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Abstract: The family of α-divergences including the oriented forward and reverse Kullback–Leibler
divergences is often used in signal processing, pattern recognition, and machine learning, among
others. Choosing a suitable α-divergence can either be done beforehand according to some prior
knowledge of the application domains or directly learned from data sets. In this work, we generalize
the α-divergences using a pair of strictly comparable weighted means. Our generalization allows us
to obtain in the limit case α → 1 the 1-divergence, which provides a generalization of the forward
Kullback–Leibler divergence, and in the limit case α→ 0, the 0-divergence, which corresponds to a
generalization of the reverse Kullback–Leibler divergence. We then analyze the condition for a pair of
weighted quasi-arithmetic means to be strictly comparable and describe the family of quasi-arithmetic
α-divergences including its subfamily of power homogeneous α-divergences. In particular, we study
the generalized quasi-arithmetic 1-divergences and 0-divergences and show that these counterpart
generalizations of the oriented Kullback–Leibler divergences can be rewritten as equivalent conformal
Bregman divergences using strictly monotone embeddings. Finally, we discuss the applications of
these novel divergences to k-means clustering by studying the robustness property of the centroids.

Keywords: Kullback–Leibler divergence; α-divergences; comparable weighted means; weighted
quasi-arithmetic means; information geometry; conformal divergences; k-means clustering

1. Introduction
1.1. Statistical Divergences and α-Divergences

Consider a measurable space [1] (X ,F ) where F denotes a finite σ-algebra and X
the sample space, and let µ denotes a positive measure on (X ,F ), usually chosen as the
Lebesgue measure or the counting measure. The notion of statistical dissimilarities [2–4]
D(P : Q) between two distributions P and Q is at the core of many algorithms in signal
processing, pattern recognition, information fusion, data analysis, and machine learning,
among others. A dissimilarity may be oriented, i.e., asymmetric: D(P : Q) 6= D(Q : P),
where the colon mark “:” between the arguments of the dissimilarities represents the
asymmetric property of the division operation. When the arbitrary probability measures
P and Q are dominated by a measure µ (e.g., one can always choose µ = P+Q

2 ), we
consider their Radon–Nikodym (RN) densities pµ = dP

dµ and qµ = dQ
dµ with respect to µ,

and define D(P : Q) as Dµ(pµ : qµ). A good dissimilarity measure shall be invariant of
the chosen dominating measure so that we can write D(P : Q) = Dµ(pµ : qµ) [5]. When
those statistical dissimilarities are smooth, they are called divergences [6] in information
geometry, as they induce a dualistic geometric structure [7].

The most renowned statistical divergence rooted in information theory [8] is the
Kullback–Leibler divergence (KLD, also called relative entropy):

KLµ(pµ : qµ) :=
∫
X

pµ(x) log
pµ(x)
qµ(x)

dµ(x). (1)
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Since the KLD is independent of the reference measure µ, i.e., KLµ(pµ : qµ) = KLν(pν :
qν) for pµ = dP

dµ and qµ = dQ
dµ , and pν = dP

dν and qν = dQ
dν are the RN derivatives with

respect to another positive measure ν, we write concisely in the remainder:

KL(p : q) =
∫

p log
p
q

dµ, (2)

instead of KLµ(pµ : qµ).
The KLD belongs to a parametric family of α-divergences [9] Iα(p : q) for α ∈ R:

Iα(p : q) :=


1

α(1−α)

(
1−

∫
pαq1−αdµ

)
, α ∈ R\{0, 1}

I1(p : q) = KL(p : q), α = 1
I0(p : q) = KL(q : p), α = 0

(3)

The α-divergences extended to positive densities [10] (not necessarily normalized
densities) play a central role in information geometry [6]:

I+α (p : q) :=


1

α(1−α)

∫ (
αp + (1− α)q− pαq1−α

)
dµ, α ∈ R\{0, 1}

I+1 (p : q) = KL+(p : q), α = 1
I+0 (p : q) = KL+(q : p), α = 0

, (4)

where KL+ denotes the Kullback–Leibler divergence extended to positive measures:

KL+(p : q) :=
∫ (

p log
p
q
+ q− p

)
dµ. (5)

The α-divergences are asymmetric for α 6= 1
2 (i.e., Iα(p : q) 6= Iα(q : p) for α 6= 1

2 ) but
exhibit the following reference duality [11]:

Iα(q : p) = I1−α(p : q) =: I∗α (p : q), (6)

where we denoted by D∗(p : q) := D(q : p), the reverse divergence for an arbitrary
divergence D(p : q) (e.g., I∗α (p : q) := Iα(q : p) = I1−α(p : q)). The α-divergences have been
extensively used in many applications [12], and the parameter α may not be necessarily
fixed beforehand but can also be learned from data sets in applications [13,14]. When α = 1

2 ,
the α-divergence is symmetric and called the squared Hellinger divergence [15]:

I 1
2
(p : q) := 4

(
1−

∫ √
pqdµ

)
= 2

∫
(
√

p−√q)2dµ. (7)

The α-divergences belong to the family of Ali–Silvey–Csizár’s f -divergences [16,17]
which are defined for a convex function f (u) satisfying f (1) = 0 and strictly convex at 1:

I f (p : q) :=
∫

p f
(

q
p

)
dµ. (8)

We have
Iα(p : q) = I fα

(p : q), (9)

with the following class of f -generators:

fα(u) :=


1

α(1−α)
(α + (1− α)u− u1−α), α ∈ α ∈ R\{0, 1}

u− 1− log u, α = 1
1− u + u log u, α = 0

(10)

In information geometry, α-divergences and more generally f -divergences are called
invariant divergences [6], since they are provably the only statistical divergences which
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are invariant under invertible smooth transformations of the sample space. That is, let
Y = m(X) be a smooth invertible transformation and let Y = m(X ) denote the transformed
sample space. Denote by pY(y) and pY′(y) the densities with respect to y corresponding to
pX(x) and pX′(x), respectively. Then, we have I f (pX : pX′) = I f (pY : pY′) [18]. The dual-
istic information-geometric structures induced by these invariant f -divergences between
densities of a same parametric family {pθ(x) : θ ∈ Θ} of statistical models yield the Fisher
information metric and the dual ±α-connections for α = 3 + 2 f ′′′(1)

f ′′(1) , see [6] for details. It is
customary to rewrite the α-divergences in information geometry using rescaled parameter
αA = 1− 2α (i.e., α = 1−αA

2 ). Thus, the extended αA-divergence in information geometry is
defined as follows:

Î+αA
(p : q) =


4

1−α2
A

∫ ( 1−αA
2 p + 1+αA

2 q− p
1−αA

2 q
1+αA

2

)
dµ, αA ∈ R\{−1, 1}

Î1(p : q) = KL+(p : q), αA = 1
Î−1(p : q) = KL+(q : p), αA = −1

, (11)

and the reference duality is expressed by Î+αA
(q : p) = Î+−αA

(p : q).
A statistical divergence D(· : ·) when evaluated on densities belonging to a given

parametric family P = {pθ : θ ∈ Θ} of densities is equivalent to a corresponding contrast
function DP [7]:

DP (θ1 : θ2) := D(pθ1 : pθ2). (12)

Remark 1. Although quite confusing, those contrast functions [7] have also been called divergences
in the literature [6]. Any smooth parameter divergence D(θ1 : θ2) (contrast function [7]) induces a
dualistic structure in information geometry [6]. For example, the KLD on the family ∆ of probability
mass functions defined on a finite alphabet X is equivalent to a Bregman divergence, and thus
induces a dually flat space [6]. More generally, the αA-divergences on the probability simplex ∆
induce the αA-geometry in information geometry [6].

We refer the reader to [3] for a richly annotated bibliography of many common statis-
tical divergences investigated in signal processing and statistics. Building and studying
novel statistical/parameter divergences from first principles is an active research area. For
example, Li [19,20] recently introduced some new divergence functionals based on the
framework of transport information geometry [21], which considers information entropy
functionals in Wasserstein spaces. Li defined (i) the transport information Hessian dis-
tances [20] between univariate densities supported on a compact, which are symmetric
distances satisfying the triangle inequality, and obtained the counterpart of the Hellinger
distance on the L2-Wasserstein space by choosing the Shannon information entropy, and
(ii) asymmetric transport Bregman divergences (including the transport Kullback–Leibler
divergence) between densities defined on a multivariate compact smooth support in [19].

