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Abstract: We introduce the concept of a k-dimensional matrix product D of k matrices A1, . . . , Ak

of sizes n1 × n, . . . , nk × n, respectively, where D[i1, . . . , ik] is equal to ∑n
`=1 A1[i1, `]× . . . × Ak[ik, `].

We provide upper bounds on the time complexity of computing the product and solving related
problems of computing witnesses and maximum witnesses of the Boolean version of the product
in terms of the time complexity of rectangular matrix multiplication. The multi-dimensional matrix
product framework is useful in the design of parameterized graph algorithms. First, we apply our
results on the multi-dimensional matrix product to the fundamental problem of detecting/counting
copies of a fixed pattern graph in a host graph. The recent progress on this problem has not included
complete pattern graphs, i.e., cliques (and their complements, i.e., edge-free pattern graphs, in the
induced setting). The fastest algorithms for the aforementioned patterns are based on a reduction to
triangle detection/counting. We provide an alternative simple method of detection/counting copies
of fixed size cliques based on the multi-dimensional matrix product. It is at least as time efficient as
the triangle method in cases of K4 and K5. Next, we show an immediate reduction of the k-dominating
set problem to the multi-dimensional matrix product. It implies the W[2] hardness of the problem
of computing the k-dimensional Boolean matrix product. Finally, we provide an efficient reduction
of the problem of finding the lowest common ancestors for all k-tuples of vertices in a directed
acyclic graph to the problem of finding witnesses of the Boolean variant of the multi-dimensional
matrix product. Although the time complexities of the algorithms resulting from the aforementioned
reductions solely match those of the known algorithms, the advantage of our algorithms is simplicity.
Our algorithms also demonstrate the versatility of the multi-dimensional matrix product framework.

Keywords: subgraph isomorphism; clique; lowest common ancestor; time complexity

1. Introduction

Matrix multiplication over various rings or semi-rings is a basic tool in science and
engineering. By the definition, the matrix product of two n × n matrices can be easily
computed using O(n3) additions and multiplications over the respective ring or semi-
ring. This is optimal in the arithmetic case and the Boolean case if, respectively, only the
operations of arithmetic addition and multiplication or the Boolean OR and AND are
allowed [1,2]. Five decades ago, Strassen presented a divide-and-conquer algorithm for
arithmetic matrix multiplication based on algebraic term cancellation, breaking out of the
O(n3) method. It used only O(n2.8074) multiplications, additions and subtractions [3].
The complexity of matrix multiplication is measured in terms of ω which is the smallest
real number such that two n× n matrices can be multiplied using O(nω+ε) operations over
the field of reals, for all ε > 0 (i.e., the number of operations is O(nω+o(1)) [4]. The series of
improvements of the upper bounds on ω starting from ω < 2.8074 culminates in the recent
result of Alman and Vassilevska Williams showing ω < 2.3729 [4]. By a straightforward
reduction of the Boolean matrix product to the corresponding arithmetic one for 0− 1
matrices, the same asymptotic upper bounds hold for the Boolean matrix product.
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We generalize the concept of matrix product of two matrices over a ring or semi-
ring to include that of a k-dimensional matrix product D of k matrices A1, . . . , Ak, of sizes
n1 × n, . . . , nk × n, respectively, where D[i1, . . . , ik] = ∑n

`=1 A1[i1, `]× . . . × Ak[ik, `]. Note
that the two-dimensional product of the matrices A1 and A2 is equivalent to the standard
matrix product of A1 and the transpose (A2)

T of the matrix A2. For k ≥ 2, we define
ωk(1, r) as the smallest real number such that the k-dimensional arithmetic product of
k n× nr matrices can be computed using O(nωk(1,r)+ε) operations over the field of reals,
for all ε > 0. We show that ωk(1, r) does not exceed ω(dk/2e, r, bk/2c), where ω(p, q, r)
stands for the smallest real number such that an np× nq matrix can be multiplied by nq× nr

matrix using O(nω(p,q,r)+ε) operations over the field of reals for all ε > 0.
If A and B are two Boolean matrices and C is their Boolean matrix product, then for

any entry C[i, j] = 1 of C, a witness is an index m such that A[i, m] ∧ B[m, j] = 1. The
smallest (or, largest) possible witness is called the minimum witness (or, maximum witness,
respectively).

