems. In many ways, RL and IDS are extremely compatible.
RL algorithms are used for solving Markov Decision Process (MDP) problems [10]. In
essence, network flow is a form of a dynamic process that a Markov process may represent.
Furthermore, intrusion detection might be regarded as a distinct game. The RL agent in
IDS may observe the patterns of attacks on various ecosystems and use that information to
plan for future defenses that will be more effective. Depending on the nature of the input it
receives from the environment, an RL technique may reward or punish a given activity,
increasing its capacity to protect the environment (e.g., in a trial-and-error interaction,
identify what works better with a specific environment). Throughout its lifetime, an
RL agent can improve its powers. Several RL-based IDS have been presented to offer
autonomous cyber protection solutions for various environments. The use cases range
from the Internet of Things (IoT) and wireless networks to the cloud [11–15]. During the
learning process, the RL agent can use its observations to execute self-learning capabilities
without the need for human supervision or expert knowledge [16]. However, the majority
of the currently available methods are either unable to cope with a huge dataset or cannot
fully recognize authentic network activity reliably. This is because an RL agent often faces
the state explosion problem when confronted with large learning states. In recent years,
proposals have been made to overcome the major limitation of existing RL approaches
by introducing Deep Reinforcement Learning (DRL) techniques capable of learning in an
environment with a vast number of states. Using deep neural networks throughout the
learning process, DRL approaches such as deep Q-learning have shown promise in solving
the state explosion problem [17].

Contributions of the Proposed Work

Different intrusion datasets are used to train and assess the several DRL-based IDS
approaches that have been reported in the recent research literature [18,19]. Nonetheless, the
majority of the work aims to improve the detection performance compared to other methods
of their kind. Many of them only scratch the surface of developing and implementing a
DRL-based IDS approach without providing essential details, such as how the DQL agent
can be formulated in light of an RL principle or how to fine-tune hyper-parameters for
improved self-learning and interaction with the underlying network. Furthermore, in the
existing literature, flow and packet-level intrusion detection is usually treated separately
by using different methods. In this paper, we intend to exploit the application of RL to
provide a unified framework for intrusion detection problems at both the packet level and
flow level. We achieve this by strategically formulating intrusion detection problems into
an RL problem and then designing the overall IDS structure in a DQN framework. The
proposed method can not only detect malicious attacks but also classify their types. To
summarize, the contributions of this paper are listed as follows:

1. By means of a proposed image embedding scheme, network traffic data are transformed
into time-series first and then image data so that it can be processed by CNN and
1D-CNN-based architecture of the RL agent to tackle the intrusion detection problem.

Algorithms 2022, 15, 453 3 of 21

2. Flow information is attached with the dataset used for the packet-level IDS to incor-
porate the temporal information for further performance improvement.

3. The exploration module is designed based on a CGAN and the ε-greedy policy for the
flow level IDS.

4. An anomaly detection model is designed for the packet-level and flow-level IDS to
detect unknown novel attacks.

5. In order to improve the robustness of the final detection, a sample agent with a
complement reward policy of the RL agent is introduced in the RL framework for
adversarial training.

6. Finally, since RL is known to be sensitive to the hyper-parameters chosen, in this
paper, a Bayesian search is conducted to find the optimal parameters.

In the remainder of the paper, Section 2 includes a brief review of related work.
Sections 3 and 4 introduce in detail the proposed intrusion detection frameworks at the
packet level and flow level, respectively. Section 5 includes results for both packet-level and
flow-level experiments. Finally, Section 6 draws conclusions and discusses future work.

2. Related Work

Q-learning, which does not require a model, has been lauded as a promising research
strategy, mainly applied to complex decision-making problems. This strategy is useful
when others, such as classical optimization and supervised learning methods, are inapplica-
ble [20]. The strength of Q-learning lies in its efficient output, its adaptability via learning,
and its potential for integration with other models.

Research into the use of machine learning in cybersecurity, including DRL [21–23], both
supervised and unsupervised learning, has been conducted in previous work [19,20,24,25].
The authors of [24] presented a systematic overview of DRL regarding cybersecurity. They
discussed the DRL-based security solutions for autonomous and non-autonomous physical
systems as well as the game theory-based multi-agent DRL cyber-attack defense system.
The studies were conducted in light of real-world and virtual settings. In [25], the authors
demonstrated how adversarial learning can help improve the robustness of the DRL-based
IDS model used for cyber defense. In their approach, adversarial training was performed
by randomly sampling a session from the dataset and generating a positive reward based
on the prediction at first, and then the environment was forced to predict wrong. Doing
this, the environment acts as an adversarial agent and causes the classifier to further learn
better underlying features that ultimately improve the robustness of the DRL-based IDS
system. In [19], the authors applied the NSL-KDD [26] and AWID [27] datasets to the
study of many DRL algorithms for intrusion detection, including Double Deep Q-Network
(DDQN), Deep Q-Network (DQN), Policy Gradient (PG), and Actor-Critical (AC) methods.
The supervised machine learning algorithms were trained on those datasets to categorize
intrusion occurrences. They used the idea of a virtual environment and sampling methods
to replace the interaction module of RL training. It was demonstrated how DRL may
outperform alternative machine learning methods when applied to today’s data networks
requiring immediate attention and reaction. The results show that DDQN is superior to the
competing methods in terms of classification performance and learning speed.

Based on the stateful MDP, deep Q-learning was suggested in [28,29]. They contrasted
their method’s efficacy with conventional planning-based and DRL-based IDS, using
metrics such as execution time, batch size, and cumulative reward to measure performance.

In [30], the authors advocated installing an RL agent on routers so that they might
learn from network traffic and divert it away from the target server. They also proposed the
novel idea of using the Coordinated Team Learning (CTL) approach rather than the classical
multi-agent RL-training. Their proposed algorithm was able to handle the scalability issue
with the network traffic in a much better way. In addition, Hidden Markov Models (HMMs)
were presented in [31] as a machine learning technique for detecting multi-step assaults
by predicting the attacker’s next move. The authors used the preliminary offline training
where the IDS prediction was compared with the stored database information to avoid

Algorithms 2022, 15, 453 4 of 21

over-fitting. The authors of [32] presented a decision-theoretic framework based on the
cost-sensitive and self-optimizing performance, called Anomaly Detection And Response
System (ADRS), and they also examined its operation in autonomous networks.

The authors of [33] created an effective IDS by fusing the multi-objective decision prob-
lem with evolutionary algorithms. They treated an IDS as a multi-attribute decision-making
issue that must consider factors such as implementation cost, resource limitation, time
efficiency, and modification costs. This multi-objective problem sought a solution to bring
down these functions’ values before reacting to threats. A weighted linear combination
method was used for preprocessing the network traffic. The idea was to map the different
network traffic to a similar metric that could improve the classification accuracy.

Recently, in [34], an efficient way of fine-tuning the hyper-parameters for DQ-learning
was suggested by the authors. They evaluated on the NSL-KDD dataset that a small
exploration rate achieves better classification accuracy.