The α-divergences are widely used in information sciences, see [22–27] just to cite a
few applications. The singly parametric α-divergences have also been generalized to bipara-
metric families of divergences such as the (α, β)-divergences [6] or the αβ-divergences [28].

In this work, based on the observation that the term αp + (1− α)q− pαq1−α in the
extended I+α (p : q) divergence for α ∈ (0, 1) of Equation (4) is a difference between a
weighted arithmetic mean A1−α(p, q) := αp + (1− α)q and a weighted geometric mean
G1−α(p, q) := pαq1−α, we investigate a generalization of α-divergences with respect to a
generic pair of strictly comparable weighted means [29]. In particular, we consider the class
of quasi-arithmetic weighted means [30], analyze the condition for two quasi-arithmetic
means to be strictly comparable, and report their induced α-divergences with limit KL type
divergences when α→ 1 and α→ 0.

1.2. Divergences and Decomposable Divergences

A statistical divergence D(p : q) shall satisfy the following two basic axioms:
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D1 (Non-negativity). D(p : q) ≥ 0 for all densities p and q,

D2 (Identity of indiscernibles). D(p : q) = 0 if and only if p = q µ-almost everywhere.

These axioms are a subset of the metric axioms, since we do not consider the symmetry
axiom nor the triangle inequality axiom of metric distances. See [31,32] for some common
examples of probability metrics (e.g., total variation distance or Wasserstein metrics).

A divergence D(p : q) is said decomposable [6] when it can be written as a definite
integral of a scalar divergence d(·, ·):

D(p : q) =
∫

d(p(x) : q(x))dµ(x), (13)

or D(p : q) =
∫

d(p : q)dµ for short, where d(a, b) is a scalar divergence between a > 0 and
b > 0 (hence one-dimensional parameter divergence).

The α-divergences are decomposable divergences since we have

I+α (p : q) =
∫

iα(p(x) : q(x))dµ (14)

with the following scalar α-divergence:

iα(a : b) :=


1

α(1−α)

(
αa + (1− α)b− aαb1−α

)
, α ∈ R\{0, 1}

i1(a : b) = a log a
b + b− a α = 1

i0(a : b) = i1(b : a), α = 0
(15)

1.3. Contributions and Paper Outline

The outline of the paper and its main contributions are summarized as follows:
We first define for two families of strictly comparable means (Definition 1) their generic

induced α-divergences in Section 2 (Definition 2). Then, Section 2.2 reports a closed-form
formula (Theorem 3) for the quasi-arithmetic α-divergences induced by two strictly com-
parable quasi-arithmetic means with monotonically increasing generators f and g such
that f ◦ g−1 is strictly convex and differentiable (Theorem 1). In Section 2.3, we study the
divergences I+0 and I+1 obtained in the limit cases when α → 0 and α → 1, respectively,
(Theorem 2). We obtain generalized counterparts of the Kullback–Leibler divergence when
α → 1 and generalized counterparts of the reverse Kullback–Leibler divergence when
α→ 0. Moreover, these generalized KLDs can be rewritten as generalized cross-entropies
minus entropies. In Section 2.4, we show how to express these generalized I1-divergences
and I0-divergences as conformal Bregman representational divergences, and briefly explain
their induced conformally flat statistical manifolds (Theorem 4). Section 3 introduces
the subfamily of bipower homogeneous α-divergences (Definition 2) which belong to the
family of Ali–Silvey–Csiszár f -divergences [16,17]. In Section 4, we consider k-means clus-
tering [33] and k-means++ seeding [34] for the generic class of extended α-divergences: we
first study the robustness of quasi-arithmetic means in Section 4.1 and then the robustness
of the newly class of generalized Kullback–Leibler centroids in Section 4.2. Finally, Section 5
summarizes the results obtained in this work and discusses perspectives for future research.

2. The α-Divergences Induced by a Pair of Strictly Comparable Weighted Means
2.1. The (M, N) α-Divergences

The point of departure for generalizing the α-divergences is to rewrite Equation (4) for
α ∈ R\{0, 1} as

I+α (p : q) =
1

α(1− α)

∫
(A1−α(p, q)− G1−α(p, q))dµ, (16)
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where Aλ and Gλ for λ ∈ (0, 1) stands for the weighted arithmetic mean and the weighted
geometric mean, respectively:

Aλ(x, y) = (1− λ)x + λy,

Gλ(x, y) = x1−λyλ.

For a weighted mean Mλ(a, b), we choose the (geometric) convention M0(x, y) = x
and M1(x, y) = 1 so that {Mλ(x, y)}λ∈[0,1] smoothly interpolates between x (λ = 0) and y
(λ = 1). For the converse convention, we simply define M′λ(a, b) = M1−λ(a, b) and get the
conventional definition of I+α (p : q) = 1

α(1−α)

∫
(A′α(p, q)− G′α(p, q))dµ.

In general, a mean M(x, y) aggregates two values x and y of an interval I ⊂ R to
produce an intermediate quantity which satisfies the innerness property [35,36]:

min{x, y} ≤ M(x, y) ≤ max{x, y}, ∀x, y ∈ I. (17)

This in-between property of means (Equation (17)) was postulated by Cauchy [37] in
1821. A mean is said strict if the inequalities of Equation (17) are strict whenever x 6= y. A
mean M is said reflexive iff M(x, x) = x for all x ∈ I. The reflexive property of means was
postulated by Chisini [38] in 1929.

In the remainder, we consider I = (0, ∞). By using the unique dyadic representation
of any real λ ∈ (0, 1) (i.e., λ = ∑∞

i=1
di
2i with di ∈ {0, 1} the binary digit expansion of λ) , one

can build a weighted mean Mλ from any given mean M; see [29] for such a construction.
In the remainder, we drop the “+” notation to emphasize that the divergences are

defined between positive measures. By analogy to the α-divergences, let us define the
(decomposable) (M, N) α-divergences between two positive densities p and q for a pair of
weighted means M1−α and N1−α for α ∈ (0, 1) as

IM,N
α (p : q) :=

1
α(1− α)

∫
(M1−α(p, q)− N1−α(p, q))dµ. (18)

The ordinary α-divergences for α ∈ (0, 1) are recovered as the (A, G) α-divergences:

IA,G
α (p : q) =

1
α(1− α)

∫
(A1−α(p, q)− G1−α(p, q))dµ, (19)

= I1−α(p : q) = Iα(q : p) = I∗α (p : q). (20)

In order to define generalized α-divergences satisfying axioms D1 and D2 of proper
divergences, we need to characterize the class of acceptable means. We give a definition
strengthening the notion of comparable means in [29]:

Definition 1 (Strictly comparable weighted means). A pair (M, N) of means are said strictly
comparable whenever Mλ(x, y) ≥ Nλ(x, y) for all x, y ∈ (0, ∞) with equality if and only if x = y,
and for all λ ∈ (0, 1).

Example 1. For example, the inequality of the arithmetic and geometric means states that A(x, y) ≥
G(x, y) implies means A and G are comparable, denoted by A ≥ G. Furthermore, the arith-
metic and geometric weighted means are distinct whenever x 6= y. Indeed, consider the equation
(1− α)x + αy = x1−αyα for x, y > 0 and x 6= y. By taking the logarithm on both sides, we get

log((1− α)x + αy) = (1− α) log x + α log y. (21)

Since the logarithm is a strictly convex function, the only solution is x = y. Thus, (A, G) is a
pair of strictly comparable weighted means.

For a weighted mean M, define M′λ(x, y) := M1−λ(x, y). We are ready to state the
definition of generalized α-divergences:
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Definition 2 ((M, N) α-divergences). The (M, N) α-divergences IM,N
α (p : q) between two

positive densities p and q for α ∈ (0, 1) is defined for a pair of strictly comparable weighted means
Mα and Nα with Mα ≥ Nα by:

IM,N
α (p : q) :=

1
α(1− α)

∫
(M1−α(p, q)− N1−α(p, q))dµ, α ∈ (0, 1) (22)

=
1

α(1− α)

∫ (
M′α(p, q)− N′α(p, q)

)
dµ, α ∈ (0, 1). (23)

Using α = 1−αA
2 , we can rewrite this α-divergence as

ÎM,N
αA

(p : q) :=
4

1− α2
A

∫ (
M 1+αA

2
(p, q)− N1+αA

2
(p, q)

)
dµ, αA ∈ (−1, 1) (24)

=
4

1− α2
A

∫ (
M′1−αA

2
(p, q)− N′1−αA

2
(p, q)

)
dµ, αA ∈ (−1, 1). (25)

It is important to check the conditions on the weighted means Mα and Nα which
ensures the law of the indiscernibles of a divergence D(p : q), namely, D(p : q) = 0 iff
p = q almost µ-everywhere. This condition rewrites as

∫
Mα(p, q)dµ =

∫
Nα(p, q)dµ if

and only if p(x) = q(x) µ-almost everywhere. A sufficient condition is to ensure that
Mα(x, y) 6= Nα(x, y) for x 6= y. In particular, this condition holds if the weighted means
Mα and Nα are strictly comparable weighted means.

