
Citation: Valouxis, C.; Gogos, C.;

Dimitsas, A.; Potikas, P.; Vittas, A. A

Hybrid Exact–Local Search Approach

for One-Machine Scheduling with

Time-Dependent Capacity. Algorithms

2022, 15, 450. https://doi.org/

10.3390/a15120450

Academic Editors: Dunhui Xiao

and Shuai Li

Received: 25 October 2022

Accepted: 25 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Hybrid Exact–Local Search Approach for One-Machine
Scheduling with Time-Dependent Capacity
Christos Valouxis 1, Christos Gogos 2,∗ , Angelos Dimitsas 2, Petros Potikas 3 and Anastasios Vittas 2

1 Department of Electrical and Computer Engineering, University of Patras, 26500 Patras, Greece
2 Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece
3 Department of Electrical and Computer Engineering, National Technical University of Athens,

15772 Athens, Greece
* Correspondence: cgogos@uoi.gr

Abstract: Machine scheduling is a hard combinatorial problem having many manifestations in
real life. Due to the schedule followed, the possibility of installations of machines operating sub-
optimally is high. In this work, we examine the problem of a single machine with time-dependent
capacity that performs jobs of deterministic durations, while for each job, its due time is known
in advance. The objective is to minimize the aggregated tardiness in all tasks. The problem was
motivated by the need to schedule charging times of electric vehicles effectively. We formulate an
integer programming model that clearly describes the problem and a constraint programming model
capable of effectively solving it. Due to the usage of interval variables, global constraints, a powerful
constraint programming solver, and a heuristic we have identified, which we call the “due times
rule”, the constraint programming model can reach excellent solutions. Furthermore, we employ
a hybrid approach that exploits three local search improvement procedures in a schema where the
constraint programming part of the solver plays a central role. These improvement procedures
exhaustively enumerate portions of the search space by exchanging consecutive jobs with a single
job of the same duration, moving cost-incurring jobs to earlier times in a consecutive sequence
of jobs or even exploiting periods where capacity is not fully utilized to rearrange jobs. On the
other hand, subproblems are given to the exact constraint programming solver, allowing freedom of
movement only to certain parts of the schedule, either in vertical ribbons of the time axis or in groups
of consecutive sequences of jobs. Experiments on publicly available data show that our approach is
highly competitive and achieves the new best results in many problem instances.

Keywords: scheduling; constraint programming; heuristics; local search

1. Introduction

Scheduling problems are interesting due to their practical usefulness and hardness.
Such problems emerge in various domains, including manufacturing, computing, project
management, and many others. Since scheduling problems are typically NP-hard, several
approaches compete to attain the often unreached optimal solutions. Metaheuristics,
heuristics, constraint programming, and mathematical programming often yield excellent
results. The latter two are especially sensitive to problem sizes since their exact nature
implies that all solutions must be checked or intelligently pruned.

Scheduling is a thoroughly studied subject that is considered a discipline on its own [1].
Scheduling problems are classified using the commonly accepted (α|β|γ) notation [2],
where α refers to the machine environment, β refers to the constraints, and γ refers to the
objective function. A valuable asset for appreciating the variety of scheduling problems
under the (α|β|γ) notation can be found at [3].

In this work, we study a variation in the one-machine scheduling with time-dependent
capacity problem that Mencia et al. introduced in [4–6]. The problem emerged in the context

Algorithms 2022, 15, 450. https://doi.org/10.3390/a15120450 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120450
https://doi.org/10.3390/a15120450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1113-8462
https://doi.org/10.3390/a15120450
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120450?type=check_update&version=1

Algorithms 2022, 15, 450 2 of 18

of scheduling charge times for a fleet of electric vehicles and is an abstraction of the real
problem. It is classified as (1, Cap(t)||∑ ti), meaning that it involves a single machine
with capacity that fluctuates through time, with no other constraints, and the objective is
minimizing the accumulated tardiness from all jobs. The problem piqued our interest due
to its precise definition, the publicly available datasets, and the excellent results that were
already published and which we used for comparisons.

We propose a novel way to approach the problem based on a model with an embedded
rule (the due times rule) that helps constraint programming solvers reach good solutions
fast. We also propose three improvement procedures that are local search routines. We
combine the exact and local search parts in our approach to the problem, and we manage
to achieve results equal to or better than the best-known results for 91 and 48 cases,
respectively, out of 190 public problem instances.

2. Problem Description

A detailed description of the problem exists in [6], so we give a brief description in
this section. The problem involves n jobs and one machine with a certain capacity that
varies over time. Each job i has a duration Pi and a due date Di. All jobs are available
from the start time (t = 0) and consume one unit of the machine’s capacity for the period
in which the job will eventually be scheduled. Once a job starts, it cannot be preempted
and should continue execution until completion. It is imperative that the capacity of the
machine is not exceeded at any time. Finally, the objective that should be minimized is the
total tardiness of all jobs, which is computed based on the due dates of the jobs. If job i
completes execution before its due date, it does not affect the cost. Otherwise, it imposes
a cost equal to ci − Di, where ci is the completion time that job i assumes in the schedule.
The mathematical formulation of the problem is presented in Section 7.

The problem (1, Cap(t)||∑ ti) is NP-hard, since problems (1||∑ ti) and (P||∑ ti) (P
denotes a known number of identical machines), which are known to be NP-hard [7], can
be reduced to it.

Terminology

In line with the definitions of terms in [6], we use Si, pi, di, and Ci for the start time,
duration, due time, and completion time, respectively, of a job i in a given schedule. Then,
Ti is the tardiness of job i which is max{0, Ci − di}.

A concrete example involving 12 jobs and a capacity line that reaches a maximum of
four units is presented below. This example is the one used as Example 1 in [5]. Table 1
summarizes information related to it alongside the values associated with an optimal sched-
ule for this problem instance, achieving an optimal cost of 20. The schedule corresponding
to the table’s third line is presented graphically in Figure 1.

00 1 22 3 4 55 6 7 88 9 10 1111 12 13 14
Time

1

2

3

4

Ca
pa

cit
y

8 (3,3) 10 (3,5) 11 (3,9) 12 (5,7)

4 (3,4) 6 (3,8) 2 (4,9) 9 (2,13)

1 (4,4) 7 (2,10) 3 (2,13)

5 (4,7)

example1_cost20.sol

Figure 1. A graphical representation of the schedule in the last line of Table 1.