An online version of DQN-based IDS was proposed in [35]. The idea was to use the
auto-encoders in the Q-network of RL as function approximators. It helped to improve
the classification accuracy while real-world data were processed through the RL-trained
network. The use of auto-encoders greatly reduces the effect of human interaction and thus
achieves significantly higher efficiency during the online training mode.

Most previous IDS research work is focused on how to improve the performance,
or how the suggested strategies fare in contrast to others of a similar kind that rely on
Machine Learning (ML). Based on the literature review, in this paper, our goal is to provide
a general RL framework for both packet- and flow-level IDS problems with improved
robustness. The proposed method can not only detect the attack traffic but can also match
the attack traffic into separate classes, including normal traffic and different types of attacks,
which, to the best of the authors’ knowledge, has not been widely studied in the literature.
The structure of the IDS at the packet and flow level is clearly laid out, and the design
of each module is elaborated on in detail. The robustness of the proposed algorithm is
improved by using the notion of a negative (sample) agent during the RL training. The
exploration rate is adjusted based on the extensive search and bound method. Quantitative
results of the proposed RL algorithms are shown to verify that the presented framework
can effectively classify the regular traffic with higher accuracy and explicitly identify each
attack separately using both packet and flow level information.

3. The Proposed IDS Framework at the Packet Level

In the packet-level intrusion detection, messages and headers transported by network
packets are primarily extracted for detecting malignant traffic [2,3]. A packet structure
consists of messages generated in the application layer and three headers generated in the
network layers. The content of messages generated in the application layer is different
for different protocols. For example, HTTP generates particular HTTP request messages.
Other headers carry further information. TCP and UDP, with TCP and UDP headers, are
the two most common protocols in the transportation layer. IP, with the IP header, is the
most common protocol in the network layer. Similarly, an Ethernet header is generated in
the Physical/Ethernet layer. The knowledge carried inside these headers is called a field.

The proposed IDS framework at packet-level is shown in Table 1. The framework
consists of two major modules and a number of sub-modules. The Preprocessing module
is devised for data transformation and feature engineering. The Reinforcement Learning
module is devised for training the IDS with RL approaches. This module further comprises
a training module and an interaction module. An additional anomaly detection module is
designed in this paper to detect those novel attacks blind to the training module.

Algorithms 2022, 15, 453 5 of 21

Table 1. Intrusion Detection Framework at Packet-level.

Module Sub-Module Function

Preprocessing None Data Transformation and Feature Engineering

Reinforcement Learning Interactive
Training

Store batch data into replay buffer 1

Train the agent
Anomaly Detection None Detect attacks blind to the training module

1 The replay buffer is used to facilitate training. It stores batch data when an agent is interacting with the
environment. In the training stage, training data is then sampled from the replay buffer.

3.1. Preprocessing Module

Inspired by the adoption of natural language processing (NLP) techniques, such as
word2vec, in processing massive text documents and metadata files [36,37], an embedding
method, namely the image embedding of network packets for the RL-based IDS, is proposed
in this section. Table 2 shows the main steps of the preprocessing module.

Table 2. The Preprocessing Module at Packet-level.

Step Input Method Output

1 Raw Network Traffic Session-based Rule Seperated Sessions
2 Seperated Sessions Image Embedding Session Images
3 Session Images Labeling with Log Files Images and Label
4 Images and Label Normalization Applicable Dataset

In step 1, the network traffic recorded in the ‘pcap’ files is separated into small traffic
files according to the session-based partition rules. One common rule is that if two packets
share the same 5-tuple knowledge (source IP, source port, destination IP, destination port,
transportation protocol), then they will be categorized in the same session. After partition,
several separated sessions stored in ‘pcap’ files containing various packets recorded in the
order of capture time are obtained.

In step 2, the separated sessions are converted into images using the proposed image
embedding method. Generally, a network packet in a session consists of an Ethernet header,
a TCP or UDP header, an IP header and application messages. The total field length of the
first three headers (except the application message) is 54 bytes. The application message
field is dropped during image embedding because of its varying length. The 54-byte packet
with selected fields is converted to a line of the image, with each byte representing one pixel.
Using one session as an example, the whole procedure of image embedding is illustrated in
Figure 1. Thus, a session is transformed into a standard image format with a fixed size of
54 × 54, an image consisting of only 54 packets, as shown in Figure 2. For sessions with
more than 54 packets, additional images were created by repeating the embedding for the
extra packets. Zero-padding is used if the number of remaining packets is less than 54
to ensure the fixed image size of 54 × 54. It is essential to embed packets in the order in
which they appear in the session. This way, session information is implicitly attached to
the packet-level experiments.

In step 3, after image embedding, each session is labeled according to the time stamp
given in the log file of the raw dataset. Finally, in the last step, all generated images’ pixels
are normalized into [0, 1] from [0, 255].

Algorithms 2022, 15, 453 6 of 21

54 Bytes

Dataset

Session

In Sequence

Packet 1

Packet 2

Packet 3

Packet 4

Packet 54

5
4

 P
ac

ke
ts

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Packet 54

54 Bytes

54 x 54 Image

Extracted
54 Packets

Eth. Header IP Header TCP Header Msg. Field

Extracted
54 Packets

Eth. Header IP Header TCP Header Msg. Field

Extracted
54 Packets

Eth. Header IP Header TCP Header Msg. Field

Extracted
54 Packets

Eth. Header IP Header TCP Header Msg. Field

Figure 1. Procedure of the proposed image embedding, i.e., transforming packets to an image.

Figure 2. Transform a session into a batch of images. The number of images M is calculated by:
[(N − 1)/54] + 1.

3.2. Reinforcement Learning Module

Before developing a reinforcement learning module, it is necessary to transfer the
intrusion detection problem into an RL-based problem. For this purpose, the intrusion
detection problem has been compared to the Atari games studied in [38], considering
intrusion detection as a special game. The comparison is shown in Table 3.

Table 3. Comparison between Atari game and the intrusion detection game.

RL Symbol Atari IDS IDS Space

State s Image(s) Image Images in dataset
Action a Game Operation Prediction Label Space {0, 1, 2...}

Reward r Game Feedback Reward Mechanism {+1, −1}
Episode − Game Round Session −
Agent − Game User Classifier −

The agent can take the following trajectory until it reaches the end (last packet) of
a session:

s0, a1, r1, s1, a2, r2, . . . , si, ai, ri, . . . , st

In the Atari game, the agent repeats until it reaches the terminated state (game over) of
an episode. Similarly, the intrusion detection agent can also take the above trajectory until
it reaches the session’s end (last image). The state is the game screen in the Atari game, and
in IDS, the state is also an image after image embedding on the sessions. The action space
of the Atari game contains game operations, which can be expressed as discrete numbers,

Algorithms 2022, 15, 453 7 of 21

e.g., 0 (one step left), 1 (one step right), 2 (one step up), etc. The action space of the IDS,
however, contains the types of the traffic class, which can also be expressed as discrete
numbers such as 0 (normal), 1 (attack 1), 2 (attack 2), etc. The reward system is different
for the above two problems. For the IDS, the reward system has to be designed carefully.
After conducting the research, it has been found that the reward scale significantly impacts
the performance of reinforcement learning algorithms. Thus, inspired by the reward clip
for the code-level optimization implemented in the Atari game agent [39], the following
reward feedback rule has been designed: if the prediction made by the agent is correct, the
reward is 1; otherwise, the reward is −1. Table 4 shows the significance of the trajectory
and the transformation between RL and IDS.