Instead of taking the difference M1−α(x : y)− N1−α(x : y) between two weighted
means, we may also measure the gap logarithmically, and thus define the family of log M

N
α-divergences as follows:

Definition 3 (log M
N α-divergence). The log M

N α-divergences LM,N
α (p : q) between two positive

densities p and q for α ∈ (0, 1) is defined for a pair of strictly comparable weighted means Mα and
Nα with Mα ≥ Nα by:

LM,N
α (p : q) :=

∫ (
log

M1−α(p, q)
N1−α(p, q)

)
dµ, (26)

= −
∫ (

log
N1−α(p, q)
M1−α(p, q)

)
dµ. (27)

Note that this definition is different from the skewed Bhattacharyya type distance [39,40],
which rather measures

BM,N
α (p : q) := log

∫
M1−α(p, q)dµ∫
N1−α(p, q)dµ

, (28)

= − log

∫
N1−α(p, q)dµ∫
M1−α(p, q)dµ

. (29)

The ordinary α-skewed Bhattacharyya distance [39] is recovered when Nα = Gα

(weighted geometric mean) and Mα = Aα the arithmetic mean since
∫

A1−α(p, q)dµ = 1.
The Bhattacharyya type divergences BM,N

α were introduced in [41] in order to upper bound
the probability of error in Bayesian hypothesis testing.

A weighted mean Mα is said symmetric if and only if Mα(x, y) = M1−α(y, x). When
both the weighted means M and N are symmetric, we have the following reference dual-
ity [11]:

IM,N
α (p : q) = IM,N

1−α (q : p). (30)

We consider symmetric weighted means in the remainder.
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In the limit cases of α→ 0 or α→ 1, we define the 0-divergence IM,N
0 (p : q) and the

1-divergence IM,N
1 (p : q), respectively, by

IM,N
0 (p : q) = lim

α→0
IM,N
α (p : q), (31)

IM,N
1 (p : q) = lim

α→1
IM,N
α (p : q) = IM,N

0 (q : p), (32)

provided that those limits exist.
Notice that the ordinary α-divergences are defined for any α ∈ R but our generic quasi-

arithmetic α-divergences are defined in general on (0, 1). However, when the weighted
means Mα and Nα admit weighted extrapolations (e.g., the arithmetic mean Aα or the
geometric mean Gα) the quasi-arithmetic α-divergences can be extended to R\{0, 1}. Fur-
thermore, when the limits of quasi-arithmetic α-divergences exist for α ∈ {0, 1}, the quasi-
arithmetic α-divergences may be defined on the full range of α ∈ R. To demonstrate the
restricted range (0, 1), consider the weighted harmonic mean for x, y > 0 with x 6= y:

Hλ(x, y) =
1

(1− λ) 1
x + λ 1

y
=

xy
λx + (1− λ)y

=
xy

y + λ(x− y)
. (33)

Clearly, the denominator may become zero when λ = y
y−x and even possibly negative.

Thus, to avoid this issue, we restrict the range of α to (0, 1) for defining quasi-arithmetic
α-divergences.

2.2. The Quasi-Arithmetic α-Divergences

A quasi-arithmetic mean (QAM) is defined for a continuous and strictly monotonic
function f : I ⊂ R+ → J ⊂ R+ as:

M f (x, y) := f−1
(

f (x) + f (y)
2

)
. (34)

Function f is called the generator of the quasi-arithmetic mean. These strict and reflex-
ive quasi-arithmetic means are also called Kolmogorov means [30], Nagumo means [42] de
Finetti means [43], or quasi-linear means [44] in the literature. These means are called quasi-
arithmetic means because they can be interpreted as arithmetic means on the arguments
f (x) and f (y):

f (M f (x, y)) =
f (x) + f (y)

2
= A( f (x), f (y)). (35)

QAMs are strict, reflexive, and symmetric means.
Without loss of generality, we may assume strictly increasing functions f instead

of monotonic functions since M− f = M f . Indeed, M− f (x, y) = (− f )−1(− f (M f (x, y)))
and ((− f )−1 ◦ (− f ))(u) = u, the identity function. Notice that the composition f1 ◦ f2 of
two strictly monotonic increasing functions f1 and f2 is a strictly monotonic increasing
function. Furthermore, we consider I = J = (0, ∞) in the remainder since we apply these
means on positive densities. Two quasi-arithmetic means M f and Mg coincide if and only
if f (u) = ag(u) + b for some a > 0 and b ∈ R, see [44]. The quasi-arithmetic means were
considered in the axiomatization of the entropies by Rényi to define the α-entropies (see
Equation (2).11 of [45]).

By choosing fA(u) = u, fG(u) = log u, or fH(u) = 1
u , we obtain the Pythagorean’s

arithmetic A, geometric G, and harmonic H means, respectively:

• the arithmetic mean (A): A(x, y) = x+y
2 = M fA(x, y),

• the geometric mean (G): G(x, y) =
√

xy = M fG (x, y), and
• the harmonic mean (H): H(x, y) = 2

1
x +

1
y
= 2xy

x+y = M fH (x, y).
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More generally, choosing fPr (u) = ur, we obtain the parametric family of power means
also called Hölder means [46] or binary means [47]:

Pr(x, y) =
(

xr + yr

2

) 1
r
= M fPr (x, y), r ∈ R\{0}. (36)

In order to get a smooth family of power means, we define the geometric mean as the
limit case of r → 0:

P0(x, y) = lim
r→0

Pr(x, y) = G(x, y) =
√

xy. (37)

A mean M is positively homogeneous if and only if M(ta, tb) = t M(a, b) for any t > 0.
It is known that the only positively homogeneous quasi-arithmetic means coincide exactly
with the family of power means [44]. The weighted QAMs are given by

M f
α(p, q) = f−1((1− α) f (p) + α f (q))), (38)

= f−1( f (p) + α( f (q)− f (p))) = M f
1−α(q, p). (39)

Let us remark that QAMs were generalized to complex-valued generators in [48] and
to probability measures defined on a compact support in [49].

Notice that there exist other positively homogeneous means which are not quasi-
arithmetic means. For example, the logarithmic mean [50,51] L(x, y) for x > 0 and y > 0:

L(x, y) =
y− x

log y− log x
(40)

is an example of a homogeneous mean (i.e., L(tx, ty) = t L(x, y) for any t > 0) that is not
a QAM. Besides the family of QAMs, there exist many other families of means [35]. For
example, let us mention the Lagrangian means [52], which intersect with the QAMs only for
the arithmetic mean, or a generalization of the QAMs called the Bajraktarević means [53].

Let us now strengthen a recent theorem (Theorem 1 of [54], 2010):

Theorem 1 (Strictly comparable weighted QAMs). The pair (M f , Mg) of quasi-arithmetic
means obtained for two strictly increasing generators f and g is strictly comparable provided that
function f ◦ g−1 is strictly convex, where ◦ denotes the function composition.

Proof. Since f ◦ g−1 is strictly convex, it is convex, and therefore it follows from Theorem 1
of [54] that M f

α ≥ Mg
α for all α ∈ [0, 1]. Thus, the very nice property of QAMs is that

M f ≥ Mg implies that M f
α ≥ Mg

α for any α ∈ [0, 1]. Now, let us consider the equation
M f

α(p, q) = Mg
α(p, q) for p 6= q:

f−1((1− α) f (p) + α f (q)) = g−1((1− α)g(p) + αg(q)). (41)

Since f ◦ g−1 is assumed strictly convex, and g is strictly increasing, we have g(p) 6= g(q)
for p 6= q, and we reach the following contradiction:

(1− α) f (p) + α f (q) = ( f ◦ g−1)((1− α)g(p) + αg(q)), (42)

< (1− α)( f ◦ g−1)(g(p)) + α( f ◦ g−1)(g(q)), (43)

< (1− α) f (p) + α f (q). (44)

Thus, M f
α(p, q) 6= Mg

α(p, q) for p 6= q, and M f
α(p, q) = Mg

α(p, q) for p = q.

