Article

# Generalizing the Alpha-Divergences and the Oriented Kullback-Leibler Divergences with Quasi-Arithmetic Means 

Frank Nielsen (D)

Sony Computer Science Laboratories, Tokyo 141-0022, Japan; frank.nielsen.x@gmail.com

Citation: Nielsen, F. Generalizing the Alpha-Divergences and the Oriented Kullback-Leibler Divergences with Quasi-Arithmetic Means. Algorithms 2022, 15, 435. https://doi.org/ 10.3390/a15110435

Academic Editors: Chih-Lung Lin, Bor-Jiunn Hwang, Shaou-Gang Miaou and Yuan-Kai Wang

Received: 13 October 2022
Accepted: 16 November 2022
Published: 17 November 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).


#### Abstract

The family of $\alpha$-divergences including the oriented forward and reverse Kullback-Leibler divergences is often used in signal processing, pattern recognition, and machine learning, among others. Choosing a suitable $\alpha$-divergence can either be done beforehand according to some prior knowledge of the application domains or directly learned from data sets. In this work, we generalize the $\alpha$-divergences using a pair of strictly comparable weighted means. Our generalization allows us to obtain in the limit case $\alpha \rightarrow 1$ the 1-divergence, which provides a generalization of the forward Kullback-Leibler divergence, and in the limit case $\alpha \rightarrow 0$, the 0 -divergence, which corresponds to a generalization of the reverse Kullback-Leibler divergence. We then analyze the condition for a pair of weighted quasi-arithmetic means to be strictly comparable and describe the family of quasi-arithmetic $\alpha$-divergences including its subfamily of power homogeneous $\alpha$-divergences. In particular, we study the generalized quasi-arithmetic 1-divergences and 0-divergences and show that these counterpart generalizations of the oriented Kullback-Leibler divergences can be rewritten as equivalent conformal Bregman divergences using strictly monotone embeddings. Finally, we discuss the applications of these novel divergences to $k$-means clustering by studying the robustness property of the centroids.


Keywords: Kullback-Leibler divergence; $\alpha$-divergences; comparable weighted means; weighted quasi-arithmetic means; information geometry; conformal divergences; $k$-means clustering

## 1. Introduction

### 1.1. Statistical Divergences and $\alpha$-Divergences

Consider a measurable space [1] $(\mathcal{X}, \mathcal{F})$ where $\mathcal{F}$ denotes a finite $\sigma$-algebra and $\mathcal{X}$ the sample space, and let $\mu$ denotes a positive measure on $(\mathcal{X}, \mathcal{F})$, usually chosen as the Lebesgue measure or the counting measure. The notion of statistical dissimilarities [2-4] $D(P: Q)$ between two distributions $P$ and $Q$ is at the core of many algorithms in signal processing, pattern recognition, information fusion, data analysis, and machine learning, among others. A dissimilarity may be oriented, i.e., asymmetric: $D(P: Q) \neq D(Q: P)$, where the colon mark " $:$ " between the arguments of the dissimilarities represents the asymmetric property of the division operation. When the arbitrary probability measures $P$ and $Q$ are dominated by a measure $\mu$ (e.g., one can always choose $\mu=\frac{P+Q}{2}$ ), we consider their Radon-Nikodym (RN) densities $p_{\mu}=\frac{\mathrm{d} P}{\mathrm{~d} \mu}$ and $q_{\mu}=\frac{\mathrm{d} Q}{\mathrm{~d} \mu}$ with respect to $\mu$, and define $D(P: Q)$ as $D_{\mu}\left(p_{\mu}: q_{\mu}\right)$. A good dissimilarity measure shall be invariant of the chosen dominating measure so that we can write $D(P: Q)=D_{\mu}\left(p_{\mu}: q_{\mu}\right)$ [5]. When those statistical dissimilarities are smooth, they are called divergences [6] in information geometry, as they induce a dualistic geometric structure [7].