Table 4. Conversion of IDS to RL at Packet-level.

RL Symbol IDS IDS Space

State s Image Session Images
Action a Prediction Label Space {0, 1, 2, . . .}

Reward r Reward Mechanism {+1, −1}
Episode − Session −
Agent − Classifier −
Step i Packet Position in a session −

Terminated t Last Packet in a session −

DQN learning is an excellent choice for solving discrete problems and is much easier
to implement compared to Proximal Policy Optimization (PPO). After identifying these
essential reinforcement learning ingredients, we start designing our reinforcement learning
module. Convolutional Neural Networks (CNNs) are chosen as the network structure of
the IDS agent since the input states are images. It should be noted that 1D-CNN is also
appropriate for the IDS. Each session’s images are treated as a type of time-series data
since packets embedded in the image are arranged in chronological order according to
the capture time. Therefore, 1D-CNN is chosen as an appropriate choice for comparison
during the evaluation of the proposed IDS. The main structure of the two RL agents, i.e.,
DQN-CNN and DQN-1D-CNN, are shown in Figure 3.

Figure 3. Main structure of two reinforcement learning agents DQN-CNN and DQN-1D-CNN.
For DQN- CNN, the structure of the feature learning part is CNN. For DQN-1D-CNN, the structure
of the feature learning part is 1D-CNN. FCN represents the fully connected network.

The input states of the RL agents are a finite batch of images. CNN and 1D-CNN
are applied for feature extraction on DQN-CNN and DQN-1D-CNN, respectively. An
additional fully connected layer is deployed for final classification and detection. The
output is Q-values of the current state, and the prediction/action is decided based on the
following set of equations.

Qnew(si, ai)← Qcurr(si, ai) + α
(

ri + γmax
a

Q(si+1, ai+1)−Q(si, ai)
)

(1)

where α is the learning rate and γ is the reward discount factor. The final action is calcu-
lated as

Algorithms 2022, 15, 453 8 of 21

a∗ = argmax
a

Q(s, a) (2)

As shown in Table 1, the RL module in the IDS has two sub-modules, the interaction
module and the training module. The complete procedure of the interaction module
is shown in Algorithm 1. The complete procedure of the training module is shown in
Figure 4 (taking DQN as an example). Two networks (the Update and the Target) operate
together to achieve the approximate regression. The functionality of the target network is to
improve the training stability [40] by fixing the regression target in N steps. The structure
of the update network is the same as that of the agent, while the target network copies
the structure from the update network and is initialized with the same parameters of the
update network. The update network is updated through back propagation (BP), and
the target network is updated by copying the parameters from the update network every
N times.

Algorithm 1 Interaction Module

1: procedure START INTERACTING
2: top:
3: Randomly sample a session and obtain its label
4: Take the first image in the session as current state s1
5: Feed s1 into agent and obtain action/prediction a1
6: Feed a1 and label into reward mechanism, obtain reward r1
7: i← 0
8: loop:
9: i← i + 1

10: if Last image in the session then
11: Store (si, ai, ri, None) into replay buffer
12: break
13: else
14: Take next image in the session as next state si+1
15: Store (si, ai, ri, si+1) into replay buffer
16: end if
17: goto loop
18: goto top
19: end procedure

Figure 4. Deep Q-Learning Training Module.

Algorithms 2022, 15, 453 9 of 21

The training module and the interaction module work alternately. For example, once
the replay buffer is full, training for a specified number of epochs can start. After training,
the new agent is set to interact with the environment and store new data into the replay
buffer while removing the old data. The complete pack-level IDS algorithm, including both
the interaction module and training module, is shown in Algorithm 2.

Algorithm 2 Deep Q-Learning Framework for Detection at Packet-level

1: procedure DEEP Q-LEARNING
2: Extract sessions from raw traffic file
3: Split sessions based on session-based rule
4: Conduct image embedding on each session

5: Initialize Q function for agent, set target Q function
−
Q = Q

6: for 1 . . . m iterations do
7: Start interacting until replay buffer is full
8: for 1. . . n epochs do
9: Sample a batch data (si, ai, ri, si+1) from replay buffer

10: Target y = ri + γmax
a

Q̂(si+1, a)

11: Update Q function through back propagation to make Q(si, ai) close to y

12: Every C steps reset
−
Q = Q

13: Interact to replace old data
14: end for
15: end for
16: end procedure

3.3. Anomaly Detection Module

The purpose of the anomaly detection module is to detect novel attacks that are blind
to the training set by considering them as anomaly classes. This is important for a robust
IDS because, in reality, it is impossible to include all types of attacks in the training set.

The Q-values output generated by the agent is tested against the set manual threshold
‘λ’ for anomaly detection. If the confidence score (Q-value) is smaller than λ, the input
session image will be determined as the ‘anomaly’ attack. Conversely, the class that belongs
to the max confidence score is the expected detection result. Equation (3) shows the
mathematical formulation of the anomaly detection module.

y =

{
argmax

a
Q(s, a) i f max Q(s, a) > λ

anomaly i f max Q(s, a) < λ
(3)

4. The Proposed IDS Framework at Flow-Level

In flow-level intrusion detection, the traffic flow characteristics, which usually contain
numerous packets, are extracted for detecting attacks [4–7]. Flow information includes the
statistics of a flow, such as the number of packets, the duration, the average packet size,
etc. A 5-tuple knowledge defines a flow that includes source IP, source port, transportation
protocol, destination IP and destination port [41]. The number of packets in the flow is a
valuable feature for flow-level IDS. The work in [4] contains evidence that Denial of Service
(DoS) and Distributed Denial of Service (DDoS) attacks tend to transmit a large number
of packets in a short time. The flow duration, the average packet size in the flow, and the
transportation protocol can also be considered important features. Recently, many datasets
have been collected and published for flow-level intrusion detection research.

The whole IDS framework at the flow level is shown in Table 5. The overall architecture
is quite similar to the one proposed in Table 1 with some minor modifications in two
modules, i.e., preprocessing and RL module.

Algorithms 2022, 15, 453 10 of 21

Table 5. Intrusion Detection Framework at Flow-level.