Thus, we can define the quasi-arithmetic α-divergences as follows:
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Definition 4 (Quasi-arithmetic α-divergences). The ( f , g) α-divergences I f ,g
α (p : q) := IM f ,Mg

α

(p : q) between two positive densities p and q for α ∈ (0, 1) are defined for two strictly increasing
and differentiable functions f and g such that f ◦ g−1 is strictly convex by:

I f ,g
α (p : q) :=

1
α(1− α)

∫ (
M f

1−α(p, q)−Mg
1−α(p, q)

)
dµ, (45)

where M f
λ and Mg

λ are the weighted quasi-arithmetic means induced by f and g, respectively.

We have the following corollary:

Corollary 1 (Proper quasi-arithmetic α-divergences). Let (M f , Mg) be a pair of quasi-arithmetic
means with f ◦ g−1 strictly convex, then the (M f , Mg) α-divergences are proper divergences for
α ∈ (0, 1).

Proof. Consider p and q with p(x) 6= q(x) µ-almost everywhere. Since f ◦ g−1 is strictly
convex, we have M f (x, y) − Mg(x, y) ≥ 0 with strict inequality when x 6= y. Thus,∫

M f (p, q)dµ −
∫

Mg(p, q)dµ > 0 and I f ,g
α (p : q) > 0. Therefore the quasi-arithmetic

α-divergences I f ,g
α satisfy the law of the indiscernibles for α ∈ (0, 1).

Note that the (A, G) α-divergences (i.e., the ordinary α-divergences) are proper diver-
gences satisfying both the properties D1 and D2 because fA(u) = u and fG(u) = log u,
and hence ( fA ◦ f−1

G )(u) = exp(u) is strictly convex on (0, ∞).

Let us denote by I f ,g
α (p : q) := IM f ,Mg

α (p : q) the quasi-arithmetic α-divergences. Since
the QAMs are symmetric means, we have I f ,g

α (p : q) = I f ,g
1−α(q : p).

Remark 2. Let us notice that Zhang [55] in their study of divergences under monotone embeddings
also defined the following family of related divergences (Equation (71) of [55]):

Î f ,g
αA (p : q) =

4
1− αA

2

∫ (
M f

1+αA
2

(p, q)−Mg
1+αA

2

(p, q)
)

dµ. (46)

However, Zhang did not study the limit case divergences Î f ,g
αA (p : q) when αA → ±1.

2.3. Limit Cases of 1-Divergences and 0-Divergences

We seek a closed-form formula of the limit divergence limα→0 I f ,g
α (p : q) when α→ 0.

Lemma 1. A first-order Taylor approximation of the quasi-arithmetic mean [56] M f
α for a C1

strictly increasing generator f when α ' 0 yields

M f
α(p, q) = p +

α( f (q)− f (p))
f ′(p)

+ o(α( f (q)− f (p))). (47)

Proof. By taking the first-order Taylor expansion of f−1(x) at x0 (i.e., Taylor polynomial of
order 1), we get:

f−1(x) = f−1(x0) + (x− x0)( f−1)′(x0) + o(x− x0). (48)

Using the property of the derivative of an inverse function

( f−1)′(x) =
1

( f ′( f−1)(x))
, (49)
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it follows that the first-order Taylor expansion of f−1(x) is:

f−1(x) = f−1(x0) + (x− x0)
1

( f ′( f−1)(x0))
+ o(x− x0). (50)

Plugging x0 = f (p) and x = f (p)+ α( f (q)− f (p)), we get a first-order approximation
of the weighted quasi-arithmetic mean M f

α when α→ 0:

M f
α(p, q) = p +

α( f (q)− f (p))
f ′(p)

+ o(α( f (q)− f (p))). (51)

Let us introduce the following bivariate function:

E f (p, q) :=
f (q)− f (p)

f ′(p)
. (52)

Remark 3. Notice that E f (p, q) = E− f (p, q) matches the fact that M f
α(p, q) = M− f

α (p, q). That
is, we may either consider a strictly increasing differentiable generator f , or equivalently a strictly
decreasing differentiable generator − f .

Thus, we obtain closed-form formulas for the I1-divergence and I0-divergence:

Theorem 2 (Quasi-arithmetic I1-divergence and reverse I0-divergence). The quasi-arithmetic
I1-divergence induced by two strictly increasing and differentiable functions f and g such that
f ◦ g−1 is strictly convex is

I f ,g
1 (p : q) := lim

α→1
I f ,g
α (p : q) =

∫ (
E f (p, q)− Eg(p, q)

)
dµ ≥ 0, (53)

=
∫ ( f (q)− f (p)

f ′(p)
− g(q)− g(p)

g′(p)

)
dµ. (54)

Furthermore, we have I f ,g
0 (p : q) = I f ,g

1 (q : p) = (I f ,g
1 )∗(p : q), the reverse divergence.

Proof. Let us prove that I f ,g
1 is a proper divergence satisfying axioms D1 and D2. Note that

a sufficient condition for I f ,g
1 (p : q) ≥ 0 is to check that

E f (p, q) ≥ Eg(p, q), (55)

f (q)− f (p)
f ′(p)

≥ g(q)− g(p)
g′(p)

. (56)

If p = q µ-almost everywhere then clearly I f ,g
1 (p : q) = 0. Consider p 6= q (i.e., at some

observation x: p(x) 6= q(x)).
We use the following property of a strictly convex and differentiable function h for

x < y (sometimes called the chordal slope lemma, see [29]):

h′(x) ≤ h(y)− h(x)
y− x

≤ h′(y). (57)

We consider h(x) = ( f ◦ g−1)(x) so that h′(x) = f ′(g−1(x))
g′(g−1(x)) . There are two cases

to consider:



Algorithms 2022, 15, 435 11 of 25

• p < q and therefore g(p) < g(q). Let y = g(q) and x = g(p) in Equation (57). We have

h′(x) = f ′(p)
g′(p) and h′(y) = f ′(q)

g′(q) , and the double inequality of Equation (57) becomes

f ′(p)
g′(p)

≤ f (q)− f (p)
g(q)− g(p)

≤ f ′(q)
g′(q)

.

Since g(q)− g(p) > 0, g′(p) > 0, and f ′(p) > 0, we get

g(q)− g(p)
g′(p)

≤ f (q)− f (p)
f ′(p)

.

• q < p and therefore g(p) > g(q). Then, the double inequality of Equation (57) becomes

f ′(q)
g′(q)

≤ f (q)− f (p)
g(q)− g(p)

≤ f ′(p)
g′(p)

That is,
f (q)− f (p)

f ′(p)
≥ g(q)− g(p)

g′(p)
,

since g(q)− g(p) < 0.

Thus, in both cases, we checked that E f (p(x), q(x)) ≥ Eg(p(x), q(x)). Therefore,

I f ,g
1 (p : q) ≥ 0, and since the QAMs are distinct, I f ,g

1 (p : q) = 0 iff p(x) = q(x) µ-a.e.

