
Citation: Gobert, M.; Gmys, J.;

Toubeau, J.-F.; Melab, N.; Tuyttens,

D.; Vallée, F. Batch Acquisition for

Parallel Bayesian Optimization—

Application to Hydro-Energy Storage

Systems Scheduling. Algorithms 2022,

15, 446. https://doi.org/10.3390/

a15120446

Academic Editors: Grégoire Danoy

and Didier El Baz

Received: 14 October 2022

Accepted: 23 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Batch Acquisition for Parallel Bayesian Optimization—
Application to Hydro-Energy Storage Systems Scheduling †

Maxime Gobert 1,2,* , Jan Gmys 2 , Jean-François Toubeau 3 , Nouredine Melab 2,4, Daniel Tuyttens 1

and François Vallée 3

1 Mathematics and Operational Research, University of Mons, 7000 Mons, Belgium
2 BONUS Team, Inria Lille-Nord Europe, 59600 Villeneuve d’Ascq, France
3 Power Systems and Markets Research, University of Mons, 7000 Mons, Belgium
4 CNRS/CRIStAL, University of Lille, 59600 Lille, France
* Correspondence: maxime.gobert@umons.ac.be
† This paper is an extended version of our paper published in Gobert, M.; Gmys, J.; Toubeau, J.F.; Vallée, F.;

Melab, N.; Tuyttens, D.; Vallée, F. Parallel Bayesian Optimization for Optimal Scheduling of Underground
Pumped Hydro-Energy Storage Systems. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Lyon, France, 30 May–3 June 2022; pp. 790–797.

Abstract: Bayesian Optimization (BO) with Gaussian process regression is a popular framework
for the optimization of time-consuming cost functions. However, the joint exploitation of BO and
parallel processing capabilities remains challenging, despite intense research efforts over the last
decade. In particular, the choice of a suitable batch-acquisition process, responsible for selecting
promising candidate solutions for batch-parallel evaluation, is crucial. Even though some general
recommendations can be found in the literature, many of its hyperparameters remain problem-
specific. Moreover, the limitations of existing approaches in terms of scalability, especially for
moderately expensive objective functions, are barely discussed. This work investigates five parallel
BO algorithms based on different batch-acquisition processes, applied to the optimal scheduling of
Underground Pumped Hydro-Energy Storage stations and classical benchmark functions. Efficient
management of such energy-storage units requires parallel BO algorithms able to find solutions in a
very restricted time to comply with the responsive energy markets. Our experimental results show
that for the considered methods, a batch of four candidates is a good trade-off between execution
speed and relevance of the candidates. Analysis of each method’s strengths and weaknesses indicates
possible future research directions.

Keywords: Bayesian Optimization; parallel computing; Gaussian Processes; efficient global
optimization; electrical engineering; hydro-energy storage

1. Introduction

Integrating renewable energy resources is a key challenge to ensure the transition to-
wards a low-carbon energy system. Electricity storage systems provide a valuable solution
to compensate for the uncertain production, thus offering sustainable means to increase
the flexibility of the system [1]. An appropriate option regarding storage technologies is
offered by Underground Pumped Hydro-Energy Storage (UPHES). However, in modern
competitive energy networks, individual actors rely on efficient operational strategies,
enabling them to hedge the uncertainty of renewable energy resources. It is thus essential
to dispose of efficient tools to make informed and fast decisions at the different time steps of
the energy markets (e.g., from long-term towards real-time) [2]. From the operator’s point
of view, the quality of a decision is measured as a profit, so let us assume that for a decision
x ∈ Rd, the expected profit of a UPHES operator is given by f : Rd → R; x 7→ y = f (x).
The simulator, f , is then considered as a time-consuming Black-Box function, which is
further described in Section 2.1.

Algorithms 2022, 15, 446. https://doi.org/10.3390/a15120446 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120446
https://doi.org/10.3390/a15120446
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4925-4995
https://orcid.org/0000-0001-9635-4396
https://orcid.org/0000-0001-9853-2694
https://orcid.org/0000-0002-2409-2128
https://doi.org/10.3390/a15120446
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120446?type=check_update&version=2

Algorithms 2022, 15, 446 2 of 23

The complexity of physical phenomena in UPHES devices usually calls for model-
based approximations [3]. Using these approximations, evaluation of the expected profit is
fast and classical optimization methods (e.g., dynamic programming, genetic algorithms)
can be applied to optimize the UPHES scheduling within a reasonable time budget [4,5].
However, approximations may lead to unreliable simulations, motivating the recent pro-
posal of a more robust model-based UPHES simulator in Toubeau et al.[3]. This comes at a
much higher simulation cost compared to conventional model-based approximations.

With this increased simulation cost, existing optimization approaches become imprac-
tical, as operational constraints require scheduling optimization to be completed within
approximately 30 min. This motivates us to investigate the use of surrogate models to
(partially) replace the time-consuming simulator, in conjunction with parallel evaluations
of the expected profit. To the best of our knowledge, surrogate-based optimization has
never been applied to the UPHES scheduling problem. In our previous work [2], we
demonstrated that Bayesian Optimization (BO) can be handy in management problems in
electrical engineering.

More precisely, Parallel BO (PBO) is emerging as a powerful framework for such
problems. This surrogate-guided optimization approach relies on a surrogate model—often
Gaussian Process (GP) regression. Based on that model, an Acquisition Function (AF)
is defined to assess the value of any candidate point. Optimizing the AF yields the best
candidate point according to this specific AF. In this way, only valuable (still in the sense of
the AF) points are evaluated in parallel using the time-consuming simulator. Consequently,
the overall optimization time can be considerably reduced. This is essential due to the time
constraint arising from both the organization of energy markets and the complex modeling
of physical and economic constraints of pumped-hydro systems.

More generally speaking, we refer to the process responsible for selecting the next
candidate points as the Acquisition Process (AP). Clearly, the choice of the AP is of crucial
importance to balance the exploration and exploitation during the optimization process.
However, only a few general recommendations can be extracted from the literature, espe-
cially considering the batch querying AP which is usually problem-dependent. In addition,
the main potential for exploiting parallel computing lies in the batch-parallel evaluation of
the candidates. Therefore, the AP must be able to provide a batch of valuable candidates.
Various approaches are presented in Shahriari et al. [6], however, batch selection remains a
challenging question, especially for large batch sizes and small amounts of time. Indeed, the
computational overhead of surrogate-related algorithm components is rarely considered
and usually judged as negligible with respect to simulation time [7]. Furthermore, the
efficiency of large batches of candidates is often lesser than that of the same number of
candidates taken sequentially [8].

In this paper, we investigate several parallel batch-based algorithms using different
APs, and we compare the optimized average profit: q-Efficient Global Optimization with
Kriging Believer (KB) heuristic (KB-q-EGO) from Ginsbourger, Le Riche and Carraro [9]
(2008) and a revisited version allowing multi-infill criteria sampling (mic-q-EGO) inspired
by Liu et al. [10] and Wang et al. [11]; Monte Carlo-based q-EGO (MC-based q-EGO) from
Balandat et al. [12] (2020); Binary Space Partitioning EGO (BSP-EGO) from Gobert et al. [13]
(2020); and TrUst Region BO (TuRBO) from Eriksson et al. [14] (2019). Experiments are
conducted with different batch sizes to evaluate and compare the scalability of the ap-
proaches. A thorough investigation of the different approaches is required to identify
the most suitable algorithm that responds to the specificities of the UPHES optimization
problem. Indeed, the optimization must be conducted in a restricted time and, contrary to
common assumption, the acquisition time is not negligible compared to the simulation time.
Consequently, the acquisition time needs to be taken into account in order to perform an ef-
ficient optimization. Hence, the main contribution of this paper is the comparison of several
PBO approaches in view of their application to a current concern in energy production.

The conducted study reveals that all investigated BO algorithms have poor scalability
regarding parallel efficiency. Indeed, increasing the batch sizes obviously comes with the

Algorithms 2022, 15, 446 3 of 23

management of a larger data set. Consequently, a decrease in the number of performed
cycles in a restricted time is expected, since the sequential part grows larger. Ideally, for an
equivalent number of simulations, whatever the batch size, the final outcomes would be
comparable. However, and despite the potentially larger number of simulations gained
by parallelization, the final outcome of the algorithms is often worse with high batch sizes
(8 or 16 compared to 2 or 4) within a fixed time budget.