Module Sub-Module Function

Preprocessing None Data Transformation and Feature Engineering

Reinforcement Learning
Interactive

Training
Store batch data into replay buffer Train the agent
and the sample agent

Exploration None A sub-module of Interaction Module

4.1. Preprocessing Module

The complete data preprocessing module is shown in Table 6. The dataset collected
for flow-level research always involves some discrete and categorical features, such as
protocols and packet size.

Table 6. The Preprocessing Module at Flow-level.

Step Input Method Output

1 Raw Dataset Encoding Encoded Dataset
2 Encoded Dataset Normalization Applicable Dataset
3 Applicable Dataset Feature learning with SAE SAE’s Encoder

In step 1, the discrete and categorical features are converted into continuous features,
which can be processed by DNNs. With regard to the transformation of categorical features,
the most simple and common approach is one-hot encoding. One-hot encoding has many
advantages over other encoding approaches, one of which being the easy implementation.
For the transformation of discrete features, an N-bit binary encoding approach can be used.
The value of N, which ensures that N-bit binaries can encode all values of this discrete
feature, is chosen based on the maximum value of the feature.

In step 2, max–min normalization is performed on the encoded dataset, converting all
values to [0, 1]. Notably, after implementing one-hot encoding and binary encoding, data
dimension considerably increases. A single hidden layer Stacked Auto Encoder (SAE) is
then used with this encoded dataset for dimension reduction in the final step to counter this
problem. The SAE-based approach helps in conducting dimension reduction and feature
extraction. The SAE model is pre-trained, and then the encoder is extracted as the primary
structure of the RL agent, as shown in Table 7.

Table 7. Stacked Autoencoder (Encoder and Decoder), Agent and Sample Agent. The encoder is
shared with agent and sample agent.

Stacked Autoencoder

Encoder Decoder

InputLayer→ HiddenLayer→ LatentSpace→ HiddenLayer→ OutputLayer
Copy encoder to the first three layers of the agent and the sample agent

Agent

InputLayer→ HiddenLayer→ LatentSpace→ FCN
So f tmax−−−−−→ Q-values

Sample Agent

InputLayer→ HiddenLayer→ LatentSpace→ FCN
So f tmax−−−−−→Q-values

4.2. Reinforcement Learning Module

Table 8 describes the important elements of the RL module of flow-level IDS. For
brevity, only the parts that are different from the RL module of packet-level IDS are detailed
in this section.

Algorithms 2022, 15, 453 11 of 21

Table 8. RL Module for IDS Framework at the Flow Level.

RL Symbol IDS IDS Space

State s Feature Vector Traffic Feature
Action a Prediction Label Space {0, 1, 2, . . .}

Reward r Reward Mechanism {+1, −1}
Episode − User Defined −
Agent − Classifier −

The action represents the prediction performed by the agent. Furthermore, the flow
level reward mechanism is the same as that of the packet level. However, the state and
episode for the RL module, in the case of flow-level IDS, are defined differently. For
the packet level, ‘pcap’ files are separated into different sessions; then, through image
embedding, these sessions are transformed into images, which are considered as the states.
However, network traffic features provided by the dataset are used directly as the states at
the flow level. Moreover, at the packet level, packets embedded in the image and images in
a session are arranged in chronological order (capture time). Thus, a session is viewed as
an episode. Nonetheless, the data collected in the dataset has been shuffled at the flow level,
so there is no apparent chronological order. The episode’s length needs to be determined
and is assumed to be fixed in the interaction process. Furthermore, the main structure of
the update module is a Fully Connected Neural Network (FCN).

In the proposed RL module of flow-level IDS, in addition to the detection agent, we
also design a sample agent to facilitate the adversarial training. The agent performs the
intrusion class’s correct prediction (the action) by achieving maximum rewards. The sample
agent provides guidance (the action) for the next class to be sampled from. To improve the
variability, the sample agent tends to counteract the agent. It chooses a class that is most
likely to be misclassified and suggests it as the class to be sampled from for the next state.

For this reason, the reward feedback of the agent and the sample agent is the opposite.
If the agent’s prediction is wrong, the reward feedback of the sample agent is 1; otherwise,
if the agent’s prediction is correct, the reward feedback of the sample agent is −1: this way,
the sample agent functions as the adversarial training agent. The objective of the sample
agent is to ensure that those state-action pairs with high classification error rates can be
adequately trained.

In the interaction stage, we should create a simulation environment. We take the
preprocessed dataset as the simulation environment. In our experiments, we focus on
episodic tasks; hence, we fix the length of an episode in advance. The complete interaction
module is shown in Figure 5. All of the traffic features collected in the dataset can be
considered as the states. In the beginning, a state is randomly sampled from the dataset.
Feeding the state into the agent (classifier), the agent then outputs the prediction (action) of
the current state. Feeding the action-label pair into the reward mechanism, we can obtain
the reward. If the current state is not reaching the end of the present episode, we also
feed the current state to the sample agent and obtain the next sample class. Afterward,
we sample the next state that belongs to this class from the dataset. Next, we store the
state, action, reward and next state in the replay buffer. Subsequently, treat the next state
as the current state and repeat the above process. It should be noted that if the current
state is reaching the end of the episode, we store state, action, reward into the replay buffer
and then randomly sample a state from the dataset, which indicates that a new episode
is launched.

The flow level IDS training approach is identical to that illustrated in Figure 4. The
SAE-based feature extractor and the overall network design for the update and target
networks are shown in Table 7. It should be emphasized that the agent and the sample
agent must be trained at the same time.

Algorithms 2022, 15, 453 12 of 21

Figure 5. Interaction Module.

4.3. The Exploration Module

Most datasets collected for intrusion detection are unbalanced. This is because the vast
majority of traffic in the real world is normal traffic, so it is easier to collect normal traffic
than malignant traffic. In RL, the exploration module is conductive to solve these class im-
balance problems. In the proposed flow-level IDS, both the ε-greedy policy and Conditional
Generative Adversarial Network (CGAN) are used for the exploration. Equation (4) shows
the ε-greedy policy applied to the sample agent, where ε controls the exploration degree.

a =

 argmax
a

−
Q(s, a) with probability o f 1− ε

any action with probability o f ε
(4)

The purpose of CGAN is to generate some novel attack flows for each class, which
will augment the fixed dataset. The CGAN exploration rate σ controls the extent of the
exploration. The CGAN takes the class label and noise as the input and outputs a state that
belongs to each class. The architecture of both the generator and discriminator is shown
in Figure 6. The generator’s functionality is to generate simulated states that can deceive
the discriminator.

l
a
b
e
l

n
o
i
s
e

+

Embedding
 Layer

Hidden Layer

Neurons

State

200

(a)

l
a
b
e
l

+

Embedding
 Layer

Hidden Layer

Output

Generated Sample
or

True Sample

Neurons

200

(b)
Figure 6. CGAN Architecture (a) Generator, (b) Discriminator.