The problems of finding “witnesses” have been studied for several decades, mostly
within stringology (e.g., algorithms for symbol matches or mismatches [5,6]) and graph
algorithms (e.g., algorithms for shortest paths [7,8]). More recently, the problems of find-
ing extreme (i.e., minimum or maximum) witnesses have found numerous applications
(e.g., algorithms for all-pairs lowest common ancestors [9] or all-pairs bottleneck weight
path problem [10]). Alon and Naour showed that the witness problem for the Boolean
matrix product of two Boolean matrices, i.e., the problem of reporting a witness for each
non-zero entry of the product, to be solvable in time required to compute the product up to
polylogarithmic multiplicative factors [11]. (By the time complexity of an algorithm, we
mean the number of operations performed by the algorithm in the unit cost random access
machine model, which is expressed as a function of an input size parameter. Note that
when the inputs to the aforementioned operations are integers of size polynomial in the
input size, then the number of required bit operations is larger than that of unit cost opera-
tions only by a polylogarithmic factor.) Czumaj et al. showed that the maximum witness
problem, i.e., the problem of reporting the maximum witness for each non-zero entry of
the Boolean matrix product of two n× n Boolean matrices, was solvable in O(n2+λ+o(1))
time [9], where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ.

We also generalize the concept of a witness for a non-zero entry of the Boolean
matrix product of two Boolean matrices to include a witness for a non-zero entry of the k-
dimensional Boolean product of k Boolean matrices. For a non-zero entry D[i1, . . . , ik]
of the k-dimensional Boolean product of k Boolean matrices A1, . . . , Ak, of sizes n1 ×
n, . . . , nk × n, respectively, a witness is any index ` such that

∧k
j=1 Aj[ij, `] = 1. The witness

problem for the k-dimensional Boolean matrix product D is to report a witness for each
non-zero entry of D and analogously, the maximum witness problem for D is to report
the maximum witness for each non-zero entry of D. We show that for n × n matrices
A1, . . . , Ak, the witness problem for their k-dimensional Boolean product can be solved
in O(nω(dk/2e,1,bk/2c)+o(1)) time, while the maximum witness problem for this product
admits a solution in O(nk+λ+o(1)) = O(nk+λ′+o(1)) time, where λ satisfies the equation
ωk(1, λ) = k − 1 + 2λ and λ′ satisfies the equation ω(dk/2e, λ′, bk/2c) = k − 1 + 2λ′.
By the recent results on rectangular matrix multiplication, the latter bound for k = 2 is
O(n2.529).

In the second part of our paper, we provide an alternative simple method of detec-
tion/counting copies of fixed size cliques based on the multi-dimensional matrix product.
We show also an immediate reduction of the k-dominating set problem to the multi-
dimensional matrix product implying the W[2] hardness of computing the product. Finally,
we provide an efficient reduction of the problem of finding lowest common ancestors for
all k-tuples of vertices in a directed acyclic graph to the problem of finding maximum wit-
nesses of the Boolean variant of the multi-dimensional matrix product. These applications
demonstrate the versatility of the multi-dimensional matrix product. Although the time
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complexities of the algorithms resulting from the aforementioned reductions solely match
those of the known algorithms, the advantage of our algorithms is simplicity.

1.1. Clique Detection

Our first application of the multi-dimensional matrix product provides a simple
alternative method for clique detection.

The problems of detecting, finding, counting or listing subgraphs or induced sub-
graphs of a host graph that are isomorphic to a pattern graph are central in graph algorithms.
They are generally termed as subgraph isomorphism and induced subgraph isomorphism, re-
spectively. Several well-known NP-hard problems such as the independent set, clique,
Hamiltonian cycle or Hamiltonian path can be regarded as their special cases.

Recent examples of applications of different variants of subgraph isomorphism include
among other things [12,13]: a comparison of bio-molecular networks by their so-called mo-
tifs [14], an analysis of social networks by counting the number of copies of a small pattern
graph [15], graph-matching constraints in the automatic design of processor systems [16],
and the detection of communication patterns between intruders in network security [17].
In the aforementioned applications, the pattern graphs are typically of fixed size which
allows for polynomial-time solutions.

At the beginning of the 1980s, Itai and Rodeh [18] presented the following straight-
forward reduction of not only triangle detection but also triangle counting to fast matrix
multiplication. Let A be the 0− 1 adjacency matrix of the host graph G on n vertices (see Pre-
liminaries). Consider the matrix product C = A× A. Note that C[i, j] = ∑n

l=1 A[i, l]A[l, j] is
equal to the number of two-edge paths connecting the vertices i and j. Hence, if {i, j} is an
edge of G, then C[i, j] is the number of triangles in G including the edge {i, j}. Consequently,
the number of triangles in an n-vertex graph can be reported in O(nω+o(1)) time.

A few years later, Necetril and Poljak [19] showed an efficient reduction of detecting
and counting copies of any pattern graph both in the standard and induced case to the
aforementioned method for triangle detection and counting. The idea is to divide the
pattern graph into three almost equal parts and to build an auxiliary graph on copies
of subgraphs isomorphic to one of three parts. Then, the triangle detection/counting
method is run on the auxiliary graph. Two decades later, Eisenbrand and Grandoni [20]
(cf. [21]) refined this general triangle method by using fast algorithms for rectangular matrix
multiplication instead of those for square matrix multiplication. For a pattern graph on
r ≥ 3 vertices and a host graph on n vertices, the (refined) general triangle method runs in
time O(nω(br/3c,d(r−1)/3e,dr/3e)+o(1)) [19–21].