In Section 2.1, a detailed explanation of the complex UPHES operation is provided
along with a mathematical formulation of the resulting optimization problem. In Section 2.2,
the PBO algorithms designed to optimize UPHES station management are presented with
a focus on their specificities. Section 3 is dedicated to experiments and results, where the
outcomes from different algorithms are compared. In Section 4, we discuss the experimental
results. Finally, conclusions are drawn in Section 5 and we outline possible future research
directions to overcome the observed limitations of PBO.

2. Material and Methods
2.1. Underground Pumped Hydro-Energy Storage

Due to their ability to quickly and cost-effectively mitigate energy imbalances, Pumped
Hydro-Energy Storage (PHES) stations offer an appropriate storage solution. PHES plants
are composed of (at least) a lower and an upper reservoir from which water is exchanged to
either produce or store energy. In off-peak periods, production might exceed consumption
such that energy is saved by pumping water from the lower basin into the upper one.
It then provides a substantial reserve of energy that can be later released when needed,
e.g., to maintain the transmission grid stability. Recent progress in power electronics
has enabled PHES units to operate with a reliable variable-speed feature in both pump
and turbine modes. The flexibility offered by these facilities is highly valuable. Indeed, it
improves the economic efficiency of existing resources such as wind farms or thermal power
plants [15,16], and provides ancillary services to ensure grid stability (such as frequency
control or congestion management).

The inherent potential of PHES units leads to the development of new technologi-
cal solutions such as Underground PHES (UPHES) for which the lower basin is located
underground. A significant advantage of UPHES is the limitation of expenses from civil
engineering works thanks to the recycling of end-of-life mines or quarries. These stations
have a very limited impact on the landscape, vegetation and wildlife, and are not limited by
topography so that more sites can be exploited [17]. In the current competitive framework
governing the electricity sector, UPHES units are exploited with the objective of return
on investment. Consequently, the profit of such stations must be maximized. This task
is challenging since the UPHES operation is governed by two main nonlinear effects that
cannot be easily modeled with traditional analytical models [3].

Firstly, groundwater exchanges between the reservoirs and their hydro-geological
porous surroundings may occur. This situation typically arises for UPHES when the
waterproofing work is not feasible or uneconomical [18]. Secondly, UPHES units are
generally subject to important variations of the net hydraulic head (i.e., the height difference
between water levels in the reservoirs). These variations are referred to as the head
effects [19], and are typically quantified through laboratory measurements on a scaled
model of the hydraulic machines [20]. This characterization of head effects is important
since the head value defines both the safe UPHES operating range as well as the efficiency
of both pump and turbine processes. In this way, the safe operating limits in pump and
turbine modes continuously vary over time with regard to head variations. In general,
the performance curves of UPHES stations are difficult to model since they present a
non-convex and non-concave behavior.

Directly integrating these effects into model-based optimization (which maximizes the
UPHES profit in the different market floors) implies a high computational burden or strong
assumptions that may jeopardize the feasibility of the obtained solution. To address these
issues, a simulation-based BO strategy has been developed in this work. The simulator,

Algorithms 2022, 15, 446 4 of 23

which is a black box from the user perspective (developed independently without access
to the source code), returns the daily UPHES profit accounting for all techno-economic
constraints. The full description of physical and economical constraints can be found in
Toubeau et al. [21].

This simulator is denoted as f in the following and, according to a decision vector
x ∈ R12, it returns the expected profit y = f (x) ∈ R. The 12-dimensional decision vector
includes 8 decision variables to participate in the different time slots of the energy market,
and 4 to the reserve market (i.e., provision of ancillary services). The number of decision
variables is set in accordance with standard recommendations of electrical engineering. It
is subject to modification in order to gain more flexibility in future studies. The objective is
then to find the decisions that maximize the daily expected profit:

xopt = argmaxx∈Ω f (x),

where Ω is the domain (or design space). The objective function f also involves the
constraints and deals with them by adding a penalty term inside the simulator.

These UPHES decisions must comply with hydraulic and electro-mechanical con-
straints over the whole daily horizon. This results in a challenging optimization problem
(embedded in the simulator), which is discontinuous (from the cavitation effects of the
pump-turbine machine that incur unsafe operating zones), nonlinear (from the complex
performance curves of the unit), mixed-integer (to differentiate the pump-turbine-idle
operation modes), which is subject to uncertainties (e.g., on water inflows and market
conditions). The formulation used in this paper can be found in [21].

With full model-based optimization, errors caused by the inherent modeling ap-
proximations (typically, linearizations), required to ensure computational tractability of
complex effects (i.e., nonlinear water levels within reservoirs, penstock head loss and
head-dependent pump/turbine performance curves) may lead to infeasible solutions [3].
Relying instead on surrogate models may provide an efficient and robust solution to this
problem. According to the two surveys of Taktak and D’Ambrosio [4], and Steeger, Barroso,
and Rebennack [5], this kind of management problem in electrical engineering is typically
solved using Mixed-Integer (Linear) Programming [22], dynamic programming [23] or
nonlinear programming [24]. Current techniques also involve meta-heuristics such as
Genetic Algorithm [25] or Particle Swarm Optimization [26]. However, we are not aware of
any BO or surrogate-based optimization approaches for the UPHES management problem.

Since the simulator is time-consuming (such that we cannot perform a large number
of simulations during the available time), a judicious choice is to resort to PBO to find a
good decision vector. Indeed, a decision must in practice be taken within tens of minutes
at most. In this context of a very limited time budget and numerical simulations lasting
10 s on average, parallel computing offers an efficient tool to improve the search within
a fixed wall time. In particular, as it usually provides good candidate solutions with a
small number of evaluations and short time, PBO appears to be a natural choice. Usually,
BO assumes that the time-cost associated with the model fitting and the AP is negligible
compared to evaluation time. However, in the UPHES optimization problem, the simulator
is considered costly because the optimization budget is defined as a time period. In this
context, model fitting and AP cannot be neglected.

2.2. Parallel Bayesian Optimization

The concept has been introduced by Kushner [27] and later developed by Mockus et al. [28]
before being popularized by Jones et al. [29]. The general idea of BO is to fit a probabilistic
predictive model of the black-box objective function f —the simulator—in order to guide
the optimization process. Indeed, f being time-consuming, we cannot afford to query a
large number of simulations. Therefore, the surrogate model is used to evaluate the utility
of a candidate point before it is evaluated with the costly simulator. This utility measure is
often called AF, but also Infill Criteria (IC) or figure of merit. It uses the predicted value
of the surrogate as well as the prediction variance provided by probabilistic models such

Algorithms 2022, 15, 446 5 of 23

as Gaussian Processes (GP). One famous example of AF is the Expected Improvement
(EI) used in Efficient Global Optimization (EGO) [29]. BO operates in a loop composed
of (i) fitting a metamodel, (ii) searching for the most valuable candidate(s) to simulate,
(iii) simulation of the candidate(s). The three steps are referred to as a cycle.

BO involves two key elements: the definition of a surrogate modelM that provides a
prediction ŷcand for any candidate point xcand as well as a measure of uncertainty σ(xcand),
and an AP that proposes a (batch of) valuable point(s) for evaluation.

Many AFs have been proposed over the past decades. Shahriari et al. [6] propose a
classification of the different AFs: (i) optimistic strategy—using best case scenario regarding
the uncertainty such as Gaussian Process Upper Confidence Bound [30]; (ii) Improvement
Based—using the improvement defined as I(x) = max(fmin − f (x), 0), such as Probability
of Improvement [27], Expected Improvement [29,31] (EI), Scaled EI [32]; and Information
Based strategy—focusing on the information rather than the improvement, such as Thomp-
son Sampling, Entropy Search [33], Predictive Entropy Search [34] or Max-Value Entropy
Search [35].

Exploiting parallel computing requires being able to provide a batch of candidate
points for batch parallel evaluation. In addition to intrinsic multi-point criteria such as q-EI
, various strategies are adopted to achieve this goal. One may choose to rely on a single
point criterion either using it several times [13,36], or trying to localize distinct local optimal
values of the AFs [37,38]. It is also possible to rely on multiple single points criteria hoping
that they yield distinct candidates [11,39] or even optimize them in a multi-objective way
to find a compromise between ICs [40,41]. Five different APs are investigated in this paper
and presented in the following.