The output of the discriminator is a numerical value ranging in [0, 1]. An output
threshold of 0.5 was set to differentiate between the true and generated samples. If the
output of the discriminator is greater than this threshold, the input label is marked as a true
sample; otherwise, if the output is less than the pre-defined threshold, the input sample is
marked as a generated or augmented sample.

Algorithms 2022, 15, 453 13 of 21

The quality of the generated samples is assured by training an additional sample
classifier for the dataset composed of generated samples. Only the generated samples
correctly classified by the classifier are retained as generated samples to augment the overall
dataset. The complete algorithm of Deep Q-Learning with an exploration module is shown
in Algorithm 3.

Algorithm 3 Deep Q-Learning Framework for Detection at Packet-level

1: procedure DEEP Q-LEARNING
2: Conduct preprocessing on dataset
3: Pretrain a stacked autoencoder
4: Train the CGAN

5: Initialize Q function for agent, set target Q function
−
Q = Q

6:
Initialize the agent replay buffer and the sample agent replay buffer for training the agent
and the sample agent, respectively

7: Copy parameters to Q and Q from the encoder

8: Set target Q-function Q̂ = Q, Q̂ = Q
9: for each episode do

10: Randomly choose s0 from the dataset
11: for each sample within the episode, t ∈ [0, N] do
12: Given state st , take action at based on Q
13: Given state st , take action Q̄t based on Q (ε− greedy)
14: Compare at with the true label, obtain the reward rt and rt

15:
Derive the next state: choose st+1 for which the true label is āt from dataset or CGAN,
with a probability of 1-σ and σ, respectively

16: Store st, at, rt, st+1 into the agent replay buffer
17: Store st, āt, r̄t, st+1 into the sample agent replay buffer
18: Sample a batch st, at, rt, st+1from the agent replay buffer
19: Sample a batch st, āt, r̄t, st+1from the sample agent replay buffer
20: Target y = rt + γmax

a
Q̂(st+1, a)

21: Update Q through back propagation to make Q(st, at) close to y
22: Target y = rt + γmax

a
Q̂(st+1, at)

23: Update Q through back propagation to make Q(st, at) close to y
24: For each C steps reset Q̂ = Q, Q̂ = Q
25: end for
26: end for
27: end procedure

5. Experimental Results
5.1. Dataset

CICDDoS2019 is one of the latest datasets collected for the Distributed Denial of
Service (DDoS) attack and has been widely used for intrusion detection research [42] since
its publication. In a DDoS attack, the idea is to attack a single network or a machine from
different locations. Various attackers can cause this attack from a different location, or a
single attacker can take control of multiple machines in different locations and use them to
attack victims simultaneously.

Eight different traffic types are used in the training set, namely, Normal, PortMap,
NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and SYN. After the image embedding, a sample
image for each of the eight classes is shown in Figure 7. The test set contains 12 types
of traffic. In addition to the eight types collected in the training set, the other four types,
including NTP, DNS, WebDDoS, and TFTP, are included in the test set. These additional
traffic types help in the generality of the IDS because they are blind to IDS at the training
stage. In the proposed work, an anomaly detection model detects these four additional
attacks by considering them as an anomaly class.

Algorithms 2022, 15, 453 14 of 21

Figure 7. Images after image embedding for each class.

5.2. Results of the Proposed Packet-Level IDS

To evaluate the proposed packet-level IDS, two agents based on DQN-CNN and
DQN-1D-CNN are trained. Another two agents, PG-CNN and PG-1D-CNN, are trained
with the policy gradient learning method for comparison. The dataset is split into a ratio of
4:1 for the training and validation set. During the partition, the training and validation set’s
session length distribution is consistent, thus, allowing the image ratio to be approximately
4:1. After the partition, the statistics of the dataset are shown in Table 9.

Table 9. Training and Validation Set Details.

Traffic Tranining Images Validation Images Class

Normal 25,012 6256 0
PortMap 20,200 5058 1
NetBIOS 23,652 5912 2

LDAP 18,019 5083 3
MSSQL 22,986 4709 4

UDP 19,159 6051 5
UDP-Lag 19,552 5198 6

SYN 22,640 4970 7

In the experiment, we compare three reward discount values (γ), namely 0.1, 0.5 and
0.9, on four agents. Then by using the value of accuracy averaged over each class on the
validation set to evaluate the performance and select the optimal discount value. The
results are shown in Table 10. We notice that when γ equals 0.1, all of the four agents attain
the highest performance. With regard to reinforcement learning algorithms, DQN-1D-CNN
slightly outperforms PG-1D-CNN over all discount factors, and DQN-CNN also marginally
outperforms PG-CNN over all discount factors. Meanwhile, it is observed that PG-based
agents are more sensitive to discount factors. Overall results indicate that Deep Q-Learning
is a relatively better algorithm than policy gradient methods in our experiments. Hence,
in the following case studies, we assume that the discount factor value is fixed as 0.1 and
mainly adopt Deep Q-Learning algorithms for the agent.

Detailed experiment results of intrusion detection based on using DQN-1D-CNN with
a discount value equal to 0.1 are given in Table 11. As shown in the table, our detection
system can reach high accuracy at 98.78%. With respect to each class, 100% of normal
traffic can be detected. The detection rate (Recall) of MSSQL is the least among all eight
types, but still reaching 97.30%. Table 11 also lists the validation results of DQN-CNN. It
is seen that the performance of DQN-CNN is slightly worse than that of DQN-1D-CNN,
but still reaches a high accuracy of 96.07%. The experimental results prove that both DQN-
1D-CNN and DQN-CNN can achieve high performances when dealing with image tasks.
In addition, in our experiments, the image can also be readily treated as the time series

Algorithms 2022, 15, 453 15 of 21

data, and DQN-1D-CNN achieves better performance in this case. In addition, the average
computation times for intrusion detection based on DQN-CNN and DQN-1D-CNN are
also given.

Table 10. Performances of different discount values on four agents.

Agent Discount Factor Validation Accuracy

DQN-1DCNN
0.1 98.78%
0.5 95.21%
0.9 87.12%

DQN-CNN
0.1 96.07%
0.5 93.22%
0.9 86.24%

PG-1DCNN
0.1 96.17%
0.5 90.15%
0.9 79.67%

PG-CNN
0.1 96.03%
0.5 87.12%
0.9 70.69%

Table 11. Validation results of DQN-1DCNN with discount factor value = 0.1.

Agent Traffic Accuracy Precision Recall F1-Score

DQN-1DCNN

Normal

98.78%

99.32% 100% 99.66%
PortMap 98.04% 98.95% 98.49%
NetBIOS 98.87% 99.26% 99.06%
LDAO 98.85% 98.37% 98.61%
MSSQL 98.47% 97.30% 97.86%

UDP 98.95% 99.62% 99.26%
UDP-Lag 98.02% 98.31% 98.61%

SYN 98.64% 97.83% 98.23%

DQN-CNN

Normal

96.07%

96.91% 99.68% 98.27%
PortMap 95.67% 93.53% 94.59%
NetBIOS 97.35% 95.75% 96.55%
LDAO 95.76% 96.95% 96.35%
MSSQL 95.06% 96.03% 95.54%

UDP 95.32% 96.00% 95.66%
UDP-Lag 95.05% 94.92% 94.99%

SYN 97.14% 94.87% 95.71%
The averaged computation time for DQN-1DCNN detection is 0.112 s. The averaged computation time for
DQN-CNN based detection is 0.071 s.

