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Abstract: Skin cancer (SC) is one of the most prevalent cancers worldwide. Clinical evaluation of skin
lesions is necessary to assess the characteristics of the disease; however, it is limited by long timelines
and variety in interpretation. As early and accurate diagnosis of SC is crucial to increase patient
survival rates, machine-learning (ML) and deep-learning (DL) approaches have been developed to
overcome these issues and support dermatologists. We present a systematic literature review of
recent research on the use of machine learning to classify skin lesions with the aim of providing
a solid starting point for researchers beginning to work in this area. A search was conducted in
several electronic databases by applying inclusion/exclusion filters and for this review, only those
documents that clearly and completely described the procedures performed and reported the results
obtained were selected. Sixty-eight articles were selected, of which the majority use DL approaches,
in particular convolutional neural networks (CNN), while a smaller portion rely on ML techniques or
hybrid ML/DL approaches for skin cancer detection and classification. Many ML and DL methods
show high performance as classifiers of skin lesions. The promising results obtained to date bode
well for the not-too-distant inclusion of these techniques in clinical practice.

Keywords: skin cancer; skin lesion classification; melanoma classification; computer-aided diagnos-
tics; artificial intelligence; machine learning; deep learning; convolutional neural networks

1. Introduction

Skin cancer is among the most common types of cancer in the Caucasian population
worldwide [1]. It is one of the three most dangerous and fastest-growing types of cancer
and therefore represents a significant public health problem [2]. According to the World
Health Organisation, one out of every three cancer diagnoses is related to skin cancer [3]
and according to the Skin Cancer Foundation, the global incidence of skin cancer continues
to increase [4]. Skin tumours can be either benign or malignant; both types originate from
DNA [5] damage due to ultraviolet radiation exposure that causes uncontrolled cell prolif-
eration. Benign tumours, although they grow, do not spread. These include seborrhoeic
keratosis, cherry angiomas, dermatofibroma, skin tags, pyrogenic granuloma, and cysts [6].
In contrast, malignant tumours expand in the patient’s body, spread uncontrollably, and can
infiltrate other tissues/organs. Below are the most frequent forms of cutaneous malignant
tumours [7,8].

Basal cell carcinoma or basalioma (BCC) (Figure 1a). It accounts for about 80% of cases
and originates in the basal cells, the deepest cells of the epidermis. Basal cell growth is
slow, so in most cases BCC is curable and causes minimal damage if diagnosed and treated
in time.
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Squamous cell carcinoma or cutaneous spinocellular carcinoma (SCC) (Figure 1b). This
accounts for approximately 16% of skin cancers and originates in the squamous cells in the
most superficial layer of the epidermis. If detected early it is easily curable, but if neglected
it can infiltrate the deeper layers of the skin and spread to other parts of the body.

Malignant Melanoma (MM) (Figure 1c). Originating in the melanocytic cells located in
the epidermis, it is the most aggressive malignant skin tumour. It spreads rapidly, has a
high mortality rate as it metastasises in the early stages, and is difficult to treat. It accounts
for only 4% of skin cancers but induces mortality in 80% of cases. Only 14% of patients
with metastatic melanoma survive for five years [9]. If diagnosed in the early stages it has
a 95% curability rate, so its early diagnosis can greatly increase life chances.

(a) (b) (c)
Figure 1. Principal types of malignant skin cancer (sources: [10] and Dermatology Unit, Department
of Clinical Internal Anesthesiologic Cardiovascular Sciences, “La Sapienza” University of Rome).
(a) BCC. (b) SCC. (c) MM.

Although it accounts for the minority of skin cancer cases, melanoma is the most
aggressive form of skin cancer with an increasing incidence rate. It can prove lethal if not
diagnosed in time, so it is crucial to detect it early in the process to increase the chance of
cure and recovery [11]. The rules currently used by dermatologists to diagnose melanoma
are summarized in Table 1.

Table 1. Summary of the melanoma diagnosis rules.

Diagnosis Rules Description

The ABCDE rule [12,13]

It is based on morphological characteristics such as asymmetry (A), irregularity of the edges
(B), nonhomogeneous color (C), a diameter size (D) greater than or equal to 6 mm,

and evolution (E) understood as temporal changes in size, shape, color, elevation, and the
appearance of new symptoms (bleeding, itching, scab formation) [14].

Seven Point Checklist [15]

It is based on the seven main dermoscopic features of melanoma (major criteria: atypical
pigment network, blue-whitish veil and atypical vascular pattern; minor criteria: irregular

pigmentation, irregular streaks, irregular dots and globules, regression structures) by
assigning a score to each of these.

The Menzies method [16] It is based on 11 features, two negative and nine positive, which are assessed as
present/absent.

One of the main tools for the early diagnosis of melanoma is dermoscopy, a noninva-
sive and cost-effective technique [17,18], that has proved useful in reducing the number of
presumptive diagnoses that need to be confirmed histologically by skin biopsy [19]. The
equipment magnifies up to 10 times over the area of interest and this allows the physician
to obtain what would be possible by employing only the naked eye [20], thus facilitating the
detection of certain features of the lesions that are essential for diagnosis, such as symmetry,
size, broths, and presence and distribution of color features, but also blue–white areas,
atypical pigmented networks and globules [21]. It is, however, a complex, time-consuming
procedure that shows a strong dependence on the experience and subjectivity of the physi-
cian. The issues illustrated above made necessary the development of computer-aided
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diagnostic systems (CAD systems). Those systems involve the steps shown in Figure 2 for
analysing and classifying dermoscopic images of skin lesions [22].

Figure 2. CAD’s pipeline for skin lesion image analysis.

Preprocessing is aimed at mitigating artefacts in the images, mainly due to the pres-
ence of hair and marker marks on lesions. A typical hair-removal algorithm comprises
two steps [23]: hair detection, for which various morphological, thresholding and filtering
operations (Gaussian, middle, and median filters) are applied, and hair repair (restoration
or “inpainting”). The latter, which consists of filling the image space occupied by removed
hair, is performed by means of linear interpolation techniques, nonlinear partial differ-
ential equations (PDEs), diffusion methods, or exemplar-based methods. There are also
well-known hair-removal algorithms, such as DullRazor [24]. Among image-enhancement
methods, the most important are color correction or calibration, which recover real colors
of a lesion, but there are also illumination-correction, contrast-enhancement, and edge-
enhancement techniques. Illumination correction is performed by illumination-reflectance
models, Retinex algorithm [25], and bilateral filter or Monte Carlo sampling [26]. For con-
trast enhancement, the equalization histogram (HE), the equalization of the adaptive
histogram (AHE) and a sharp masking are often used together [25]. Finally, for edge en-
hancement, the Karhunen–Loève Transform (KLT), also known as the hoteling transform or
principal component analysis (PCA), is widely used [27]. The segmentation step is crucial
to increase the effectiveness of subsequent steps as clinically important features, such as
blue–white areas, atypical pigmented networks and globules, can only be automatically
extracted when the accuracy of lesion edge detection is high [28]. This is a crucial task that
researchers need to perform to aim for the best results [7,29–38]. The feature-extraction step
can be either manual [39] or automated by means of machine-learning algorithms. The ex-
traction of handcrafted features relevant in the case of skin lesion classification is based on
the methodologies designed by dermatologists to perform skin cancer diagnosis, and, in
particular, the ABCD rule of dermoscopy. The main operations used for the extraction of
shape, color, and texture features of skin lesions are given below.

• Shape: computation of area, perimeter, compactness index, rectangularity, bulkiness,
major and minor axis length, convex hull, comparison with a circle, eccentricity, Hu’s
moment invariants, wavelet invariant moments, Zunic compactness, symmetry maps,
symmetry distance, and adaptive fuzzy symmetry distance.

• Color: computation of average, standard deviation, variance, skewness, maximum,
minimum, entropy, 1D or 3D color histograms, and the autocorrelogram. In addition,
several techniques have been used to group the pixels, namely k-means, Gaussian
mixture model (GMM), and multi-thresholding.

• Texture: computation of the gray-level co-occurrence matrix (GCLM), gray level run-
length matrix (GLRLM), local binary patterns (LBP), wavelet and Fourier transforms,
fractal dimension, multidimensional receptive fields histograms, Markov random
fields, and Gabor filters.

By using machine-learning methods, learned features are derived automatically from
the datasets and require no prior knowledge of the problem. Even for the final classifica-
tion phase, different approaches are possible, from the classical ones, to the cutting-edge
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methodologies based on deep convolutional neural networks. The techniques used to
classify skin lesions are similar to those used for other types of cancer, such as breast,
thyroid, colorectal, lung, pancreatic, and cervical cancers [40–44]. In this review article,
various approaches are examined to then determine which show the best performance in
the tasks of skin lesion classification and skin cancer detection.

Many studies show that the performance of DL algorithms equals or even exceeds the
performance of experienced dermatologists in detecting and diagnosing skin lesions [45–52].
However, the performance of these algorithms should also be evaluated on images outside
their area of expertise [45]. Several difficulties and challenges exist in the automatic classi-
fication of dermoscopic images using ML and DL methods [53], such as high variability
in the shape, size, and location of lesions, the low contrast between skin lesions and sur-
rounding healthy skin, the visual similarity between melanoma and nonmelanoma lesions,
and the variation in skin condition among different patients. Regarding this last point,
a very important but little addressed aspect is skin color [54]. In fact, the dermoscopic
datasets used for training machine-learning models contain images of light-skinned people.
To perform accurate detection of skin lesions in dark-skinned people, it is necessary to
expand the existing datasets and fill this gap. Opportunities of the use of ML and DL
methods for skin cancer detection, in addition to those already mentioned, include the
possibility of avoiding unnecessary biopsies or missed melanomas, but also of making
skin diagnoses without the need for physical contact with the patient’s skin and reducing
the cost of diagnosis and treatment of nonmelanoma skin cancer, which is found to be
considerable [55].

The paper is organised into the following sections.

• Section 2. We present the methodology employed to perform the systematic research
and present the main public databases containing dermoscopic images, relevant for
the paper analysed here.

• Section 3. In this section, we discuss and explain several ML and DL methods com-
monly used for demoscopic image classification tasks.

• Section 4. We summarise in this section all the research applied to skin lesions on
dermoscopic images selected for this paper; those works are categorised according to
the approach taken, i.e., ML, DL, and ML/DL hybrid.

• Section 5. In this section, results are discussed.

2. Material and Methods
2.1. Search Strategy

This systematic review presents the work conducted over the last decade on skin
cancer classification using ML and DL techniques with the aim of providing an overview of
the problem and possible solutions to those who wish to approach this very important and
extremely topical issue. For the article selection phase, the following keywords were in-
serted in the search field of the electronic databases arXiv and ScienceDirect to be combined
with the logical operators “and” and “or”: melanoma, detection, classification, machine
learning, deep learning, dermoscopic images. Study inclusion and data extraction are in
accordance with the preferred reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines (Figure 3) [56].

In the selection, inclusion criteria were applied such as (i) openly published articles,
(ii) publications in English, (iii) classification papers, (iv) papers based on dermoscopic
images and (v) articles published between 2012 and 2022. Exclusion criteria were also ap-
plied: (i) review articles, (ii) articles published in a language other than English, (iii) articles
not complete with results, (iv) articles dealing only with segmentation, and (v) articles not
using public datasets. Using these criteria, 68 research articles were collected.
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Figure 3. PRISMA flow diagram.

2.2. Common Skin Lesion Databases

With the aim of implementing CAD systems in dermatology and testing them on
consistent real data, several dermoscopic image datasets were collected. The most common
dermoscopic public datasets are introduced below, and their details are summarised in
Table 2 [8].

ISIC archive. The ISIC archive [10], which combines several datasets of skin lesions, was
originally released by the International Skin Imaging Collaboration in 2016 for the challenge
called International Symposium on Biomedical Imaging (ISBI). Various modifications have
been made over the years.

Kaggle, one of the best resources for data scientists and machine learners looking for
datasets, collected several databases based on the ISIC archive.

HAM10000. The human-against-machine dataset (HAM) [57] (available at [58]), that
arises from the addition of some images to the ISIC2018 dataset, contains more than
10,000 images with seven different diagnoses collected from two sources: Cliff Rosendahl’s
skin cancer practice in Queensland, Australia, and the Dermatology Department of the
Medical University of Vienna, Austria.

PH². The PH² database [59] (available at [60]) acquired at the Dermatology Service of
Hospital Pedro Hispano, Matosinhos, Portugal, contains 200 images divided into common
nevi, atypical nevi, and melanoma skin cancer images. Together with the images, annota-
tions such as medical segmentation of the pigmented skin lesion, histological and clinical
diagnoses, and scores assigned by other dermatological criteria are provided.

MedNode. The MedNode dataset [61] (available at [62]) contains images of skin lesions
in the category of melanoma and common nevus from the digital image archive of the
Department of Dermatology of the University Medical Center Groningen (UMCG).
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Table 2. Summary of the most common public skin lesion datasets, which contain images of nevi
(N)/atypical nevi (AN), common nevi (CN), malignant melanomas (MM), seborrheic keratoses (SK),
basal cell carcinomas (BCC), dermatofibromas (DF), actinic keratoses (AK), vascular lesions (VL), and
squamous cell carcinomas (SCC).

Database N/AN CN MM SK BCC DF AK VL SCC Tot

ISIC 2016 [63] 726 - 173 - - - - - - 899
ISIC 2017 [64] 1372 - 374 254 - - - - - 2000
ISIC 2019 [65] 12,875 - 4522 2624 3323 239 867 253 628 25,331
ISIC 2020 [66] 27,124 5193 584 135 - - - - - 33,126
HAM10000 6705 - 1113 1099 514 115 327 142 - 10,015
PH2 80 80 40 - - - - - - 200
MedNode 100 - 70 - - - - - - 170

As introduced earlier, the inclusion criteria for article selection include the use of
public dermoscopic datasets.

3. Artificial Intelligence

Artificial intelligence (AI) refers to the ability of machines to perform some of the tasks
characteristic of human intelligence including planning, problem solving, natural language
understanding, and learning. The two main branches of AI are discussed in the following
paragraphs. In addition, the main pre-trained networks are presented and the concept of
transfer learning (TL) is introduced.