2.2.1. Gaussian Process Regression

Usually, a GP surrogate model is used. The latter assumes a linear relation between
inputs x and outputs y, such that y = ωTx + ε. The observation/output is often considered
noisy, hence the ε error term, which is assumed Gaussian (ε ∼ N (0, σ2)). As explained
in [42], a Bayesian approach assumes a prior distribution over weights ω, which is also
Gaussian (ω ∼ N (0, Σ)) and constitutes the prior belief. Starting from that belief, it is
possible to update the prior distribution with knowledge of the data (X, y), which is
defined as the posterior distribution. Using the Bayes rule the posterior is expressed as

posterior =
likelihood × prior

evidence
. (1)

With previous notations, Equation (1) becomes

p(ω|X, y) =
p(y|X, ω)p(ω)

p(y|X)
=

p(y|X, ω)p(ω)∫
ω p(y|X, ω)p(ω)dω

. (2)

The evidence p(y|X) is also referred to as the normalizing constant and can be ex-
pressed as the marginal likelihood by marginalizing over the weights ω. Often, input data X
are projected into a feature space using a set of basis functions Φ(x) = (φ1(x), . . . , φk(x))T

which leads to the following model: y = ωTΦ(x) + ε. Denoting Φ = Φ(X), we can simply
replace X by Φ in Equation (2). Knowing the distribution of the posterior p(ω|Φ, y) ∼
N
(

1
σ2 A−1Φy, A−1

)
with A = σ−2ΦΦT + Σ−1, it is possible to make inference. The pre-

dictive distribution of a design point x∗ writes

p(y∗|Φ, y, x∗) =
∫

ω
p(y∗|ω)p(ω|Φ, y)dω ∼ N

(
1
σ2 Φ(x∗)T A−1Φy, Φ(x∗)T A−1Φ(x∗)

)
(3)

and is also Gaussian. It can be shown that Equation (3) can be equivalently written as:

p(y∗|Φ, y, x∗) ∼ N
(
Φ(x∗)TΣΦ(K + σ2 I)−1y, K∗∗ − K∗·(K + σ2 I)−1K·∗

)
(4)

Algorithms 2022, 15, 446 6 of 23

where K = ΦTΣΦ is known as the covariance matrix and K(1)(2) = Φ(x(1))TΣΦ(x(2)) =
k
(

x(1), x(2)
)

. The k function is referred to as the covariance kernel and K =
(
k(xi, xj)

)
i,j∈{1,...,n}

and is chosen by the user among other hyperparameters. Following previous notation, we
denote

(
k(x∗, xj)

)
j∈{1,...,n} = K∗,· = (Φ∗)TΣΦ.

2.2.2. Acquisition Process for Optimization

The BO framework is illustrated in Algorithm 1. The mentioned parallel algorithms
follow the same scheme but differ in the candidate selection phase which is represented
by the optimization of the α function in Algorithm 1. Line 4 of Algorithm 1 states that the
algorithm is searching for the best (batch of) candidate(s) in terms of α to be added. The
candidate selection, referred to as the AP, is also an optimization problem sometimes called
inner optimization.

Algorithm 1 Bayesian Optimization

1: Initial DoE: {X, y}
2: while Budget available do
3: M = GP({X, y})
4: xnew = argmaxΩ(α(x))
5: ynew = f (xnew)
6: (X, y) = (X, y) ∪ (xnew, ynew)
7: end while

Even though BO and GP seems a legitimate choice in the context of optimization with
a relatively small budget and strong time constraint the choice of the AP is difficult and
must be done in accordance with the time constraint. This is why several different APs
presenting different behaviors are investigated in this study.

• The KB-q-EGO algorithm refers to the work of Ginsbourger et al. [9,36] where they
present heuristics to approximate multi-point criteria which are difficult to exploit
when the required number of candidates exceeds q = 2 (q being the batch size, also
denoted as nbatch throughout this paper). The idea is to replace the time-consuming
simulation with a fast-to-obtain temporary/fantasy value in order to update the
surrogate modelM, which allows the suggestion of a new distinct candidate. In the
KB heuristic, it is decided to trust the surrogate model (hence, Kriging Believer) and
use its output as fantasy value. The operation can be repeated sequentially until q
design points are selected. Then, it is possible to exactly evaluate them in parallel and
replace the temporary values with the real costs. However, this strategy has the major
drawback of requiring q sequential updates ofM per cycle. In Ginsbourger et al. [9],
inside the heuristic loop, the Kriging model is used without hyperparameter re-
estimation. To preserve this aspect and in order to alleviate the fitting cost, the budget
allocated to the intermediate fitting of the surrogate model is reduced compared to a
full update performed at the beginning of a cycle.

• We propose Multi-infill-criteria q-EGO (mic-q-EGO), an alternative AP that uses mul-
tiple IC in the same cycle in order to limit the number of surrogate fitting opera-
tions. This approach is a variation of q-EGO using a multi-infill strategy such as in
Liu et al. [10] or Wang et al. [11]. Using multiple AFs allows to select different candi-
date points without updating the surrogate model, assuming that their optimization
yields distinct candidate points. Moreover, it has been observed that resorting to
different AFs can favorably impact the objective value, especially when the batch size
is large. Indeed, repeatedly updatingM using non-simulated data may degrade the
relevance of proposed candidates [8]. Since standard EI, used as the primary criterion,
is known to sometimes over-explore the search space, it is decided to rely on the Upper
Confidence Bound (UCB) criterion to improve the exploitation. In this paper, two ICs
are used with the same number of candidates from each criterion. Therefore, albeit
generalizable to more criteria not necessarily evenly distributed, the description of

Algorithms 2022, 15, 446 7 of 23

Algorithm 2 considers the previous statement for sake of simplicity. We denote α1 and
α2 the two AFs, then for the same model, a candidate can be chosen according to each
AF (line 6 and 7). Despite not being implemented yet, the optimizations of α1,2 could
be conducted in parallel. If more candidates are required, a partial model update is
necessary (line 11) using the predicted value (yPV) as suggested in the KB heuristic.
The loop continues until q candidate points are selected.

• BSP-EGO [13] is an algorithm developed by the authors with the objective of tackling
time-consuming black-box objective functions for which the execution time does not
dominate the acquisition time. It uses a dynamic binary partition of the search space
to optimize the AF inside sub-regions. Thereby, a local AP based on a global model is
conducted simultaneously in each sub-domain. Candidate points coming from sub-
regions are aggregated and sorted according to their infill value in order to choose the
nbatch most promising ones. By the end of a cycle, the partition evolves in accordance
with the performance of each sub-region: the one containing the best candidate in
terms of the AF will be split further while the supposedly less valuable sub-regions
are merged. At any time, the partition covers the entire search space and involves the
same number of sub-regions. The number of sub-regions is chosen to be a multiple
of nbatch to balance the load between parallel workers. Having ncand > nbatch avoids
sampling into clearly low potential sub-regions by letting the choice of nbatch among
ncand. Typically in this work, ncand = 2× nbatch. As the supposed best sub-region is
split at each cycle, diversification is imposed at the beginning, while intensification is
favored as the budget fades. This considerably reduces the acquisition time compared
to q-EGO since it can be conducted in parallel thanks to the spatial decomposition,
which is valuable since the optimization must be completed in very restricted time.

• MC-based q-EGO from the BOTorch library, developed by Balandat et al. [12] uses the
reparameterization trick from Wilson et al. [43] and (quasi) MC sampling for estimation
of multi-points AF - EI in this study. The latter allows to approximate the AF value
and time-efficiently optimize the batch of candidates. However, optimizing the multi-
points AF still requires optimizing a nbatch × d objective function which can become
tricky and, depending on the inner optimization algorithm, time-consuming when
increasing nbatch.

• TuRBO [14] uses trust regions to progressively reduce the size of the search space
with the objective of compensating for the overemphasized exploration resulting from
global AP. The trust region takes the form of a hyper-rectangle centered at the best
solution found so far. The side length for each dimension of the hyper-rectangle
is scaled according to the length scale λi from the GP model while maintaining a
total volume of Ld. Then, an AP is performed in the trust region that yields a batch
of candidates. One or several trust regions can be maintained simultaneously. In
this work, one trust region is used with multi-point EI (q-EI) evaluated through MC
approximation, similarly to MC-based q-EGO. Therefore, the main characteristic of
TuRBO is that the search space is re-scaled according to the length scale of the GP
model and evolves according to the following rule: if the current cycle improves
the best solution, the trust region is extended, or else it is shrunk. As mentioned in
Eriksson et al., running with only one trust region including the whole domain Ω,
TuRBO is equivalent to running the standard q-EGO algorithm.