Afterward, we evaluate our DQN-1D-CNN agent on the test set. In this stage, we
are required to set another important hyperparameter: λ, the threshold that controls the
detection performance of (unknown) anomaly traffic. We treat the eight known types
of attacks as the negative class, and the anomaly traffic as the positive class. We use
precision and recall to evaluate the performances and select the optimal λ. Results are
shown in Table 12. As λ is increasing, the precision is decreasing, which means that an
increasing volume of network traffic is classified as the anomaly type. Conversely, as λ
is increasing, the recall is also increasing, meaning that an increasing amount of anomaly
traffic is detected. We can determine the value of λ based on the actual requirements of
the intrusion detection system. In our experiments, we fix the λ as 0.7, which is a trade-off
between 0.5 and 0.9.

Algorithms 2022, 15, 453 16 of 21

Table 12. Anomaly Detection λ Selection.

λ Precision Recall

0.5 93.94% 19.17%
0.7 85.13% 71.05%
0.9 43.21% 86.86%

Finally, we evaluate our intrusion detection system on the test set with γ = 0.1 and
λ = 0.7. Results are shown in Table 13. Due to the existence of anomaly traffics, the general
accuracy has declined greatly to 84.27% compared with the validation accuracy at 96.07%.
With respect to all classes, the DQN-1D-CNN agent can attain relatively high performances
on those known types. With regard to anomaly types, although these anomaly types are
completely blind to our system, 71.05% of them can still be detected.

Table 13. Test results of DQN-1D-CNN with discount value γ = 0.1 and λ = 0.7. The averaged
computation time for detection is 0.143 s.

Traffic Accuracy Precision Recall F1-Score

Normal

84.27%

88.81% 93.64% 91.16%
PortMap 86.83% 91.38% 89.05%
NetBIOS 84.62% 90.69% 87.55%
LDAO 82.36% 88.31% 85.23%
MSSQL 88.24% 92.14% 90.14%

UDP 83.55% 89.40% 86.38%
UDP-Lag 82.07% 87.92% 84.90%

SYN 84.67% 89.57% 87.05%
Anomaly 81.12% 71.05% 75.71%

5.3. Results of the Proposed Flow-Level IDS

Similarly, we conduct preprocessing on DDoS2019 at first. After transformation
and normalization, the dimension of the state vector is 97. The structure of the stacked
autoencoder is shown in Table 7. The dimension of the input layer, hidden layer and latent
space is 97, 60, 25, respectively. The dimension of the fully connected layer is eight, equal to
the number of classes. Figure 8 shows the performance of the stacked autoencoder, which
is excellent on DDoS2019.

Figure 8. Performances of stacked autoencoder on DDoS2019.

In the first stage, we explore the influence of ε and γ when designing the agent and
the sample agent. We also fix the length of the episode as 512. The experiment results are
shown in Figures 9 and 10. We create a search space (0, 0.2) for both ε and γ.

Algorithms 2022, 15, 453 17 of 21

Figure 9. Performances on the validation set on DDoS2019 (Episode Reward). The averaged compu-
tation time for training on each episode is 6.912 s.

Figure 10. Performanceson the validation set on DDoS2019 (Validation Accuracy).

From the plots, we find that despite some anomaly pairs generating worse perfor-
mances, most pairs associated with relatively small ε and γ can reach high accuracy and
obtain high episode reward. We extract some statistics from performance figures and
include them in Table 14. The optimal pair is ε-0.034, γ-0.066, reaching 98.86% on the
validation set. The worst pair is ε-0.036, γ-0.088. It is observed that a small variance of
parameters can have a significant impact on the performance.

Table 14. Experiment results (averaged over the last 10 episodes) without CGAN.

ε γ Mean Episode Reward Mean Validation Accuracy

0.034 0.066 477.3 98.86%
0.041 0.001 471.3 98.48%
0.070 0.170 449.8 97.73%
0.061 0.059 22.2 54.47%
0.036 0.088 –410.6 10.10%

Algorithms 2022, 15, 453 18 of 21

Furthermore, we create another two search spaces for the pair ε and γ and run the
Bayesian search algorithm for the optimal results, which are shown in Table 15. The results
inform us that a large γ is not appropriate for our intrusion detection system. If we adjust
γ to a relatively small value, we can ensure that the intrusion detection system can always
achieve good performance.

Table 15. Performances (averaged over the last 10 episodes) on validation set. (a, b) denotes the
search space for the Bayesian search algorithm.

ε γ Mean Episode Reward Mean Validation Accuracy

0.034 (0, 0.2) 0.066 (0, 0.2) 477.3 98.86%
0.062 (0, 0.2) 0.529 (0.4, 0.6) 462.9 96.82%
0.102 (0, 0.2) 0.804 (0.8, 1) 40.9 54.22%

0.596 (0.4, 0.6) 0.015 (0, 0.2) 472.6 98.49%

In the second stage, we further strengthen the IDS with CGAN for exploration and data
augmentation. Experiment results on the test set are shown in Table 16. Using CGAN, the
IDS attains better performance, improved from 93.67% to 96.43%. It proves that CGAN can
simulate a more realistic network environment, which leads to performance enhancement.

Table 16. Performances on test set with RL-CGAN.

Exploration Rate Traffic Accuracy Precision Recall F1-Score

0

Normal

93.67%

96.23% 95.52% 95.87%
PortMap 93.79% 93.96% 93.88%
NetBIOS 92.14% 96.12% 94.09%
LDAO 92.53% 92.72% 92.63%
MSSQL 91.48% 95.50% 93.44%

UDP 93.67% 89.98% 91.79%
UDP-Lag 93.92% 91.70% 92.79%

SYN 95.79% 93.82% 94.80%

0.5

Normal

96.43%

98.11% 97.54% 97.82%
PortMap 96.45% 97.14% 96.79%
NetBIOS 95.45% 98.20% 96.81%
LDAO 95.98% 95.44% 95.71%
MSSQL 94.86% 96.76% 95.80%

UDP 96.52% 93.68% 95.08%
UDP-Lag 96.75% 95.76% 96.25%

SYN 97.29% 96.80% 97.04%
The averaged computation time for detection is 0.059 s with ‘0’ Exploration Rate. The averaged computation time
for detection is 0.083 s with ‘0.5’ Exploration Rate.

5.4. Comparison and Discussion

In this section, the proposed RL-based IDS design is compared with some other
commonly used ML algorithms, including random forest, support vector machine, Ad-
aBoost [43], FCN, LSTM, CNN and 1DCNN on DDoS2019. Results are shown in Table 17,
quantifying the performance of the proposed IDS for packet and flow level in comparison
with other ML algorithms.