We can interpret the I1 divergences as generalized KL divergences and define general-
ized notions of cross-entropies and entropies. Since the KL divergence can be written as
the cross-entropy minus the entropy, we can also decompose the I1 divergences as follows:

I f ,g
1 (p : q) =

∫ ( f (q)
f ′(p)

− g(q)
g′(p)

)
dµ−

∫ ( f (p)
f ′(p)

− g(p)
g′(p)

)
dµ, (58)

= h f ,g
× (p : q)− h f ,g(p), (59)

where h f ,g
× (p : q) denotes the ( f , g)-cross-entropy (for a constant c ∈ R):

h f ,g
× (p : q) =

∫ ( f (q)
f ′(p)

− g(q)
g′(p)

)
dµ + c, (60)

and h f ,g(p) stands for the ( f , g)-entropy (self cross-entropy):

h f ,g(p) = h f ,g
× (p : p) =

∫ ( f (p)
f ′(p)

− g(p)
g′(p)

)
dµ + c. (61)

Notice that we recover the Shannon entropy for f (x) = x and g(x) = log(x) with
f ◦ g−1)(x) = exp(x) (strictly convex) and c = −1 to annihilate the

∫
pdµ = 1 term:

hid,log(p) =
∫
(p− p log p)dµ− 1 = −

∫
p log pdµ. (62)

We define the generalized ( f , g)-Kullback–Leibler divergence or generalized ( f , g)-
relative entropies:

KL f ,g(p : q) := h f ,g
× (p : q)− h f ,g(p). (63)
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When f = fA and g = fG, we resolve the constant to c = 0, and recover the ordinary
Shannon cross-entropy and entropy:

h fA , fG
× (p : q) =

∫
(q− p log q)dµ = h×(p : q), (64)

h fA , fG (p : q) = h fA , fG
× (p : p) =

∫
(p− p log p)dµ = h(p), (65)

and we have the ( fA, fG)-Kullback–Leibler divergence that is the extended Kullback–Leibler
divergence:

KL fA , fG (p : q) = KL+(p : q) = h×(p : q)− h(p) =
∫
(p log

p
q
+ q− p)dµ. (66)

Thus, we have the ( f , g)-cross-entropy and ( f , g)-entropy expressed as

h f ,g
× (p : q) =

∫ ( f (q)
f ′(p)

− g(q)
g′(p)

)
dµ, (67)

h f ,g(p) =
∫ ( f (p)

f ′(p)
− g(p)

g′(p)

)
dµ. (68)

In general, we can define the ( f , g)-Jeffreys divergence as:

J f ,g(p : q) = KL f ,g(p : q) + KL f ,g(q : p). (69)

Thus, we define the quasi-arithmetic mean α-divergences as follows:

Theorem 3 (Quasi-arithmetic α-divergences). Let f and g be two strictly continuously in-
creasing and differentiable functions on (0, ∞) such that f ◦ g−1 is strictly convex. Then, the
quasi-arithmetic α-divergences induced by ( f , g) for α ∈ [0, 1] is

I f ,g
α (p : q) =


1

α(1−α)

∫ (
M f

1−α(p, q)−Mg
1−α(p, q)

)
dµ, α ∈ R\{0, 1}.

I f ,g
1 (p : q) =

∫ ( f (q)− f (p)
f ′(p) − g(q)−g(p)

g′(p)

)
dµ α = 1,

I f ,g
0 (p : q) =

∫ ( f (p)− f (q)
f ′(q) − g(p)−g(q)

g′(q)

)
dµ, α = 0.

(70)

When f (u) = fA(u) = u (M f = A) and g(u) = fG(u) = log u (Mg = G), we get

IA,G
1 (p : q) =

∫ (
q− p− p log

q
p

)
dµ = KL+(p : q) = I1(p : q), (71)

the Kullback–Leibler divergence (KLD) extended to positive densities, and I0 = KL+∗ the
reverse extended KLD.

LetM denote the class of strictly increasing and differentiable real-valued univariate
functions. An interesting question is to study the class of pairs of functions ( f , g) ∈ M×M
such that I f ,g

1 (p : q) = KL(p : q). This involves solving integral-based functional
equations [57].

We can rewrite the α-divergence I f ,g
α (p : q) for α ∈ (0, 1) as

I f ,g
α (p : q) =

1
α(1− α)

(
S f

1−α(p, q)− Sg
1−α(p, q)

)
, (72)

where
Sh

λ(p, q) :=
∫

Mh
λ(p, q)dµ. (73)
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Zhang [11] (pp. 188–189) considered the (A, Mρ) αA-divergences:

Dρ
α(p : q) :=

4
1− α2

∫ (1− α

2
p +

1 + α

2
q− ρ−1

(
1− α

2
ρ(p) +

1 + α

2
ρ(q)

))
dµ. (74)

Zhang obtained for Dρ
±1(p : q) the following formula:

Dρ
1(p : q) =

∫ (
p− q−

(
ρ−1

)′
(ρ(q))(ρ(p)− ρ(q))

)
dµ = Dρ

−1(q : p), (75)

which is in accordance with our generic formula of Equation (53) since (ρ−1(x))′ =
1

ρ′(ρ−1(x)) . Notice that Aα ≥ Pr
α for r ≤ 1; the arithmetic weighted mean dominates the

weighted power means Pr when r ≤ 1.
Furthermore, by imposing the homogeneity condition IA,Mρ

α (tp : tq) = t IA,Mρ

α (p : q)
for t > 0, Zhang [11] obtained the class of (αA, βA)-divergences for (αA, βA) ∈ [−1, 1]2:

DαA ,βA(p : q) :=
4

1− α2
A

2
1 + βA

∫ (1− αA
2

p +
1 + αA

2
q

−
(

1− αA
2

p
1−βA

2 +
1 + αA

2
q

1−βA
2

) 2
1−βA

)
dµ. (76)

2.4. Generalized KL Divergences as Conformal Bregman Divergences on Monotone Embeddings

Let us rewrite the generalized KLDs I f ,g
1 as a conformal Bregman representational

divergence [58–60] as follows:

Theorem 4. The generalized KLDs I f ,g
1 divergences are conformal Bregman representational

divergences

I f ,g
1 (p : q) =

∫ 1
f ′(p)

BF(g(q) : g(p))dµ, (77)

with F = f ◦ g−1 a strictly convex and differentiable Bregman convex generator defining the scalar
Bregman divergence [61] BF:

BF(a : b) = F(a)− F(b)− (a− b)F′(b).

Proof. For the Bregman strictly convex and differentiable generator F = f ◦ g−1, we expand
the following conformal divergence

1
f ′(p)

BF(g(q) : g(p)) =
1

f ′(p)
(

F(g(q))− F(g(p))− (g(q)− g(p))F′(g(p))
)
, (78)

=
1

f ′(p)

(
( f (q)− f (p))− (g(q)− g(p))

f ′(p)
g′(p)

)
, (79)

since (g−1 ◦ g)(x) = x and F′(g(x)) = f ′(x)
g′(x) . It follows that

1
f ′(p)

BF(g(q) : g(p)) =
f (q)− f (p)

f ′(p)
− g(q)− g(p)

g′(p)
, (80)

= E f (p, q)− Eg(p, q) = I f ,g
1 (p : q). (81)

Hence, we easily check that I f ,g
1 (p : q) =

∫ 1
f ′(p)BF(g(q) : g(p))dµ ≥ 0 since f ′(p) > 0

and BF ≥ 0.
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In general, for a functional generator f and a strictly monotonic representational
function r (also called monotone embedding [62] in information geometry), we can define
the representational Bregman divergence [63] B f ◦r−1(r(p) : r(q)) provided that F = f ◦ r−1

is a Bregman generator (i.e., strictly convex and differentiable).
The Itakura–Saito divergence [64] (IS) between two densities p and q is defined by:

DIS(p : q) =
∫ ( p

q
− log

p
q
− 1
)

dµ, (82)

=
∫

DIS(p(x) : q(x))dµ(x), (83)

where DIS(x : y) = x
y − log x

y − 1 is the scalar IS divergence. This divergence was originally
designed in sound processing for measuring the discrepancy between two speech power
spectra. Observe that the IS divergence is invariant by rescaling: DIS(tp : tq) = DIS(p : q)
for any t > 0. The IS divergence is a Bregman divergence [61] obtained for the Burg
information generator (i.e., negative Burg entropy): FBurg(u) = − log u with F′Burg(u) = −

1
u .

It follows that we have
I f
1 (p : q) =

∫
pB f (q : p)dµ, (84)

The Itakura–Saito divergence may further be extended to a family of α-Itakura–Saito
divergences (see [6], Equation (10).45 of Theorem 10.1):

DIS,α(p : q) =

{ ∫ 1
α2

((
p
q

)α
− α log p

q − 1
)

dµ α 6= 0
1
2

∫
(log q− log p)2dµ α = 0.