Algorithms 2022, 15, 446 8 of 23

Algorithm 2 Multi-infill q-EGO acquisition process

1: M: Surrogate model
2: Ω: Search space
3: ct = 0; initialize counter
4: Xbatch = {}, ybatch = {}
5: while ct < q do
6: xnew_1 = argmaxx∈Ωα1(M, x)
7: xnew_2 = argmaxx∈Ωα2(M, x)
8: Xbatch = Xbatch ∪ xnew_1 ∪ xnew_2
9: ybatch = ybatch ∪ yPV(xnew_1) ∪ yPV(xnew_2)

10: ct← ct + 2
11: M← partial_ f it(X ∪ Xbatch, y ∪ ybatch)
12: end while
13: Returns Xbatch to exactly evaluate in parallel

Both KB-q-EGO and MC-based q-EGO algorithms are common parallel BO approaches
that use a global model fitted on the entire data set. KB-q-EGO relies on a sequential
heuristic to select a batch of candidates while MC-based q-EGO uses Monte Carlo sampling
to evaluate the q-points AF and create batches of candidates. The main difference is that
MC-based q-EGO considers the combined utility of the set of candidates while KB-q-EGO
only considers one candidate at a time, sequentially. mic-q-EGO uses a global model and
exploits different AFs to limit the number of surrogate updates and add a diversity in
candidates. BSP-EGO also uses a global model but uses spatial decomposition in order
to perform independent parallel APs and reduce the acquisition time compared to the
sequential heuristic of q-EGO and KB-q-EGO algorithms. Both mic-q-EGO and BSP-EGO
use a single point AF multiple times, as in the standard KB-q-EGO algorithm. As MC-
based q-EGO TuRBO operates with a multi-points AF evaluated with MC approximation.
However, the latter is optimized on trust region(s) so that AP(s) are locally performed to
provide a batch of candidates. In this study, TuRBO only uses one trust region, as presented
in the BOTorch framework [12]. It then operates as MC-based q-EGO inside a trust region.
A notable difference between all algorithms lies in the way they exploit parallelism: KB-q-
EGO, mic-q-EGO MC-based q-EGO and TuRBO algorithms only use batch parallelization
for the evaluation of the candidates, while BSP-EGO also parallelizes the AP.

2.3. Problem Instances
2.3.1. UPHES Management

The experimental evaluation uses a real-world UPHES station located in Maizeret
(Belgium) as a test case. Its configuration is shown in Figure 1. The lower basin is a former
underground open pit mine subject to groundwater exchanges. Furthermore, the surface of
both reservoirs is relatively limited, which results in significant head effects. The specific
features of the UPHES unit are taken into account in the simulator implemented in the
Resource-Action-Operation language [44] and Matlab. The UPHES nominal output ranges
(for the nominal value of the hydraulic head) are respectively [6, 8] MW and [4, 8] MW in
pump and turbine modes and the energy capacity is 80 MWh. The optimization problem
involves 12 decision variables.

Algorithms 2022, 15, 446 9 of 23

Figure 1. Topology of the modeled PSH unit on Maizeret site [21].

2.3.2. Benchmark Functions

Three classical benchmark functions are used to validate the approaches: Rosenbrock,
Ackley and Schwefel functions [45]. The three functions are optimized with 12 decision
variables to remain consistent with the UPHES problem. We consider the minimization of
previous functions defined on search spaces presented in Table 1.

Table 1. Definition of the benchmark functions.

Name Expression Ω fmin

Rosenbrock
11
∑

i=1
100(x2

i − xi+1)
2 + (xi − 1)2 [−5; 10]12 0

Ackley −20exp(−0.2

√
1

12

12
∑

i=1
x2

i)− exp(1
12

12
∑

i=1
cos(2πxi)) + 20 + e [−5; 10]12 0

Schwefel 418.9828872724338 ∗ 12−
12
∑

i=1
xi sin (

√
|xi|) [−500; 500]12 0

2.4. Experimental Protocol

All algorithms are implemented within the Python-based BOTorch framework [12].
In all three approaches, Message Passing Interface for Python (MPI4Py [46]) is used for
parallelization. The UPHES simulator itself is implemented in Matlab and the domain-
specific RAO language. As the black-box UPHES simulator executable requires a software
license, experiments are performed on a university cluster, preventing us from conducting
the analysis on large batch sizes. The dedicated node possesses 2 Intel(R) Xeon(R) CPU
E5-2630 v3 2.40 GHz, with 8 cores each.

Due to the responsive energy market operational constraints, the optimization must be
completed within tens of minutes. Hence, to remain consistent with the time constraints, the
global budget of each optimization run is chosen as a time budget of 20 min, without initial
sampling. According to usual recommendations in BO, a fraction of the budget is allocated
to the initial sampling. The initial sampling budget is set to 16× nbatch. The limiting factor
being the time, the budget in terms of simulations increases proportionally to the batch
size (and degree of parallelism) nbatch. However, in order to avoid too much case-specific
conclusions, the choice is made to consider a fixed time of 10 s for a simulation. Indeed,
one execution of a simulation lasts for 9 to 10 s and a non-negligible overhead results
from parallel calls to the black-box simulator. This overhead is only case-specific since
the simulator resorts to RAO language, under the form of an executable program which
necessitates interfaces between programs not suited for parallel computing. Therefore,
the parallel overhead is independent of the parallel framework and is only caused by the
software-dependent simulator. Experiments are performed for nbatch = 1, 2, 4, 8, 16. For any

Algorithms 2022, 15, 446 10 of 23

batch size and any algorithm, the duration of the optimization is around 25 min (initial
sampling included), and the budget allocation is summarized in Table 2.

Table 2. Allocation of the budget according to available computing power (i.e., nbatch).

nbatch
Initial Sample Simulation Budget
(Simulations) (Minutes)

1 16 20
2 32 20
4 64 20
8 128 20

16 256 20

The following hyperparameters concern all algorithms involved in this study. The
surrogate model is a GP model with a homoskedastic noise level, constant trend and Matern-
5
2 kernel with automatic relevance discovery. Single criterion approaches are executed
with the EI criterion (or qEI for multi-points AF) and UCB is used as supplementary AF
for mic-q-EGO. The optimization of the AF is realized with the optimize_acqf function of
the BOTorch package using L-BFGS-B algorithm. The experimental setup is summarized
in Table 3.

Table 3. Acquisition function according to the algorithms and batch sizes.

nbatch TuRBO MC-Based q-EGO KB-q-EGO mic_q-EGO BSP-EGO

1 EI EI EI EI EI
2 qEI qEI EI EI/UCB (50%) EI
4 qEI qEI EI EI/UCB (50%) EI
8 qEI qEI EI EI/UCB (50%) EI

16 qEI qEI EI EI/UCB (50%) EI

3. Results

Our investigation focuses on several aspects:

• The performance of a method in terms of the final outcome is compared to its con-
testants, for a fixed batch size. This is the main objective for the UPHES application:
what is the best strategy to optimize the expected profit regarding the given optimiza-
tion context?

• The performance of the method in terms of the outcome in proportion to the batch
size. Ideally, the method obtains equivalent quality of the outcome for an equivalent
number of simulations, whatever the batch size. Thus, for a given number of cycles,
we achieve better results when increasing the batch size.

• The scalability of the method, studied with the number of total cycles/simulations
performed in the fixed time. The maximum number of cycles is 120 since the budget
is 20 min, and a simulation lasts 10 s. Assuming there is no cost for obtaining a
batch of candidates, the total number of simulations should be 120 × ncores. The
expected ideal behavior is that the time cost arising from optimization methods
(outside simulation time) remains short enough not to hamper the optimization.
Therefore, increasing ncores also increases the number of simulations by the end of the
time budget. Additionally, if the previous point is respected, it should also improve
the quality of the final result.

3.1. Benchmark Function Analysis

Tables 4–6 display the average best cost obtained by each algorithm after 20 min of
optimization, with an artificial 10 s simulation cost. Data are obtained with 10 independent
executions, with 10 distinct initial sets used for all approaches. The first observation

Algorithms 2022, 15, 446 11 of 23

highlighted by the bold font in the tables is that TuRBO outperforms all the contestant
methods for all batch sizes. Adding a complementary criterion in mic-q-EGO compared
to KB-q-EGO seems to have a beneficial impact on final outcomes and achieves good
performances for the Schwefel benchmark function. Regarding the standard deviations,
TuRBO appears quite consistent in the final outcomes compared to other methods, except
for the highly multi-modal Schwefel function. The latter observation about the Schwefel
function and TuRBO is mitigated by the better average performance of the algorithm.