Up to now, the general triangle method remains the fastest known universal method
for the detection and counting standard and induced copies of fixed pattern graphs. In the
recent two decades, there has been a real progress in the design of efficient algorithms
for the detection and even counting of fixed pattern graphs both in the standard [12,22]
and induced case [12,13,23–25]. Among other things, the progress has been based on
the use of equations between the numbers of copies of different fixed patterns in the host
graph [13,21,22,24] and randomization [12,13,24]. Unfortunately, this progress has not
included complete pattern graphs, i.e., Kr graphs (and their complements, i.e., edge-free pat-
tern graphs in the induced setting). For the aforementioned pattern graphs, the generalized
triangle method remains the fastest known one.

In this paper, we consider another universal and simple method that in fact can be
viewed as another type of generalization of the classic algorithm for triangle detection
and counting due to Itai and Rodeh. We can rephrase the description of their algorithm
as follows. At the beginning, we form a list of subgraphs isomorphic to K2 (i.e., edges),
and then for each subgraph on the list, we count the number of vertices outside it that are
adjacent to both vertices of the subgraph; in other words, we count the number of extensions
of the subgraph to a clique on three vertices. The latter task can be completed efficiently by
squaring the adjacency matrix of the host graph. We can generalize the algorithm to include
detection/counting Kr copies, r ≥ 3, by replacing K2 with Kr−1 and using the (r − 1)-
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dimensional matrix product of r − 1 copies of the adjacency matrix instead of squaring
the matrix. Listing the subgraphs of the host graph isomorphic to Kr−1 can be completed
by enumerating (r − 1) vertex subsets and checking if they induce Kr−1. For r = O(1),
it takes O(nr−1) time, so the overall time required by this simple alternative method is
O(nr−1 + nωr−1+o(1)), where ωk is the smallest real number such that the k-dimensional
matrix product of k n × n matrices can be computed using O(nωk+ε) operations over
the field of reals, for all ε > 0 (see Definition 1 in Section 3). Recall that we show in
particular ωk ≤ ω(dk/2e, 1, bk/2c). Hence, our alternative method in particular computes
the number of K4 copies in an n-vertex graph in O(nω(2,1,1)+o(1)) time and the number of
K5 copies in O(nω(2,1,2)+o(1)) time. In addition, if the input graph contains a copy of K4
or K5, respectively, then a copy of K4 can be found in the graph in O(nω(2,1,1)+o(1)) time
while that of K5 can be found in the graph in O(nω(2,1,2)+o(1)) time by a slightly modified
alternative method. Thus, our upper time bounds for K4 and K5 at least match those for
K4 and K5 yielded by the generalized triangle method [20]. If ωk < ω(dk/2e, 1, bk/2c) for
k equal to 3 or 4, then we would achieve a breakthrough in the detection/counting of K4
or K5, respectively. For Kr, where r ≥ 6, the generalized triangle method asymptotically
subsumes our alternative method and for K3, the methods coincide.

1.2. Small Dominating Sets

Our second application of the multi-dimensional matrix product is an immediate
reduction of the k-dominating set problem to the k-dimensional matrix product. It rephrases
the known algorithm for the aforementioned problem due to Eisenbrand and Grandoni [20]
(cf. [26]). The k-dominating set problem for a graph G and a fixed natural number k is to
determine if there is a set S of at most k vertices in G such that each vertex in G outside S is
adjacent to at least one vertex in S. It is a basic W[2] complete problem equivalent to the
k-set cover problem asking if there is a set cover of cardinality at most k [27].

1.3. Finding Lowest Common Ancestors

Our third application of the multi-dimensional matrix product provides a simple
generalization of known results on finding the lowest common ancestors for all pairs of
vertices to include all k-tuples of vertices for fixed k ≥ 2.

The problem of finding a lowest common ancestor (LCA) for sets of vertices in a tree,
or more generally, in a directed acyclic graph (DAG) is a basic problem in algorithmic graph
theory. It has several applications ranging from algorithm design through object-oriented
programming languages [28] to phylogenetic networks [29]. An LCA of a set S of vertices
in a DAG is an ancestor of all vertices in S that has no proper descendant which is an
ancestor of all vertices in S [30]. The problem of preprocessing a DAG such that LCA
queries can be answered quickly for any pair of vertices has been studied extensively in the
literature [9,31–33]. The all-pairs LCA problem is to compute LCA for all pairs of vertices in
the input tree or DAG. For trees, it can be solved in linear time [34]. For DAGs, Bender et al.
were the first to provide a substantially subcubic algorithm for this problem [35]. Czu-
maj et al. improved their upper bound to O(n2.575) by a reduction to the problem of finding
maximum witnesses for the Boolean matrix product of two n × n Boolean matrices [9].
Taking into account the recent progress in fast rectangular matrix multiplication, the latter
bound reduces to O(n2.529). Very recently, Grandoni et al. have presented an Õ(n2.447)-time
algorithm for the all pairs LCA problem [33].