Algorithms 2022, 15, 450 3 of 18

Table 1. A sample problem instance with 12 jobs. For each job i, the table shows its duration pi and
its due time di. Additionally, for a certain schedule, the table shows the start time (Si), completion
time (Ci), and penalty incurred (Ti) for each job i.

i 1 2 3 4 5 6 7 8 9 10 11 12

pi, di 4,4 4,9 2,13 3,4 4,7 3,8 2,10 3,3 2,13 3,5 3,9 5,7

Si, Ci, Ti 4,8,4 8,12,3 10,12,0 2,5,1 6,10,3 5,8,0 8,10,0 0,3,0 12,14,1 3,6,1 6,9,0 9,14,7

3. Dataset

A dataset consisting of a relatively large number of artificially generated problem
instances is publicly available in [8]. The procedure for generating these instances is
described in [6], and special care has been taken so that the problems’ structures resemble
the structure manifested during the process of electric vehicle charging [9]. In total, 190
problem instances exist, as seen in Table 2. The naming of each problem instance is
i<n>_<MC>_<k>, where n is the number of jobs, MC is the maximum capacity, and k is the
sequence number of each problem instance for this n, MC pair.

Table 2. Problem instances in the dataset. For each pair of a number of jobs and a maximum capacity,
10 individual problem instances exist.

Number of Jobs (n) Maximum Capacity (MC)

120 3, 5, 7, 10
250 10, 20, 30
500 10, 20, 30
750 10, 20, 30, 50
1000 10, 20, 30, 50, 100

Note that the capacity in all problem instances is a unimodal step function that grows
until reaching a peak, then decreases, and finally stabilizes at a positive value.

4. Related Work

Hard combinatorial optimization problems, such as the one-machine scheduling with
time-dependent capacity problem, are approached using numerous solving
methods [10,11]. The two basic categories of such approaches are the exact ones and
the heuristic–metaheuristic ones. In the first category, one can identify mathematical pro-
gramming (i.e., linear programming, integer programming, and others) [12], constraint pro-
gramming [13], approaches based on SAT (satisfiability) [14] or SMT (satisfiability modulo
theory) solvers [15], and, in general, methods that intelligently examine the complete search
space while pruning parts of it during their quest for proven optimal solutions [16]. In
the second category, the approaches are numerous, including local search methods [17,18],
genetic algorithms [19], genetic programming [20], memetic algorithms [21], differential
evolution [22], ant colony optimization [23], particle swarm optimization [24], bees algo-
rithms [25], hyper-heuristics [20], and others.

Heuristically Constructed Schedules

In [6], the authors present the schedule builder algorithm, where jobs are ordered
in an arbitrary sequence, and each job is scheduled to start at the earliest possible time.
After positioning each job, the capacity of the machine is updated in accordance with the
partial schedule. When all jobs are scheduled, the algorithm finishes and returns a feasible
schedule. This search space is guaranteed to contain an optimal solution to any problem
instance [5]. So, each possible solution can be represented as a sequence of jobs to the
schedule builder. Certain metaheuristic algorithms, such as genetic algorithms, may benefit
from the idea of representing each possible schedule as a sequence of jobs and searching
through the space of all possible permutations.

Algorithms 2022, 15, 450 4 of 18

Here, we present in Algorithm 1 a modification to the schedule builder algorithm that
introduces lanes, which are levels formed by the capacity of the problem. So, for example, a
problem with a maximum capacity of four has four lanes; the first is always available during
the time horizon, and the three others, based on the capacity, have periods of availability
and unavailability. Lanes help plot schedules, disambiguate solutions with identical costs,
and quickly identify jobs that form sequences of consecutive jobs. In Algorithm 1, we call
the function find_lowest_available_lane that finds the lowest available lane that can
accommodate a job starting at period t.

Algorithm 1 Schedule builder using lanes

Input: A problem instance P
Output: A feasible schedule S

demand← [0,...]
left← 0 . Leftmost time point where capacity is not yet fully utilized
for all jobs job do

t← left
while True do

flag = True
for all capacity[t:t+job.duration], demand[t:t+job.duration] c, d do

if d > c then
flag← False
break

end if
end for
if flag then

lane = find_lowest_available_lane(job, t)
S[job.id]← lane, t
for all [t:t+job.duration] t’ do

demand[t’]← demand[t’] + 1
if demand[t’] = capacity[t’] then

left← t’ + 1
end if

end for
t← t + 1
break

end if
end while

end for

5. C-Paths

A fundamental concept that was introduced by Mencia et al. in [4] is the concept
of a C-Path. A C-Path is a sequence of consecutive jobs (i.e., in a C-Path, the finish time
of each previous job coincides with the start time of the following job) in a schedule.
The importance of C-Paths stems from the fact that jobs in each C-Path can easily swap
places and keep the schedule feasible. We can consider a graph view of a schedule, where
each job is a node and directed edges connect nodes that correspond to consecutive jobs.
Then, each path from a source node of the graph (i.e., a node with no incoming edges)
to a sink node (i.e., a node with no outgoing edges) is a C-Path. This is demonstrated in
Figure 2 for a sample schedule of cost 35 for the toy problem instance shown in Table 1 and
its corresponding graph in Figure 3. The list of C-Paths identified in this graph includes the
following six: (3,12,4), (3,10,1,6), (3,10,1,2), (7,9,8,5), (7,11,2), and (7,11,6).

Algorithms 2022, 15, 450 5 of 18

00 1 2 33 4 5 6 77 8 9 10 1111 12 13 14 15
Time

1

2

3

4

Ca
pa

cit
y

3 (2,13) 10 (3,5) 1 (4,4) 6 (3,8)

12 (5,7) 4 (3,4) 5 (4,7)

7 (2,10) 9 (2,13) 8 (3,3)

11 (3,9) 2 (4,9)

example1_cost35.sol

Figure 2. A suboptimal schedule of cost 35 for the toy problem of Table 2. Each job is depicted with a
box and annotated with a label of the form x(y, z), where x is the job identification number, y is the
duration of the job, and z is its due time.

3

10

12

1

4

6

2

7

9

11

8 5

Figure 3. The graph that corresponds to the schedule of Figure 2.

The number of C-Paths might be very large, especially for schedules of big-size
problems. This is demonstrated in Table 3, which shows the number of C-Paths for specific
schedules of selected problem instances. Note that the number of C-Paths might change
dramatically for different schedules of the same problem instance and that larger problem
instances might have fewer C-Paths than smaller problem instances for some schedules.

Table 3. Number of C-Paths for schedules of selected problem instances, which can be found in [26].