(85)

In [56], a generalization of the Bregman divergences was obtained using the com-
parative convexity induced by two abstract means M and N to define (M, N)-Bregman
divergences as limit of scaled (M, N)-Jensen divergences. The skew (M, N)-Jensen diver-
gences are defined for α ∈ (0, 1) by:

JM,N
F,α (p : q) =

1
α(1− α)

(Nα(F(p), F(q)))− F(Mα(p, q))), (86)

where Mα and Nα are weighted means that should be regular [56] (i.e., homogeneous,
symmetric, continuous, and increasing in each variable). Then, we can define the (M, N)-
Bregman divergence as

BM,N
F (p : q) = lim

α→1−
JM,N
F,α (p : q), (87)

= lim
α→1−

1
α(1− α)

(Nα(F(p), F(q)))− F(Mα(p, q))). (88)

The formula obtained in [56] for the quasi-arithmetic means M f and Mg and a func-
tional generator F that is (M f , Mg)-convex is:

B f ,g
F (p : q) =

g(F(p))− g(F(q))
g′(F(q))

− f (p)− f (q)
f ′(q)

F′(q), (89)

=
1

f ′(F(q))
Bg◦F◦ f−1( f (p) : f (q)) ≥ 0. (90)

This is a conformal divergence [58] that can be written using the E f terms as:

B f ,g
F (p : q) = Eg(F(q), F(p))− E f (q, p)F′(q). (91)

A function F is (M f , Mg)-convex iff g ◦ F ◦ f−1 is (ordinary) convex [56].
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The information geometry induced by a Bregman divergence (or equivalently by its
convex generator) is a dually flat space [6]. The dualistic structure induced by a conformal
Bregman representational divergence is related to conformal flattening [59,60]. The notion
of conformal structures was first introduced in information geometry by Okamoto et al. [65].

Following the work of Ohara [59,60,66], the Kurose geometric divergence ρ(p, r) [67] (a
contrast function in affine differential geometry) induced by a pair (L, M) of strictly mono-
tone smooth functions between two distributions p and r of the d-dimensional probability
simplex ∆d is defined by (Equation (28) in [59]):

ρ(p : r) =
1

Λ(r)

d+1

∑
i=1

L(pi)− L(ri)

L′(ri)
=

1
Λ(r)

d+1

∑
i=1

EL(ri, pi), (92)

where Λ(r) = ∑d+1
i=1

1
L′(pi)

pi. Affine immersions [67] can be interpreted as special embeddings.
Let ρ be a divergence (contrast function) and (ρg, ρ∇, ρ∇∗) be the induced statistical

manifold structure with

ρgij(p) := −(∂i)p(∂j)p ρ(p, q)|q=p, (93)

Γij,k(p) := −(∂i)p(∂j)p(∂k)q ρ(p, q)|q=p, (94)

Γ∗ij,k(p) := −(∂i)p(∂j)q(∂k)q ρ(p, q)|q=p, (95)

where (∂i)s denotes the tangent vector at s of a vector field ∂i.
Consider a conformal divergence ρκ(p : q) = κ(q) ρ(p : q) for a positive func-

tion κ(q) > 0, called the conformal factor. Then, the induced statistical manifold [6,7]
(ρκ g, ρκ∇, ρκ∇∗) is 1-conformally equivalent to (ρg, ρ∇, ρ∇∗) and we have

ρκ g = κ ρg, (96)
ρg(ρκ∇XY, Z) = ρg(ρ∇XY, Z)− d(log κ)(Z)ρg(X, Y). (97)

The dual affine connections ρκ∇∗ and ρ∇∗ are projectively equivalent [67] (and ρ∇∗ is said
−1-conformally flat).

Conformal flattening [59,60] consists of choosing the conformal factor κ such that
(ρκ g, ρκ∇, ρκ∇) becomes a dually flat space [6] equipped with a canonical Bregman divergence.

Therefore, it follows that the statistical manifolds induced by the 1-divergence I f ,g
1

is a representational 1-conformally flat statistical manifold. Figure 1 gives an overview
of the interplay of divergences with information-geometric structures. The logarithmic
divergence [68] LG,α is defined for α > 0 and an α-exponentially concave generator G by:

LG,α(θ1 : θ2) =
1
α

log
(

1 + α∇G(θ2)
>(θ1 − θ2)

)
+ G(θ2)− G(θ1). (98)

When α → 0, we have LG,α(θ1 : θ2) → B−G(θ1 : θ2), where BF is the Bregman
divergence [61] induced by a strictly convex and smooth function F:

BF(θ1 : θ2) = F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2).
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Divergence-based information geometry

(M,Dg,D∇,D∇∗ = D∗∇)

Fisher α-geometry

(M, F g,∇α,∇−α = (∇α)∗)

f -divergence

α = 3 + 2 f
′′′(1)
f ′′(1)

Dually flat space

(M, F g, F∇, F∇∗ = F∗∇)

Bregman divergence

affine immersion Kurose’s geometric divergence

1-conformally flat dual connections

Pal-Wong logarithmic divergence

(M, LG,αg, LG,α∇, LG,α∇∗)
constant sectional negative curvature space

conformal flattening

conformal divergence

ρ(p : q)

κ(p) ρ(p : q)

affine immersion

α = 0

monotone transformation

(M, t(D)g = t′(0)Dg,
t(D)∇ = D∇, t(D)∇∗ = D∇∗)

t(D), t(0) = 0
α-divergence

conformal flattening

Affine
differential
geometry

Potential convex function F

ex
tr
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n
t(D)R = DR

BF (θ1 : θ2)

α-exponentially concave generator G

α = 0

F = −G

conformal Bregman divergence

κ(θ1)BF (θ1 : θ2)

same curvature tensor

Figure 1. Interplay of divergences and their information-geometric structures: Bregman divergences
are canonical divergences of dually flat structures, and the α-logarithmic divergences are canonical
divergences of 1-conformally flat statistical manifolds. When α→ 0, the logarithmic divergence LF,α

tends to the Bregman divergence BF.

3. The Subfamily of Homogeneous (r, s)-Power α-Divergences for r > s

In particular, we can define the (r, s)-power α-divergences from two power means
Pr = Mpowr and Ps = Mpows with r > s (and Pr ≥ Ps) with the family of generators
powl(u) = ul . Indeed, we check that frs(u) := powr ◦ pow−1

s (u) = u
r
s is strictly convex

on (0, ∞) since f ′′rs(u) =
r
s
( r

s − 1
)
u

r
s−2 > 0 for r > s. Thus, Pr and Ps are two QAMs which

are both comparable and distinct. Table 1 lists the expressions of Er(p, q) := Epowr
(p, q)

obtained from the power mean generators powr(u) = ur.

Table 1. Expressions of the terms Er for the family of power means Pr, r ∈ R.

Power Mean Er(p, q)

Pr(r ∈ R\{0}) qr−pr

rpr−1

Q(r = 2) q2−p2

2p
A(r = 1) q− p
G(r = 0) p log q

p

H(r = −1) −p2
(

1
q −

1
p

)
= p− p2

q

We conclude with the definition of the (r, s)-power α-divergences:

Corollary 2 (power α-divergences). Given r > s, the α-power divergences are defined for r > s
and r, s 6= 0 by

Ir,s
α (p : q) =


1

α(1−α)

∫ (
(αpr + (1− α)qr)

1
r − (αps + (1− α)qs)

1
s

)
dµ, α ∈ R\{0, 1}.

Ir,s
1 (p : q) =

∫ ( qr−pr

rpr−1 −
qs−ps

sps−1

)
dµ α = 1,

Ir,s
0 (p : q) = Ir,s

1 (q : p) α = 0.

(99)
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When r = 0, we get the following power α-divergences for s < 0:

I0,s
α (p : q) =


1

α(1−α)

∫ (
pαq1−α − (αps + (1− α)qs)

1
s

)
dµ, α ∈ R\{0, 1}.

I0,s
1 (p : q) =

∫ (
p log q

p −
qs−ps

sps−1

)
dµ α = 1,

I0,s
0 (p : q) = Ir,s

1 (q : p) α = 0.

(100)

When s = 0, we get the following power α-divergences for r > 0:

Ir,0
α (p : q) =


1

α(1−α)

∫ (
(αpr + (1− α)qr)

1
r − pαq1−α

)
dµ, α ∈ R\{0, 1}.

Ir,0
1 (p : q) =

∫ ( qr−pr

rpr−1 − p log q
p

)
dµ α = 1,

Ir,0
0 (p : q) = Ir,s

1 (q : p) α = 0.

(101)

In particular, we get the following family of (A, H) α-divergences

IA,H
α (p : q) = I1,−1

α (p : q) =


1

α(1−α)

∫ (
αp + (1− α)q− pq

αq+(1−α)p

)
dµ, α ∈ R\{0, 1}.

I1,−1
1 (p : q) =

∫ (
q− 2p + p2

q

)
dµ α = 1,

I1,−1
0 (p : q) = I1,−1

1 (q : p) α = 0.