The problem of finding LCAs for vertex sets of size greater than two is natural, e.g., in
a genealogy search in phylogenetic networks [29]. Yuster generalized the all-pairs LCA
problem in DAGs to include finding lowest common ancestors for all k-tuples of vertices [36]
(cf. [37]). We term the generalized problem as the all k-tuples LCA problem.

We provide a simple reduction of the all k-tuples LCA problem to the maximum
witness problem for the k-dimensional Boolean matrix product of k copies of the transitive
closure matrix of the input DAG. As a result, we obtain upper time bounds for the all
k-tuples LCA problem matching those established by Yuster in [36] and Kowaluk et al.
in [37].
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1.4. Paper Organization

In the next section, the basic matrix and graph notation used in the paper is presented.
Section 3 is devoted to the k-dimensional matrix product of k matrices, in particular the
upper time bounds on the product and the related problems of computing witnesses and
maximum witnesses for the Boolean version of the product in terms of those for fast rectan-
gular matrix multiplication. In Section 4, the alternative method for detection/counting
copies of fixed cliques in a host graph relying on the multi-dimensional matrix product
is presented and analyzed. In Section 5, the immediate reduction of the k-dominating set
problem to the k-dimensional matrix product is given. In Section 6, the application of the
results from Section 3 to the all k-tuples LCA problem is presented. We conclude with
final remarks.

2. Preliminaries

For a positive integer r, we shall denote the set of positive integers not greater than r
by [r].

For a matrix D, DT denotes its transpose. Recall that for positive real numbers p, q, s,
ω(p, q, s) denotes the smallest real number such that an np × nq matrix can be multiplied
by nq × ns matrix using O(nω(p,q,s)+ε) operations over the field of reals for all ε > 0. For
convenience, ω stands for ω(1, 1, 1).

Let α stand for sup{0 ≤ q ≤ 1 : ω(1, q, 1) = 2 + o(1)}. The following recent lower
bound on α is due to Le Gall and Urrutia [38].

Fact 1. The inequality α > 0.31389 holds [38].

Recall also that a witness for a non-zero entry C[i, j] of the Boolean matrix product C of
a Boolean p× q matrix A and a Boolean q× s matrix B is any index ` ∈ [q] such that A[i, `]
and B[`, j] are equal to 1. The witness problem is to report a witness for each non-zero entry
of the Boolean matrix product of the two input Boolean matrices.

Alon and Naor provided a solution to the witness problem for the Boolean matrix
product of two square Boolean matrices [11] which is almost equally fast as that for square
matrix multiplication [4]. It can be easily generalized to include the Boolean product of two
rectangular Boolean matrices of sizes np × nq and nq × ns, respectively. The asymptotic
matrix multiplication time nω+o(1) is replaced by nω(p,q,s)+o(1) in the generalization.

Fact 2. For positive p, q, s, the witness problem for the Boolean matrix product of an np× nq Boolean
matrix with an nq × ns Boolean matrix can be solved (deterministically) in O(nω(p,q,s)+o(1)) time.

A directed acyclic graph (DAG) is a directed graph not containing directed cycles.
A vertex v is an ancestor (proper ancestor) of a vertex u in a DAG if there is a directed path
(directed path of non-zero length, respectively) from u to v. A vertex u is a descendant
(proper descendant) of a vertex v in a DAG if v is an ancestor (proper ancestor) of u in the
DAG. Recall that a lowest common ancestor (LCA) of a set of vertices in a DAG is a vertex
that is an ancestor of all vertices in the set but none of its proper descendants is also an
ancestor of all vertices in the set.

We shall consider also simple undirected graphs.
A subgraph of the graph G = (V, E) is a graph H = (VH , EH) such that VH ⊆ V and

EH ⊆ E.
An induced subgraph of the graph G = (V, E) is a graph H = (VH , EH) such that

VH ⊆ V and EH = E ∩ (VH × VH). A subgraph of G induced by S ⊆ V is a graph
F = (VF, EF) such that VF = S and EF = E ∩ (S× S). It is denoted by G[S].

For simplicity, we shall refer to a subgraph of a graph G that is isomorphic to Kr as a
copy of Kr in G or just a Kr copy in G.