Problem Instance Schedule Cost Number of C-Paths

i120_3_1 848 3
i120_10_1 749 71
i250_10_1 4094 48
i250_30_1 3013 276
i500_10_1 4614 204
i500_30_1 2670 4528
i750_10_1 4409 22,302
i750_50_1 5134 206,022

i1000_10_1 641 903,826
i1000_100_1 71,012 216,694

Fast Computation of C-Paths

Since complete enumeration of all C-Paths is out of the question for problems of large
sizes, we opted for a faster method of generating a single C-Path each time it is needed.
This method starts by picking a random job, followed by two processes that find the right

Algorithms 2022, 15, 450 6 of 18

and the left part of a C-Path, having the selected job as a pivot element. The right-side part
of the C-path is formed by choosing the next job that starts at the finish time of the current
job. If more than one job exists, one of them is randomly selected and becomes the new
current job. This process continues until no more subsequent jobs are found. The left side
of the C-Path is formed by setting the initially selected job as the current job once again and
finding previous jobs that end at the start time of the current job. Similarly, if more than
one exists, one is chosen at random and becomes the new current job. The process ends
when no more suitable prior jobs can be found.

6. Due Times Rule

This work contributes to identifying a rule that involves the due times of jobs with
equal durations. The rule states that “Jobs with equal duration should be scheduled in the
order of their due times”. In other words, if two jobs have equal durations, they should
swap places if the due time of the job that is scheduled later is sooner than the due time
of the job that is scheduled sooner. This rule can be used to strengthen mathematical
formulations or as a heuristic for reaching better solutions.

Proof. Suppose that two jobs, i and j, with the same duration, are scheduled such that job i
comes first and job j follows. Additionally, suppose that job j has an earlier due time than
job i, i.e., dj < di. Let t and t′ be the finish times of jobs i and j, respectively, and since both
jobs have the same duration, t < t′ holds. When both jobs have non-negative tardiness
values, i.e., t− di ≥ 0 and t′ − dj ≥ 0, swapping the jobs results again in non-negative
tardiness values for both jobs. This holds because the tardiness of job j after the swap will
be t− dj > t− di ≥ 0. Moreover, t′ > t ≥ di, so the tardiness of job i after the swap will be
t′ − di ≥ 0. So, the total tardiness before the swap is (t− di) + (t′ − dj), which is equal to
the total tardiness after the swap, which is (t− dj) + (t′ − di). This situation is depicted
in Figure 4a. The top figure shows a possible configuration of two equal-duration jobs
that both incur tardiness. It can be easily seen that the total length of the gray bars that
represent the tardiness remains the same after swapping jobs i and j.

i j

t t'didj

j i

t t'didj

i j

t t'didj

j i

t t'didj

(a) (b)

before swap

after swap after swap

before swap

gain
x

x

x

x

x x

x x

Figure 4. (a) Both job i and job j have non-negative tardiness values. (b) Job i has no tardiness, but
job j incurs tardiness.

The benefit of positioning equal-duration jobs according to their due times occurs
when job i completes execution before its due time, and job j incurs some positive value
of tardiness. Since job i has no tardiness, the total tardiness of the initial configuration is
t′ − dj. After the swap, the total tardiness will be (t− dj) + (t′ − di). In order to prove
that the total tardiness is no greater after the swap, the following inequality must hold:
(t − dj) + (t′ − di) ≤ t′ − dj. This inequality leads to the following true proposition:
(t− dj) + (t′ − di) ≤ t′ − dj =⇒ t− di ≤ 0 =⇒ t ≤ di. The last inequality holds since it
is the assumption made for this case, i.e., job i has no tardiness. A visual representation of

Algorithms 2022, 15, 450 7 of 18

such a situation is depicted in Figure 4b. The upper part of the figure shows the situation
where job i is scheduled first, while the lower part of the figure shows the situation after
swapping the jobs. Again, the gray bars represent the tardiness of the jobs, and it can be
seen that the total tardiness is decreased when the jobs swap places.

7. Formulation and Implementation

A formulation of the problem that will be used to construct initial solutions to the
problem is presented below. Then, the formulation is slightly modified and used for solving
problems involving subsets of tasks in an effort to attain better schedules overall.

Let J be the set of jobs.
Let Pj be the duration of each job j ∈ J.
Let Dj be the due date of each job j ∈ J.
Let T be the number of time points. Note that the value of T is not given explicitly by

the problem, but such a value can be computed by aggregating the duration of all jobs.
Let Cap(t) be the capacity of the machine at each time point t ∈ 0 . . . T − 1.
We define integer decision variables sj ∈ 0 . . . T − 1− Pj that denote the start time of

each job j ∈ J.
Likewise, we define integer decision variables f j ∈ Pj . . . T− 1 that denote the finish

time of each job j ∈ J.
We also define integer decision variables zj ≥ 0 which denote the tardiness of each job

j ∈ J.
Finally, we define binary decision variables xjt and yjt. Each one of the former variables

assumes the value 1 if job j starts its execution at time point t, or else it assumes the value 0.
Likewise, each yjt variable marks the time point at which job j finishes.

min ∑
j∈J

zj (1)

f j = sj + Pj ∀j ∈ J (2)

zj ≥ f j − Dj ∀j ∈ J (3)

sj ≥ t · xjt ∀j ∈ J ∀t ∈ 0 . . . T − 1 (4)

sj ≤ t + (M− t) · (1− xjt) ∀j ∈ J ∀t ∈ 0 . . . T − 1 (5)

∑
t∈0...T−1

xjt = 1 ∀j ∈ J (6)

yjt+Pj = xjt ∀j ∈ J ∀t ∈ 0 . . . T − 1− Pj (7)

∑
j∈J

∑
t′∈0..t

xjt′ −∑
j∈J

∑
t′∈0..t

yjt′ ≤ Cap(t) ∀t ∈ 0..T − 1 (8)

A brief explanation of the above model follows.
The aim of the objective function in Equation (1) is to minimize the total tardiness of

all jobs.
Equation (2) assigns the proper finish time value to each job given its start time and

duration.
Equation (3) assigns tardiness values to the jobs. In particular, when job j finishes

before its due time, the right side of the inequality is a negative number, and variable zj
assumes the value 0 since its domain is non-negative integers. When job j finishes after its
due time, zj becomes f j − Dj. This occurs because zj is included in the minimized objective
function and therefore forced to assume the smallest possible non-negative value.

Equations (4) and (5) drive the variables xjt to proper values based on the sj values.
This occurs because, when sj assumes the value t, xjt becomes 1. It should be noted that M
in Equation (5) represents a big value, and T − 1 can be used for it. For the specific time
point t at which a job will be scheduled to begin, the right sides of both equalities will

Algorithms 2022, 15, 450 8 of 18

assume the value t. For all other time points besides t, the right sides of the former and the
latter equations become 0 and M, respectively.