Table 4. Final results in terms of average (µ) and standard deviation (σ) over 10 execution of each
algorithm for the Rosenbrock benchmark function.

nbatch TuRBO KB-q-EGO mic-q-EGO MC-q-EGO BSP-EGO
µ σ µ σ µ σ µ σ µ σ

1 1108 672 1538 735 1584 971 1362 665 1336 776
2 210 174 817 248 708 272 960 387 1185 509
4 99 93 461 169 409 217 878 327 497 123
8 39 34 502 139 371 126 733 454 318 127

16 14 2 440 213 559 273 318 200 434 205

Table 5. Final results in terms of average (µ) and standard deviation (σ) over 10 execution of each
algorithm for the Ackley benchmark function.

nbatch TuRBO KB-q-EGO mic-q-EGO MC- q-EGO BSP-EGO
µ σ µ σ µ σ µ σ µ σ

1 2.421 0.350 5.582 0.515 5.027 0.991 6.607 0.807 4.761 0.931
2 0.881 0.620 5.302 1.149 4.895 0.871 6.018 0.772 4.589 0.915
4 0.123 0.327 5.137 1.345 2.660 0.195 6.115 1.403 4.330 1.274
8 0.110 0.330 4.143 0.693 2.025 0.353 4.001 0.749 4.004 0.518

16 0.337 0.708 3.378 1.826 1.634 0.479 2.884 0.457 2.882 0.482

Table 6. Final results in terms of average (µ) and standard deviation (σ) over 10 execution of each
algorithm for the Schwefel benchmark function.

nbatch TuRBO KB-q-EGO mic-q-EGO MC- q-EGO BSP-EGO
µ σ µ σ µ σ µ σ µ σ

1 2229 345 2397 357 2605 317 2799 295 2693 306
2 1827 440 2652 129 2502 232 2689 422 2390 445
4 1767 459 2367 195 1775 489 2560 495 2182 340
8 1595 305 2579 312 2276 371 2411 396 2282 398

16 1660 323 2828 198 2489 328 2969 358 2409 215

Figure 2a–c shows the number of simulations performed in 20 min as a function of
the batch size. Since the evaluation time is the same, the difference is explained by the
AP time (model learning excluded). A strong advantage of TuRBO is that its acquisition
time is smaller than of other methods, it is observable in Figure 2 where we can see that
TuRBO almost always performs more evaluations. However, it is also remarkable that
increasing the batch size does not necessarily increase the number of evaluations in a
fixed time. Indeed, the first explanation is that the data set is being supplemented with
nbatch new points at each cycle, and it quickly becomes time-consuming to fit the model
to the data. In addition, querying nbatch new candidates involves a bigger time cost when
nbatch is big. Those two factors explain what we could call a breaking point: increasing the
number of processing units does not increase the number of simulations or improve the
final outcomes. The breaking point is visible for any method around nbatch = 8. This is
critical since we know that the relevance of large batches of points is lower than smaller
batches [8], and in this context, it is not compensated by more evaluations. Regarding
Tables 4–6, the breaking point is noticeable by an increase in the average final cost when

Algorithms 2022, 15, 446 12 of 23

increasing the batch size. The latter observation is present for any approach, even TuRBO
despite its good performance.

(a) Rosenbrock

(b) Ackley

(c) Schwefel

Figure 2. Number of function evaluations as a function of the batch size. Solid lines indicate the
average over 10 runs, and dashed lines of same colors indicate the standard deviation.

Algorithms 2022, 15, 446 13 of 23

It has to be noted that optimizing multi-point AF can be time-consuming in some
situations, with large batch sizes. For example, for Rosenbrock and Schwefel functions,
the AP time cost is much higher than the one from the Ackley study and dominates the
learning time cost. We observe in Figure 2 a clear decrease in the number of simulations
for MC-based q-EGO which is not or less visible for TuRBO possibly thanks to its local AP
inside a trust region which makes the inner optimization faster. Only BSP-EGO managed
to achieve better scalability for the three studied functions in terms of function evaluation
with respect to the batch size (i.e., the number of used cores in this study) thanks to its
parallel AP using multiple single point EI. However and despite performances comparable
to q-EGO-like methods, TuRBO performs better and manages to obtain very good final
cost, probably because of its good intensification in the trust region. For larger batch
sizes, e.g., nbatch = 16, relying on sequential heuristics as in KB-q-EGO and mic-q-EGO or
having a parallel AP such as in BSP-EGO can be a better choice for scalability compared to
multi-points AF. The time cost of the inner optimization of q-EI is also unstable regarding
the time needed to provide a batch of points, single point approaches are more predictable
in terms of execution time as indicated by the smaller standard deviations in Figure 2a–c.

3.2. Application to UPHES Management

Results displayed in Figures 3–7 present the average profit value of the UPHES
management problem according to the number of simulations performed by the algorithms.
Dashed lines are added to indicate the standard deviation around the average objective
value. Optimization runs are repeated 10 times with 10 different initial sets, and each
algorithm is run once with each initial set. Therefore, within each figure, every curve has
the same starting point. Since the limiting factor is time, each execution of the optimization
algorithms does not perform the same number of cycles (and simulations). Consequently,
the curves only display the results for which all data are available, and the rest are truncated.
Thereby, the final expected profit is not always visible on the graphs. Nevertheless, the
final results at the end of the time budget are visible in Table 7. The table also presents
the minimum, maximum and standard deviation of each set of optimizations, for all batch
sizes and all approaches.

First, looking at the average profit curves for batch sizes 1 and 2 in Figures 3 and 4, we
observe very few differences in the execution of the algorithms. The average values are
similar, with maybe a thin advantage for the mic-q-EGO algorithm thanks to its smaller
variance. Table 7 confirms the previous observation that mic-q-EGO performs slightly
better in terms of average profit, and has the highest minimal expected profit among the
10 executions compared to other approaches. Then in this context, mic-q-EGO seems to
be the safest choice. However, according to the p-value of the pairwise Student’s t-test
summarized in Figure 8, no significant difference is observed (p-value > 0.1).

Algorithms 2022, 15, 446 14 of 23

Figure 3. Evolution of the best-known objective value according to the number of executed cycles
with nbatch = 1. Solid lines indicate the average over 10 runs, and dashed lines of same colors indicate
the standard deviation.

Figure 4. Evolution of the best-known objective value according to the number of executed cycles
with nbatch = 2. Solid lines indicate the average over 10 runs, and dashed lines of same colors indicate
the standard deviation.

Algorithms 2022, 15, 446 15 of 23

Figure 5. Evolution of the best-known objective value according to the number of executed cycles
with nbatch = 4. Solid lines indicate the average over 10 runs, and dashed lines of same colors indicate
the standard deviation.

Figure 6. Evolution of the best-known objective value according to the number of executed cycles
with nbatch = 8. Solid lines indicate the average over 10 runs, and dashed lines of same colors indicate
the standard deviation.

Algorithms 2022, 15, 446 16 of 23

Figure 7. Evolution of the best known objective value according to the number of executed cycles
with nbatch = 16. Solid lines indicate the average over 10 runs, and dashed lines of same colors
indicate the standard deviation.

Figure 8. Heatmap of the p-values of pairwise Student’s t-tests.

Algorithms 2022, 15, 446 17 of 23

Regarding results for nbatch = 4 in Figure 5, from around 150 iterations on, the mic-
q-EGO appears to outperform the other approaches. With 150 simulations, the latter
reaches a final expected profit equivalent to its competitors with twice as many simulations.
Others are visually equivalent, with only a noticeable difference regarding the standard
deviation. Indeed, as for the previously mentioned curves (nbatch = 1, 2), TuRBO has the
highest variance. Except for mic-q-EGO, which has the highest minimum, average and
maximum profit for nbatch = 4, all the approaches have similar behavior and final outcomes.
The advantage of mic-q-EGO is confirmed by the t-tests displayed in Figure 8 where a
significant advantage for mic-q-EGO is visible. The p-value of comparison with KB-q-EGO,
BSP-EGO and MC-based q-EGO is around 0.02 which provides strong evidence in favor of
mic-q-EGO, while the comparison against TuRBO gives a p-value of 0.12 (less evidence, but
strong assumption).

As for nbatch = 8 (Figure 6), the difference between methods become cleaner, mic-
q-EGO still provides better profit than contestant approaches or equivalent with half of
the simulations, and in particular, better than KB-q-EGO which indicates that relying on
a complementary AF efficiently improves the AP for larger batch sizes. However, the
difference in final profit and standard deviation becomes smaller between methods, and
no statistical difference can be observed in favor of a better average profit for mic-q-EGO
against all others.