3.1. Machine Learning

Machine learning is the application and science of algorithms that autonomously
extract useful information from data. In the training process, the ML model receives the
training data as input and processes it to extract natural patterns and/or salient features
based on which it learns to associate an attribute with each sample or assign each sample
to one of the identified clusters. This will allow the model to make predictions on new data
never seen before. The main ML models are outlined below.

3.1.1. Decision Trees

Decision Trees (DT) are versatile ML algorithms that work for both categorical and
numerical variables since they do not require an assumption about the data distribution and
classifier structure. Thus, these algorithms can perform classification, regression and multi-
output tasks. They provide accurate and efficient classifications for large and complex
datasets. Random forests (RF) are based on the ensemble of decision trees. By using
multiple DTs, which individually suffer from high variance, RFs constitute a more robust
model that offers better generalization performance [67].

3.1.2. Support Vector Machines

Support vector machines (SVMs) are ML models capable of performing linear and
nonlinear classifications (kernel methods), regressions and outlier detection [68,69]. Al-
though the datasets on which SVMs perform well can be complex, and these need to be not
too large. When applied to classification tasks, SVMs build hyperplanes. Every hyperplane
represents a decision boundary that allows the separation and differentiation of the feature
space in two distinct classes. When the data are linearly separable, linear classification
can be performed, whereas if the data are not linearly separable, a kernel function (linear,
quadratic, cubic, fine Gaussian, medium Gaussian, coarse, etc.) can be selected to map the
data into a higher dimensional space with the goal of forcing the data points to become
linearly separable, if possible.

3.1.3. K-Nearest Neighbors

The K-Nearest Neighbour (KNN) is an algorithm that performs classification of new
data based on its similarity to the closest labelled data [70,71]. Once the parameters
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associated with a KNN classifier have been chosen, i.e., the K-number of nearest neighbours
to be considered and the distance metric (of which the most significant are the Euclidean
and Manhattan Distances), the new data is assigned a label based on a majority vote.
To overcome overfitting and underfitting problems, a value of K between 3 and 10 is
typically chosen.

3.1.4. Artificial Neural Networks

Artificial neural networks (ANNs), developed from studies related to neuronal con-
nections, were introduced to solve problems as complex as real ones. Early neural networks
attempted to mimic the human brain and the synaptic connections between neurons, but be-
ing able to understand only part of the brain mechanisms, ANNs were implemented by
means of simpler and more ordered architectures composed of functional units called neu-
rons (or nodes), connected by arcs simulating synaptic connections, and structured in layers.
The layers, which are the main element of neural networks, extract representations from the
data, meaningful to the problem at hand, and process them. What gives a neural network
its learning capability is the ability to adjust the weights associated with the connections
between neurons during training (i.e., based on the experience gained). The methodology
used in training neural networks is called the learning paradigm.

3.2. Deep Learning

Deep learning (DL), the most successful ML solution, is an intelligent algorithm
capable of autonomously learning from a dataset by exploiting a complex architecture that
simulates the human brain structure. Since the early 2000s, convolutional neural networks
(CNNs or ConvNet), inspired by the biological neural networks of the visual cortex [72],
have become the most effective and widely used algorithms in computer vision. The layers
of CNNs are of different types and each has its own specific function. In fact, some of them
have trainable parameters, while others only have the task of implementing an established
function. The types of layers most frequently used in CNN architectures [73] are as follows.

Convolutional layers. Convolutional layers are able to learn local patterns, and this
entails two important properties: the learned patterns are translation invariant and the
learning extends to spatial hierarchies of patterns. This allows the CNN to efficiently learn
increasingly complex visual concepts as the depth of the network increases. Convolutional
layers contain a series of filters that run over the input image performing the convolution
operation and generate feature maps to be sent to subsequent layers.

Normalization layers. These are layers for normalising input data by means of a spe-
cific function that does not provide any trainable parameters and only acts in forward
propagation. The use of those layers has diminished in recent times.

Regularization layer. They are layers designed to reduce overfitting by randomly ignoring
a proportion of neurons during each training session. The best known regularization
technique is the dropout.

Pooling layers. Pooling layers perform subsampling of feature maps while retaining the
main information contained therein, in order to reduce the model parameters and the
computational cost of the operations to be performed. Pooling filters, of which the most
used are average pooling and max pooling, run over the feature maps they receive as input
by performing the convolution operation as in the case of convolutional layers, but in this
case there are no trainable parameters.

Fully connected layers. In those layers, every neuron of the layer is connected to all
activation functions of the previous layer. The first fully connected layer (FC) takes input
feature maps as output from the last convolutional or pooling layer, and the last of the FC
layers is the CNN classifier.
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3.3. Pre-Trained Models and Transfer Learning

Several CNN architectures are available as pretrained models. The most commonly
used ones are GoogLeNet, InceptionV3, ResNet, SqueezeNet, DarkNet, DenseNet, Xception,
Inception-ResNet, Nasnet, and EfficientNet, and the parameters of each are summarised in
Table 3.

Table 3. Overview of common CNNs architectures.

Architetture Year Developed by Parameters Layers Input Size

GoogLeNet 2014 Szegedy et al. 4 M 144 224 × 224
InceptionV3 2015 Szegedy et al. 23.8 M 316 299 × 299
ResNet18 2015 He et al. 11.17 M 72 224 × 224
ResNet50 2015 He et al. 25.6 M 177 224 × 224
ResNet101 2015 He et al. 44.7 M 347 224 × 224
SqueezeNet 2016 Iandola et al. 1.2 M 68 227 × 227
DenseNet201 2017 Huang et al. 20.2 M 709 224 × 224
Xception 2017 Chollet 22.9 M 171 299 × 299
Inception-ResNet 2017 Szegedy et al. 55.8 M 824 299 × 299
EfficientNetB0 2019 Mingxing and Le 5.3 M 290 224 × 224

As introduced earlier, training DL models with randomly initialised parameters re-
quires a large amount of labelled data, which is often not readily available. Transfer learning
represents the best solution by allowing the reuse of knowledge (the weights) extracted
from a pretrained CNN model on large datasets labelled as ImageNet and achieving good
results in the source domain. Transfer learning can be used as a feature extraction model
but also to refine hyperparameters by freezing or unfreezing various layers.

4. Results

This section summarises the papers on skin lesion classification collected from the
literature after careful research. Starting with papers that propose only ML techniques for
skin cancer detection, we continue with papers that focus on DL techniques, and finally we
report those that combine ML and DL. The following metrics were used to evaluate model
performance: accuracy (ACC), sensitivity (SE), specificity (SP), precision (PR), recall (REC),
F1 score (F1), and area under the ROC curve (AUC).

4.1. Machine-Learning Methods

A new algorithm for calculating the extended feature vector space is proposed in [74].
Specifically, features of color (from the hue-saturation value (HSV) space) and texture (via
local binary pattern (LBP)) are extracted from the images and subsequently combined to
extend the feature space. These features are then used by an ensemble bagged tree classifier
for the detection of melanoma.

In one paper [75], the authors, after smoothing the images with a Gaussian filter, use
the active contour model to obtain the lesion edges from which they define a segmentation
mask to extract lesion characteristics in terms of shape. From the mask, they replace the
lesion pixels with those of the original image and then extract lesion characteristics in terms
of color and texture. Finally, they use a K-nearest neighbor (KNN) model to perform the
binary classification between the melanoma class and the seborrhoeic nevi-keratosis class.
They obtain the best results with k = 2.

In [76], lesion segmentation is performed in the gray space whereas in the RGB
color space, texture characteristics are extracted with global (grey-level co-occurence ma-
trix (GLCM) for entropy, contrast, correlation, angular second moment, inverse different
moment, sum of squares) and local (LBP and oriented FAST and rotated BRIEF (ORB))
techniques. To extract color features from each image, histograms of the five color spaces
(grayscale, RGB, YCrCb, L*a*b and HSV) are generated from which information on mean,
standard deviation, skewness and kurtosis is obtained for a total of 52 color features for
each image. In order to select only the most significant features, two variants of the Harris
Hawk optimisation (HHO) algorithm are tested, employing S-shaped (BHHO-S) and V-
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shaped (BHHO-V) transfer functions respectively, with BHHO-S leading to better results.
As a final step, an SVM model is used to perform melanoma/non-melanoma classification
on dermatological images.

The authors of [77] use the lesion masks already provided with the images to extract
510 features (18 for shape, 72 for color and 420 for texture) which are then manipulated to
create different subsets of features and sent to ensemble classification models that will use
them to diagnose skin lesions. Each ensemble classification model is generated by using an
optimum-path forest (OPF) classifier and integrated with a majority voting strategy. Three
different approaches are proposed: SE-OPS, which manipulates features by using different
subsets based on specific feature groups, SEFS-OPF, which manipulates features by using
correlation-based features selection (CFS) to select the best features, and FEFS-OPS, which
manipulates features by using different selection algorithms such as correlation coefficient
information gain, principal component analysis (PCA) and CFS. The best model is found to
be SE-OPF.

In [78], shape (normalised radial length (4 features), asymmetry of shape (2 features)),
color (statistical color measures (12 features), six-color model (7 features)), and texture
(statistical texture measures (8 features), energy of Laws’ filters responses (14 features),
gray-level co-occurrence matrix features (24 features)) are extracted from all areas of the
lesion (general features), as well as some texture features from peripheral regions only (local
features). The sequential feature selection (SFS) approach is used and then classification is
performed by using two different models: on the one hand a linear SVM model to recognise
melanoma versus nevus on the basis of four lesion features, and on the other hand the
RUSBoost classifier to recognise melanoma versus nevus and atypical nevus on the basis of
eight features considered relevant by the SFS algorithm.

In [79], an original and innovative system for automatic melanoma skin detection
(ASMD) with melanoma index (MI) is proposed. The system incorporates image pre-
processing, bi-dimensional empirical mode decomposition (BEMD), image texture en-
hancement, entropy and energy feature extraction and binary classification. From the
feature-extraction stage, vectors of 28 features are obtained for each image, and a Student’s
t-test with triple cross-validation is used to classify the 28 features based on the statistical
results obtained. In the classification phase, the combination SVM and radial basis function
(RBF) offers high accuracy, which prompts the authors of the paper to formulate a clinically
relevant MI based on Rényi entropy and maximum entropy. The MI value can help derma-
tologists decide whether a suspected skin lesion, shown in dermoscopic images, is benign
or malignant.

In [80], an integrated computer-aided method for multiclass classification of melanoma,
dysplastic nevi, and basal cell carcinoma is proposed. Different features related to shape,
edge irregularity, color and texture (obtained by combining GLCM and a fractal-based
regional texture analysis (FRTA)) of skin lesions are extracted. Finally, the combination of
feature selection with recursive feature elimination method (RFE) and a SVM with RBF
function is used to perform classification.

The paper [81] addresses the problem of amorphous pigmentary lesions and blurred
edges by proposing two new fractal signatures called SSTF statistical fractal signatures and
SSPF statistical prism-based fractal signatures. The comparison of different computer-aided
diagnosis methods for multiclass skin lesion classification based on the new fractal signa-
tures, and using different classifiers, is performed. The best results for robust, unbiased,
and reproducible methodologies are obtained by using SSTF with the LDA classifier.

In [82], the authors suggest a skin lesion segmentation and classification system based
on sparse kernel representation. They use a kernel dictionary and classifier to predict the
labels of the test set. In particular, they first extract the texture features (speeded up robust
features, or SURF) from the images, then, by using the KOMP algorithm, compute the
sparse code of it with respect to the kernel dictionary, and finally, the classifier is used to
predict the class of the lesion. They perform both binary classification (melanoma/normal)
and multiclass classification (melanoma, basal cell carcinoma, and nevi).
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The authors of [83] propose a methodology for the accurate diagnosis of melanoma
from dermoscopic images that consists of extracting and selecting salient features from the
preprocessed and segmented images and classifying them by using multilayer perceptron
(MPL)-averaged. Both the feature extraction and classification steps are optimized by a
newly developed version of the red fox optimization (DRFO) algorithm.

In this work [84], the authors perform skin lesion segmentation by using a novel
dynamic graph cut algorithm, extract texture (contrast, correlation, energy, homogeneity,
and entropy), color (mean, standard deviation, skeweness, and variance), and asymme-
try (asymmetry and bulkiness) features from a segmented skin region, and then use a
probabilistic classifier called Naïve Bayes for skin disease classification.

Table 4 summarizes the machine-learning methods previously described.

Table 4. Overview of cited works using ML approaches (results have been rounded). FEX and FSE

abbreviations are used for feature extraction and selection, respectively. The symbol “-” indicates that
no information is provided on a particular operation.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Kumar et al. [74]
2022

Binary:
MM vs. benign MedNode -

FEX + Ensemble
Bagged

Tree classifier
-

ACC = 0.95,
SE = 0.94, SP = 0.97,

AUC = 0.99

Kanca et al. [75]
2022

Binary: MM vs. N
and SK ISIC2017 - FEX + KNN

classifier - ACC = 0.68,
SE = 0.80, SP = 0.80

Bansal et al. [76]
2022

Binary:
MM vs. non-MM HAM10000

Blurring, increased
brightness, addition

of contrast and
noise, flipping,

zoom, and others

FEX and FSE (with
BHHO-S algorithm)

+ linear SVM
-

ACC = 0.88,
SE = 0.89, SP = 0.89,

PR = 0.86

Oliveira et al. [77]
2017

Binary:
benign vs. malignant ISIC2016 -

FEX and FSE (using
SE-OPS approach) +

OPF classifier
10-fold ACC = 0.94,

SE = 0.92, SP = 0.97

Tajeddin et al. [78]
2018

Binary: MM vs. N
and MM vs. N/AN PH2 -

FEX and FSE (with
SFS approach) +
linear SVM and

RUSBoost classifiers

10-fold
1° SE = 0.97, SP = 1;

2° SE = 0.95,
SP = 0.95

Cheong et al. [79]
2021

Binary:
benign vs. malignant

DermIS,
DermQuest,

ISIC2016

Image rotation: ±30,
±60 and ±90 degrees

FEX and FSE
(t-Student test) +

RBF-SVM
-

ACC = 0.98,
SE = 0.97, SP = 0.98,
PR = 0.98, F1 = 0.98

Chatterjee et al. [80]
2019

Multi-class: MM, N
and BCC

ISIC archive,
PH2, IDS -

FEX and FSE
(RFE method) +

RBF-SVM
10-fold

ISIC: ACC = 0.99,
SE = 0.98, SP = 0.98;

PH2: ACC = 0.98,
SE = 0.91, SP = 0.99;

IDS: ACC = 1,
SE = 1, SP = 1

Camacho-
Gutiérrez et al. [81]

2022

Multi-class: N, MM,
SK, BCC, DF, AK,

VL
ISIC 2019 -

SSTF statistical
fractal signatures +

LDA classifier
-

Four-classes:
ACC = 0.87,

SE = 0.63, SP = 0.89,
PR = 0.65;

seven-classes:
ACC = 0.88,

SE = 0.41, SP = 0.92,
PR = 0.46

Moradi et al. [82]
2019

Binary: MM vs.
normal; Multi-class:

MM, BCC and N
ISIC2016, PH2 -

FEX and calculation
of sparse code using
KOMP algorithm +

linear classifier

10-fold

Binary ISIC:
ACC = 0.96,

SE = 0.97, SP = 0.93:
binary PH2:
ACC = 0.96,

SE = 100, SP = 0.92;
three-classes:

overall ACC = 0.86

Fu et al. [83] 2020 Multi-class: BCC,
SK, MM, N ISIC2020 -

FEX and FSE +
MPL-averaged

optimized by DRFO
algorithm

- ACC = 0.91,
SE = 0.90, SP = 0.92

Balaji et al. [84]
2020

Multi-class:
benign vs. malignant ISIC2017 - FEX + Naïve

Bayes classifier -

ACC = 0.94 for
benign cases,

0.91 for MM and
0.93 for SK.
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4.2. Deep-Learning Methods

In [85], a parameter transfer of a pretrained network to a CNN is performed to reduce
the training time. The performance of the network without and with fine tuning (FT) is
compared, obtaining better results in the second option.