The adjacency matrix A of a graph G = (V, E) is the 0 − 1 n × n matrix such that
n = |V| and for 1 ≤ i, j ≤ n, A[i, j] = 1 if and only if {i, j} ∈ E.
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3. Multi-Dimensional Matrix Product and Its Witnesses

For the convenience of the reader, we gather all the definitions related to the multi-
dimensional matrix product, repeating some of them, below.

Definition 1. For k nq × n matrices Aq, q = 1, . . . , k, (arithmetic or Boolean, respectively), their
k-dimensional (arithmetic or Boolean, respectively) matrix product D is defined by

D[i1, i2, . . . , ik] =
n

∑
`=1

A1[i1, `]× A2[i2, `]× . . . × Ak[ik, `] or

D[i1, i2, . . . , ik] =
n∨

`=1

A1[i1, `] ∧ A2[i2, `] ∧ . . . ∧ Ak[ik, `],

respectively, where iq ∈ [nq] for q = 1, . . . , k. In the arithmetic case, ωk(r1, r2) denotes the smallest
real number such that the k-dimensional arithmetic product of k nr1 × nr2 matrices can be computed
using O(nωk(1,r)+ε) operations over the field of reals, for all ε > 0. For convenience, ωk stands
for ωk(1, 1). In the Boolean case, the corresponding numbers are denoted by ωB

k (r1, r2) and ωB
k ,

respectively. Clearly, we have ωB
k (r1, r2) ≤ ωk(r1, r2) and ωB

k ≤ ωk.
A witness for a non-zero entry D[i1, i2, . . . , ik] of the k-dimensional Boolean matrix product is any
index ` ∈ [n] such that A1[i1, `] ∧ A2[i2, `] ∧ . . . ∧ Ak[ik, `] is equal to (Boolean) 1. The witness
problem for the k-dimensional Boolean matrix product is to report a witness for each non-zero entry
of the product. The maximum witness problem for the k-dimensional Boolean matrix product is to
report the maximum witness for each non-zero entry of the product.

Note that in particular, the two-dimensional matrix product of the matrices A1 and A2
coincides with the standard matrix product of A1 and (A2)

T which yields ω2 = ω.
The following lemma provides an upper bound on the time complexity of the multi-

dimensional matrix product in terms of those for rectangular matrix multiplication.

Lemma 1. Let k, k1, k2 be three positive integers such that k = k1 + k2. Both in the arith-
metic and Boolean case, the k-dimensional matrix product of k n× nr matrices can be computed
using O(nω(k1,r,k2)+o(1)) arithmetic operations, consequently ωk ≤ ω(k1, 1, k2). In addition,
in the Boolean case, the witness problem for the k-dimensional matrix product can be solved in
O(nω(k1,r,k2)+o(1)) time.

Proof. To prove the first part, it is sufficient to consider the arithmetic case as the Boolean
one trivially reduces to it.

Let A1, . . . , Ak be the input matrices. Form an nk1 × nr matrix A whose rows are
indexed by k1-tuples of indices in [n] and whose columns are indexed by indices in [nr]
such that A[i1,. . . ,ik1 , `] = A1[i1, `]× . . . × Ak1 [ik1 , `]. Similarly, form an nk2 × nr matrix B
whose rows are indexed by k2-tuples of indices in [n] and whose columns are indexed
by indices in [nr] such that B[j1,. . . ,jk2 , `] = Ak1+1[j1, `] × . . . × Ak[jk2 , `]. Compute the
rectangular matrix product C of the matrix A with the matrix BT . By the definitions,
the D[i1, . . . , ik1 , ik1+1, . . . , ik] entry of the k-dimensional product of the input matrices
A1, . . . , Ak is equal to the entry C[i1,. . . ,ik1 , ik1+1,. . . ,ik]. The matrices A, B can be formed in
O(nk1+r + nk2+r) time, i.e., O(nmax(k1+r,k2+r)) time, while the product C can be computed
in O(nω(k1,r,k2)+o(1)) time.

To prove the second part of the lemma, it is sufficient to consider Boolean versions of
the matrices A, B, C and use Fact 2.

By combining Lemma 1 with Fact 1, we obtain the following corollary.

Corollary 1. For even k ≥ 8, ωk = k + o(1).
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Proof. We obtain the following chain of equations on the asymptotic time required by the
k-dimensional matrix product using Lemma 1 and Fact 1:

nω(k/2,1,k/2)+o(1) = (nk/2)ω(1,2/k,1)+o(1) = (nk/2)2+o(1) = nk+o(1).

Consider the Boolean case. By the definition, the k-dimensional Boolean matrix
product can be computed in time proportional to the size of the product multiplied by the
size of witness range. By generalizing the column–row method for the Boolean matrix
product of two Boolean matrices, we obtain an output-sensitive upper bound on the time
required to compute the k-dimensional Boolean matrix product.