Finally, Figure 7 clearly illustrates different behaviors of the investigated algorithm
when increasing the batch size to 16. While BSP-EGO and MC-based q-EGO have similar
performances, the three remaining have not. Classical KB-q-EGO is again on average less
efficient than its multi-criteria counterpart, and both of them are significantly (p < 0.1)
different from TuRBO.

Looking at the final objective values in Table 7, we observe an improvement of the
final average and worst-case profit, along with the increase of the batch size up to nbatch = 4.
Nevertheless, similar values are observed for nbatch = 8 compared to nbatch = 4, despite
the larger batch size and higher number of simulations. Additionally, regarding results
with nbatch = 16, we observe a clear deterioration of the final outcomes except for TuRBO
results which remain equivalent to nbatch = 8. The breaking point defined in the benchmark
analysis is clearly visible also for the UPHES application. Except for TuRBO, nbatch = 4
seems to be the best compromise between speed of execution and quality of the candidates
provided by the AP. Either by improving the average profit, the minimum value of profit,
or reducing variance, TuRBO benefits from a larger batch size. Even though TuRBO is the
only method managing to improve the quality of the final outcomes when increasing the
batch size, it does not compete with mic-q-EGO (nbatch = 4) at any batch size.

To put these observations into perspective, consider Figure 9a,b, which shows the
number of cycles (resp. simulations) performed in the dedicated time as a function of
the batch size. The latter indicates how efficiently the algorithms use parallel processing
capabilities. In accordance with the observations of the benchmark section, all algorithms
reach a breaking point between nbatch = 8 and nbatch = 16, which results in a clear loss in
the final profits (see Table 7).

More precisely, looking at Figure 9b, we can see that the number of cycles for nbatch = 1
or nbatch = 2 is equivalent, and close enough to the maximum of 120 in both cases. It must
be noted that for those batch sizes, TuRBO achieves almost 110 cycles and is the fastest
method of our test bed. It can be observed as well in Figures 3 and 4 where the TuRBO
curve continues beyond other curves. The quickness of TuRBO compared to MC-based
q-EGO, which are using the same inner optimization, can be explained by the smaller
search space: TuRBO focuses on a trust region.

Algorithms 2022, 15, 446 18 of 23

Table 7. Minimum, maximum, average profit values (EUR) as well as standard deviation of the
UPHES management problem obtained with 10 runs of each method according to batch size.

nbatch = 1 min mean max sd

TuRBO −2469 −898 368 917
KB-q-EGO −1582 −765 −27 416
mic-q-EGO −1511 −609 −39 487

MC-based q-EGO −2123 −690 108 778
BSP-EGO −2248 −1126 139 883

nbatch = 2 min mean max sd

TuRBO −2106 19 1338 1058
KB-q-EGO −1474 167 1147 773
mic-q-EGO −429 253 1369 473

MC-based q-EGO −517 79 768 404
BSP-EGO −708 −101 723 503

nbatch = 4 min mean max sd

TuRBO −1766 78 819 837
KB-q-EGO −344 168 784 287
mic-q-EGO −96 559 1097 405

MC-based q-EGO −548 65 824 436
BSP-EGO −389 90 746 412

nbatch = 8 min mean max sd

TuRBO −972 86 1259 713
KB-q-EGO −703 −168 547 423
mic-q-EGO −568 416 1184 473

MC-based q-EGO −362 163 862 381
BSP-EGO −1102 78 504 463

nbatch = 16 min mean max sd

TuRBO −827 51 1162 692
KB-q-EGO −2048 −963 658 752
mic-q-EGO −2383 −706 684 1049

MC-based q-EGO −2475 −1225 −14 948
BSP-EGO −3509 −1183 408 1275

(a) (b)

Figure 9. Study on the scalability of each approach. Solid lines indicate the average over 10 runs, and
dashed lines of same colors indicate the standard deviation. (a) Number of simulations as a function
of the batch size. (b) Number of cycles as a function of the batch size.

Algorithms 2022, 15, 446 19 of 23

Increasing the batch size to 4 makes the conceptual differences between algorithms
appear. Indeed, we can see that sequential AP heuristics of q-EGO like algorithms are
quite time-consuming compared to APs of TuRBO and MC-based q-EGO. Even if BSP-EGO
carries out 2× nbatch sub-APs, its parallel execution makes it as fast as MC-based q-EGO.
Although the number of cycles is slightly smaller than for lower batch sizes, it is the best
compromise regarding final expected profits of Table 7.

Reaching nbatch = 8 allows to perform more simulations for any method, but at the
cost of the number of cycles. The productivity per computing core is clearly diminished
and as suggested by the final profits, it is not profitable in this context except maybe for
TuRBO. Finally, consistently with benchmark section observations, the significant decrease
in the number of cycles involves a drop in the number of simulations which is almost
comparable to nbatch = 4. Nevertheless, as suggested in the BOTorch documentation [12],
the gap between sequential heuristics and MC-based AF becomes smaller for large batch
sizes because of the complexity of multi-points AF optimization. In addition, it has to be
noted that relying on different single point AF, as in mic-q-EGO is efficient to reduce the
acquisition time and to improve the quality of the batch of candidates for large batch sizes.

4. Discussion

Both benchmark analysis and UPHES management application highlight conceptual
differences between algorithms, especially regarding their behavior when increasing the
batch size. Using PBO in a time-restricted setting necessitates to take into account the
quickly increasing time needed to fit a surrogate model and to optimize the acquisition
function. Our experiments have indeed shown that there is a “breaking point” beyond
which an increase in the batch size deteriorates performance instead of adding value to
the optimization process. Generally speaking, the breaking point in our context appears
between nbatch = 4 and nbatch = 16, depending on the algorithm and the objective function.
Indeed, the landscape of the optimized function impacts the model learning time and the
acquisition time. This becomes clear when looking at the number of simulations achieved
in a fixed amount of time for the three benchmark functions (Figure 2a–c). The Schwefel
function is highly multi-modal with mode values of the same amplitude, hence, the greater
time cost of AP compared to the Ackley function, where the minimum value area can be
identified clearly. The breaking point is reached faster given that the learning time and
acquisition time are significant.

The addition of a complementary criterion (i.e., mic-q-EGO using UCB and EI) is
efficient to obtain better outcomes in this situation in comparison with KB-q-EGO. However,
the main bottleneck being the global model fitting, the breaking point is only slightly
delayed thanks to the smaller number of model updates compared to KB-q-EGO. The
mic-q-EGO approach is not suited for large batch sizes either. Regarding the number
of performed simulations in Figure 9, we can conclude similarly: despite a faster AP of
mic-q-EGO, the global model remains restricting. The same conclusion can be drawn for
any approach using global models, fitted on the full data set.

Another characteristic of the investigated APs is the search space decomposition. On
the one side, TuRBO focuses on a trust region and we observed a significant impact on
AP execution speed, as well as a clear advantage in convergence towards better outcomes,
especially for benchmark functions. On the other side, BSP-EGO exploits space decomposi-
tion in the service of parallel computing. The gain in execution time allows multiplying the
number of sub-regions so that each computing core is in charge of two sub-regions, yielding
2× nbatch candidates before selecting nbatch for evaluation. In both cases, the total number
of evaluations is increased compared to other approaches thanks to space partitioning.

For the UPHES management problem, the final expected profit is considerably im-
proved compared to the initial sampling thanks to PBO. Even considering a large random
sample of almost 12,000 objective function evaluations, the best-observed profit is around
EUR −1200. All investigated BO algorithms allow to achieve much better profits with

Algorithms 2022, 15, 446 20 of 23

significantly fewer simulations. This demonstrates the need for efficient optimization
algorithms for this application.

The latter observations allow extracting some general recommendations regarding
BO within restricted time. Firstly, the surrogate model should remain fast to train even
with a large data set. If it becomes excessively time-consuming, one can use subsets of data,
or even rely on different models faster to fit: Bayesian Neural Networks [47], Sparse GP
and variational inference [48], Ensemble Methods using additive structures of GPs [49]
or low rank approximations of the Gram matrix [50]. Secondly, AP must also remain fast
enough. In some cases AP time can become larger than learning and simulation time (for
instance in MC-based q-EGO) and considerably reduce the number of possible cycles in
a given time. Using multiple criteria has proven its efficiency in this study, and might be
further experimented with more AFs as in Li et al. [51] Finally, possibly effective to speed
up both the fitting of the model and the AP, space partitioning appears to be a judicious
choice. Both TuRBO and BSP-EGO reduce acquisition time, and other methods such as
Villanueva et al. [52] and Wang et al. [53] present advantages for parallel computing and
convergence. Combining the strength of the different approaches remains to be investigated.
For example, a multi-infill-criterion TuRBO can easily be considered and implemented.