The most renowned statistical divergence rooted in information theory [8] is the Kullback-Leibler divergence (KLD, also called relative entropy):

$$
\begin{equation*}
\mathrm{KL}_{\mu}\left(p_{\mu}: q_{\mu}\right):=\int_{\mathcal{X}} p_{\mu}(x) \log \frac{p_{\mu}(x)}{q_{\mu}(x)} \mathrm{d} \mu(x) . \tag{1}
\end{equation*}
$$

Since the KLD is independent of the reference measure $\mu$, i.e., $\operatorname{KL}_{\mu}\left(p_{\mu}: q_{\mu}\right)=\operatorname{KL}_{\nu}\left(p_{\nu}\right.$ : $q_{v}$ ) for $p_{\mu}=\frac{\mathrm{d} P}{\mathrm{~d} \mu}$ and $q_{\mu}=\frac{\mathrm{d} Q}{\mathrm{~d} \mu}$, and $p_{v}=\frac{\mathrm{d} P}{\mathrm{~d} v}$ and $q_{v}=\frac{\mathrm{d} Q}{\mathrm{~d} v}$ are the RN derivatives with respect to another positive measure $v$, we write concisely in the remainder:

$$
\begin{equation*}
\operatorname{KL}(p: q)=\int p \log \frac{p}{q} \mathrm{~d} \mu \tag{2}
\end{equation*}
$$

instead of $\mathrm{KL}_{\mu}\left(p_{\mu}: q_{\mu}\right)$.
The KLD belongs to a parametric family of $\alpha$-divergences [9] $I_{\alpha}(p: q)$ for $\alpha \in \mathbb{R}$ :

$$
I_{\alpha}(p: q):= \begin{cases}\frac{1}{\alpha(1-\alpha)}\left(1-\int p^{\alpha} q^{1-\alpha} \mathrm{d} \mu\right), & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{3}\\ I_{1}(p: q)=\operatorname{KL}(p: q), & \alpha=1 \\ I_{0}(p: q)=\operatorname{KL}(q: p), & \alpha=0\end{cases}
$$

The $\alpha$-divergences extended to positive densities [10] (not necessarily normalized densities) play a central role in information geometry [6]:

$$
I_{\alpha}^{+}(p: q):=\left\{\begin{array}{ll}
\frac{1}{\alpha(1-\alpha)} \int\left(\alpha p+(1-\alpha) q-p^{\alpha} q^{1-\alpha}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{4}\\
I_{1}^{+}(p: q)=\mathrm{KL}^{+}(p: q), & \alpha=1 \\
I_{0}^{+}(p: q)=\mathrm{KL}^{+}(q: p), & \alpha=0
\end{array},\right.
$$

where $\mathrm{KL}^{+}$denotes the Kullback-Leibler divergence extended to positive measures:

$$
\begin{equation*}
\mathrm{KL}^{+}(p: q):=\int\left(p \log \frac{p}{q}+q-p\right) \mathrm{d} \mu \tag{5}
\end{equation*}
$$

The $\alpha$-divergences are asymmetric for $\alpha \neq \frac{1}{2}$ (i.e., $I_{\alpha}(p: q) \neq I_{\alpha}(q: p)$ for $\left.\alpha \neq \frac{1}{2}\right)$ but exhibit the following reference duality [11]:

$$
\begin{equation*}
I_{\alpha}(q: p)=I_{1-\alpha}(p: q)=: I_{\alpha}^{*}(p: q) \tag{6}
\end{equation*}
$$

where we denoted by $D^{*}(p: q):=D(q: p)$, the reverse divergence for an arbitrary divergence $D(p: q)$ (e.g., $I_{\alpha}^{*}(p: q):=I_{\alpha}(q: p)=I_{1-\alpha}(p: q)$ ). The $\alpha$-divergences have been extensively used in many applications [12], and the parameter $\alpha$ may not be necessarily fixed beforehand but can also be learned from data sets in applications [13,14]. When $\alpha=\frac{1}{2}$, the $\alpha$-divergence is symmetric and called the squared Hellinger divergence [15]:

$$
\begin{equation*}
I_{\frac{1}{2}}(p: q):=4\left(1-\int \sqrt{p q} \mathrm{~d} \mu\right)=2 \int(\sqrt{p}-\sqrt{q})^{2} \mathrm{~d} \mu \tag{7}
\end{equation*}
$$