Theorem 1. Suppose k ≥ 2 and k = O(1). Let w be the total number of witnesses for the entries of
the k-dimensional Boolean product of k n× n Boolean matrices. The non-zero entries of the product
can be listed in O(n2 + w) time. Consequently, they can be listed in O(n2 + sn) time, where s is
the number of non-zero entries in the product.

Proof. Let D stand for the k-dimensional Boolean matrix product. For m = 1, . . . , k, ` =
1, . . . , n, compute the set Sm(`) of indices i such that Am[i, `] = 1. Next, for ` = 1, . . . , n,
compute the Cartesian product S(`) = S1(`)× . . . × Sk(`). Note that S(`) coincides with
the set of k-tuples i1, . . . , ik such that ` is a witness for D[i1, . . . , ik].

Assuming k = O(1), we can compute the sets Sm(`) in O(n2) time. The sets S(`) can
be computed in O(w + n) time. On their basis, the non-negative entries of the product D
can be listed in O(w) time. This proves the first part. The second part follows immediately
from the fact that a non-zero entry of D can have at most n witnesses.

The best known algorithm for the maximum witness problem for the two-dimensional
Boolean matrix product from [9] relies on the multiplication of rectangular submatrices of
the input matrices. We generalize this idea to include the maximum witness problem for
the k-dimensional Boolean matrix product.

First, each of the input matrices is divided into vertical strip submatrices of an appro-
priate width ≤ `. Then, the multi-dimensional Boolean products of the corresponding sub-
matrices are computed in order to detect, for each positive entry of the multi-dimensional
output matrix, the interval of length≤ ` containing the maximum witness. Finally, the max-
imum witnesses are found separately for each of the positive entries by verifying the
respective ≤ ` candidates. More details can be found in the following pseudo-code (in
Algorithm 1).

Algorithm 1 Generalize the multiplication of rectangular submatrices of the input matrices
to include the maximum witness problem for the k-dimensional Boolean matrix product.
Input: Boolean n× n matrices Ai, i ∈ [k], and a parameter ` ∈ [n].
Output: maximum witnesses for all non-zero entries of the k-dimensional Boolean product

of the matrices A1, . . . , Ak and “No” for all zero entries of the product.

1. For i ∈ [k], divide Ai into dn/`e vertical strip submatrices A1
i , . . . , Adn/`e

i of width `
with the exception of the last one that can have width ≤ `.

2. for p ∈ [dn/`e] compute the k-dimensional Boolean product Bp of Ap
1 , . . . , Ap

k
3. for all i1, . . . , ik ∈ [n] do

(a) Find the largest p such that Bp[i1, . . . , ik] = 1 or set p = 0 if it does not exist.
(b) if p > 0 then return `(p − 1) + max{r ∈ [`(p − 1) + 1, `p]|Ap

1 [i1, r] ∧ . . . ∧
Ap

k [ik, r] = 1} else return “No”

The correctness of Algorithm 1 is obvious. By its time analysis and Lemma 1, we
obtain the following theorem.
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Theorem 2. Suppose k ≥ 2 and k = O(1). For any ` ∈ [n], the maximum witness problem for the
k-dimensional Boolean product of k Boolean n× n matrices can be solved by Algorithm 1 in time
O((n/`)nωk(1,logn `)+o(1) + nk+1/`+ nk`) ≤ O((n/`)nω(dk/2e,logn `,bk/2c)+o(1) + nk+1/`+ nk`).

Proof. Step 1 takes O(n2) time. Step 2 requires O((n/`)nωk(1,logn `)+o(1)) time. Step 3(a)
takes O(nk × n/`) time totally. Finally, Step 3(b) requires O(nk`) time totally.

By Theorem 2, the total time taken by Algorithm 1 for maximum witnesses is

O((n/`) · nωk(1,logn `)+o(1) + nk+1/`+ nk `).

By setting r to logn `, our upper bound transforms to O(n1−r+ωk(1,r)+o(1) + nk+1−r +
nk+r). Since a solution λ to the equation 1 − r + ωk(1, r) = k + r satisfies λ ≥ 1

2 by
ωk(1, λ) ≥ k, we can get rid of the additive nk+1−r term. In addition, it follows from
ωk(1, λ) ≤ ω(dk/2e, λ, bk/2c) that λ ≤ λ′, where λ′ satisfies ω(dk/2e, λ′, bk/2c) = k− 1 +
2λ′. Hence, we obtain the following result.

Theorem 3. Let λ satisfy ωk(1, λ) = k − 1 + 2λ and let λ′ satisfy ω(dk/2e, λ′, bk/2c) =
k− 1 + 2λ′, respectively. Suppose k = O(1). The maximum witnesses for all non-zero entries of
the k-dimensional Boolean product of k n× n Boolean matrices can be computed by Algorithm 1 in
O(nk+λ+o(1)) = O(nk+λ′+o(1)) time.