For the melanoma detection task, an ensemble learning approach is proposed in [86]
to combine the predictive power of three different deep convolutional neural network
(DCNN) models known from medical imaging classifications pretrained on the ImageNet
dataset: EfficientNetB8, SEResNeXt10, and DenseNet264. Two innovative approaches are
used: the multisample dropout approach, whereby, downstream of the pre-trained network
architectures, the dropout, fully connected (FC), and softmax layers are duplicated and
the loss value (obtained by using a variant of the binary cross-entropy called focal loss
to perform dense object detection) is calculated as the average of the loss values of all
dropout samples, and, secondly, the multi-penalty approach, whereby each duplicated
layer is penalised at a different rate.

Moreover, in [87], an ensemble learning approach is used. An ensemble of deep model
(SLDEP) is created by using four different CNNs (GoogLeNet, VGGNet, ResNet, and
ResNeXt) to perform multiclass classification based on majority voting.

In [88], the authors perform a multiclass classification by using TL on InceptionV3,
ResNet50, and Denset201, removing the output layer from these architectures and adding
pooling and FC layers.

In [89], the authors, after preprocessing the images to remove hair and improve
image quality by using the HR-IQE (hair-removal image-quality enhancement) algorithm,
proceed with lesion segmentation by using swarm intelligence (SW) algorithms to identify
the region of interest (ROI), extract features within the ROI by using sped-up robust features
(SURF) and select only a few of these based on the grasshopper optimisation algorithm
(GOA). Finally, a custom CNN, consisting of two convolutional layers followed by two
max-pooling layers, and a flatten layer, is used to classify images into melanoma and
nonmelanoma classes.

In [90], an AWO-based SqueezeNet is proposed in which the pre-trained SqueezeNet
is trained by a proposed AWO algorithm which is a fusion of the aquila optimisation (AO)
algorithm and the whale optimisation algorithm (WOA).

In [91], a custom CNN with five convolutional layers, five max pooling layers, two
dense layers and one dropout layer is used. The authors focus heavily on image prepro-
cessing work to enable the network to achieve better performance.

In [92], various types of CNNs (ResNet, DenseNet, InceptionV3, VGG16) pretrained
on ImageNet are implemented to evaluate their performance in the skin cancer diagnosis
task. After selecting some features of the InceptionV3 and DenseNet architectures, a new
architecture called DenseNet-II is built in which there are two parallel networks of con-
volutional layers. By using focal loss, they create an imbalance of weights to penalise the
majority class and reduce the damaging effects of class imbalance.

In [93], a shallow DL model called SCNN12 is created, consisting of 12 weighted layers:
4 convolutional, 4 max pooling, 1 flatten, 2 dense, and 1 softmax layer. The ablation study
method is used to determine the parameters and hyperparameters of the model on the
basis of optimal performance in terms of accuracy. In addition to classical preprocessing
operations, the authors perform downsampling by reducing the spatial resolution of the
images while keeping the size unchanged. In this way, the images retain their 224 × 224
size but are reduced from 45 kb to 6 kb spatial resolution.

An early skin cancer detection approach using a pretrained DL model is proposed
in [94]. In this work, a Flask website is also developed to allow users to upload dermato-
logical images and make a prediction on the class they belong to.

In [95], a new DL model is proposed based on the VGG16 architecture by eliminating
some redundant convolutional layers, introducing a batch normalisation (BN) layer after
each pooling layer and replacing the FC layer with a global average pooling (GAP) layer.
Eliminating some convolutional layers decreases the trainable parameters and introducing
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BN and GAP layers improves performance without increasing the number of parameters.
By decreasing the network parameters compared to VGG16, the entire architecture is
optimised and calculation times are accelerated.

With the idea of improving the existing performance measures and minimising the
convergence time of the learning model in the skin cancer detection task, in [96] the authors
use AlexNet as a pretrained architecture and replace its larger filters with smaller ones.
This reduces the parametric complexity of the model but increases its depth, causing the
vanishing gradient phenomenon during the training phase. To overcome this problem,
residual or skip connections are introduced through several pairs of consecutive blocks
(taking a cue from ResNet). Finally, learning rate annealing is applied by using the cyclic
learning rate during training.

In [97], adversarial training is used to achieve good accuracy in skin tumour classi-
fication, despite having a small amount of data available. By applying the fast gradient
sign method (FGSM), new adversarial example images are created to maximise the loss
for the input image, which are subsequently used in both train and test phases. With these
new images, some pretrained networks (VGG16, VGG19, DenseNet101, and ResNet101)
are retrained, and ResNet101 obtains the best results even though it consumes more com-
putational power and takes longer than the others.

In [98], the authors use the pretrained ResNet52 network in five different situations
to classify skin lesions. The tests performed are: training without data augmentation
(DA), training with DA only on malignant images, training with DA on malignant and
downsampling (DS) of benign images with two different proportions, training with DA
only on malignant images by including other images from different datasets in the dataset.
The best solution appears to be the one in which the data is augmented only on lesions
belonging to the malignant class while maintaining a malignant/benign ratio of 0.44.

In [99], the VGG16 network is used in three different ways: training from scratch,
transfer learning, and fine tuning. The training-from-scratch approach turns out to be
the least accurate of the three proposed. The TL method greatly outperforms the former
but shows very different performance between the training and test phases, testifying to
the presence of overfitting. Applying fine-tuning results in the best model with superior
performance to the former approach and no evidence of overfitting on the train data.

A new approach that not only classifies skin lesions with DL models but also dis-
criminates is proposed in [100]. An architecture is created to take a pair of images (ma-
lignant/benign) as input and use a light network pretrained on the ImageNet dataset to
extract two feature vectors, one from each image, used individually to train two networks
for melanoma recognition, and jointly to introduce a nonparametric discriminant layer
through which a network is constructed to check whether or not the images corresponding
to the two jobs belong to the same category.

In [101], after performing image preprocessing, segmentation and DA, they use the
ResNet50 and InceptionV3 networks pretrained on ImageNet to perform binary classifica-
tion of skin lesions. The final result is obtained by averaging the predictions generated by
each classifier.

A deep clustering approach based on the incorporation in latent space of dermoscopic
images of skin lesions is proposed in [102]. To learn discriminative embeddings, clustering
is achieved by using a novel centre-oriented margin-free triplet loss (COM-Tripletenforced
on image embedding from a CNN backbone). This variant of triplet loss is used because,
in contrast to the classical one that maintains a fixed distance from the origin independently
for positive and negative classes, it adaptively updates the distance between clusters
during the training procedure. The method seeks to maximise the distance between
cluster centres instead of minimising the classification error by making the model less
sensitive to imbalance between classes. Furthermore, to get away from the need for labels,
an unsupervised approach is proposed by implementing COM-Triplet loss on pseudo-
labels generated by Gaussian mixture model (GMM). The CNN has an architecture based
on the backbones common in computer vision tasks (VGG16, ResNet50, DenseNet169 and
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EfficientNetB3) by replacing the dense layer with an embedding layer for deep clustering
models. A dropout layer with a rate of 0.3 is also inserted between the backbone of the
networks and this last layer. The best results are obtained by using the pretrained VGG16
network as the backbone and performing transfer learning.

To automatically detect skin cancer on dermoscopic images, in [103] the authors use
a metalearning method (also known as “learning to learn”) that aims at understanding
the learning process in order to use the acquired knowledge to improve the learning
effectiveness of new tasks. The authors demonstrate that nonmedical image features can
be used to classify skin lesions and that the distribution of data affects the performance of
the model. They use a pretrained ResNet50 by removing the last dense layer and perform
cross-validation three times.

In [104], three pretrained networks (EfficientNet, SENet, and ResNet) are used in three
different situations: training with preprocessed images, training with images multiplied by
the segmentation mask obtained with the U-Net, and training with both of the previous
solutions. The latter approach turns out to be the best in terms of accuracy.

In [105], the MobileNet network pretrained on images from the ImageNet dataset and
optimised on dermatological images is used.

Several pre-trained neural networks (PNASNet-5-Large, InceptionResNetV2, SENet154
and InceptionV4) are being tested in [106], freezing all levels except the last FC where the
softmax function is used to produce the probability of each class. The best result in terms
of accuracy is achieved by the model based on the PNASNet-5-Large network.

In [107], transfer learning (TL) is performed on the VGG16 and GoogLeNet networks,
which are evaluated both individually and combined. The best result is obtained with the
combination of the two models.

A multitask deep learning model is proposed in [108]. This model consists of three
parallel layers: a segmentation branch that returns the lesion mask, a binary classification
branch for melanoma detection, and a binary classification branch for seborrhoeic keratosis
detection. The input of the network are the images to which several labels describing
different lesion characteristics are associated, whereas the output provides the binary mask
of the lesion, the probability of belonging to the melanoma class, and the probability of
belonging to the seborrhoeic keratosis class. The model is implemented based on the
GoogLeNet architecture, which is common to all three branches; the U-Net is used for
segmentation and two FC layers are added for the classification branches.

In [109], a new DL architecture called NABLA-N Network for lesion segmentation,
and the inception recurrent residual convolutional neural network (IRRCNN) model for
skin cancer lesion classification are proposed. The classification network consists of three
recurrent residual units followed by subsampling layers. At the end of the model, a GAP
layer is used, which helps to significantly reduce the number of network parameters
compared to a FC layer, followed by a softmax layer. The model is evaluated with and
without DA, showing that performance increases significantly in the latter case.

In [110], multiple TL models based on XceptionNet, DenseNet201, ResNet50, and Mo-
bileNetV2 are tested. After training with the preprocessed and augmented images, the best
model in terms of accuracy, precision, recall, and F1 score is the one based on ResNet50.

A combination of a multilabel deep feature extractor (ResNet50 backbone) with a
clinically constrained classification chain to formulate the seven-point checklist algorithm
based on the major and minor criteria and their respective weightings used by dermatolo-
gists is proposed in [111]. Each input, consisting of a clinical and a dermoscopic image, is
associated with a label for the diagnosis (melanoma/non-melanoma) and seven labels for
the evaluation criteria scores. Image features are extracted from the network, reduced in
dimensionality by PCA, concatenated, and sent to the grading chain to obtain predictions
on all seven-point checklists. The final score is the sum of all predictions weighted by
the respective clinical weights (weight = 2 for major criteria and weight = 1 for minor
criteria). A score greater than or equal to 3 produces a diagnosis of melanoma. By keeping
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the criteria of the seven-point analysis, the proposed system could be more accepted by
dermatologists as a human-interpretable CAD tool for automated melanoma detection.

In [112], several features are extracted from the skin lesions and a subsequent feed-
forward neural network is used to perform classification by using the Levenberg Marquardt
generalisation method (LM) to minimise mean square error. The extracted features are
mean, standard deviation and skewness; entropy, mean and energy using the discrete 2D
wavelet transform; contrast, similarity, energy and homogeneity using the GLCM.

A mixed skin lesion picture generated method based on Mask R-CNN (MSLP-MR)
is implemented in [113] to augment the class of melanomas and reduce data imbal-
ance. The augmented dataset is used to train models such as InceptionV4, ResNet, and
DenseNet121, of which the latter is the best. Based on this observation, the DenseNet
network is deepened by creating the DenseNet architecture145.

In [114], the optimal deep neural network driven computer-aided diagnosis for skin
cancer detection and classification (ODNNsingle bondCADSCC) model is designed, which
applies preprocessing based on Wiener filtering (WF), performs lesion segmentation with
U-Net and extracts features with SqueezeNet. Finally, the improved whale optimization
algorithm (IWOA) selects the parameters of the feed-forward DNN (FFNN) with three hid-
den layers that will be used for the effective detection and classification of skin cancer.

For the classification of melanoma, the TL on the SqueezeNet is used in [115], the
optimal parameters of which are identified by using the bald eagle search (BES) method.
In addition, a random oversampling method (ROS) followed by data augmentation is used
to eliminate data imbalance. This approach, in addition to yielding excellent results in
terms of accuracy, sensitivity, specificity, F1 score, and AUC, requires less training time
than other pretrained networks including VGG19, GoogleNet, and ResNet50.

In [116], the authors propose a study on the effect of image size for skin lesion classifi-
cation based on pretrained CNNs and transfer learning. After examining the classification
performance of three well-established CNNs, namely EfficientNetB0, EfficientNetB1, and
SeReNeXt-50, it is shown that image cropping is a better strategy than scaling and pro-
vides superior classification performance at all image scales from 224 × 224 to 450 × 450.
Furthermore, for the classification of skin lesions the authors of the paper propose and
evaluate a unique multiscale multi-CNN (MSM-CNN) fusion approach, which consists of
assembling the results of three different fine-tuned networks, trained with cropped images
at six different scales. After each of the three models (EfficientNetB0, EfficientNetB1 and
SeReNeXt-50) has performed a prediction on the cropped images in six different formats,
the average of the six classifications for each network is obtained and then the three final
results are averaged again to obtain the final classification.