, (102)

and the family of (G, H) α-divergences:

IG,H
α (p : q) = I0,−1

α (p : q) =


1

α(1−α)

∫ (
pαq1−α − pq

αq+(1−α)p

)
dµ, α ∈ R\{0, 1}.

I0,−1
1 (p : q) =

∫ (
p log q

p − p + p2

q

)
dµ α = 1,

I0,−1
0 (p : q) = I0,−1

1 (q : p) α = 0.

(103)

The (r, s)-power α-divergences for r, s 6= 0 yield homogeneous divergences: Ir,s
α (tp :

tq) = t Ir,s
α (p : q) for any t > 0 because the power means are homogeneous: Pr

α(tx, ty) =
tPr

α(x, y) = txPr
α

(
1, y

x
)
. Thus, the Ir,s

α -divergences are Csiszár f -divergences [17]

Ir,s
α (p : q) =

∫
p(x) fr,s

(
q(x)
p(x)

)
dµ (104)

for the generator

fr,s(u) =
1

α(1− α)
(Pr

α(1, u)− Ps(1, u)). (105)

Thus, the family of (r, s)-power α-divergences are homogeneous divergences:

Ir,s
α (tp : tq) = t Ir,s

α (p : q), ∀t > 0. (106)

4. Applications to Center-Based Clustering

Clustering is a class of unsupervised learning algorithms which partitions a given
d-dimensional point set P = {p1, . . . , pn} into clusters such that data points falling into
a same cluster tend to be more similar to data points belonging to different clusters. The
celebrated k-means clustering [69] is a center-based method for clustering P into k clusters
C1, . . . , Ck (with P = ∪k

i=1Ci), by minimizing the following k-means objective function

L(P , C) = 1
n

n

∑
i=1

min
j∈{1,...,k}

‖pi − cj‖2, (107)
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where the cj’s denote the cluster representatives. Let C = {c1, . . . , ck} denote the set of
cluster centers. The cluster Cj is defined as the points of P closer to cluster representative cj
than any other ci for i 6= j:

Cj = {p ∈ P : ‖p− cj‖2 ≤ ‖p− cl‖2, ∀l ∈ {1, . . . , k}}.

When k = 1, it can be shown that the centroid of the point set P is the unique best
cluster representative:

arg min
c1

L(P , {c1})⇒ c1 =
1
n

n

∑
i=1

pi.

When d > 1 and k > 1, finding a best partition P = ∪k
j=1Cj which minimizes the

objective function of Equation (107) is NP-hard [70]. When d = 1, k-means clustering can
be solved efficiently using dynamic programming [71] in subcubic O(n3) time.

The k-means objective function can be generalized to any arbitrary (potentially asym-
metric) divergence D(· : ·) by considering the following objective function:

LD(P , C) :=
1
n

n

∑
i=1

min
j∈{1,...,k}

D(pi : cj). (108)

Thus, when D(p : q) = ‖p− q‖2, one recovers the ordinary k-means clustering [69].
When D(p : q) = BF(p : q) is chosen as a Bregman divergence, one gets the right-sided
Bregman k-means clustering [72] as the minimization of the cluster centers are defined on
the right-sided arguments of D in Equation (108). When F(x) = ‖x‖2

2, Bregman k-means
clustering (i.e., D(p : q) = BF(p : q) in Equation (108)) amounts to the ordinary k-means
clustering. The right-sided Bregman centroid for k = 1 coincides with the center of mass
and is independent of the Bregman generator F:

arg min
c1

LBF (P , {c1})⇒ c1 =
1
n

n

∑
i=1

pi.

The left-sided Bregman k-means clustering is obtained by considering the right-sided
Bregman centroid for the reverse Bregman divergence (BF)

∗(p : q) = BF(q : p), and the
left-sided Bregman centroid [73] can be expressed as a multivariate generalization of the
quasi-arithmetic mean:

c1 = (∇F)−1

(
1
n

n

∑
i=1
∇F(pi)

)
.

In order to study the robustness of k-means clustering with respect to our novel
family of divergences I f ,g

α , we first study the robustness of the left-sided Bregman centroids
to outliers.

4.1. Robustness of the Left-Sided Bregman Centroids

Consider two d-dimensional points p = (p1, . . . , pd) and p′ = (p′1, . . . , p′d) of a domain
Θ ⊂ Rd. The centroid of p and p′ with respect to any arbitrary divergence D(· : ·) is by
definition the minimizer of

LD(c) =
1
2

D(p : c) +
1
2

D(p′ : c),

provided that the minimizer minc∈Θ LD(c) is unique. Assume a separable Bregman diver-
gence induced by the generator F(p) = ∑d

i=1 F(pi). The left-sided Bregman centroid [73] of
p and p′ is given by the following separable quasi-arithmetic centroid:

c = (c1, . . . , cd),
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with

ci = M f (pi, p′i) = f−1
(

f (pi) + f (p′i)
2

)
,

where f (x) = F′(x) denotes the derivative of the Bregman generator F(x).
Now, fix p (say, p = (1, . . . , 1) ∈ Θ), and let the coordinates p′i of p′ all tend to infinity:

That is, point p′ plays the role of an outlier data point. We use the general framework of
influence functions [74] in statistics to study the robustness of divergence-based centroids.
Consider the r-power mean, a quasi-arithmetic mean induced by powr(x) = xr for r 6= 0
and by extension pow0(x) = log x when r = 0 (geometric mean).

When r < 0, we check that

lim
p′i→+∞

Mpowr (pi, p′i) = lim
p′i→+∞

(
1 + pr

i
2

) 1
r
, (109)

=

(
1
2

) 1
r
< ∞. (110)

That is, the r-power mean is robust to an outlier data point when r < 0 (see Figure 2).
Note that if instead of considering the centroid, we consider the barycenter with w denoting
the weight of point p and 1− w denoting the weight of the outlier p′ for w ∈ (0, 1), then
the power r-mean falls in a square box of side w

1
r when r < 0.

p = (1, 1)

p′ = (t, t)

(
1
2

) 1
r

Mpowr (p, p′)

Figure 2. Illustration of the robustness property of the r-power mean Mpowr (p, p′) when r < 0 for
two points: a prescribed point p = (1, 1) and an outlier point p′ = (t, t). When t→ +∞, the r-power
mean of p and p′ for r < 0 (e.g., coordinatewise harmonic mean when r = −1) is contained inside the

box anchored at p of size length
(

1
2

) 1
r . The r-power mean can be interpreted as a left-sided Bregman

centroid for F′(x) = −xr, i.e., F(x) = − 1
r xr+1 when r < −1 and F(x) = − log x when r = −1.

On the contrary, when r > 0 or r = 0, we have limp′i→+∞ Mpowr (pi, p′i) = ∞, and the
r-power mean diverges to infinity.

Thus, when r < 0, the quasi-arithmetic centroid of p = (1, . . . , 1) and p′ is contained

in a bounding box of length
(

1
2

) 1
r with left corner (1, . . . , 1), and the left-sided Bregman

power centroid minimizing
1
2

BF(c : p) +
1
2

BF(c : p′)

is robust to outlier p′.
To contrast with this result, notice that the right-sided Bregman centroid [72] is always

the center of mass (arithmetic mean), and therefore not robust to outliers as a single outlier
data point may potentially drag the centroid to infinity.



Algorithms 2022, 15, 435 20 of 25

Example 2. Since M f = M− f for any strictly smooth increasing function f , we deduce that the
quasi-arithmetic left-sided Bregman centroid induced by F(x) = − log x with f (x) = F′(x) =
−x−1 = − 1

x for x > 0 is the harmonic mean which is robust to outliers. The corresponding
Bregman divergence is the Itakura–Saito divergence [72].

Notice that it is enough to consider without loss of generality two points p and p′:
Indeed, the case of the quasi-arithmetic mean of P = {p1, . . . , pn} and p′ can be rewritten as
an equivalent weighted quasi-arithmetic mean of two points p̄ = M f (p1, . . . , pn) with weight
w = n

n+1 and p′ of weight 1
n+1 using the replacement property of quasi-arithmetic means:

M f (p1, . . . , pk, pk+1, . . . , pn) = M f ( p̄, . . . , p̄, pk+1, pn)

where p̄ = M f (p1, . . . , pk).