Equation (6) enforces that only one among all of the xjt variables of each job j will
assume the value 1.

Equation (7) dictates the following association rule: for each job j, when xjt becomes 1
or 0, the corresponding y variable of j with the time offset Pj, which is yjt+Pj , will also be 1
or 0, respectively.

Equation (8) guarantees that for each time point, the capacity of the machine will not
be violated. The values that the left side of the equation assumes are the numbers of active
jobs at each time point t. The first double summation counts the jobs that have started no
later than t, while the second double summation counts the jobs that have also finished no
later than t. Their difference is obviously the number of active jobs.

Constraint Programming Formulation

The IBM ILOG constraint programming (CP) solver seems to be a good choice for solv-
ing scheduling problems involving jobs that occupy intervals of time and consume some
types of resources that have time-varying availability [27]. The one-machine scheduling
problem can be easily formulated in the IBM ILOG CP solver using one fixed-size interval
variable per job (j) and the constraint always_in, which restricts all of them to assume
values that collectively never exceed the maximum available capacity over time. This is
possible by using a pulse cumulative function expression that represents the contribution
of our fixed interval variables over time. Each job execution requires one capacity unit,
which is occupied when the job starts, retained through its execution, and released when
the job finishes. In our case, the variable usage aggregates all pulse requirements by all jobs.
The objective function uses a set of integer variables z[job.id] that are stored in a dictio-
nary that has the identifier of each job as keys. Each z[job.id] variable assumes the value
of the job’s tardiness (i.e., the non-negative difference of the job’s due time (job.due_time)
and its finish time (end_of(j[job.id])). An additional constraint is added that corre-
sponds to the due times rule mentioned in Section 6. Jobs are grouped by duration, and
a list ordered by due times is prepared for each group. Then, for all jobs in the list, the
constraint enforces that the order of the jobs must be respected. This means that each job in
the list should have an earlier start time than the start time of the job that follows it in the list.
The model implementation using the IBM ILOG CP solver’s python API is presented below.

import docplex.cp.model as cpx

model = cpx.CpoModel()
x_ub = int(problem.ideal_duration() * 1.1)
j = {

job.id: model.interval_var(
start=[0, x_ub - job.duration - 1],
end=[job.duration, x_ub - 1],
size=job.duration

)
for job in problem.jobs

}

z = {
job.id: model.integer_var(lb=0, ub=x_ub - 1)
for job in problem.jobs
}

usage = sum([model.pulse(j[job.id], 1) for job in problem.jobs])

for i in range(problem.nint):

Algorithms 2022, 15, 450 9 of 18

model.add(
model.always_in(

usage,
[problem.capacities[i].start, problem.capacities[i].end],
0,
problem.capacities[i].capacity,

)
)

for job in problem.jobs:
model.add(z[job.id] >= model.end_of(j[job.id]) - job.due_time)

for k in problem.size_jobs: # iterate over discrete job durations
jobs_by_due_time = same_duration_jobs[k]
for i in range(len(jobs_by_due_time)-1):

j1, j2 = jobs_by_due_time[i][1], jobs_by_due_time[i+1][1]
model.add(model.start_of(z[j1]) <= model.start_of(z[j2]))

model.minimize(sum([z[job.id] for job in problem.jobs]))

The object problem is supposed to be an instance of a class that has all relevant informa-
tion for the problem instance under question (i.e., jobs is the list of all jobs, each job besides
id and due_time has also a duration property, nint is the number of capacity intervals,
and capacities[i].start and capacities[i].end are the start time and end time of the
ith capacity step, respectively). Finally, the problem object has the ideal_duration method
that estimates a tight value for the makespan of the schedule, which is incremented by 10%
to accommodate possible gaps that hinder the full exploitation of the available capacity.
The “ideal duration” is computed by totaling the durations of all jobs and then filling the
area under the capacity line from left to right and from bottom to top with blocks of the
size 1× 1 until the totaled durations quantity runs out. The rightmost point on the time
axis of the filled area becomes the “ideal duration” and is clearly a relaxation of the actual
completion time of the optimal solution since each job is decomposed in blocks of the
duration one, and no gaps appear in the filled area.

An effort was undertaken to implement the above model using Google’s ORTools
CP-SAT Solver [28]. This solver has a cumulative constraint that can be used in place of
always_in to describe the machine’s varying capacity. A series of FixedSizeIntervalVar
variables were used that transformed the pulse of the capacity to a flat line equal to the
maximum capacity. Unfortunately, the solver under this specific model implementation
could not approximate good results and was finally not used.

8. Local Search Improvement Procedures

We have identified three local search procedures that have the potential to improve
the cost of a given schedule. These local search procedures can be considered as “large”
moves since they examine a significant number of schedules neighboring the current one.

8.1. Local Search Improve1

The first local search procedure starts by iterating overall jobs. For each job j1, each
other consecutive job j2 is identified, and then each job j3 with a duration equal to the
aggregated durations of j1 and j2 is found. Since j1 and j2 are consecutive, they can
be swapped with job j3, and the schedule will still remain feasible, as seen in Figure 5.
Moreover, the order of the two first jobs does not influence the feasibility. So, two alter-
natives are tested that compare the imposed penalties before and after the swap, and,
if an improvement is found, the swap occurs. The time complexity of this procedure is
O(|J|) since the maximum number of consecutive jobs for each job is bounded by the
maximum capacity, which is a constant number much smaller than the number of jobs.

Algorithms 2022, 15, 450 10 of 18

Moreover, the identification of consecutive jobs and jobs of durations that are equal to the
aggregated duration of two other consecutive jobs is performed using Hash Maps that
effectively contribute O(1) to the above complexity. The first one uses times as keys and
has a list of jobs starting at these times as values. By using as a key the finish time of a job
j1, the dictionary returns each job j2 that is consecutive to j1. The second Hash Map uses
the jobs’ durations as keys and, as the value for each key x, the list of jobs with the duration
x. Note that the second Hash Map is computed only once and remains unchanged through
the solution process.

x x

......

...

j1 j2

...

...j3

x x

......

...

...

...

j3

j1 j2

x x

......

...

...

...

j3

j1j2

before

after (1st case) after (2nd case)

Figure 5. Assuming that job j3 has the same duration as the aggregated duration of jobs j1 and j2,
two cases for swapping them become possible. The first one puts j1 first and j2 second, and the other
one puts j2 first and j1 second.