In [117], the authors propose a multiclass multilevel classification algorithm (MCML)
for multiclass (healthy, benign, malignant, and eczema) classification of skin lesions and
evaluate the use of traditional machine learning and an advanced deep learning aproach.
In the first approach, after the steps of preprocessing, segmentation and feature extraction,
an ANN with three hidden layers is used to perform classification. In the second approach,
the TL is used, and a pretrained AlexNet model is modified, fine-tuned and retrained on
the dermatology dataset. The best results are obtained with the DL approach.

In [118], a new deep-learning methodology is proposed to implement effective skin
disease classification. After preprocessing and image segmentation, deep features are
extracted by using Resnet50, VGG16, and Deeplabv3 and then concatenated. These con-
catenated features are transformed by using hybrid squirrel butterfly search optimization
(HSBSO) and then passed to modified long short-term memory (MLSTM), where architec-
ture optimization is performed by HSBSO itself to produce the final classified output.

This paper [119] proposes a self-supervised topology clustering network (STCN) by a
transformation-invariant network with self-supervised maximum modularity clustering
algorithm following topology analysis principle. A pre-trained ResNet50 is used as a
feature-extraction module, and the image decoder in cycle GAN is used as a self-expression
module. Finally, the feature vectors of the images are used to train a deep topology
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clustering algorithm that performs clustering, and a softmax layer is added downstream of
the feature vector to make the entire network capable of performing classification.

The authors in [120] propose a deep convolutional neural network (DCNN) model
to perform accurate classification of skin lesions into malignant and benign. The CNN is
pretrained on a large image dataset (ImageNet), and then fine tuned to a new dermatological
dataset. In testing, the proposed model achieves good performance in terms of accuracy,
precision, recall, and F1 score. This model is found to be more accurate when the pathology
is in an early stage.

In [121], the authors present a framework for skin cancer classification that combines
image preprocessing with a hybrid-CNN. The proposed CNN consists of three feature
extraction blocks. The feature maps output from these blocks are sent to an FC layer either
individually or concatenated with each other. Finally, the results are merged to provide the
overall output.

In [122], a novel deep learning framework for segmentation and classification of skin
lesions is proposed. In the classification phase, a 24-layer convolutional neural network
architecture is designed, the best features of which are provided to softmax classifiers for
final classification.

In [123], an average ensemble learning-based model is proposed to use five pretrained
deep neural network models (ResNeXt, SeResNeXt, ResNet, Xception, and DenseNet) as
the basis of the ensemble to classify seven types of skin lesions. The grid search method
is used to find the best combination of the basic models and perform a weighted average
combination, but it is shown that the models all behave more or less the same, except for
DenseNet, and therefore the unweighted average combination can be used.

A novel deep convolutional neural network for the melanoma and seborrheic keratosis
detection task is presented in [124]. The novelty of this approach is to use a pretrained
ResNet18 network for classification of the original images, and four other pretrained
AlexNet networks for classification of four new images obtained by applying Gabor wavelet
filters with coefficients 0°, 45°, 67.5°, and 112.5°. The final decisions of the five classification
networks are finally merged to improve the overall performance.

The authors of [125] propose a deep convolutional neural network, named Classifica-
tion of Skin Lesion Network (CSLNet), to perform multi-class classification of skin lesions.
The network consists of concatenated basic blocks with a total of 68 convolutional layers,
each preceded by a batch normalization layer and a LeakyRelu layer. Finally, a Global
Average Pooling layer precedes the last FC layer before the output layer.

In the paper [126] a deep convolutional ensemble neural network is created to perform
classification of dermoscopic images into three classes: melanoma, nevus, and seborrheic
keratosis. The classification layers of four different deep neural networks are fused, two
pre-trained (ResNet and GoogLeNet), and two with weights initialized to random values
(VGGNet and AlexNet). The final classification is obtained by performing the weighted
sum of the maximal probabilities (SMP) of each network.

To classify melanoma images into malignant and benign, in [127] a pretrained Mo-
bileNetV2 network is used as the basis of the model and adds a global average pooling
followed by two fully connected final layers. Evaluation of the model on four different
datasets shows poor accuracy in classifying malignant lesions, a result likely related to the
imbalance between classes. As it is designed, the proposed model can also be implemented
on mobile devices.

In [128], the addition of features in the layers of a CNN is proposed. Specifically,
features are extracted from segmented dermoscopic images and used as additional input to
the CNN network layer. The handcrafted features, which include shape, color, and texture
features (extracted by GLCM and scatter wavelet transform), and the features extracted
by CNN are concatenated at the fully connected layer leading to high performance in
classifying various skin lesions.

In [129], a deep convolutional neural network framework for multiclass classification
of skin lesions is proposed, including the outcome of binary classification (healthy/diseased)
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in the final probabilities. To accomplish this, the pretrained GoogLeNet-InceptionV3 net-
work is used to perform multiclass and binary classification simultaneously, and the
respective softmax outputs are merged on a support training layer. This layer multiplies
the confidence of multiclass classification with the corresponding confidence of binary
classification.

Table 5 summarizes the deep-learning methods previously described.

Table 5. Overview of cited works using DL approaches (results have been rounded). FEX and FSE

abbreviations are used for feature extraction and selection, respectively. The symbol “-” indicates that
no information is provided on a particular operation.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Raza et al. [85] 2022 Binary:
benign vs. malignant ISIC archive -

Parameter transfer
of a pre-trained

network to a CNN
- ACC = 0.96

Guergueb et al. [86]
2022

Binary:
benign vs. malignant

ISIC
archive, ISIC2020

Mixup and
CutMix techniques

Ensemble of three
pre-trained CNNs:

EfficientNetB8,
SEResNeXt10

and DenseNet264

3-fold

ACC = 0.989,
SE = 0.962,
SP = 0.988,

AUC = 0.99

Shahsavari et al. [87]
2022

Multi-class: BCC,
MM, N, SK ISIC archive, PH2

Image rotation: 45,
90, 135, 180, 210;
horizontal and

vertical flipping

Ensemble of
four pre-trained

CNNs: GoogLeNet,
VGGNet, ResNet

and ResNeXt

-
ACC = 0.879 on

ISIC, ACC = 0.94
on PH2

Wu et al. [88] 2022
Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000

Random clipping,
flipping

and ranslation

Use of TL on
InceptionV3,

ResNet50
and Denset201

- ACC train = 0.99,
ACC val = 0.869

Thapar et al. [89]
2022

Binary:
MM vs. non-MM

ISIC2017,
ISIC2018, PH2 -

FEX and FSE (based
on GOA) +

custom CNN
-

ISIC2017: ACC
0.98= , SE = 0.96,

SP = 0.99, PR = 0.97,
F1 = 0.97; ISIC2018:

ACC = 0.98,
SE = 0.97, SP = 0.99,
PR = 0.98, F1 = 0.97;

PH2: ACC = 0.98,
SE = 0.96, SP = 0.99,
PR = 0.97, F1 = 0.96

Kumar et al. [90]
2022

Binary:
benign vs. malignant ISIC archive

Resizing, vertical
and horizontal

flipping and
rotation

(45 degrees)

Pre-trained
SqueezeNet
re-trained by

AWO algorithm

5 and 9-fold
ACC = 0.925,

SE = 0.921,
SP = 0.917

Vanka et al. [91]
2022

Binary:
benign vs. malignant ISIC archive - Custom CNN -

TPR = 0.94,
TNR = 0.98,

F1 = 0.96

Girdhar et al. [92]
2022

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000 Details are missing Custom CNN -

ACC = 0.963,
REC = 0.96,
F1 = 0.957

Montaha et al. [93]
2022

Binary:
benign vs. malignant ISIC archive

Brightness and
contrast alteration

of images

Custom shallow
CNN 5 and 10-fold ACC = 0.987,

PR = 0.989

Patil et al. [94] 2022
Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000 - Pre-trained DL

method - ACC = 0.997

Tabrizchi et al. [95]
2022

Binary:
MM vs. benign ISIC2020

Image rotation: 90,
180, 270 degrees;
center cropping,

brightness change,
and mirroring

New DL model
based on VGG16 Leave-one-out

ACC = 0.87,
SE = 0.852,
F1 = 0.922,

AUC = 0.923

Diwan et al. [96]
2022

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000 - Custom CNN based

on AlexNet -

ACC = 0.878,
SP = 962, PR = 0.787,

REC = 0.774,
F1 = 0.778
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Table 5. Cont.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Sharma et al. [97]
2022

Binary:
benign vs. malignant HAM10000 -

Use of some
pre-trained

networks: VGG16,
VGG19,

DenseNet101
and ResNet101

- ACC = 0.848

Jojoa
Acosta et al. [98]

2021

Binary:
bening vs. malignant ISIC2017

Image rotation:
180 degrees;

vertical flipping

Use of pre-trained
ResNet52 in

5 different situations
- ACC = 0.904,

SE = 0.82, SP = 0.925

Romero
Lopez et al. [99]

2017

Binary:
benign vs. malignant ISIC2016 - Use of VGG16 in

3 different situations -
ACC = 0.813,

SE = 0.787,
PR = 0.797

Wei et al. [100] 2020 Binary:
benign vs. malignant ISIC2016

Image rotation: 90,
180, 270 degrees;
mirroring, center

cropping,
brightness change
and random occlu-

sion operations

Custom architecture
based on MobileNet

and DenseNet
-

MobileNEt
ACC = 0.865,
AUC = 0.832;

DenseNEt:
ACC = 0.855,
AUC = 0.845

Safdar et al. [101]
2021

Binary:
MM vs. benign

PH2,
MedNode, ISIC2020

Affine Image
Transformation and

color Transforma-
tion approaches

Use of pre-trained
ResNet50

and InceptionV3
-

ACC = 0.934,
SP = 0.965,
PR = 0.895,

AUC = 0.988

Ozturk et al. [102]
2022

Binary:
benign vs. malignant

HAM10000,
ISIC2019, ISIC2020 -

Deep clustering
approach. Custom

CNNs based on
VGG16, ResNet50,

DenseNet169
and EfficientNetB3

-

ACC = 0.98,
SP = 0.999,
PR = 0.961,

REC = 0.98, F1 = 0.97,
AUC = 0.709

Garcia [103] 2022 Multi-class: MM,
benign, malignant

ISIC2019, PH2,
7-point

checklist dataset
-

Use of a
meta-learning

method and pre-
trained ResNet50

3-fold
F1 = 0.53, Jaccard

similarity
index= 0.472

Nadipineni [104]
2020

Multi-class: MM, N,
BCC, AK, SK, DF,

VL, SCC

ISIC2019, 7-point
checklist dataset

Random brightness,
contrast changes,
random flipping,
rotation, scaling,

and shear,
and CutOut

Use of pre-
trained MobileNet 10-fold ACC = 0.886

Chaturvedi et al. [105]
2020

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000

Image rotation,
zoom, horizontal/
vertical flipping

Use of three
pre-trained
networks

(EfficientNet, SENet
and ResNet) in

three
different situations

-

ACC = 0.831,
PR = 0.89,

REC = 0.83,
F1 = 0.83

Milton [106] 2019
Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000

Image rotation,
flipping, random
cropping, adjust
brightness and

contrast, pixel jitter,
Aspect Ratio,
random shear,

zoom, and verti-
cal/horizontal shift

and flip

Use of pre-trained
networks:

PNASNet-5-Large,
InceptionResNetV2,
SENet154 327 and

InceptionV4

- ACC = 0.76

Majtner et al. [107]
2018

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
ISIC2018 Image rotation,

horizontal flipping

Combination of
VGG16 and

GoogLeNet pre-
trained networks

-

ACC
VGG16 = 0.801,

ACC
GoogLeNet = 0.799,

ACC
ensemble = 0.815

Yang et al. [108]
2017

Multi-class: MM vs.
N and KS; MM and

N vs. SK
ISIC2017 - Custom CNN based

on GoogLeNet -
AUC = 0.926,

Jaccard
index = 0.724

Alom et al. [109]
2019

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000 Horizontal/

vertical flipping Custom CNN - ACC = 0.871



Algorithms 2022, 15, 438 18 of 30

Table 5. Cont.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Agarwal et al. [110]
2022

Binary:
benign vs. malignant ISIC archive

Re-scaling, shearing,
vertical/horizontal

flipping, zoom

Use of TL on
XceptionNet,
DenseNet201,

ResNet50
and MobileNetV2

-

ACC = 0.866,
PR = 0.865,
REC = 0.86,
F1 = 0.862

Wang et al. [111]
2021

Binary:
benign vs. malignant

7-point
checklist dataset - Custom CNN based

on ResNet50 -
ACC = 0.813,

SE = 0.529,
SP = 0.891

Choudhary et al. [112]
2022

Binary:
benign vs. malignant ISIC2017 Based on Mask

R-CNN FEX + FFNN -

ACC = 0.826,
SE = 0.857,
SP = 0.764,

REC = 0.893,
F1 = 0.824

CaoaJeng et al. [113]
2021

Binary:
MM vs. benign ISIC2017, ISIC2018 -

Use of pre-trained
models:

InceptionV4,
ResNet

and DenseNet121

5-fold

ACC = 0.906,
SE = 0.78,
SP = 0.934,

AUC = 0.95

Malibari et al. [114]
2022

Multi-class: N, MM,
SK, BCC, DF, AK,

VL, SCC
ISIC2019 - Custom DNN -

ACC = 0.956,
SP = 0.963,
PR = 0.847,

REC = 0.925,
F1 = 0.884

Sayeda et al. [115]
2021

Binary:
MM vs. benign ISIC2020

Random translation,
scale, rotation,

reflection, and shear

Use of pre-
trained SqueezeNet -

ACC = 0.98, SE = 1,
SP = 0.97, F1 = 0.98,

AUC = 0.99

Mahbod et al. [116]
2020

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL

ISIC2016,
ISIC2017, ISIC2018 -

Assembling of
pre-trained

EfficientNetB0,
EfficientNetB1

and SeReNeXt-50

-
ACC = 0.96,

PR = 913,
AUC = 0.981

Hameeda et al. [117]
2020

Multi-class
Single-level;
multi-class
Multi-level

ISIC2016, PH2,
DermIS,

DermQuest,
DermNZ

- FEX + ANN and
pre-trained AlexNet - ML: ACC = 0.64;