5. Conclusions and Future Research Directions

Five batch-acquisition Bayesian Optimization (BO) algorithms are investigated in
this study with the objective of identifying the most suited approach for maximizing the
profit of an Underground Pumped Hydro-Energy Storage (UPHES) operator. The profit is
given by a simulator computing the expected profit according to a set of decisions. The
latter evaluation of a decision vector lasts 10 s, and the optimization must be completed in
20 min (initial sampling excluded). These constraints place us in the context of black-box
optimization with a time-consuming simulator, except that the simulator is time-consuming
in regards to the time constraint. Therefore, unlike the classical BO assumption, learning
and acquisition time are not negligible.

The study reveals that in this context, as well as on benchmark problems than on
the UPHES management problem, resorting to large batch sizes and large parallelization
quickly becomes excessively time-consuming, worsening the performance of any BO
algorithm considered in this work. The best compromise lies between batch sizes of 4 and 8.
Best performances are achieved by the TrUst Region BO algorithm (TuRBO) with nbatch = 8
in case of benchmark function, whereas q-EGO with multi-infill criteria sampling (mic-q-
EGO) and nbatch = 4 performs best in the UPHES context. Parallel BO algorithms manage
to find consistently good solutions to the UPHES management problem and appear as a
viable way to approach time-constrained applications despite the high overhead incurred
by surrogate management. However, making the most of parallel computing in this context
remains challenging.

Finally, some general leads are discussed to overcome the scalability issues. Using fast-
to-fit surrogate models, multiple complementary criteria and space partitioning (or space
reduction) might considerably improve the performance of surrogate-guided optimization
in the context of UPHES optimization.

Author Contributions: Conceptualization, M.G.; methodology, M.G.; software, M.G.; validation,
M.G., J.G. and N.M.; formal analysis, M.G.; investigation, M.G.; resources, J.-F.T. and F.V.; data
curation, M.G. and J.-F.T.; writing—original draft preparation, M.G.; writing—review and editing,
M.G., J.G. and J.-F.T.; visualization, M.G.; supervision, J.G., N.M., D.T. and F.V.; project administration,
D.T. and F.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Algorithms 2022, 15, 446 21 of 23

Abbreviations
The following abbreviations are used in this manuscript:

(U)PHES (Underground) Pumped Hydro-Energy Storage
(P)BO (Parallel) Bayesian Optimization
GP Gaussian Process
AF Acquisition Function
AP Acquisition Process
KB Kriging Believer
EGO Efficient Global Optimization
TuRBO Trust Region Bayesian Optimization
BSP Binary Space Partitioning
IC Infill Criterion
MC Monte Carlo
mic multi-infill criteria
EI Expected Improvement
UCB Upper Confidence Bound

References
1. Toubeau, J.F.; Bottieau, J.; De Grève, Z.; Vallée, F.; Bruninx, K. Data-Driven Scheduling of Energy Storage in Day-Ahead Energy

and Reserve Markets With Probabilistic Guarantees on Real-Time Delivery. IEEE Trans. Power Syst. 2021, 36, 2815–2828. [CrossRef]
2. Gobert, M.; Gmys, J.; Toubeau, J.F.; Vallée, F.; Melab, N.; Tuyttens, D. Surrogate-Assisted Optimization for Multi-stage Optimal

Scheduling of Virtual Power Plants. In Proceedings of the 2019 International Conference on High Performance Computing
Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 113–120. [CrossRef]

3. Toubeau, J.F.; De Grève, Z.; Goderniaux, P.; Vallée, F.; Bruninx, K. Chance-Constrained Scheduling of Underground Pumped
Hydro Energy Storage in Presence of Model Uncertainties. IEEE Trans. Sustain. Energy 2020, 11, 1516–1527. [CrossRef]

4. Taktak, R.; D’Ambrosio, C. An overview on mathematical programming approaches for the deterministic unit commitment
problem in hydro valleys. Energy Syst. 2017, 8, 57–79. [CrossRef]

5. Steeger, G.; Barroso, L.; Rebennack, S. Optimal Bidding Strategies for Hydro-Electric Producers: A Literature Survey. IEEE Trans.
Power Syst. 2014, 29, 1758–1766. [CrossRef]

6. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian
Optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]

7. Haftka, R.; Villanueva, D.; Chaudhuri, A. Parallel surrogate-assisted global optimization with expensive functions—A survey.
Struct. Multidiscip. Optim. 2016, 54, 3–13. [CrossRef]

8. Briffoteaux, G.; Gobert, M.; Ragonnet, R.; Gmys, J.; Mezmaz, M.; Melab, N.; Tuyttens, D. Parallel surrogate-assisted optimization:
Batched Bayesian Neural Network-assisted GA versus q-EGO. Swarm Evol. Comput. 2020, 57, 100717. [CrossRef]

9. Ginsbourger, D.; Le Riche, R.; Carraro, L. A Multi-points Criterion for Deterministic Parallel Global Optimization Based on Gaussian
Processes; Technical report; Ecole Nationale Suṕerieure des Mines: Saint-Etienne, France, 2008.

10. Liu, J.; Song, W.; Han, Z.H.; Zhang, Y. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling
strategy and surrogate models. Struct. Multidiscip. Optim. 2017, 55, 925–943. [CrossRef]

11. Wang, Y.; Han, Z.H.; Zhang, Y.; Song, W. Efficient Global Optimization using Multiple Infill Sampling Criteria and Surrogate
Models. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [CrossRef]

12. Balandat, M.; Karrer, B.; Jiang, D.R.; Daulton, S.; Letham, B.; Wilson, A.G.; Bakshy, E. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 21524–21538.

13. Gobert, M.; Gmys, J.; Melab, N.; Tuyttens, D. Adaptive Space Partitioning for Parallel Bayesian Optimization. In Proceedings
of the HPCS 2020—The 18th International Conference on High Performance Computing Simulation, Barcelona, Spain, 20–27
March 2021.

14. Eriksson, D.; Pearce, M.; Gardner, J.R.; Turner, R.; Poloczek, M. Scalable Global Optimization via Local Bayesian Optimization.
arXiv 2020, arXiv:cs.LG/1910.01739.

15. Abreu, L.V.L.; Khodayar, M.E.; Shahidehpour, M.; Wu, L. Risk-Constrained Coordination of Cascaded Hydro Units with Variable
Wind Power Generation. IEEE Trans. Sustain. Energy 2012, 3, 359–368. [CrossRef]

16. Toubeau, J.F.; De Grève, Z.; Vallée, F. Medium-Term Multimarket Optimization for Virtual Power Plants: A Stochastic-Based
Decision Environment. IEEE Trans. Power Syst. 2018, 33, 1399–1410. [CrossRef]

17. Montero, R.; Wortberg, T.; Binias, J.; Niemann, A. Integrated Assessment of Underground Pumped-Storage Facilities Using
Existing Coal Mine Infrastructure. In Proceedings of the 4th IAHR Europe Congress, Liege, Belgium, 27–29 July 2016; pp. 953–960.

18. Pujades, E.; Orban, P.; Bodeux, S.; Archambeau, P.; Erpicum, S.; Dassargues, A. Underground pumped storage hydropower plants
using open pit mines: How do groundwater exchanges influence the efficiency? Appl. Energy 2017, 190, 135–146. [CrossRef]

19. Ponrajah, R.; Witherspoon, J.; Galiana, F. Systems to Optimize Conversion Efficiencies at Ontario Hydro’s Hydroelectric Plants.
IEEE Trans. Power Syst. 1998, 13, 1044–1050. [CrossRef]

http://doi.org/10.1109/TPWRS.2020.3046710
http://dx.doi.org/10.1109/HPCS48598.2019.9188065
http://dx.doi.org/10.1109/TSTE.2019.2929687
http://dx.doi.org/10.1007/s12667-015-0189-x
http://dx.doi.org/10.1109/TPWRS.2013.2296400
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1007/s00158-016-1432-3
http://dx.doi.org/10.1016/j.swevo.2020.100717
http://dx.doi.org/10.1007/s00158-016-1546-7
http://dx.doi.org/10.2514/6.2018-0555
http://dx.doi.org/10.1109/TSTE.2012.2186322
http://dx.doi.org/10.1109/TPWRS.2017.2718246
http://dx.doi.org/10.1016/j.apenergy.2016.12.093
http://dx.doi.org/10.1109/59.709097