8.2. Local Search Improve2

The second local search procedure uses C-Paths that are computed as described in
Section 5. Each C-Path is traversed from left to right until a job j is found that imposes a
cost to the schedule (i.e., has a finish time greater than its due time). The only way that the
penalty of a job j can be reduced is by moving it to the left side of the C-Path. So, all jobs
that start earlier than job j are examined by swapping places with job j. If the total penalty
imposed by job j and a sequence of jobs up to another job k is greater than the penalty after
swapping jobs j and k, followed by shifts of jobs in between, then this set of moves occurs.
The time complexity of this procedure is O(|J|2). Since each C-Path has a length that is
O(|J|), and each C-Path is traversed once for identifying jobs with penalties, and then, for
each such job, the C-path is again traversed, it follows that the complexity is quadratic.
The construction of each C-Path costs O(|J|), which is added to the time of the above
procedure and gives O(|J|) + O(|J|2). Since this occurs for every job, |J| C-Paths are
generated, and this results in a total complexity of O(|J|3) for the second local search
procedure. An example of this procedure is depicted in Figure 6.

8.3. Local Search Improve3

The third local search procedure starts by identifying periods where the capacity is
not fully used. Given a capacity profile that has the form of a pulse, for each job, the pulse
is lowered by one unit for the period during which it is active. This is iterated for all jobs,
and, finally, it is possible to exist periods scattered across the horizon that have non-zero
capacity remaining. So, jobs with finish times that fall inside these periods (gaps) can
possibly be moved to the right, and the schedule should still be feasible. The main idea of
this local search procedure is that it allows two jobs of marginally different durations to
swap places. This occurs by first identifying two C-Paths with no common jobs that have
jobs with finish times falling inside gaps as their rightmost jobs. Given two such C-Paths,
each job of them can be swapped with a job of the other C-Path, provided that the slack
that the gap provides is adequate for this move. This means that all jobs of a C-Path that

Algorithms 2022, 15, 450 11 of 18

are to the right of the smaller of the two swapping jobs should shift to the right, and all
jobs of the other C-Path that are to the right of the bigger job should shift to the left, giving
the opportunity for further penalty gains. In principle, the number of jobs that might have
finish times that fall inside gaps isO(|J|), but our experiments showed that, in practice, this
number is a small fraction of |J|. Since two C-Paths are involved, and each job of a C-Path
has to be checked with each job of the other C-Path, this contributes O(|J|2). Moreover, all
possible pairs of jobs that fall in gaps are used as starting points in the construction of the
corresponding C-Paths, resulting in another O(|J|2) term. So, the time complexity of the
overall procedure is O(|J|4). It should be noted that shifts due to penalty reductions occur
rarely, and their amortized contribution to the time complexity is neglected. In practice, the
time needed for this move is comparable to the previous one due to the relatively small
number of jobs that fall inside gaps. An example of this procedure is depicted in Figure 7.

...

j4j3j2j1

...

... j5

before

...

j4 j3 j2j1

...

... j5

after (j2 and j4 switch places, j3 is forced to move too)

Figure 6. Given a C-Path, this local search procedure swaps two non-consecutive jobs (j1 and j2) and
appropriately shifts the in-between jobs (j3) so as to keep the C-Path property for all involved jobs.

......

... ...

...j7

before

j6j5j4

...

j1 j2 j3

after swapping j3 and j5

gap1 gap2

......

... ...

...j7j6

j5

j4

...

j1 j2

j3

gap1' gap2'

Figure 7. Jobs belonging to two C-Paths swap places to reduce the length or even remove gaps in the
schedule.

Algorithms 2022, 15, 450 12 of 18

9. A Multi-Staged Approach

The approach we employed for addressing the problem uses several stages that operate
cyclically until the available time runs out.

10. Results

Our experiments were run on a workstation with 32GB of RAM and an Intel Core
i7-7700K 4.2GHz CPU (four cores, eight threads) running Windows 10. The constraint
programming solver that we used was IBM ILOG CP Optimizer Version 22. The local search
procedures, the implementation of the constraint programming model, and the driver pro-
gram were all implemented in Python. Our results are compared with the results of Mencia
et al. in [6], which is a continuation of their previous work in [4,5]. In their most recent work,
they present and compare six memetic algorithms termed MASCP, MAiSCP, MASCP+, MACB,
MAICP, and MAHYB. The last one gives the best results out of all others and the previous
approaches of the authors, and this is the algorithm with which we compare our approach.
MAHYB combines CB and ICP procedures under a memetic algorithm. Both procedures use
the concept of a cover. A cover is a disjoint set of C-Paths that covers all jobs. In CB, once a
cover is generated, the C-Paths of the cover are examined in isolation for improvements.
On the other hand, ICP swaps jobs between C-Paths, again using a cover to select the
C-Paths participating in the procedure. In [6], no values for the schedule costs are given,
but the relative performances of the six approaches are recorded in tables and graphs
instead. So, results about the actual schedule costs of MAHYB and the other approaches
that we use in our comparisons hereafter were taken from [8], which the authors cite in
their paper.

10.1. CPO vs. CPO+

We call the constraint programming approach, briefly described in [6], CPO (constraint
programming optimizer), and our approach described in Section “Constraint Programming
Formulation” that exploits the “due rule”, CPO+. Results about the performance of CPO
were taken from the web repository cited at the end of the previous paragraph.

Table 4 depicts for each problem instance the total tardiness of all jobs for the schedule
that CPO and CPO+ produced. It shows that CPO+ manages to find solutions equal to
the best-known solutions for 25 out of 190 problem instances, while CPO achieves this for
only 2 problem instances (i120_3_3 and i120_5_4). The best values are written in bold.
An allotted time of n/2 seconds for each problem instance was given for each run, where
n is the number of jobs. We used all available cores, which was the default setup for the
IBM ILOG CP Optimizer. The results of CPO+ are the best among 10 runs for each problem
instance, and random seeds were used to achieve diversity.

Algorithms 2022, 15, 450 13 of 18

Table 4. Best results (total tardiness) from the CPO approach and our CPO+ approach.