DL: ACC = 0.96

Elashiri et al. [118]
2022

Multi-class
classification PH2, HAM10000 -

FEX using Resnet50,
VGG16 and
Deeplabv3 +

modified LSTM

-

PH2: ACC = 0.94,
SE = 0.94, SP = 0.93,
PR = 0.90, F1 = 0.92;
HAM: ACC = 0.94,
SE = 0.94, SP = 0.94,
PR = 0.34, F1 = 0.5

Wang et al. [119]
2018

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
ISIC2018

Image rotation,
flipping, scaling,

tailoring,
translation, adding

noise, and
changing contrast

FEX using
pre-trained

ResNet50 and
decoder in Cycle

GAN + STCN

- ACC = 0.79,
AUC = 0.81

Ali et al. [120] 2021 Binary:
benign vs. malignant HAM10000

Image rotation,
random cropping,

mirroring,
and color-shifting

using principle
component analysis

Custom DCNN -

ACC = 0.91,
PR = 0.97,

REC = 0.94,
F1 = 0.95

Hasan et al. [121]
2022

Binary: MM vs. N;
Multi-class: MM, N,
SK and N/AN, MM,

SK, BCC, DF,
AK, VL

ISIC2016,
ISIC2017, ISIC2018

Image rotation (180,
270 degrees);

gamma,
logarithmic,
and sigmoid
corrections,

and stretching,
and shrinking of the

intensity levels

Custom CNN 5-fold

ISIC2016:
AUC = 0.96,
REC = 0.92,

PR = 0.92; ISIC2017:
AUC = 0.95,
REC = 0.86,

PR = 0.86; ISIC2018:
AUC = 0.97,
REC = 0.86,
PR = 0.85

Khan et al. [122]
2021

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
HAM10000 - Custom CNN -

ACC = 0.87,
SE = 0.86, PR = 0.87,

F1 = 0.86
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Table 5. Cont.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Rahman et al. [123]
2019

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL

ISIC2019,
HAM10000

Image rotation
(0–30 degrees),

flipping, shearing
(0.1), and zooming

(90% to 110%).

Ensemble of 5
pre-trained models

(ResNeXt,
SeResNeXt, ResNet,

Xception
and DenseNet)

-

ACC = 0.87,
PR = 0.87,

REC = 0.93,
F1 = 0.89,

MCC = 0.87

Sertea et al. [124]
2019 Binary: MM vs. SK ISIC2017 Image rotation: 18,

45 degrees

Use of pre-trained
ResNet18

and AlexNet
-

MM: ACC = 0.83,
SE = 0.13, SP = 1,
AUC = 0.96; SK:

ACC = 0.82,
SE = 0.17, SP = 0.98,

AUC = 0.66

Iqbal et al. [125]
2021

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL

ISIC2017,
ISIC2018, ISIC2019

Image rotation
(30 to 30 degrees),
translation (12.5%

shift to the left,
the right, up,
and down),

and horizon-
tal/vertical flipping

Custom CNN -

ISIC2017:
ACC = 0.93,

SE = 0.93, SP = 0.91,
PR = 0.94, F1 = 0.93,

AUC = 0.96;
ISIC2018:

ACC = 0.89,
SE = 0.89, SP = 0.96,
PR = 0.90, F1 = 0.89,

AUC = 0.99;
ISIC2019:

ACC = 0.90,
SE = 0.90, SP = 0.98,
PR = 0.91, F1 = 0.90,

AUC = 0.99

Harangi [126] 2018 Multi-class: MM,
N, SK ISIC2017

Cropping of
random samples
from the images;

horizontal flipping
and rotation (90,
180, 270 degrees)

Use of two
pre-trained

networks (ResNet
and GoogLeNet),

and two networks
with randomly

initialized weights
(VGGNet

and AlexNet)

-
ACC = 0.87,

SE = 0.56, SP = 0.79,
AUC = 0.89

Indraswari et al. [127]
2022

Binary:
benign vs. malignant

ISIC archive,
ISIC2016,

MedNode, PH2
-

Use of modify
pre-trained

MobileNetV2
-

ISIC archive:
ACC = 0.85,

SE = 0.85, SP = 0.85,
PR = 0.83; ISIC2016:

ACC = 0.83,
SE = 0.36, SP = 0.95,

PR = 0.64;
MedNode:

ACC = 0.75,
SE = 0.76, SP = 0.73,

PR = 0.67; PH2:
ACC = 0.72, SE =

0.33, SP = 0.92,
PR = 0.67

Kotra et al. [128]
2021

Binary: MM vs. n;
SK vs. SCC; MM vs.

SK; MM vs. BCC;
N vs. BCC

ISIC2016 -

Injection of
hand-extracted

features into the FC
layer of a CNN

-

MM vs. N:
ACC = 0.93;
SK vs. SCC:
ACC = 0.95;
MM vs. SK:
ACC = 0.98;

MM vs. BCC:
ACC = 0.99;
N vs. BCC:
ACC = 0.99

Harangi et al. [129]
2020

Binary: healthy vs.
diseased;

multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL

HAM10000

Cropping of
random samples
from the images;

horizontal/vertical
flipping, rotation

(90, 180,
270 degrees) and

application of
random brighten

and contrast factors

Use of modify
pre-trained
GoogLeNet-
InceptionV3

network

-

MM: ACC = 0.91,
SE = 0.45, SP = 0.97,

PR = 0.68,
AUC = 0.81
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4.3. ML/DL Hybrid Techniques

For the task of identifying and classifying skin cancer in dermoscopic images, in [130] a
hybrid-dense algorithm is proposed. This algorithm consists of the extraction of skin lesion
features with the pre-trained DenseNet121 network and the subsequent dimensionality
reduction of the obtained vectors. Finally, classification is performed with the XGBoost
classifier. The developed algorithm shows robustness in testing, so it is designed as a viable
alternative in the identification of cancer-like diseases in skin lesions.

A mix of images, hand-extracted features, and metadata is used in [131] to perform a
multiclass classification based on ensemble networks. Multiple multi-input single-output
(MISO) models, obtained by replacing the backbones with EfficientNet networks B4 to
B7, are trained with the images to extract features, whereas the hand-extracted features
and metadata are used for training an MPL with two dense layers. The outputs of the
networks are then sent to an ANN, consisting of two dense layers, which will perform the
final classification.

In [132], 200 geometric features are extracted from the images, which are then in-
jected into the last convolutional layer of two pretrained DL architectures (ResNet50 and
DenseNet201). Both models are then used as feature extractors, sent to an SVM model for
final prediction.

In [133], the efficiency of 17 pretrained CNNs used as feature extractors and 24 classi-
fiers is examined. The best combinations are obtained by using DenseNet201 in combination
with FineKNN or CubicSVM.

The combination of hand-coded features, sparse coding methods, and SVM with recent
ML techniques (deep residual network and fully CNN) is presented in [134]. The features,
extracted by hand, by sparse coding methods and by neural networks, are finally sent to an
SVM classifier.

For skin lesion classification, the integration of handcrafted (HC) features (of texture,
color, and shape) and features extracted by DL (using ResNet50V2 and EfficientNetB0) is
also used in [135]. After obtaining vectors of the features (HC, from ResNet and Efficient-
Net), they train the ANN itself on these three single vectors, on the combination of the
HC vector and ResNet and on the combination of HC and EfficientNet, obtaining the best
results with the latter combination.

In [136], the InceptionV3 network is used as a feature extractor (1000-dimensional
vector obtained downstream of the penultimate layer of the network), and two different
feed-forward neural networks (with two layers each and softmax activation function) for
the classification of skin lesions into benign/malignant and melanocytic/non-melanocytic.

The problem of limited and unbalanced data is addressed in [137], in which the
authors propose an approach that improves the model’s ability to handle these problems.
The classifications of the six models are then merged with the metadata associated with the
images in the dataset and sent to an SVM classifier. In this paper, the authors show that
ensemble learning significantly improves classification accuracy even from low accuracies
for individual models, and that TL and the use of metadata have only a minor effect on the
result obtained.

In [138], eight pretrained CNN models are used simultaneously to extract deep features
from the images, and 10 different classifiers to perform the classification. The different
couplings show that the DenseNet121 network with subsequent MPL achieves the highest
performance in terms of accuracy.

In [139], an ensemble method that combines several DL feature extractors of skin
lesions with an SVM classifier with RBF kernel is proposed. Feature extraction is performed
by using the pretrained AlexNet, VGG15, ResNet18, and ResNet101 models, replacing
the last layer with an FC to perform a binary classification (MM, SK). The feature vectors
are then classified with an SVM model whose scores were subsequently mapped into
probabilities by using logistic regression. The fusion of the prediction probability vectors of
the different models leads to excellent results.
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In [140], a novel midlevel feature learning method for skin lesion classification is
proposed to use the pretrained ResNet50 and DenseNet201 models as feature extractors
from the previously segmented dermoscopic images, perform dimensionality reduction of
the feature vectors by PCA, and obtain the midlevel feature representation of these vectors.
Finally, the midlevel features, obtained by learning the similarities between each sample

and a set of reference images, are passed to an SVM classifier with a kernel radial basis
function (RBF).

The authors of [141] propose a framework for automatic skin lesion recognition by using
an aggregation of multiple pretrained convolutional networks (VGG-M + VGG16 + ResNet50).
They call cross-net the network ensemble strategy to distinguish it from the traditional
ensemble networks method. The output activation maps of each network are extracted as
indicator maps to select local deep convolutional descriptors in the dermoscopic images
and then the selected descriptors are concatenated into an information map and encoded
by using Fisher vector (FV). This method encodes the aggregated descriptors into a global
image representation to obtain more discriminating information than conventional methods.
Finally, for identification of melanocytic lesion, a linear SVM classifier is applied. They
perform two binary classifications: distinction melanoma vs. other diseases, and distinction
seborrheic keratosis vs. other diseases.

Table 6 summarizes the ML/DL hybrid techniques previously described.

Table 6. Overview of cited works using ML/DL hybrid approaches (results have been rounded).
FEX and FSE abbreviations are used for feature extraction and selection, respectively. The symbol “-”
indicates that no information is provided on a particular operation.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Carvajal et al. [130]
2022

Binary:
MM vs. carcinoma HAM10000 -

FEX using
pre-trained

DenseNet121 +
XGBoost classifier

-
ACC = 0.91,

SE = 0.93, PR = 0.91,
F1 = 0.91

Sharafudeen et al.
[131] 2022

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL, SCC
ISIC2018, ICIS2019 -

FEX with
EfficientNet

networks B4 to 486
B7 and

hand-extracted
features + ANN

-

ISIC2018:
ACC = 0.91,

SE = 0.98, ISIC2019:
ACC = 0.86,

SE = 0.98

Redha et al. [132]
2021

Multi-class: N/AN,
MM, SK, BCC, DF,

AK, VL
ISIC2018

Random crops and
rotation (0–180

degrees),
vertical/horizontal

flips, and shear
(0–30 degrees)

FEX using
pre-trained DL
architectures

(ResNet50 and
DenseNet201)

+ SVM

-
ACC = 0.92,

SE = 0.88, SP = 0.97,
AUC = 0.98

Benyahia et al. [133]
2017

Multi-class: healthy,
benign, malignant,
eczema; multi-level

ISIC2019, PH2 -

FEX using
pre-trained

DenseNet201 +
FineKNN or Cu-

bicSVM classifiers

- ISIC: ACC = 0.92,
PH2: ACC = 99

Codella et al. [134]
2017

Binary:
benign vs. malignant ISIC2016 -

FEX by hand,
by sparse coding
methods and by
Deep Residual

Network
(DRN) + SVM

3-fold SP = 0.95, PR = 0.65,
AUC = 0.84

Bansal et al. [135]
2022

Binary:
MM vs. non-MM HAM10000, PH2

Image rotation,
vertical/horizontal

flipping, zoom,
increased

brightness and
contrast, and

noise addition

FEX : hand-crafted,
from ResNet

and 503
EfficientNet + ANN

-

HAM10000:
ACC = 0.95,

SE = 0.95, SP = 0.95,
PR = 0.95, F1 = 0.95;

PH2: ACC = 0.98,
SE = 0.98, SP = 0.98,
PR = 0.96, F1 = 0.97;

Mirunalini et al. [136]
2017

Binary: benign vs.
malignant;

MM vs. non-MM
ISIC2017 -

FEX with
InceptionV3 +

FFNNs
-

1°: ACC = 0.72; 2°:
ACC = 0.71;

average-AUC = 0.66
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Table 6. Cont.

Author & Year Classification Task Dataset Data
Augmentation Methods Used Cross Validation Results

Qureshi et al. [137]
2021

Binary:
benign vs. malignant

ISIC
archive, ISIC2020 - Ensemble of six

CNN + SVM

F1 = 0.23 ± 0.04,
AUC-PR =
0.16 ± 0.04,

AUC = 0.87 ± 0.02

Gajera et al. [138]
2022

Binary:
MM vs. non-MM

ISIC2016, ISICI2017,
HAM10000, PH2

FEX using
pre-trained

DenseNet121
network + MPL

5-fold

ISIC2016:
ACC = 0.81;
ISICI2017:

ACC = 0.81;
HAM10000:

ACC = 0.81; PH2:
ACC = 0.98

Mahboda et al. [139]
2019 Binary: MM vs. SK ISIC2016 -

FEX using
pre-trained AlexNet,

VGG15, ResNet18
and ResNet101

models + RBF-SVM

-

MM:SE = 0.812,
SP = 0.785,

AUC = 0.873; SK :
SE = 0.933,
SP = 0.859,

AUC = 0.955

Liu et al. [140] 2020
Binary:

MM vs. non-MM;
SK vs. non-SK

ISIC2017 -

FEX using
pre-trained

ResNet50 and
DenseNet201

models + RBF-SVM

-

ResNet: ACC = 0.87,
AUC = 0.89;
DenseNet:

ACC = 0.87,
AUC = 0.89

Yu et al. [141] 2020
Binary:

MM vs. others;
SK vs. others

ISIC2016, ISIC2017

Image rotation,
flipping, translation,

and cropping;
color-based

data augmentation

FEX from CNNs +
linear SVM -

MM ISIC2016:
ACC = 0.87,

SE = 0.6, SP = 0.85,
PR = 0.69,

AUC = 0.86; MM
ISIC2017:

ACC = 0.84,
SE = 0.61, SP = 0.90,

PR = 0.63,
AUC = 0.84; SK

ISIC2017:
ACC = 0.92,

SE = 0.80, SP = 0.94,
PR = 0.82,

AUC = 0.95.