Algorithms 2022, 15, 446 22 of 23

20. Pannatier, Y. Optimisation des Stratégies de Réglage d’une Installation de Pompage-Turbinage à Vitesse Variable; EPFL: Lausanne,
Switzerland, 2010. [CrossRef]

21. Toubeau, J.F.; Iassinovski, S.; Jean, E.; Parfait, J.Y.; Bottieau, J.; De Greve, Z.; Vallee, F. A Nonlinear Hybrid Approach for the
Scheduling of Merchant Underground Pumped Hydro Energy Storage. IET Gener. Transm. Distrib. 2019, 13, 4798–4808. [CrossRef]

22. Cheng, C.; Wang, J.; Wu, X. Hydro Unit Commitment With a Head-Sensitive Reservoir and Multiple Vibration Zones Using MILP.
IEEE Trans. Power Syst. 2016, 31, 4842–4852. [CrossRef]

23. Arce, A.; Ohishi, T.; Soares, S. Optimal dispatch of generating units of the Itaipu hydroelectric plant. IEEE Trans. Power Syst. 2002,
17, 154–158. [CrossRef]

24. Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Scheduling of Head-Sensitive Cascaded Hydro Systems: A
Nonlinear Approach. IEEE Trans. Power Syst. 2009, 24, 337–346. [CrossRef]

25. Chen, P.H.; Chang, H.C. Genetic aided scheduling of hydraulically coupled plants in hydro-thermal coordination. IEEE Trans.
Power Syst. 1996, 11, 975–981. [CrossRef]

26. Yu, B.; Yuan, X.; Wang, J. Short-term hydro-thermal scheduling using particle swarm optimization method. Energy Convers.
Manag. 2007, 48, 1902–1908. [CrossRef]

27. Kushner, H.J. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise. J. Fluids
Eng. 1964, 86, 97–106. [CrossRef]

28. Mockus, J.; Tiesis, V.; Zilinskas, A. The Application of Bayesian Methods for Seeking the Extremum; Towards Global Optimization:
Berlin, Germany, 2014; Volume 2, pp. 117–129.

29. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998,
13, 455–492. [CrossRef]

30. Srinivas, N.; Krause, A.; Kakade, S.; Seeger, M. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design. arXiv 2010, arXiv:0912.3995.

31. Močkus, J. On bayesian methods for seeking the extremum. In Proceedings of the Optimization Techniques IFIP Technical
Conference, Novosibirsk, Russia, 1–7 July 1974; Marchuk, G.I., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 400–404.

32. Noè, U.; Husmeier, D. On a New Improvement-Based Acquisition Function for Bayesian Optimization. arXiv 2018,
arXiv:abs/1808.06918.

33. Hennig, P.; Schuler, C. Entropy Search for Information-Efficient Global Optimization. J. Mach. Learn. Res. 2011, 13, 1809–1837.
34. Hernández-Lobato, J.M.; Hoffman, M.W.; Ghahramani, Z. Predictive Entropy Search for Efficient Global Optimization of

Black-box Functions. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; Volume 27, pp. 1–6.

35. Wang, Z.; Jegelka, S. Max-value Entropy Search for Efficient Bayesian Optimization. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3627–3635.

36. Ginsbourger, D.; Riche, R.L.; Carraro, L. Kriging Is Well-Suited to Parallelize Optimization; Springer: Berlin/Heidelberg, Ger-
many, 2010.

37. González, J.; Dai, Z.; Hennig, P.; Lawrence, N.D. Batch Bayesian Optimization via Local Penalization. arXiv 2015,
arXiv:stat.ML/1505.08052.

38. Zhan, D.; Qian, J.; Cheng, Y. Balancing global and local search in parallel efficient global optimization algorithms. J. Glob. Optim.
2017, 67, 873–892. [CrossRef]

39. Palma, A.D.; Mendler-Dünner, C.; Parnell, T.; Anghel, A.; Pozidis, H. Sampling Acquisition Functions for Batch Bayesian
Optimization. arXiv 2019, arXiv:cs.LG/1903.09434.

40. Lyu, W.; Yang, F.; Yan, C.; Zhou, D.; Zeng, X. Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for
Automated Analog Circuit Design. In Proceedings of the 35th International Conference on Machine Learning, Stockholm,
Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; Proceedings of Machine Learning Research; PMLR: Stockholm Sweden, 2018;
Volume 80, pp. 3306–3314.

41. Feng, Z.; Zhang, Q.; Zhang, Q.; Tang, Q.; Yang, T.; Ma, Y. A multiobjective optimization based framework to balance the global
exploration and local exploitation in expensive optimization. J. Glob. Optim. 2014, 61, 677–694. [CrossRef]

42. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning); The MIT
Press: Cambridge, MA, USA, 2005.

43. Wilson, J.T.; Moriconi, R.; Hutter, F.; Deisenroth, M.P. The reparameterization trick for acquisition functions. arXiv 2017,
arXiv:1712.00424.

44. Artiba, A.; Emelyanov, V.; Iassinovski, S. Introduction to Intelligent Simulation: The RAO Language. J. Oper. Res. Soc. 2000, 51,
395–515. [CrossRef]

45. Surjanovic, S.; Bingham, D. Virtual Library of Simulation Experiments: Test Functions and Datasets. Available online:
http://www.sfu.ca/~ssurjano (accessed on 13 October 2022).

46. Dalcin, L.; Fang, Y.L.L. mpi4py: Status Update After 12 Years of Development. Comput. Sci. Eng. 2021, 23, 47–54. [CrossRef]
47. Lin, X.; Zhen, H.L.; Li, Z.; Zhang, Q.; Kwong, S. A Batched Scalable Multi-Objective Bayesian Optimization Algorithm. arXiv

2018, arXiv:1811.01323.
48. Leibfried, F.; Dutordoir, V.; John, S.; Durrande, N. A Tutorial on Sparse Gaussian Processes and Variational Inference. arXiv 2020,

arXiv:2012.13962. [CrossRef]

http://dx.doi.org/10.5075/epfl-thesis-4789
http://dx.doi.org/10.1049/iet-gtd.2019.0204
http://dx.doi.org/10.1109/TPWRS.2016.2522469
http://dx.doi.org/10.1109/59.982207
http://dx.doi.org/10.1109/TPWRS.2008.2005708
http://dx.doi.org/10.1109/59.496183
http://dx.doi.org/10.1016/j.enconman.2007.01.034
http://dx.doi.org/10.1115/1.3653121
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1007/s10898-016-0449-x
http://dx.doi.org/10.1007/s10898-014-0210-2
http://dx.doi.org/10.2307/253934
http://www.sfu.ca/~ssurjano
http://dx.doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.48550/ARXIV.2012.13962

Algorithms 2022, 15, 446 23 of 23

49. Wang, Z.; Gehring, C.; Kohli, P.; Jegelka, S. Batched Large-scale Bayesian Optimization in High-dimensional Spaces. arXiv 2017,
arXiv:1706.01445.

50. Solin, A.; Särkkä, S. Hilbert Space Methods for Reduced-Rank Gaussian Process Regression. Stat. Comput. 2020, 30, 419–446.
[CrossRef]

51. Li, Z.; Ruan, S.; Gu, J.; Wang, X.; Shen, C. Investigation on parallel algorithms in efficient global optimization based on multiple
points infill criterion and domain decomposition. Struct. Multidiscip. Optim. 2016, 54, 747–773. [CrossRef]

52. Villanueva, D.; Le Riche, R.; Picard, G.; Haftka, R. Dynamic Design Space Partitioning for Optimization of an Integrated Thermal
Protection System. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Boston, MA, USA, 8–11 April 2013. [CrossRef]

53. Wang, G.; Simpson, T. Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization. Eng.
Optim. 2004, 36, 313–335. [CrossRef]

http://dx.doi.org/10.1007/s11222-019-09886-w
http://dx.doi.org/10.1007/s00158-016-1441-2
http://dx.doi.org/10.2514/6.2013-1534
http://dx.doi.org/10.1080/03052150310001639911

	Introduction
	Material and Methods
	Underground Pumped Hydro-Energy Storage
	Parallel Bayesian Optimization
	Gaussian Process Regression
	Acquisition Process for Optimization

	Problem Instances
	UPHES Management
	Benchmark Functions

	Experimental Protocol

	Results
	Benchmark Function Analysis
	Application to UPHES Management

	Discussion
	Conclusions and Future Research Directions
	References