Considering flow-level approaches, ensemble methods, including random forest and
AdaBoost, achieve great performances on DDoS2019. SVM is the worst one among all
models, and it takes the longest time to train. Neural networks, including fully connected
neural networks and LSTM, also attain great performances. The proposed RL-CGAN
flow-level approach still outperforms all other flow-level models listed in Table 17 without
increasing computation time.

Algorithms 2022, 15, 453 19 of 21

Table 17. Comparison with different models.

Algorithm Level Accuracy Precision Recall F1 Score Detection Time

Random Forest Flow 95.42% 96.72% 94.12% 95.40% 1.751 s
Adaboost Flow 94.79% 93.98% 95.11% 94.54% 2.610 s

SVM Flow 90.12% 92.15% 88.98% 90.54% 10.019 s
3-Layer FCN Flow 94.12% 93.09% 95.24% 94.15% 0.034 s

3-Layer LSTM Flow 93.90% 94.01% 91.99% 92.93% 0.192 s
RL-CGAN Flow 96.42% 96.43% 96.42% 96.41% 0.092 s
1D-CNN Packet 92.12% 94.12% 90.43% 92.29% 0.096 s

CNN Packet 90.68% 91.36% 93.10% 91.84% 0.084 s
DQN-1DCNN Packet 97.69% 98.10% 96.65% 97.14% 0.101 s

DQN-CNN Packet 95.19% 95.94% 96.10% 96.01% 0.079 s

For packet-level approaches, the comparison of the proposed approach with con-
ventional 1D-CNN and CNN approaches (without RL) is conducted. It can be seen that
conventional deep learning methods can also achieve relatively high performance on the
test set, which suggests that image embedding is a useful data preprocessing approach
for raw network traffic analysis. Most importantly, the proposed RL-based approach is
significantly better in terms of generalizability when compared with these traditional deep
learning approaches.

Among all models (including both flow-level and packet-level), the proposed DQN-
1DCNN at the packet level is the best one for all performance measures. By comparing it
to RL-CGAN at the flow level, it should be noted that flow information is incorporated
by the DQN-1DCNN agent through packet features, while RL-CGAN only utilizes flow
features provided by the dataset. This is the main reason why DQN-1DCNN outperforms
RL-CGAN in this comparison study.

6. Conclusions and Future Work

In this paper, an RL-based IDS at the packet level and flow level is proposed. With the
help of image embedding, network traffic is transformed into images processed by CNN
and 1D-CNN for the detection task at the packet level. In addition, unknown network
traffic can be detected through an anomaly detection module. An enhanced RL-based IDS
with an exploration module at the flow level is also designed. The experimental results
verify the superior performance of the proposed packet-level and flow-level IDS with the
most commonly used state-of-the-art algorithms. However, further research works can be
undertaken based on the following future directives.

• GAN can be introduced for packet-level IDS to generate novel flows or sessions. Further-
more, we can use GAN to simulate a dynamic network environment for interaction.

• The idea of exploration can also be introduced into the packet-level reinforcement
learning framework to employ the exploration policy for capturing more states in the
interaction space.

• The proposed IDS at the packet level can detect the malignant image but can not
identify the specific traffic session position embedded in the image. One possible
solution is to use an N to N LSTM model for this problem.

• For flow-level IDS, to improve the generalizability of the RL agent, a new reward
mechanism can be designed, where a more significant penalty can be assigned to the
intrusion detection agent when some critical malignant traffics are not detected.

• Finally, to further validate the proposed IDS design, experiments can be conducted
on different datasets with other types of attacks, and a thorough comparison can be
performed with other RL-based IDS designs.

Algorithms 2022, 15, 453 20 of 21

Author Contributions: Conceptualization, B.Y. and Q.Z.; methodology, B.Y.; software, B.Y. and
M.H.A.; validation, B.Y. and Q.Z.; formal analysis, B.Y. and M.H.A.; investigation, B.Y.; resources,
B.Y., M.H.A. and Q.Z.; data curation, B.Y.; writing—original draft preparation, B.Y.; writing—review
and editing, M.H.A. and Q.Z.; visualization, B.Y. and M.H.A.; supervision, Q.Z.; project administra-
tion, Q.Z.; funding acquisition, Q.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Natural Science and Engineering Research Council
(NSERC), Canada.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smaha, S. Haystack: An intrusion detection system. In Proceedings of the [Proceedings 1988] Fourth Aerospace Computer

Security Applications, Orlando, FL, USA, 12–16 September 1988; pp. 37–44.
2. Hwang, R.H.; Peng, M.C.; Nguyen, V.L.; Chang, Y.L. An LSTM-based deep learning approach for classifying malicious traffic at

the packet level. Appl. Sci. 2019, 9, 3414. [CrossRef]
3. Ge, M.; Fu, X.; Syed, N.; Baig, Z.; Teo, G.; Robles-Kelly, A. Deep learning-based intrusion detection for iot networks. In

Proceedings of the 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 1–3
December 2019; pp. 256–265.

4. Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning ddos detection for consumer internet of things devices. In Proceedings
of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 29–35.

5. Radford, B.; Apolonio, L.; Trias, A.; Simpson, J. Network Traffic Anomaly Detection Using Recurrent Neural Networks. arXiv
2018, arXiv:1803.10769.

6. Choraś, M.; Pawlicki, M. Intrusion detection approach based on optimised artificial neural network. Neurocomputing 2021,
452, 705–715. [CrossRef]

7. Ieracitano, C.; Adeel, A.; Morabito, F.C.; Hussain, A. A novel statistical analysis and autoencoder driven intelligent intrusion
detection approach. Neurocomputing 2020, 387, 51–62. [CrossRef]

8. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
9. Bodeau, D.; Graubart, R. Cyber Resiliency Design Principles Selective Use Throughout the Lifecycle and in Conjunction with Related

Disciplines; Technical Report; MITRE CORP: Bedford, MA, USA, 2017.
10. Beal, M.; Ghahramani, Z.; Rasmussen, C. The infinite hidden Markov model. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001.
11. Toyoshima, K.; Oda, T.; Hirota, M.; Katayama, K.; Barolli, L. A DQN based mobile actor node control in WSAN: Simulation results

of different distributions of events considering three-dimensional environment. In Proceedings of the International Conference
on Emerging Internetworking, Data & Web Technologies, Kitakyushu, Japan, 24–26 February 2020; pp. 197–209.

12. Saito, N.; Oda, T.; Hirata, A.; Hirota, Y.; Hirota, M.; Katayama, K. Design and implementation of a DQN based AAV. In
Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Yonago,
Japan, 28–30 October 2020; pp. 321–329.