5. Discussion and Conclusions

Skin cancer is one of the most common cancers in the world with a high mortality rate.
Early identification and diagnosis of skin lesions is essential to determine the best treatment
for the patient and to increase the survival rate in the case of cancerous lesions. Diagnosis
of this disease is conducted manually by more or less experienced dermatologists, but it
proves to be time consuming and difficult. By using CAD systems, this procedure can
become much easier, faster, and more accurate.

This systematic literature review aims to provide an overview of the use of machine
learning and deep learning in dermatology to help future researchers. Scientific publications
published between 2012 and 2022 related to ML and DL approaches for the detection and
classification of skin lesions were selected. The searches, conducted in the arXiv and Science
Direct databases, resulted in the selection of 68 research articles that focused on skin lesion
classification using images from public datasets and reported the results obtained in terms
of model performance. Having chosen the use of public datasets among the inclusion
criteria, there are no papers prior to 2016. Furthermore, more than half of the articles on ML
were published from 2020 to 2022, and more than half of the articles on DL and ML/DL
were published from 2021 to date. Overall, 70% of the papers selected for this article have
been published in the past two years. The use of public datasets for model training and
validation allows comparison of work, a key point of scientific research. An analysis of the
datasets used in the papers cited in this review article shows that the HAM10000 dataset
and the ISIC archive are the most frequently chosen datasets for training and testing skin
lesion classification models (Figure 4). Of the latter, moreover, the 2016 and 2017 versions
are the most frequently used over the past decade.
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Figure 4. Analysis of datasets used. The “others” category includes DermIs, DermQuest, IDS, 7 point
check list and DermNZ datasets.

The research conducted shows that the most widely used ML classifier is the SVM
model (Figure 5), while pretrained convolutional neural networks account for the majority
of DL and ML/DL approaches (Figure 6), and that among the many solutions identified,
those based on DL represent the majority. Indeed, deep CNNs hold great promise for
improving the accuracy of skin lesion identification and classification.

Figure 5. Analysis of the most used ML models. The “others” category includes the random forest,
linear discriminant analysis, naive Bayes, RUSBoost, and XGBoost classifiers.

The results obtained, quantified through the metrics of accuracy, sensitivity, specificity,
precision, recall, F1 score, and AUC, show that both ML and DL models developed in recent
years—aimed at supporting diagnostic decisions and not replacing physicians—show high
potential in skin lesion classification. It must be considered, however, that in the context
of critical systems where errors are not allowed, such as in the medical field, there is an
increasing demand for the comprehensibility of the algorithms used. This area of proposing
models that can explain their own behavior is known as explainable AI (XAI) and has
been the subject of numerous studies in recent years, including in the area of skin lesion
classification [142–146]. In order for physicians to trust AI, the way in which machines
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make decisions must be made clear. However, recent advances in the area of automated
skin lesion classification bode well for the introduction of CAD systems into clinical practice
in the not-too-distant future.

Figure 6. Analysis of the most used DL models, distinguishing between custom CNNs and pre-
trained networks.
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CAD Computer-Aided Diagnosis
ML Machine Learning
DL Deep Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
DA Data Augmentation
TL Transfer Learning
ACC Accuracy
SE Sensitivity
SP Specificity
PR Precision
REC Recall
AUC Area Under the ROC (Receiver Operating Characteristic) Curve



Algorithms 2022, 15, 438 25 of 30

References
1. Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis,

and Therapeutic Approaches. Dermatol. Ther. 2017, 7 (Suppl. 1), 5–19. [CrossRef] [PubMed]
2. Hu, W.; Fang, L.; Ni, R.; Zhang, H.; Pan, G. Changing trends in the disease burden of non-melanoma skin cancer globally from

1990 to 2019 and its predicted level in 25 years. BMC Cancer 2022, 22, 836. [CrossRef] [PubMed]
3. Pacheco, A.G.; Krohling, R.A. Recent advances in deep learning applied to skin cancer detection. arXiv 2019, arXiv:1912.03280.
4. Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification methods for diagnosis of skin

cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [CrossRef] [PubMed]
5. Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [CrossRef]
6. Hasan, M.R.; Fatemi, M.I.; Khan, M. M.; Kaur, M.; Zaguia, A. Comparative Analysis of Skin Cancer (Benign vs. Malignant)

Detection Using Convolutional Neural Networks. J. Healthc. Eng. 2021, 2021, 5895156. [CrossRef]
7. Al-Masni, M.A.; Al-Antari, M.A.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. Skin lesion segmentation in dermoscopy images via deep full

resolution convolutional networks. Comput. Methods Programs Biomed. 2018, 162, 221–231. [CrossRef]
8. Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.;

Mahnashi, M.H. Skin Cancer Detection: A Review Using Deep Learning Techniques. Int. J. Environ. Res. Public Health 2021,
18, 5479. [CrossRef]

9. Miller, A.J.; Mihm, M.C., Jr. Melanoma. N. Engl. J. Med. 2006, 355, 51–65. [CrossRef]
10. ISIC Archive. Available online: https://www.isic-archive.com/ (accessed on 10 October 2022).
11. Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. How to Treat Melanoma? The Current Status of Innovative Nanotechnologi-

cal Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022, 14, 1817. [CrossRef]
12. Nachbar, F.; Stolz, W.; Merkle, T.; Cognetta, A.B.; Vogt, T.; Landthaler, M.; Bilek, P.; Braun-Falco, O.; Plewig, G. The ABCD rule of

dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 1994, 30,
551–559. [CrossRef]

13. Duarte, A.F.; Sousa-Pinto, B.; Azevedo, L.F.; Barros, A.M.; Puig, S.; Malvehy, J.; Haneke, E.; Correia, O. Clinical ABCDE rule for
early melanoma detection. Eur. J. Dermatol. 2021, 31, 771–778. [CrossRef] [PubMed]

14. Marghoob, N.G.; Liopyris, K.; Jaimes, N. Dermoscopy: A Review of the Structures That Facilitate Melanoma Detection.
J. Osteopath. Med. 2019, 119, 380–390. [CrossRef] [PubMed]

15. Hussaindeen, A.; Iqbal, S.; Ambegoda, T.D. Multi-label prototype based interpretable machine learning for melanoma detection.
Int. J. Adv. Signal Image Sci. 2022, 8, 40–53. [CrossRef]

16. Menzies, S.; Braun, R. Menzies Method. Dermoscopedia 2018, 19, 37. Available online: https://dermoscopedia.org/w/index.php?
title=Menzies_Method&oldid=9988 (accessed on 10 October 2022).

17. Venturi, F.; Pellacani, G.; Farnetani, F.; Maibach, H.; Tassone, D.; Dika, E. Noninvasive diagnostic techniques in the preoperative
setting of Mohs micrographic surgery: A review of the literature. Dermatol. Ther. 2022, 35, e15832. [CrossRef]

18. Venkatesh, B.; Suthanthirakumari, B.; Srividhya, R. Diagnosis of Skin Cancer with its Stages and its Precautions by using
Multiclass CNN Technique. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 587–592.

19. Thomas, L.; Puig, S. Dermoscopy, Digital Dermoscopy and Other Diagnostic Tools in the Early Detection of Melanoma and
Follow-up of High-risk Skin Cancer Patients. Acta Derm. Venereol. 2017, 218, 14–21. [CrossRef]

20. Batista, L.G.; Bugatti, P.H.; Saito, P.T.M. Classification of Skin Lesion through Active Learning Strategies. Comput. Methods
Programs Biomed. 2022, 226, 107122. [CrossRef]

21. Youssef, A.; Bloisi, D.D.; Muscio, M.; Pennisi, A.; Nardi, D.; Facchiano, A. Deep Convolutional Pixel-wise Labeling for Skin Lesion
Image Segmentation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications
(MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6.

22. Wighton, P.; Lee, T.K.; Lui, H.; McLean, D.I.; Atkins, M.S. Generalizing common tasks in automated skin lesion diagnosis.
IEEE Trans. Inf. Technol. Biomed. 2011, 15, 622–629. [CrossRef]

23. Abbas, Q.; Celebi, M.E.; García, I.F. Hair removal methods: A comparative study for dermoscopy images. Biomed. Signal
Process. Control 2011, 6, 395–404. [CrossRef]

24. Lee, T.; Gallagher, V.N.R.; Coldman, A.; McLean, D. DullRazor: A software approach to hair removal from images.
Comput. Biol. Med. 1997, 27, 533–543. [CrossRef]

25. Vocaturo, E.; Zumpano, E.; Veltri, P. Image pre-processing in computer vision systems for melanoma detection. In Proceedings
of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018;
pp. 2117–2124.

26. Glaister, J.; Amelard, R.; Wong, A.; Clausi, D.A. MSIM: Multistage illumination modeling of dermatological photographs for
illumination-corrected skin lesion analysis. IEEE Trans. Biomed. Eng. 2013, 60, 1873–1883. [CrossRef]

27. Korotkov, K.; Garcia, R. Computerized analysis of pigmented skin lesions: A review. Artif. Intell. Med. 2012, 56, 69–90. [CrossRef]
[PubMed]

28. Emre Celebi, M.; Wen, Q.; Hwang, S.; Iyatomi, H.; Schaefer, G. Lesion border detection in dermoscopy images using ensembles of
thresholding methods. Skin Res. Technol. 2013, 19, 252–258. [CrossRef]

29. Sarker, M.M.K.; Rashwan, H.A.; Akram, F.; Singh, V.K.; Banu, S.F.; Chowdhury, F.U.H.; Choudhury, K.A.; Chambon, S.; Radeva, P.;
Puig, D.; et al. SLSNet: Skin lesion segmentation using a lightweight generative adversarial network. arXiv 2021, arXiv:1907.00856.

http://doi.org/10.1007/s13555-016-0165-y
http://www.ncbi.nlm.nih.gov/pubmed/28150105
http://dx.doi.org/10.1186/s12885-022-09940-3
http://www.ncbi.nlm.nih.gov/pubmed/35907848
http://dx.doi.org/10.1016/j.compbiomed.2020.104065
http://www.ncbi.nlm.nih.gov/pubmed/33246265
http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x
http://dx.doi.org/10.1155/2021/5895156
http://dx.doi.org/10.1016/j.cmpb.2018.05.027
http://dx.doi.org/10.3390/ijerph18105479
http://dx.doi.org/10.1056/NEJMra052166
https://www.isic-archive.com/
http://dx.doi.org/10.3390/pharmaceutics14091817
http://dx.doi.org/10.1016/S0190-9622(94)70061-3
http://dx.doi.org/10.1684/ejd.2021.4171
http://www.ncbi.nlm.nih.gov/pubmed/35107069
http://dx.doi.org/10.7556/jaoa.2019.067
http://www.ncbi.nlm.nih.gov/pubmed/31135866
http://dx.doi.org/10.29284/IJASIS.8.1.2022.40-53
https://dermoscopedia.org/w/index.php?title=Menzies_Method&oldid=9988
https://dermoscopedia.org/w/index.php?title=Menzies_Method&oldid=9988
http://dx.doi.org/10.1111/dth.15832
http://dx.doi.org/10.2340/00015555-2719
http://dx.doi.org/10.1016/j.cmpb.2022.107122
http://dx.doi.org/10.1109/TITB.2011.2150758
http://dx.doi.org/10.1016/j.bspc.2011.01.003
http://dx.doi.org/10.1016/S0010-4825(97)00020-6
http://dx.doi.org/10.1109/TBME.2013.2244596
http://dx.doi.org/10.1016/j.artmed.2012.08.002
http://www.ncbi.nlm.nih.gov/pubmed/23063256
http://dx.doi.org/10.1111/j.1600-0846.2012.00636.x


Algorithms 2022, 15, 438 26 of 30

30. Pour, M.P.; Seker, H. Transform domain representation-driven convolutional neural networks for skin lesion segmentation.
Expert Syst. Appl. 2020, 144, 113129. [CrossRef]

31. Tang, P.; Yan, X.; Liang, Q.; Zhang, D. AFLN-DGCL: Adaptive Feature Learning Network with Difficulty-Guided Curriculum
Learning for skin lesion segmentation. Appl. Soft Comput. 2021, 110, 107656. [CrossRef]

32. Mahboda, A.; Tschandlb, P.; Langsc, G.; Eckerd, R.; Ellinger, I. The effects of skin lesion segmentation on the performance of
dermatoscopic image classification. Comput. Methods Programs Biomed. 2020, 197, 105725. [CrossRef]

33. Nidaa, N.; Irtazab, A.; Javedc, A.; Yousafa, M.H.; Mahmood, M.T. Melanoma lesion detection and segmentation using deep
region based convolutional neural network and fuzzy C-means clustering. Int. J. Med Inform. 2019, 124, 37–48. [CrossRef]

34. Garcia-Arroyo, J.L.; Garcia-Zapirain, B. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels
and histogram thresholding. Comput. Methods Programs Biomed. 2019, 168, 11–19. [CrossRef] [PubMed]

35. Daia, D.; Donga, C.; Xua, S.; Yanb, Q.; Lia, Z.; Zhanga, C.; Luo, N. Ms RED: A novel multi-scale residual encoding and decoding
network for skin lesion segmentation. Med. Image Anal. 2022, 75, 102293. [CrossRef]

36. Pereira, P.M.M.; Fonseca-Pinto, R.; Paiva, R.P.; Assuncao, P.A.A.; Tavora, L.M.N.; Thomaz, L.A.; Faria, S.M.M. Dermoscopic skin
lesion image segmentation based on Local Binary Pattern Clustering: Comparative study. Biomed. Signal Process. Control 2020,
59, 101924. [CrossRef]

37. Wibowo, A.; Purnama, S.R.; Wirawan, P.W.; Rasyidi, H. Lightweight encoder-decoder model for automatic skin lesion segmenta-
tion. Inform. Med. Unlocked 2021, 25, 100640. [CrossRef]

38. Rout, R.; Parida, P. Transition region based approach for skin lesion segmentation. Procedia Comput. Sci. 2020, 171, 379–388.
[CrossRef]

39. Barata, C.; Celebi, M.E.; Marques, J.S. A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed.
Health Inform. 2018, 23, 1096–1109. [CrossRef]

40. Danku, A.E.; Dulf, E.H.; Banut, R.P.; Silaghi, H; Silaghi, C.A. Cancer Diagnosis With the Aid of Artificial Intelligence Modeling
Tools. IEEE Access 2022, 10, 20816–20831. [CrossRef]

41. Shandilya, S.; Chandankhede, C. Survey on recent cancer classification systems for cancer diagnosis. In Proceedings of the 2017
International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24
March 2017; pp. 2590–2594.