4. Breaking the Hegemony of the Triangle Method in Clique Detection

The following Algorithm 2 is a straightforward generalization of that due to Itai and
Rodeh for triangle counting [18] to include Kr counting, for r ≥ 3.

Algorithm 2 A straightforward generalization of that due to Itai and Rodeh for triangle
counting [18] to include Kr counting, for r ≥ 3.

1. form a list L of all Kr−1 copies in G
2. t← 0
3. for each C ∈ L do

increase t by the number of vertices in G that are adjacent to all vertices of C
4. return t/r

The correctness of Algorithm 2 follows from the fact that the number of Kr copies
including a given copy C of Kr−1 in the host graph is equal to the number of vertices outside
C in the graph that are adjacent to all vertices in C and that a copy of Kr includes exactly r
distinct copies of Kr−1 in the graph.

The first step of Algorithm 2 can be implemented in O(nr−1) time. We can use the
(r− 1)-dimensional matrix product to implement the third step by using the next lemma.
It immediately follows from the definition of the product.

Lemma 2. Let D be the k-dimensional matrix product of k copies of the adjacency matrix of the
input graph G on n vertices. Then, for any k tuple i1, i2, . . . , ik of vertices of G, the number of
vertices in G adjacent to each vertex in the k tuple is equal to D[i1, i2, . . . , ik].

By the discussion and Lemma 2, we obtain the following theorem.

Theorem 4. The number of Kr copies in the input graph on n vertices can be computed (by
Algorithm 2) in O(nr−1 + nωr−1+o(1)) time.

By Lemma 1, we obtain the following corollary from Theorem 4, matching the upper
time bounds on the detection/counting copies of K4 and K5 established in [20].
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Corollary 2. The number of K4 copies in an n-vertex graph can be computed (by Algorithm 2) in
O(nω(2,1,1)+o(1)) time while the number of K5 copies in an n-vertex graph can be computed (by
Algorithm 2) in O(nω(2,1,2)+o(1)) time. In addition, if the input graph contains a copy of K4 or K5,
respectively, then a copy of K4 can be found in the graph in O(nω(2,1,1)+o(1)) time while that of K5
ca n be found in the graph in O(nω(2,1,2)+o(1)) time (by a modification of Algorithm 2).

5. k-Dominating Set

The problem of the k-dominating set is to determine, for a graph G and a fixed natural
number k, if there is a set S of k vertices in G such that each vertex in G either is adjacent to
at least one vertex in S or belongs to S. It is a basic W[2] complete problem equivalent to
the k-set cover [27].

Eisenbrand and Grandoni improved on the straightforward enumeration algorithm
by using fast rectangular matrix multiplication [20] (cf. [26]). Their Algorithm 3 can be
simply rephrased in terms of a k-dimensional matrix product as follows.

Algorithm 3 Improved straightforward enumeration algorithm by using fast rectangular
matrix multiplication.
Input: A graph G on n vertices and a natural number k ≥ 2.
Output: A solution to the k-dominating set problem in G.

1. Ā← the complement of the adjacency matrix of G
2. D← the k dimensional matrix product of k copies of Ā
3. if if there is a zero entry D[i1, . . . , ik] then output “Yes” else output “No”

It is easy to see that for a set S = {vi1 , . . . , vik} of k vertices in G, D[i1, . . . , ik] is just the
number of vertices that are not adjacent to (dominated by) any vertex in S. Thus, S is a
k-dominating set if D[i1, . . . , ik] = 0. Hence, assuming that n is the number of vertices in G,
we obtain the following upper bound given in [20] by a simple application of Lemma 1.

Theorem 5. Algorithm 3 solves the k-dominating set problem in O(nω(dk/2e,1,bk/2c)+o(1)) time.

The reduction of the k-dominating set problem to the k-dimensional matrix prod-
uct given in Algorithm 3 implies the W[2] hardness of the problem of computing the
k-dimensional matrix product. By Theorem 5.4 in [39], we obtain the following corollary.

Corollary 3. The problem of computing the k-dimensional Boolean matrix product is not solvable
in f (k)nO(k) time, for any function f , unless FPT = W[1].

6. All k-Tuples LCA

In this section, we consider the lowest common ancestors of k ≥ 2 vertices [30]. For an
example, see Figure 1.

A B C

D E

F

G H

Figure 1. Both F and H are LCA for the 3-tuple A, B, C while G does not have this property.

Recall that an LCA of vertices v1, . . . , vk is an ancestor v of each vertex vi, i ∈ [k] such
that v has no proper descendant that is also an ancestor of each vertex vi, i ∈ [k].

We can generalize the method of solving the all pairs LCA problem in DAGs based on
maximum witnesses of Boolean matrix products from [9] to include the all k-tuples LCA
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problem, i.e., reporting for each k-tuple of vertices in the input DAG an LCA, as follows (in
Algorithm 4).