13. Alavizadeh, H.; Hong, J.B.; Kim, D.S.; Jang-Jaccard, J. Evaluating the effectiveness of shuffle and redundancy mtd techniques in
the cloud. Comput. Secur. 2021, 102, 102091. [CrossRef]

14. Sethi, K.; Kumar, R.; Mohanty, D.; Bera, P. Robust adaptive cloud intrusion detection system using advanced deep reinforcement
learning. In Proceedings of the International Conference on Security, Privacy, and Applied Cryptography Engineering, Kolkata,
India, 17–21 December 2020; pp. 66–85.

15. Sethi, K.; Kumar, R.; Prajapati, N.; Bera, P. Deep reinforcement learning based intrusion detection system for cloud infrastructure.
In Proceedings of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India,
7–11 January 2020; pp. 1–6.

16. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement
learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]

17. Cappart, Q.; Moisan, T.; Rousseau, L.M.; Prémont-Schwarz, I.; Cire, A.A. Combining reinforcement learning and constraint
programming for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9
February 2021; Volume 35, pp. 3677–3687.

18. Ma, X.; Shi, W. Aesmote: Adversarial reinforcement learning with smote for anomaly detection. IEEE Trans. Netw. Sci. Eng. 2020,
8, 943–956. [CrossRef]

19. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for
supervised problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]

20. Stefanova, Z.S.; Ramachandran, K.M. Off-policy q-learning technique for intrusion response in network security. Int. J. Comput.
Inf. Eng. 2018, 12, 266–272.

21. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found.
Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]

http://doi.org/10.3390/app9163414
http://dx.doi.org/10.1016/j.neucom.2020.07.138
http://dx.doi.org/10.1016/j.neucom.2019.11.016
http://dx.doi.org/10.1016/j.cose.2020.102091
http://dx.doi.org/10.1007/s10207-019-00482-7
http://dx.doi.org/10.1109/TNSE.2020.3004312
http://dx.doi.org/10.1016/j.eswa.2019.112963
http://dx.doi.org/10.1561/2200000071

Algorithms 2022, 15, 453 21 of 21

22. Hu, B.; Li, J. Shifting deep reinforcement learning algorithm toward training directly in transient real-world environment: A case
study in powertrain control. IEEE Trans. Ind. Inform. 2021, 17, 8198–8206. [CrossRef]

23. Sethi, K.; Madhav, Y.V.; Kumar, R.; Bera, P. Attention based multi-agent intrusion detection systems using reinforcement learning.
J. Inf. Secur. Appl. 2021, 61, 102923. [CrossRef]

24. Nguyen, T.T.; Reddi, V.J. Deep reinforcement learning for cyber security. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–17.
[CrossRef]

25. Caminero, G.; Lopez-Martin, M.; Carro, B. Adversarial environment reinforcement learning algorithm for intrusion detection.
Comput. Netw. 2019, 159, 96–109. [CrossRef]

26. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

27. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: Empirical evaluation of threats and
a public dataset. IEEE Commun. Surv. Tutor. 2015, 18, 184–208. [CrossRef]

28. Iannucci, S.; Barba, O.D.; Cardellini, V.; Banicescu, I. A performance evaluation of deep reinforcement learning for model-based
intrusion response. In Proceedings of the 2019 IEEE 4th International Workshops on Foundations and Applications of Self*
Systems (FAS*W), Umea, Sweden, 16–20 June 2019; pp. 158–163.

29. Iannucci, S.; Cardellini, V.; Barba, O.D.; Banicescu, I. A hybrid model-free approach for the near-optimal intrusion response
control of non-stationary systems. Future Gener. Comput. Syst. 2020, 109, 111–124. [CrossRef]

30. Malialis, K.; Kudenko, D. Distributed response to network intrusions using multiagent reinforcement learning. Eng. Appl. Artif.
Intell. 2015, 41, 270–284. [CrossRef]

31. Holgado, P.; Villagrá, V.A.; Vazquez, L. Real-time multistep attack prediction based on hidden markov models. IEEE Trans.
Dependable Secur. Comput. 2017, 17, 134–147. [CrossRef]

32. Zhang, Z.; Naït-Abdesselam, F.; Ho, P.H.; Kadobayashi, Y. Toward cost-sensitive self-optimizing anomaly detection and response
in autonomic networks. Comput. Secur. 2011, 30, 525–537. [CrossRef]

33. Fessi, B.A.; Benabdallah, S.; Boudriga, N.; Hamdi, M. A multi-attribute decision model for intrusion response system. Inf. Sci.
2014, 270, 237–254. [CrossRef]

34. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-Learning based Reinforcement Learning Approach for Network Intrusion
Detection. Computers 2022, 11, 41. [CrossRef]

35. Kim, C.; Park, J. Designing online network intrusion detection using deep auto-encoder Q-learning. Comput. Electr. Eng. 2019,
79, 106460. [CrossRef]

36. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the
Workshop at International Conference on Learning Representations (ICLR), Scottsdale, AZ, USA, 2–4 May 2013

37. Forestiero, A.; Papuzzo, G. Agents-Based Algorithm for a Distributed Information System in Internet of Things. IEEE Internet
Things J. 2021, 8, 16548–16558. [CrossRef]

38. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540.

39. Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; Zhokhov, P.; et al.
OpenAI Baselines, a Set of High-Quality Reinforcement Learning Algorithms. 2017. Available online: https://github.com/
openai/baselines (accessed on 24 November 2022).

40. Hasselt, H. Double Q-learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 6–9 December 2010; Volume 23, pp. 2613–2621.

41. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48.

42. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

43. Schapire, R.E. Explaining AdaBoost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Schölkopf, B., Luo, Z., Vovk,
V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [CrossRef]

http://dx.doi.org/10.1109/TII.2021.3063489
http://dx.doi.org/10.1016/j.jisa.2021.102923
http://dx.doi.org/10.1109/TNNLS.2021.3121870
http://dx.doi.org/10.1016/j.comnet.2019.05.013
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1016/j.future.2020.03.018
http://dx.doi.org/10.1016/j.engappai.2015.01.013
http://dx.doi.org/10.1109/TDSC.2017.2751478
http://dx.doi.org/10.1016/j.cose.2011.06.002
http://dx.doi.org/10.1016/j.ins.2014.02.139
http://dx.doi.org/10.3390/computers11030041
http://dx.doi.org/10.1016/j.compeleceng.2019.106460
http://dx.doi.org/10.1109/JIOT.2021.3074830
https://github.com/openai/baselines
https://github.com/openai/baselines
http://dx.doi.org/10.1007/978-3-642-41136-6_5

	Introduction
	Related Work
	The Proposed IDS Framework at the Packet Level
	Preprocessing Module
	Reinforcement Learning Module
	Anomaly Detection Module

	The Proposed IDS Framework at Flow-Level
	Preprocessing Module
	Reinforcement Learning Module
	The Exploration Module

	Experimental Results
	Dataset
	Results of the Proposed Packet-Level IDS
	Results of the Proposed Flow-Level IDS
	Comparison and Discussion

	Conclusions and Future Work
	References