42. Çayır, S.; Solmaz, G.; Kusetogullari, H.; Tokat, F.; Bozaba, E.; Karakaya, S.; Iheme, L.O.; Tekin, E.; Yazıcı, C.; Özsoy, G.; et al.
MITNET: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer
tissue. Neural Comput. Appl. 2022, 34, 17837–17851. [CrossRef]

43. Khuriwal, N.; Mishra, N. Breast cancer diagnosis using deep learning algorithm. In Proceedings of the 2018 International
Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13
October 2018; pp. 98–103.

44. Simin, A.T.; Baygi, S.M.G.; Noori, A. Cancer Diagnosis Based on Combination of Artificial Neural Networks and Reinforcement
Learning. In Proceedings of the 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Mashhad,
Iran, 23–24 December 2020; pp. 1–4.

45. Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.;
Hofmann-Wellenhof, R.; et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented
skin lesion classification: An open, web-based, international, diagnostic study. Lancet Oncol. 2019, 20, 938–947. [CrossRef]

46. Marchetti, M.A.; Codella, N.C.F.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio,
J.L.; et al. International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to
dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol. 2018, 78, 270–277. [CrossRef]

47. Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.K.; Haferkamp, S.; Klode, J.; Schadendorf,
D.; et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural
networks. Eur. J. Cancer 2019, 119, 57–65. [CrossRef] [PubMed]

48. Haenssle, H.A.; Fink, C.; Toberer, F.; Winkler, J.; Stolz, W.; Deinlein, T.; Hofmann-Wellenhof, R.; Lallas, A.; Emmert, S.;
Buhl, T.; et al. Man against machine reloaded: Performance of a market-approved convolutional neural network in classifying a
broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann. Oncol. 2020,
31, 137–143. [CrossRef] [PubMed]

49. Han, S.S.; Park, I.; Chang, S.E.; Lim, W.; Kim, M.S.; Park, G.H.; Chae, J.B.; Huh, C.H.; Na, J.-I. Augmented Intelligence
Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment
Options for 134 Skin Disorders. J. Investig. Dermatol. 2020, 104, 1753–1761. [CrossRef] [PubMed]

50. Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-
Letz, T.; et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification
task. Eur. J. Cancer. 2019, 113, 47–54. [CrossRef]

51. Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Ben Hadj Hassen, A.; Thomas, L.;
Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic
melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2019.113129
http://dx.doi.org/10.1016/j.asoc.2021.107656
http://dx.doi.org/10.1016/j.cmpb.2020.105725
http://dx.doi.org/10.1016/j.ijmedinf.2019.01.005
http://dx.doi.org/10.1016/j.cmpb.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30527129
http://dx.doi.org/10.1016/j.media.2021.102293
http://dx.doi.org/10.1016/j.bspc.2020.101924
http://dx.doi.org/10.1016/j.imu.2021.100640
http://dx.doi.org/10.1016/j.procs.2020.04.039
http://dx.doi.org/10.1109/JBHI.2018.2845939
http://dx.doi.org/10.1109/ACCESS.2022.3152200
http://dx.doi.org/10.1007/s00521-022-07441-9
http://dx.doi.org/10.1016/S1470-2045(19)30333-X
http://dx.doi.org/10.1016/j.jaad.2017.08.016
http://dx.doi.org/10.1016/j.ejca.2019.06.013
http://www.ncbi.nlm.nih.gov/pubmed/31419752
http://dx.doi.org/10.1016/j.annonc.2019.10.013
http://www.ncbi.nlm.nih.gov/pubmed/31912788
http://dx.doi.org/10.1016/j.jid.2020.01.019
http://www.ncbi.nlm.nih.gov/pubmed/32243882
http://dx.doi.org/10.1016/j.ejca.2019.04.001
http://dx.doi.org/10.1093/annonc/mdy166


Algorithms 2022, 15, 438 27 of 30

52. Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.;
Fröhling, S.; et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists
in a clinical melanoma image classification task. Eur. J. Cancer 2019, 111, 148–154. [CrossRef]

53. Adegun, A.; Viriri, S. Deep learning techniques for skin lesion analysis and melanoma cancer detection: A survey of state-of-the-art.
Artif. Intell. Rev. 2011, 54, 811–841. [CrossRef]

54. Rezk, E.; Eltorki, M.; El-Dakhakhni, W. Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach. JMIR
Dermatol. 2022, 5, e39143. [CrossRef]

55. Mporas, I.; Perikos, I.; Paraskevas, M. Color Models for Skin Lesion Classification from Dermatoscopic Images. Advances in
Integrations of Intelligent Methods. In Advances in Integrations of Intelligent Methods; Springer: Singapore, 2020; Volume 170,
pp. 85–98.

56. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

57. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of
Common Pigmented Skin Lesions. Sci. Data 2018, 5, 180161. [CrossRef]

58. HAM10000. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T (accessed
on 10 October 2022).

59. Mendonca T.; Ferreira P.M.; Marques J.S.; Marcal A.R.S.; Rozeira J. PH2-A Dermoscopic Image Database for Research and
Benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440.

60. PH2. Available online: http://www.fc.up.pt/addi (accessed on 10 October 2022) .
61. Giotis, I.; Molders, N.; Land, S.;Biehl, M.; Jonkman M.F.; Petkov, N. MED-NODE: A computer-assisted melanoma diagnosis

system using non-dermoscopic images. Expert Syst. Appl. 2015, 42, 6578–6585. [CrossRef]
62. MedNode. Available online: https://www.cs.rug.nl/~imaging/ (accessed on 10 October 2022).
63. ISIC2016. Available online: https://challenge.isic-archive.com/data/#2016 (accessed on 10 October 2022).
64. ISIC2017. Available online: https://challenge.isic-archive.com/data/#2017 (accessed on 10 October 2022).
65. ISIC2019. Available online: https://challenge.isic-archive.com/data/#2019 (accessed on 10 October 2022).
66. ISIC2020. Available online: https://challenge.isic-archive.com/data/#2020 (accessed on 10 October 2022).
67. Kingsford, C.; Salzberg, S. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [CrossRef] [PubMed]
68. Boser, B.; Guyon, I.; Vapnik, V. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop

on Computational Learning Theory, Pittsburgh, PA, USA 27–29 July 1992.
69. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambrigde, UK, 2000. Available online: www.support-vector.net (accessed on 10 October 2022).
70. Fix, E.; Hodges, J.L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev./Rev. Int. Stat.

1989, 57, 238–247. [CrossRef]
71. Altman, N. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185.
72. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136. [CrossRef] [PubMed]
73. Convolutional Neural Network. Learn Convolutional Neural Network from Basic and Its Implementation in Keras. Available

online: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529 (accessed on 10 October 2022).
74. Kumar, S.; Kumar, A. Extended Feature Space-Based Automatic Melanoma Detection System. arXiv 2022, arXiv:2209.04588.
75. Kanca, E.; Ayas, S. Learning Hand-Crafted Features for K-NN based Skin Disease Classification. In Proceedings of the International

Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022;
pp. 1–4.

76. Bansal, P.; Vanjani, A.; Mehta, A.; Kavitha, J.C.; Kumar, S. Improving the classification accuracy of melanoma detection by
performing feature selection using binary Harris hawks optimization algorithm. Soft Comput. 2022, 26, 8163–8181. [CrossRef]

77. Oliveira, R.B.; Pereira, A.S.; Tavares, J.M.R.S. Skin lesion computational diagnosis of dermoscopic images: Ensemble models
based on input feature manipulation. Comput. Methods Programs Biomed. 2017, 149, 43–53. [CrossRef]

78. Tajeddin, N.Z.; Asl, B.M. Melanoma recognition in dermoscopy images using lesion’s peripheral region information.
Comput. Methods Programs Biomed. 2018, 163, 143–153. [CrossRef]

79. Cheong, K.H.; Tang, K.J.W.; Zhao, X.; WeiKoh, J.E.; Faust, O.; Gururajan, R.; Ciaccio, E.J.; Rajinikanth, V.; Acharya, U.R. An
automated skin melanoma detection system with melanoma-index based on entropy features. Biocybern. Biomed. Eng. 2021, 41,
997–1012. [CrossRef]

80. Chatterjee, S.; Dey, D.; Munshi, S. Integration of morphological preprocessing and fractal based feature extraction with recursive
feature elimination for skin lesion types classification. Comput. Methods Programs Biomed. 2019, 178, 201–218. [CrossRef]

81. Camacho-Gutiérrez, J.A.; Solorza-Calderón, S.; Álvarez-Borrego, J. Multi-class skin lesion classification using prism- and
segmentation-based fractal signatures. Expert Syst. Appl. 2022, 197, 116671. [CrossRef]

82. Moradi, N.; Mahdavi-Amiri, N. Kernel sparse representation based model for skin lesions segmentation and classification.
Comput. Methods Programs Biomed. 2019, 182, 105038. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ejca.2019.02.005
http://dx.doi.org/10.1007/s10462-020-09865-y
http://dx.doi.org/10.2196/39143
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1038/sdata.2018.161
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
http://www.fc.up.pt/addi
http://dx.doi.org/10.1016/j.eswa.2015.04.034
https://www.cs.rug.nl/~imaging/
https://challenge.isic-archive.com/data/#2016
https://challenge.isic-archive.com/data/#2017
https://challenge.isic-archive.com/data/#2019
https://challenge.isic-archive.com/data/#2020
http://dx.doi.org/10.1038/nbt0908-1011
http://www.ncbi.nlm.nih.gov/pubmed/18779814
www.support-vector.net
http://dx.doi.org/10.2307/1403797
http://dx.doi.org/10.1007/BF00342633
http://www.ncbi.nlm.nih.gov/pubmed/1203338
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
http://dx.doi.org/10.1007/s00500-022-07234-1
http://dx.doi.org/10.1016/j.cmpb.2017.07.009
http://dx.doi.org/10.1016/j.cmpb.2018.05.005
http://dx.doi.org/10.1016/j.bbe.2021.05.010
http://dx.doi.org/10.1016/j.cmpb.2019.06.018
http://dx.doi.org/10.1016/j.eswa.2022.116671
http://dx.doi.org/10.1016/j.cmpb.2019.105038
http://www.ncbi.nlm.nih.gov/pubmed/31437709


Algorithms 2022, 15, 438 28 of 30

83. Fu, Z.; An, J.; Qiuyu, Y.; Yuan, H.; Sun, Y.; Ebrahimian, H. Skin cancer detection using Kernel Fuzzy C-means and Developed Red
Fox Optimization algorithm. Biomed. Signal Process. Control 2022, 71, 103160. [CrossRef]

84. Balaji, V.R.; Suganthi, S.T.; Rajadevi, R.; Kumar, V.K.; Balaji, B.S.; Pandiyan, S. Skin disease detection and segmentation using
dynamic graph cut algorithm and classification through Naive Bayes classifier. Measurement 2020, 163, 107922. [CrossRef]

85. Raza, A.; Siddiqui, O.A.; Shaikh, M.K.; Tahir, M.; Ali, A.; Zaki, H. Fined Tuned Multi-Level Skin Cancer Classification Model by
Using Convolutional Neural Network in Machine Learning. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2022, 18, e11936.

86. Guergueb, T.; Akhloufi, M. Multi-Scale Deep Ensemble Learning for Melanoma Skin Cancer Detection. In Proceedings of the
2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI), San Diego, CA, USA, 9–11
August 2022; pp. 256–261.

87. Shahsavari, A.; Khatibi, T.; Ranjbari, S. Skin lesion detection using an ensemble of deep models: SLDED. Multimed. Tools Appl.
2022, 1–20. [CrossRef]

88. Wu, Y.; Lariba, A.C.; Chen, H.; Zhao, H. Skin Lesion Classification based on Deep Convolutional Neural Network. In Proceedings
of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China,
29–31 July 2022; pp. 376–380.

89. Thapar, P.; Rakhra, M.; Cazzato, G.; Hossain, M.S. A Novel Hybrid Deep Learning Approach for Skin Lesion Segmentation and
Classification. J. Healthc. Eng. 2022, 2022, 1709842. [CrossRef]

90. Kumar, K.A.; Vanmathi, C. Optimization driven model and segmentation network for skin cancer detection. Comput. Electr. Eng.
2022, 103, 108359. [CrossRef]

91. Vanka, L.P.; Chakravarty, S. Melanoma Detection from Skin Lesions using Convolution Neural Network. In Proceedings of the
2022 IEEE India Council International Subsections Conference (INDISCON), Bhubaneswar, India, 15–17 July 2022; pp. 1–5.

92. Girdhar, N.; Sinha, A.; Gupta, S. DenseNet-II: An improved deep convolutional neural network for melanoma cancer detection.
Soft Comput. 2022. [CrossRef]

93. Montaha, S.; Azam, S.; Rafid, A.; Islam, S.; Ghosh, P.; Jonkman, M. A shallow deep learning approach to classify skin cancer using
down-scaling method to minimize time and space complexity. PLoS ONE 2022, 17, e0269826. [CrossRef] [PubMed]

94. Patil, S.M.; Rajguru, B.S.; Mahadik, R.S.; Pawar, O.P. Melanoma Skin Cancer Disease Detection Using Convolutional Neu-
ral Network. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India,
27–29 May 2022; pp. 1–5.

95. Tabrizchi, H.; Parvizpour, S.; Razmara, J. An Improved VGG Model for Skin Cancer Detection. Neural Process. Lett. 2022.
[CrossRef]

96. Diwan, T.; Shukla, R.; Ghuse, E.; Tembhurne, J.V. Model hybridization & learning rate annealing for skin cancer detection.
Multimed. Tools Appl. 2022.