4.2. Robustness of Generalized Kullback–Leibler Centroids

The fact that the generalized KLDs are conformal representational Bregman diver-
gences can be used to design efficient algorithms in computational geometry [60]. For
example, let us consider the centroid (or barycenter) of a finite set of weighted probability
measures P1, . . . , Pn � µ (with RN derivatives p1, . . . , pn) defined as the minimizer of

min
n

∑
i=1

wi I f ,g
1 (pi : c),

where the wi’s are positive weights summing up to one (∑n
i=1 wi = 1). The divergences

I f ,g
1 (pi : c) are separable. Thus, consider without loss of generality, the scalar-generalized

KLDs so that we have
I f ,g
1 (p : q) =

1
f ′(p)

BF(g(q) : g(p)),

where p and q are scalars.
Since the Bregman centroid is unique and always coincide with the center of mass [72]

c∗ = arg min wi

n

∑
i=1

BF(pi : c) =
n

∑
i=1

wi pi,

for positive weights wi’s summing up to one, we deduce that the right-sided generalized
KLD centroid

arg min
c

1
n

n

∑
i=1

I f ,g
1 (pi : c) = arg min

c

1
n

n

∑
i=1

1
f ′(pi)

BF(g(c) : g(pi))

amounts to a left-sided Bregman centroid with un-normalized positive weights Wi =
1

f ′(pi)

for the scalar Bregman generator F(x) = f (g−1(x)) with F′(x) = f ′(g−1(x))
g′(g−1(x)) . Therefore, the

right-sided generalized KLD centroid c∗ is calculated for normalized weights wi =
Wi

∑n
j=1 Wj

as:

c∗ = (F′)−1

(
n

∑
i=1

wiF′(g(pi))

)
, (111)

= (F′)−1

 n

∑
i=1

1
f ′(pi)∑n

j=1
1

f ′(pj)

f ′(pi)

g′(pi)

, (112)

= (F′)−1

 n

∑
i=1

1
g′(pi) ∑n

j=1
1

f ′(pj)

. (113)
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Thus, we obtain a closed-form formula when (F′)−1 is computationally tractable. For
example, consider the (r, s)-power KLD (with r > s). We have f ′(x) = rxr−1, g′(x) = sxs−1,
F(x) = x

r
s , F′(x) = r

s x
r−s

s and therefore, we get F′−1(x) =
( s

r x
) s

r−s . Thus, we get
a closed-form formula for the right-sided (r, s)-power Kullback–Leibler centroid using
Equation (113).

Overall, we can design a k-means-type algorithm with respect to our generalized KLDs
following [72]. Moreover, we can initialize probabilistically k-means with a fast k-means++
seeding [34] described in Algorithm 1. The performance of the k-means++ seeding (i.e.,
the ratio LD(P ,C)

minC LD(P ,C) ) is O(log k) when D(p : q) = ‖p − q‖2, and the analysis has been
extended to arbitrary divergences in [75]. The merit of using the k-means++ seeding
is that we do not need to iteratively update the cluster representatives using Lloyd’s
heuristic [69] and we can thus bypass the calculations of centroids and merely choose the
cluster representatives from the source data points P as described in Algorithm 1.

Algorithm 1 Generic seeding of k-means with divergence-based k-means++.
input : A finite set P = {p1, . . . , pn} of n points, the number of cluster

representatives k ≥ 1, and an arbitrary divergence D(· : ·)
Output: Set of initial cluster centers C = {c1, . . . , ck}
Choose c1 ← pi with uniform probability and C = {c1};
for i← 2 to k do

Pick at random ci = pj ∈ P with probability

π(pj) =
D(pj : C)

∑p∈P D(p : C)

where D(p : C) := minc∈C D(p : c);
C ← C ∪ {ci};

end
return C;

The advantage of using a conformal Bregman divergence such as a total Bregman
divergence [33] or I f ,g

1 is to potentially ensure robustness to outliers (e.g., see Theorem III.2

of [33]). Robustness property of these novel I f ,g
1 divergences can also be studied for

statistical inference tasks based on minimum divergence methods [4,76].

5. Conclusions and Discussion

For two comparable strict means [35] M(p, q) ≥ N(p, q) (with equality holding if and
only if p = q), one can define their (M, N)-divergence as

IM,N(p : q) := 4
∫
(M(p, q)− N(p, q))dµ. (114)

When the property of strict comparable means extend to their induced weighted
means Mα(p, q) and Nα(p, q) (i.e., Mα(p, q) ≥ Nα(p, q)), one can further define the family
of (M, N) α-divergences for α ∈ (0, 1):

IM,N
α (p : q) :=

1
α(1− α)

∫
(M1−α(p, q)− N1−α(p, q))dµ, (115)

so that IM,N(p : q) = IM,N
1
2

(p : q). When the weighted means are symmetric, the reference

duality holds (i.e., IM,N
α (q : p) = IM,N

1−α (p : q)), and we can define the (M, N)-equivalent of
the Kullback–Leibler divergence, i.e., the (M, N) 1-divergence, as the limit case (when it
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exists): IM,N
1 (p : q) = limα→1 IM,N

α (p : q). Similarly, the (M, N)-equivalent of the reverse
Kullback–Leibler divergence is obtained as IM,N

0 (p : q) = limα→0 IM,N
α (p : q).

We proved that the quasi-arithmetic weighted means [30] M f
α and Mg

α were strictly
comparable whenever f ◦ g−1 was strictly convex. In the limit cases of α→ 0 and α→ 1,
we reported a closed-form formula for the equivalent of the forward and the reverse
Kullback–Leibler divergences. We reported closed-form formulas for the quasi-arithmetic

α-divergences I f ,g
α (p : q) := IM f ,Mg

α (p : q) for α ∈ [0, 1] (Theorem 3) and for the subfamily
of homogeneous (r, s)-power α-divergences Ir,s

α (p : q) := IMpowr ,Mpows
α (p : q) induced

by power means (Corollary 2). The ordinary (A, G) α-divergences [12], the (A, H) α-
divergences, and the (G, H) α-divergences are examples of (r, s)-power α-divergences
obtained for (r, s) = (1, 0), (r, s) = (1,−1) and (r, s) = (0,−1), respectively.

Generalized α-divergences may prove useful in reporting a closed-form formula
between densities of a parametric family {pθ}. For example, consider the ordinary α-
divergences between two scale Cauchy densities p1(x) = 1

π
s1

x2+s2
1

and p2(x) = 1
π

s2
x2+s2

2
;

there is no obvious closed-form for the ordinary α-divergences,but we can report a closed-
form for the (A, H) α-divergences following the calculus reported in [41]:

IA,H
α (p1 : p2) =

1
α(1− α)

(
1−

∫
H1−α(p1(x), p2(x))dµ(x)

)
, (116)

=
1

α(1− α)

(
1− s1s2

(αs1 + (1− α)s2)s1−α

)
, (117)

with sα =

√
αs1s2

2+(1−α)s2s2
1

αs1+(1−α)s2
. For probability distributions pθ1 and pθ2 belonging to the same

exponential family [77] with cumulant function F, the ordinary α-divergences admit the
following closed-form solution:

Iα(pθ1 : pθ2) =
1

α(1−α) (1− exp(F(αθ1 + (1− α)θ2)− (αF(θ1) + (1− α)F(θ2))), α ∈ (0, 1)
I1(pθ1 : pθ2) = KL(pθ1 : pθ2) = BF(θ2 : θ1), α = 1
I0(pθ1 : pθ2) = KL(pθ2 : pθ1) = BF(θ1 : θ2) α = 0

(118)

where BF is the Bregman divergence: BF(θ2 : θ1) = F(θ2)− F(θ1)− (θ2 − θ1)
>∇F(θ1).

Instead of considering ordinary α-divergences in applications, one may consider the
(r, s)-power α-divergences, and tune the three scalar parameters (r, s, α) according to the
various tasks (say, by cross-validation in supervised machine learning tasks, see [13]). For
the limit cases of α→ 0 or of α→ 1, we further proved that the limit KL type divergences
amounted to conformal Bregman divergences on strictly monotone embeddings and ex-
plained the connection of conformal divergences with conformal flattening [60], which
allows one to build fast algorithms for centroid-based k-means clustering [72], Voronoi
diagrams, and proximity data-structures [60,63]. Some ideas left for future directions is to
study the properties of these new (M, N) α-divergences for statistical inference [2,4,76].
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