Problem Set
CPO CPO+

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

i120_3 951 3834 2410 1059 3951 3258 730 4095 1690 1326 867 3620 2410 1019 3859 3123 720 4084 1663 1268
i120_5 1054 1673 999 496 3128 458 550 1227 3486 1245 1030 1538 959 496 3062 455 519 1214 3332 1151
i120_7 1201 2768 3798 4206 3220 2786 1712 3306 4694 546 1133 2725 3551 4083 3095 2665 1655 3225 4510 503
i120_10 764 1212 1554 935 1612 1157 2530 777 1056 881 752 1129 1511 887 1467 1118 2464 721 1006 823
i250_10 4311 552 1480 4871 6921 6563 4857 6108 5453 1405 4144 506 1354 4755 6522 6288 4604 5940 5363 1320
i250_20 5905 1974 2971 2774 1343 1786 1644 2408 1730 6632 5674 1899 2825 2545 1097 1631 1594 2202 1561 6563
i250_30 3381 3348 5273 5099 4560 5333 3990 803 1808 5600 3085 3114 4999 4194 4304 5129 3726 695 1561 5418
i500_10 4791 865 1109 2226 675 6312 3261 4688 497 2227 4614 822 963 2159 610 6100 2864 4472 465 2130
i500_20 8212 899 9440 1495 1859 9349 626 3536 6614 6030 7705 790 9144 1273 1799 9232 525 3252 6420 5886
i500_30 3064 613 6317 4787 6583 1838 4256 9360 1099 482 2822 501 6048 4425 6114 1697 3892 9051 921 369
i750_10 4670 8244 6051 5405 1655 8227 1039 8638 13594 4149 4460 7820 5841 5110 1539 7909 970 8042 13,103 3906
i750_20 6100 889 1593 10,151 9927 12,396 5175 11,910 4812 2866 6046 703 1320 9633 9179 11,652 4875 11,414 4399 2690
i750_30 5092 6045 3200 3240 733 3028 1243 3281 3118 2256 4954 5314 2534 3030 687 2609 1114 2963 2812 2089
i750_50 5989 5766 13,945 2699 11,096 12,590 5748 11,425 5689 6139 5303 5098 12,615 2433 10,190 11,998 5122 10,898 5402 5242
i1000_10 712 24,629 1071 15,711 16,299 2188 779 20,902 23,213 4471 641 23,821 833 15,342 15,443 2025 743 20,891 22,495 4147
i1000_20 10,379 17,525 20,318 8214 15,211 25,044 10,012 17,482 11,583 11,316 9470 16,355 20,265 8083 14,510 24,915 9912 17,048 10,436 10,892
i1000_30 7871 2074 20,964 13,991 4308 13,630 10,763 2713 15,856 20,959 7054 1769 18,580 12,753 3800 12,298 10,232 2239 15,631 19,138
i1000_50 3315 16,491 13,047 1520 1630 18,216 21,181 2227 15,473 4682 2963 16,236 12,130 1239 1478 17,131 20,133 2022 14,454 4199
i1000_100 73,637 81,104 28,292 39,057 76,080 50,541 47,746 55,973 26,585 17,803 78,963 81,638 26,446 37,719 77,298 49,313 45,036 53,639 24,823 16,330

Algorithms 2022, 15, 450 14 of 18

10.2. Hybrid Exact–Local Search

The HELS (hybrid exact–local search) approach is shown using the flowchart in
Figure 8. First, the constraint programming solver is employed for the full problem.
A period of time of n/2 seconds is given for executing this stage. Then, for 3× n seconds, a
loop occurs that includes the three local search procedures, followed by activation of the
constraint programming solver again, but this time for subproblems. These subproblems
might involve jobs that intersect with vertical ribbons on the time axis or groups of con-
secutive sequences of jobs (i.e., multiple C-Paths). Note that a reordering of jobs might
be needed so that the current solution conforms with the “due rule”, else the constraint
programming solver might consider the fixed parts of the partial solution to be infeasible.
This is denoted by the extra stage “Reorder same duration jobs” after the third local search
procedure in Figure 8.

Start

Constraint
Programming Solver

(full problem)

Improve1 LS

Improve2 LS

Improve3 LS

Freeze portion of
schedule, solve

remaining with CP
solver

Reorder same
duration jobs

No

Yes

Are
stopping criteria

fulfilled?

Finish

St
oc

ha
st

ic
 S

ea
rc

h

Figure 8. Hybrid Exact–Local Search approach.

Table 5 presents the best results that were achieved by the approach with the best-
known results, all of which are provided by MAHYB.

Algorithms 2022, 15, 450 15 of 18

Table 5. Best previously known results (total tardiness) achieved from the MAHYB approach and the results of our HELS approach.

Problem Set
MAHYB HELS

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

i120_3 848 3568 2410 1019 3858 3120 720 4084 1663 1268 848 3570 2410 1019 3858 3120 720 4084 1663 1268
i120_5 1030 1511 959 496 3061 455 519 1214 3223 1131 1030 1514 959 496 3061 455 519 1214 3231 1131
i120_7 1120 2725 3493 4021 3059 2640 1655 3225 4470 493 1121 2725 3505 4028 3078 2640 1655 3225 4474 493
i120_10 746 1124 1442 887 1447 1118 2463 721 977 820 749 1125 1453 887 1447 1118 2463 721 983 820
i250_10 4094 506 1349 4731 6390 6280 4497 5881 5321 1293 4103 506 1349 4731 6391 6284 4511 5887 5327 1293
i250_20 5573 1882 2813 2525 1054 1583 1565 2190 1553 6531 5573 1888 2813 2525 1054 1605 1570 2190 1553 6541
i250_30 3013 3054 4758 4098 4197 5034 3641 686 1502 5197 3013 3054 4753 4093 4194 5019 3641 686 1502 5193
i500_10 4614 822 951 2102 610 5981 2768 4460 462 1998 4614 822 953 2116 610 5981 2783 4460 462 2008
i500_20 7649 790 8941 1272 1719 9110 523 3180 6291 5661 7569 790 8970 1272 1744 9097 523 3188 6338 5659
i500_30 2670 477 5975 4307 5869 1614 3795 8946 862 352 2670 477 5974 4307 5873 1626 3795 8888 862 352
i750_10 4379 7744 5819 5086 1517 7895 952 7996 12,837 3840 4312 7744 5821 5082 1500 7895 943 7962 12,814 3840
i750_20 5891 700 1314 9674 9073 11,434 4855 11,353 4393 2632 5979 700 1314 9562 9073 11,434 4855 11,284 4393 2632
i750_30 4713 5128 2364 2951 661 2577 1070 2911 2700 1994 4767 5128 2364 2945 663 2577 1070 2912 2700 1994
i750_50 5134 4978 12,601 2356 9840 11,483 4868 10,580 5154 5204 5134 4792 12,147 2356 9847 11,500 4868 10,583 5154 5028
i1000_10 641 23,729 815 15,204 15,393 2025 735 20,686 22,358 4028 641 23,521 812 15,206 15,180 2025 729 20,574 22,162 3982
i1000_20 9440 16,069 20,168 7962 14,183 24,693 9816 16,994 10,290 10,781 9440 15,971 19,986 7975 14,183 24,507 9726 16,789 10,301 10,781
i1000_30 6902 1687 18,433 12,399 3768 12,090 9795 2085 15,625 18,728 6780 1668 18,087 12,411 3707 12,090 9765 2085 15,528 18,483
i1000_50 2883 16,418 11,613 1142 1390 16,656 19,566 1886 13,740 3989 2883 15,977 11,618 1142 1390 16,667 19,566 1889 13,747 3989
i1000_100 71,034 75,101 25,977 36,374 67,109 47,540 44,545 52,266 23,704 15,664 71,012 75,181 25,594 36,376 66,419 47,541 43,437 52,266 23,690 15,230