97. Sharma, P.; Gautam, A.; Nayak, R.; Balabantaray, B.K. Melanoma Detection using Advanced Deep Neural Network. In Proceed-
ings of the 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May 2022;
pp. 1–5.

98. Jojoa Acosta, M.F.; Caballero Tovar, L.Y.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning
techniques on dermatoscopic images. BMC Med. Imaging 2021, 21, 6. [CrossRef] [PubMed]

99. Romero Lopez, A.; Giro-i-Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep
learning techniques. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed),
Innsbruck, Austria, 20–21 February 2017; pp. 49–54.

100. Wei, L.; Ding, K.; Hu, H. Automatic Skin Cancer Detection in Dermoscopy Images Based on Ensemble Lightweight Deep Learning
Network. IEEE Access 2020, 8, 99633–99647. [CrossRef]

101. Safdar, K.; Akbar, S.; Gull, S. An Automated Deep Learning based Ensemble Approach for Malignant Melanoma Detection
using Dermoscopy Images. In Proceedings of the 2021 International Conference on Frontiers of Information Technology (FIT),
Islamabad, Pakistan, 13–14 December 2021; pp. 206–211.

102. Ozturk, S.; Cukur, T. Deep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly
Imbalanced Datasets. arXiv 2022, arXiv:2204.02275.

103. Garcia, S.I. Meta-learning for skin cancer detection using Deep Learning Techniques. arXiv 2021, arXiv:2104.10775.
104. Nadipineni, H. Method to Classify Skin Lesions using Dermoscopic images. arXiv 2020, arXiv:2008.09418.
105. Chaturvedi, S.S.; Gupta, K.; Prasad, P.S. Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification

Using MobileNet. arXiv 2020, arXiv:1907.03220.
106. Milton, M.M.A. Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion

Analysis Towards Melanoma Detection Challenge. arXiv 2019, arXiv:1901.10802.
107. Majtner, T.; Bajić, B.; Yildirim, S.; Hardeberg, J.Y.; Lindblad, J.; Sladoje, N. Ensemble of Convolutional Neural Networks for

Dermoscopic Images Classification. arXiv 2018, arXiv:1808.05071.
108. Yang, X.; Zeng, Z.; Yeo, S.J.; Tan, C.; Tey, H.L.; Su, Y. A Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and

Classification. arXiv 2017, arXiv:1703.01025.
109. Alom, M.Z.; Aspiras, T.; Taha, T.M.; Asari, V.K. Skin Cancer Segmentation and Classification with NABLA-N and Inception

Recurrent Residual Convolutional Networks. arXiv 2019, arXiv:1904.11126.
110. Agarwal, K.; Singh, T. Classification of Skin Cancer Images using Convolutional Neural Networks. arXiv 2022, arXiv:2202.00678.

http://dx.doi.org/10.1016/j.bspc.2021.103160
http://dx.doi.org/10.1016/j.measurement.2020.107922
http://dx.doi.org/10.1007/s11042-022-13666-6
http://dx.doi.org/10.1155/2022/1709842
http://dx.doi.org/10.1016/j.compeleceng.2022.108359
http://dx.doi.org/10.1007/s00500-022-07406-z
http://dx.doi.org/10.1371/journal.pone.0269826
http://www.ncbi.nlm.nih.gov/pubmed/35925956
http://dx.doi.org/10.1007/s11063-022-10927-1
http://dx.doi.org/10.1186/s12880-020-00534-8
http://www.ncbi.nlm.nih.gov/pubmed/33407213
http://dx.doi.org/10.1109/ACCESS.2020.2997710


Algorithms 2022, 15, 438 29 of 30

111. Wanga, Y.; Caie, J.; Louiea, D.C.; Jane Wanga, Z.; Lee, T.K. Incorporating clinical knowledge with constrained classifier chain into
a multimodal deep network for melanoma detection. Comput. Biol. Med. 2021, 137, 104812. [CrossRef]

112. Choudhary, P.; Singhai, J.; Yadav, J.S. Skin lesion detection based on deep neural networks. Chemom. Intell. Lab. Syst. 2022,
230, 104659. [CrossRef]

113. Cao, X.; Pan, J.S.; Wang, Z.; Sun, Z.; Haq, A.; Deng, W.; Yang, S. Application of generated mask method based on Mask R-CNN in
classification and detection of melanoma. Comput. Methods Programs Biomed. 2021, 207, 106174. [CrossRef] [PubMed]

114. Malibari, A.A.; Alzahrani, J.S.; Eltahir, M.M.; Malik, V.; Obayya, M.; Duhayyim, M.A.; Lira Neto, A.V.; de Albuquerque, V.H.C.
Optimal deep neural network-driven computer aided diagnosis model for skin cancer. Comput. Electr. Eng. 2022, 103, 108318.
[CrossRef]

115. Sayeda, G.I.; Solimanb, M.M.; Hassanien, A.E. A novel melanoma prediction model for imbalanced data using optimized
SqueezeNet by bald eagle search optimization. Comput. Biol. Med. 2021, 136, 104712. [CrossRef]

116. Mahboda, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. Transfer learning using a multi-scale and multi-network
ensemble for skin lesion classification. Comput. Methods Programs Biomed. 2020, 193, 105475. [CrossRef]

117. Hameeda, N.; Shabutc, M.A.; Ghoshb, M.K.; Hossain, M.A. Multi-class multi-level classification algorithm for skin lesions
classification using machine learning techniques. Expert Syst. Appl. 2020, 141, 112961. [CrossRef]

118. Elashiri, M.A.; Rajesh, A.; Pandey, S.N.; Shukla, S.K.; Urooje, S.; Lay-Ekuakillef, A. Ensemble of weighted deep concatenated
features for the skin disease classification model using modified long short term memory. Biomed. Signal Process. Control 2022,
76, 103729. [CrossRef]

119. Wang, D.; Pang, N.; Wang, Y.; Zhao, H. Unlabeled skin lesion classification by self-supervised topology clustering network.
Biomed. Signal Process. Control 2021, 66, 102428. [CrossRef]

120. Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, M.K. An enhanced technique of skin cancer classification using deep
convolutional neural network with transfer learning models. Mach. Learn. Appl. 2021, 5, 100036. [CrossRef]

121. Hasan, M.K.; Elahi, M.T.E.; Alam, M.A.; Jawad, M.T.; Martí, R. DermoExpert: Skin lesion classification using a hybrid convo-
lutional neural network through segmentation, transfer learning, and augmentation. Inform. Med. Unlocked 2022, 28, 100819.
[CrossRef]

122. Khan, M.A.; Zhang, Y.-D.; Sharif, M.; Akram, T. Pixels to Classes: Intelligent Learning Framework for Multiclass Skin Lesion
Localization and Classification. Comput. Electr. Eng. 2021, 90, 106956. [CrossRef]

123. Rahman, Z.; Hossain, M.S.; Islam, M.R.; Hasan, M.M.; Hridhee, R.A. An approach for multiclass skin lesion classification based
on ensemble learning. Inform. Med. Unlocked 2021, 25, 100659. [CrossRef]

124. Sertea, S.; Demirel, H. Gabor wavelet-based deep learning for skin lesion classification. Comput. Biol. Med. 2019, 113, 103423.
[CrossRef]

125. Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep
convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843. [CrossRef]

126. Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32.
[CrossRef]

127. Indraswari, R.; Rokhana, R.; Herulambang, W. Melanoma image classification based on MobileNetV2 network. Procedia Comput. Sci.
2022, 197, 198–207. [CrossRef]

128. Kotra, S.R.S.; Tummala, R.B.; Goriparthi, P.; Kotra, V.; Ming, V.C. Dermoscopic image classification using CNN with Handcrafted
features. J. King Saud Univ.-Sci. 2021, 33, 101550.

129. Harangi, B.; Baran, A.; Hajdu, A. Assisted deep learning framework for multi-class skin lesion classification considering a binary
classification support. Biomed. Signal Process. Control 2020, 62, 102041. [CrossRef]

130. Carvajal, D.C.; Delgado, M.; Guevara Ibarra, D.; Ariza, L.C. Skin Cancer Classification in Dermatological Images based on a
Dense Hybrid Algorithm. In Proceedings of the 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering
and Computing (INTERCON), Lima, Peru, 11–13 August 2022.

131. Sharafudeen, M. Detecting skin lesions fusing handcrafted features in image network ensembles. Multimed. Tools Appl. 2022.
[CrossRef]

132. Redha, A.; Ragb, H.K. Skin lesion segmentation and classification using deep learning and handcrafted features. arXiv 2021,
arXiv:2112.10307.

133. Benyahia, S.; Meftah, B.; Lézoray, O. Multi-features extraction based on deep learning for skin lesion classification. Tissue Cell
2022, 74, 101701. [CrossRef]

134. Codella, N.C.F.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep learning ensembles for
melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [CrossRef]

135. Bansal, P.; Garg, R.; Soni, P. Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted
and deep learning models. Comput. Ind. Eng. 2022, 168, 108060. [CrossRef]

136. Mirunalini, P.; Chandrabose, A.; Gokul, V.; Jaisakthi, S.M. Deep learning for skin lesion classification. arXiv 2017, arXiv:1703.04364.
137. Qureshi, A.S.; Roos, T. Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer Classification in Imbalanced

Data Sets. Neural Process. Lett. 2022. [CrossRef]
138. Gajera, H.K.; Nayak, D.R.; Zaveri, M.A. A comprehensive analysis of dermoscopy images for melanoma detection via deep CNN

features. Biomed. Signal Process. Control 2023, 79, 104186. [CrossRef]

http://dx.doi.org/10.1016/j.compbiomed.2021.104812
http://dx.doi.org/10.1016/j.chemolab.2022.104659
http://dx.doi.org/10.1016/j.cmpb.2021.106174
http://www.ncbi.nlm.nih.gov/pubmed/34058631
http://dx.doi.org/10.1016/j.compeleceng.2022.108318
http://dx.doi.org/10.1016/j.compbiomed.2021.104712
http://dx.doi.org/10.1016/j.cmpb.2020.105475
http://dx.doi.org/10.1016/j.eswa.2019.112961
http://dx.doi.org/10.1016/j.bspc.2022.103729
http://dx.doi.org/10.1016/j.bspc.2021.102428
http://dx.doi.org/10.1016/j.mlwa.2021.100036
http://dx.doi.org/10.1016/j.imu.2021.100819
http://dx.doi.org/10.1016/j.compeleceng.2020.106956
http://dx.doi.org/10.1016/j.imu.2021.100659
http://dx.doi.org/10.1016/j.compbiomed.2019.103423
http://dx.doi.org/10.1016/j.compmedimag.2020.101843
http://dx.doi.org/10.1016/j.jbi.2018.08.006
http://dx.doi.org/10.1016/j.procs.2021.12.132
http://dx.doi.org/10.1016/j.bspc.2020.102041
http://dx.doi.org/10.1007/s11042-022-13046-0
http://dx.doi.org/10.1016/j.tice.2021.101701
http://dx.doi.org/10.1147/JRD.2017.2708299
http://dx.doi.org/10.1016/j.cie.2022.108060
http://dx.doi.org/10.1007/s11063-022-11049-4
http://dx.doi.org/10.1016/j.bspc.2022.104186


Algorithms 2022, 15, 438 30 of 30

139. Mahboda, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wange, C. Fusing fine-tuned deep features for skin lesion classification.
Comput. Med. Imaging Graph. 2019, 71, 19–29. [CrossRef] [PubMed]

140. Liu, L.; Moub, L.; Zhu, X.X.; Mandal, M. Automatic skin lesion classification based on mid-level feature learning. Comput. Med.
Imaging Graph. 2020, 84, 101765. [CrossRef] [PubMed]

141. Yu, Z.; Jiang, F.; Zhou, F.; He, X.; Ni, D.; Chen, S.; Wang, T.; Lei, B. Convolutional descriptors aggregation via cross-net for skin
lesion recognition. Appl. Soft Comput. J. 2020, 92, 106281. [CrossRef]

142. Hauser, K.; Kurz, A.; Haggenmüller, S.; Maron, R.C.; von Kalle, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.;
Sergon, M.; et al. Explainable artificial intelligence in skin cancer recognition: A systematic review. Eur. J. Cancer 2022, 167, 54–69.
[CrossRef]

143. Lima, S.; Terán, L.; Portmann, E. A proposal for an explainable fuzzy-based deep learning system for skin cancer prediction. In
Proceedings of the 2020 seventh international conference on eDemocracy & eGovernment (ICEDEG), Buenos Aires, Argentina,
22–24 April 2020; pp. 29–35.

144. Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. A novel explainable image classification framework: Case study
on skin cancer and plant disease prediction. Neural Comput. Appl. 2021, 33, 15171–15189. [CrossRef]

145. Shorfuzzaman, M. An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection.
Multimed. Syst. 2022, 28, 1309–1323. [CrossRef]

146. Zia Ur Rehman, M.; Ahmed, F.; Alsuhibany, S.A.; Jamal, S.S.; Zulfiqar Ali, M.; Ahmad, J. Classification of Skin Cancer Lesions
Using Explainable Deep Learning. Sensors 2022, 22, 6915. [CrossRef]

http://dx.doi.org/10.1016/j.compmedimag.2018.10.007
http://www.ncbi.nlm.nih.gov/pubmed/30458354
http://dx.doi.org/10.1016/j.compmedimag.2020.101765
http://www.ncbi.nlm.nih.gov/pubmed/32810817
http://dx.doi.org/10.1016/j.asoc.2020.106281
http://dx.doi.org/10.1016/j.ejca.2022.02.025
http://dx.doi.org/10.1007/s00521-021-06141-0
http://dx.doi.org/10.1007/s00530-021-00787-5
http://dx.doi.org/10.3390/s22186915

	Introduction
	Material and Methods
	Search Strategy
	Common Skin Lesion Databases

	Artificial Intelligence
	Machine Learning
	Decision Trees
	Support Vector Machines
	K-Nearest Neighbors
	Artificial Neural Networks

	Deep Learning
	Pre-Trained Models and Transfer Learning

	Results
	Machine-Learning Methods
	Deep-Learning Methods
	ML/DL Hybrid Techniques

	Discussion and Conclusions
	References