Algorithm 4 Reporting for each k-tuple of vertices in the input DAG an LCA.
Input: A DAG G on n vertices and a natural number k ≥ 2.
Output: A solution to the all k-tuples LCA problem in the input DAG.

1. Topologically sort vertices of the input DAG G and number them in the sorted order
starting from the source vertices.

2. Compute the n× n transitive closure matrix A of G such that A[i, j] = 1 if and only if
the vertex j is an ancestor of the vertex i.

3. Compute maximum witnesses for non-zero entries of the k-dimensional Boolean
matrix product D of k copies of the Boolean version of the matrix A.

4. For each k-tuple i1, i2, . . . , ik of vertices, output the maximum witness of
D[i1, i2, . . . , ik] (if any) as the LCA of the k-tuple.

The correctness of this generalized method follows from the fact that by the definition
of the matrix A and the k-dimensional Boolean matrix product D, the set of witnesses
of D[i1, i2, . . . , ik] coincides with the set of common ancestors of i1, i2, . . . , ik, and that the
maximum witness of of D[i1, i2, . . . , ik] cannot have any descendant in the aforementioned
set by the vertex numbering.

The topological sort requires O(n2) time while computing the transitive closure takes
O(nω+o(1)) time. Hence, by Theorem 3, we obtain upper bounds basically matching those
derived by Yuster in [36] and Kowaluk et al. in [37].

Theorem 6. Let λ satisfy ωk(1, λ) = k − 1 + 2λ and let λ′ satisfy ω(dk/2e, λ′, bk/2c) =
k − 1 + 2λ′, respectively. Suppose k = O(1). The all k-tuples LCA problem can be solved by
Algorithm 4 in O(nk+λ+o(1)) = O(nk+λ′+o(1)) time.

Corollary 4. Let λ, λ′ and λ′′ satisfy ω3(1, λ) = 2+ 2λ, ω(2, λ′, 1) = 2+ 2λ′, and ω(1, λ′′, 1) =
1+ 2λ′′, respectively. The all 3-tuples LCA problem can be solved in O(n3+λ+o(1)) = O(n3+λ′+o(1))

= (n3+λ′′+o(1)) = O(n3.529) time.

Proof. By dividing an n2 × nr matrix into n n × nr matrices, we obtain the inequality
1 + ω(1, r, 1) ≥ ω(2, r, 1). The inequality λ′′ ≥ λ′ follows from 1 + ω(1, r, 1) ≥ ω(2, r, 1)
similarly as λ′ ≥ λ follows from ω3(1, r) ≤ ω(2, r, 1) in the proof of Theorem 3. By the
recent results on fast rectangular multiplication, λ′′ < 0.529 holds.

7. Final Remarks

We have applied our results on the multi-dimensional matrix product to provide a
simple alternative method for clique detection and to rephrase known algorithms for k-
dominating set problem and the all k-tuples LCA problem in DAGs. Our direct reduction of
the k-dominating set problem to the k-dimensional matrix product yields the W[2] hardness
of the latter problem. In the context of the reduction, note that the problem of computing
the k-dimensional (even Boolean) matrix product is more general than the k-dominating set
problem, since the input matrices do not have to be identical as in the reduction.

It is an intriguing open problem if the upper bounds in terms of rectangular matrix
multiplication on the k-dimensional matrix product of k square matrices given in Lemma 1
are asymptotically tight. In other words, the question is if ωk = mink−1

k′=1 ω(k′, 1, k − k′)
holds or more specifically if ωk = ω(dk/2e, 1, bk/2c)? If this was not the case for k equal to 3
or 4, then we would achieve a breakthrough in detection/counting of K4 or K5, respectively.

An argument for the inequality ωk < ω(k1, 1, k2), for positive integers k1, k2 satisfying
k = k1 + k2, is that in the context of the efficient reduction in the proof of Lemma 1,
the rectangular matrix product seems more general than the k-dimensional one. A reverse
efficient reduction seems to be possible only under very special assumptions. However,
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proving such an inequality would be extremely hard as it would imply ω(k1, 1, k2) > k and
in consequence ω > 2 by the straightforward reduction of the rectangular matrix product
to the square one. On the other hand, this does not exclude the possibility of establishing
better upper bounds on ωk than those known on ω(k1, 1, k2).

A related question is whether or not λ satisfying the equation ωk(1, λ) = k− 1 + 2λ is
equal or less than λ′ satisfying the equation ω(dk/2e, λ, bk/2c) = k− 1+ 2λ? An inequality
for k = 2 would yield the improvement of the longstanding upper time bound for the
maximum witness problem of the Boolean product of two n× n Boolean matrices from
O(n2+λ′) to O(n2+λ).

These two open problems and the quest for finding further applications of the multi-
dimensional matrix product form the future directions of our research.
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