Algorithms 2022, 15, 450 16 of 18

Table 6 consolidates the relative performance of our approach when compared with the
best-known results. We can observe that our approach manages to find new best results for
48 of the problem instances. It also equals the best-known results for 91 problem instances.
MAHYB achieves better results than our approach for the remaining 51 problem instances.
We also compare our solutions with how closely it reaches the previously best-known
solution as a percentage value, and we call this the metric “distance%”. Negative values
mean that our approach sets a new best-known value. We see that the average distance%
metric for all problem instances assumes a negative value of −0.1727%, demonstrating
its very good performance. This is further supported by Figure 9, which shows for each
problem subset consisting of 10 instances, a boxplot of the distance% values. Again,
negative values are advantageous for our approach, and the graph clearly shows that our
approach achieves excellent results, especially for large problem instances.

Table 6. The HELS approach’s performance against the best recorded results.

Best Equal Worse Distance (%)

48 91 51 −0.1727

i1
20

_3

i1
20

_5

i1
20

_7

i1
20

_1
0

i2
50

_1
0

i2
50

_2
0

i2
50

_3
0

i5
00

_1
0

i5
00

_2
0

i5
00

_3
0

i7
50

_1
0

i7
50

_2
0

i7
50

_3
0

i7
50

_5
0

i1
00

0_
10

i1
00

0_
20

i1
00

0_
30

i1
00

0_
50

i1
00

0_
10

0

-3.0

-2.0

-1.0

0.0

1.0

Di
st

an
ce

 %

Memetic Hybrid (MAHYB) vs. Hybrid-Exact Local Search (HELS)

Figure 9. The HELS approach compared with the best-known results derived from the MAHYB

approach in [6].

10.3. Discussion

Figure 10 includes three graphs showing the cost of solutions during the allotted
execution time. We can see that the costs start from very high values and sharply fall to
smaller values, not very far from the final ones. The long tails of the graphs indicate that
less time is needed for achieving good quality schedules than the 3.5× n seconds (n is the
number of jobs) that we have used in our experiments. This is further demonstrated by the
values of CPO+ and HELS in Tables 4 and 5, with the first ones being close to the second.
In particular, for the set of all 190 problem instances, the percentage distance of CPO+ to
HELS has a mean equal to 0.077 and a standard deviation equal to 0.069.

Regarding comparing our approach with the one by Mencia et al. [6], we can make
a few remarks. First, Mencia et al. do not report in their papers the exact values that

Algorithms 2022, 15, 450 17 of 18

their approaches returned; instead, they compare their results to their other less efficient
approaches. So, we retrieved the values we use in our comparisons from the site [8] that
the authors reference in their paper. Providing exact values alongside solution files that
other researchers can download from our repository [26] may attract more interest to the
problem. Since the run-time environments used in our case and in Mencia et al.’s case
are different, we focus mainly on whether each approach can find the best possible result,
given that limited processing power is exploited in both cases. Furthermore, in our case,
Figure 10 clearly shows a trend observed in other problem instances: our approach reaches
results very close to the final results using only about 1/5 of the allotted execution time.

0 100 200 300 400
t (s)

0

10,000

20,000

30,000

40,000

50,000

Ob
je

ct
iv

e

i120_3_1

0 250 500 750 1,000 1,250 1,500 1,750
t (s)

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

Ob
je

ct
iv

e

i500_10_1

0 500 1,000 1,500 2,000 2,500 3,000 3,500
t (s)

0

100,000

200,000

300,000

400,000

500,000

600,000

Ob
je

ct
iv

e

i1000_10_1

Figure 10. Cost values during the execution time using the HELS approach.

11. Conclusions

In this manuscript, we examined an abstraction of a real-world electrical vehicle
charging scheduling problem that comes with a public dataset and high-quality published
solutions. This problem involves a number of jobs with given durations and due times that
should be scheduled to a single machine with time-dependent capacity, while the objective
is the minimization of the aggregated tardiness of all jobs. We proposed some novel ideas,
such as the due times rule, local improvement procedures, and problem decompositions.
The result was that we managed to achieve better solutions for many problem instances of
the already excellent solved dataset. A central component of the proposed approach, which
we call the hybrid exact–local search (HELS) approach, is a constraint programming model
that utilizes interval variables and global constraints and that is initially called for the full
problem and then iteratively for subproblems that stochastically drive the objective to more
favorable values. Three improvement procedures are embedded in our HELS approach that
perform local searches and succeed in further improving solutions. Our work demonstrates
an example of a general tendency. Challenging combinatorial problems increasingly fall
into the realm of exact solvers, which are nowadays capable of solving problems of big sizes.
If this is not possible for the full problem, hybrid approaches that combine exact solvers
over subproblems and approximate solvers can be combined to decompose the problem in
a process that results in complete, high-quality solutions.

Author Contributions: Conceptualization, C.G. and C.V.; methodology, C.V.; software, C.G., C.V.,
and A.D.; validation, C.V., A.D., and P.P.; formal analysis, P.P.; investigation, A.D. and C.G.; resources,
A.V.; data curation, A.V.; writing—original draft preparation, A.D. and C.G.; writing—review and
editing, C.G., C.V., and A.D.; visualization, A.V.; supervision, C.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Problem instances and all solution files using our hybrid exact–local
search approach are archived in [26].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pinedo, M.L. Scheduling; Springer: Berlin/Heidelberg, Germany, 2012; Volume 29.
2. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.

Algorithms 2022, 15, 450 18 of 18

3. Scheduling Zoo. Available online: http://schedulingzoo.lip6.fr/ (accessed on 21 November 2022).
4. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Genetic algorithm for scheduling charging times of electric vehicles subject to

time dependent power availability. In Proceedings of the International Work-Conference on the Interplay between Natural and
Artificial Computation, Corunna, Spain, 19–23 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 160–169.

5. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Evolutionary one-machine scheduling in the context of electric vehicles charging.
Integr.-Comput.-Aided Eng. 2019, 26, 49–63. [CrossRef]

6. Mencía, R.; Mencía, C. One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms. Mathematics
2021, 9, 3030. [CrossRef]

7. Koulamas, C. The single-machine total tardiness scheduling problem: Review and extensions. Eur. J. Oper. Res. 2010, 202, 1–7.
[CrossRef]

8. GitHub Repository for “One Machine Scheduling with Time Dependent Capacity via Efficient Memetic Algorithms” by Mencia R.
Available online: https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-
Memetic-Algorithms (accessed on 21 November 2022).

9. Hernández-Arauzo, A.; Puente, J.; Varela, R.; Sedano, J. Electric vehicle charging under power and balance constraints as dynamic
scheduling. Comput. Ind. Eng. 2015, 85, 306–315. [CrossRef]

10. Lenstra, J.K.; Kan, A.R.; Brucker, P. Complexity of machine scheduling problems. In Annals of Discrete Mathematics; Elsevier:
Amsterdam, The Netherlands, 1977; Volume 1, pp. 343–362.

11. Gupta, S.K.; Kyparisis, J. Single machine scheduling research. Omega 1987, 15, 207–227. [CrossRef]
12. Gogos, C.; Valouxis, C.; Alefragis, P.; Goulas, G.; Voros, N.; Housos, E. Scheduling independent tasks on heterogeneous processors

using heuristics and Column Pricing. Future Gener. Comput. Syst. 2016, 60, 48–66. [CrossRef]
13. Baptiste, P.; Le Pape, C.; Nuijten, W. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems;

Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 39.
14. Großmann, P.; Hölldobler, S.; Manthey, N.; Nachtigall, K.; Opitz, J.; Steinke, P. Solving periodic event scheduling problems with

SAT. In Proceedings of the International Conference on Industrial, Engineering and other Applications of Applied Intelligent
Systems, Dalian, China, 9–12 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 166–175.

15. Ansótegui, C.; Bofill, M.; Palahí, M.; Suy, J.; Villaret, M. Satisfiability modulo theories: An efficient approach for the resource-
constrained project scheduling problem. In Proceedings of the Ninth Symposium of Abstraction, Reformulation, and Approxima-
tion, Parador de Cardona, Spain, 17–18 July 2011.

16. Brucker, P.; Knust, S.; Schoo, A.; Thiele, O. A branch and bound algorithm for the resource-constrained project scheduling
problem. Eur. J. Oper. Res. 1998, 107, 272–288. [CrossRef]

17. Vaessens, R.J.M.; Aarts, E.H.; Lenstra, J.K. Job shop scheduling by local search. Informs J. Comput. 1996, 8, 302–317. [CrossRef]
18. Matsuo, H.; Juck Suh, C.; Sullivan, R.S. A controlled search simulated annealing method for the single machine weighted tardiness

problem. Ann. Oper. Res. 1989, 21, 85–108. [CrossRef]
19. Lee, K.M.; Yamakawa, T.; Lee, K.M. A genetic algorithm for general machine scheduling problems. In Proceedings of the 1998

Second International Conference Knowledge-Based Intelligent Electronic Systems, Proceedings KES’98 (Cat. No. 98EX111),
Adelaide, Australia, 21–23 April 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 2, pp. 60–66.

20. Gil-Gala, F.J.; Mencía, C.; Sierra, M.R.; Varela, R. Evolving priority rules for on-line scheduling of jobs on a single machine with
variable capacity over time. Appl. Soft Comput. 2019, 85, 105782. [CrossRef]

21. França, P.M.; Mendes, A.; Moscato, P. A memetic algorithm for the total tardiness single machine scheduling problem. Eur. J.
Oper. Res. 2001, 132, 224–242. [CrossRef]

22. Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 2019,
82, 155–165. [CrossRef]

23. Merkle, D.; Middendorf, M. Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl.
Intell. 2003, 18, 105–111. [CrossRef]

24. Lin, T.L.; Horng, S.J.; Kao, T.W.; Chen, Y.H.; Run, R.S.; Chen, R.J.; Lai, J.L.; Kuo, I.H. An efficient job-shop scheduling algorithm
based on particle swarm optimization. Expert Syst. Appl. 2010, 37, 2629–2636. [CrossRef]

25. Yuce, B.; Fruggiero, F.; Packianather, M.S.; Pham, D.T.; Mastrocinque, E.; Lambiase, A.; Fera, M. Hybrid Genetic Bees Algorithm
applied to single machine scheduling with earliness and tardiness penalties. Comput. Ind. Eng. 2017, 113, 842–858. [CrossRef]

26. GitHub Repository for “A Hybrid Exact-Local Search Approach for One-Machine Scheduling with Time-Dependent Capacity” by
Gogos C. Available online: https://github.com/chgogos/1MSTDC (accessed on 21 November 2022).

27. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP optimizer for scheduling. Constraints 2018, 23, 210–250. [CrossRef]
28. Google OR Tools CP-SAT Solver. Available online: https://developers.google.com/optimization/cp/cp_solver (accessed on 21

November 2022).

http://schedulingzoo.lip6.fr/
http://doi.org/10.3233/ICA-180582
http://dx.doi.org/10.3390/math9233030
http://dx.doi.org/10.1016/j.ejor.2009.04.007
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms
http://dx.doi.org/10.1016/j.cie.2015.04.002
http://dx.doi.org/10.1016/0305-0483(87)90071-5
http://dx.doi.org/10.1016/j.future.2016.01.016
http://dx.doi.org/10.1016/S0377-2217(97)00335-4
http://dx.doi.org/10.1287/ijoc.8.3.302
http://dx.doi.org/10.1007/BF02022094
http://dx.doi.org/10.1016/j.asoc.2019.105782
http://dx.doi.org/10.1016/S0377-2217(00)00140-5
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1023/A:1020999407672
http://dx.doi.org/10.1016/j.eswa.2009.08.015
http://dx.doi.org/10.1016/j.cie.2017.07.018
https://github.com/chgogos/1MSTDC
http://dx.doi.org/10.1007/s10601-018-9281-x
https://developers.google.com/optimization/cp/cp_solver

	Introduction
	Problem Description
	Dataset
	Related Work
	C-Paths
	Due Times Rule
	Formulation and Implementation
	Local Search Improvement Procedures
	Local Search Improve1
	Local Search Improve2
	Local Search Improve3

	A Multi-Staged Approach
	Results
	CPO vs. CPO+
	Hybrid Exact–Local Search
	Discussion

	Conclusions
	References