The $\alpha$-divergences belong to the family of Ali-Silvey-Csizár's $f$-divergences $[16,17]$ which are defined for a convex function $f(u)$ satisfying $f(1)=0$ and strictly convex at 1 :

$$
\begin{equation*}
I_{f}(p: q):=\int p f\left(\frac{q}{p}\right) \mathrm{d} \mu \tag{8}
\end{equation*}
$$

We have

$$
\begin{equation*}
I_{\alpha}(p: q)=I_{f_{\alpha}}(p: q), \tag{9}
\end{equation*}
$$

with the following class of $f$-generators:

$$
f_{\alpha}(u):= \begin{cases}\frac{1}{\alpha(1-\alpha)}\left(\alpha+(1-\alpha) u-u^{1-\alpha}\right), & \alpha \in \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{10}\\ u-1-\log u, & \alpha=1 \\ 1-u+u \log u, & \alpha=0\end{cases}
$$

In information geometry, $\alpha$-divergences and more generally $f$-divergences are called invariant divergences [6], since they are provably the only statistical divergences which
are invariant under invertible smooth transformations of the sample space. That is, let $Y=m(X)$ be a smooth invertible transformation and let $\mathcal{Y}=m(\mathcal{X})$ denote the transformed sample space. Denote by $p_{Y}(y)$ and $p_{Y^{\prime}}(y)$ the densities with respect to $y$ corresponding to $p_{X}(x)$ and $p_{X^{\prime}}(x)$, respectively. Then, we have $I_{f}\left(p_{X}: p_{X^{\prime}}\right)=I_{f}\left(p_{Y}: p_{Y^{\prime}}\right)$ [18]. The dualistic information-geometric structures induced by these invariant $f$-divergences between densities of a same parametric family $\left\{p_{\theta}(x): \theta \in \Theta\right\}$ of statistical models yield the Fisher information metric and the dual $\pm \alpha$-connections for $\alpha=3+2 \frac{f^{\prime \prime \prime}(1)}{f^{\prime \prime}(1)}$, see [6] for details. It is customary to rewrite the $\alpha$-divergences in information geometry using rescaled parameter $\alpha_{A}=1-2 \alpha$ (i.e., $\alpha=\frac{1-\alpha_{A}}{2}$ ). Thus, the extended $\alpha_{A}$-divergence in information geometry is defined as follows:

$$
\hat{I}_{\alpha_{A}}^{+}(p: q)=\left\{\begin{array}{ll}
\frac{4}{1-\alpha_{A}^{2}} \int\left(\frac{1-\alpha_{A}}{2} p+\frac{1+\alpha_{A}}{2} q-p^{\frac{1-\alpha_{A}}{2}} q^{\frac{1+\alpha_{A}}{2}}\right) \mathrm{d} \mu, & \alpha_{A} \in \mathbb{R} \backslash\{-1,1\}  \tag{11}\\
\hat{I}_{1}(p: q)=\mathrm{KL}^{+}(p: q), & \alpha_{A}=1 \\
\hat{I}_{-1}(p: q)=\mathrm{KL}^{+}(q: p), & \alpha_{A}=-1
\end{array},\right.
$$

and the reference duality is expressed by $\hat{I}_{\alpha_{A}}^{+}(q: p)=\hat{I}_{-\alpha_{A}}^{+}(p: q)$.
A statistical divergence $D(\cdot: \cdot)$ when evaluated on densities belonging to a given parametric family $\mathcal{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$ of densities is equivalent to a corresponding contrast function $D_{\mathcal{P}}$ [7]:

$$
\begin{equation*}
D_{\mathcal{P}}\left(\theta_{1}: \theta_{2}\right):=D\left(p_{\theta_{1}}: p_{\theta_{2}}\right) . \tag{12}
\end{equation*}
$$

Remark 1. Although quite confusing, those contrast functions [7] have also been called divergences in the literature [6]. Any smooth parameter divergence $D\left(\theta_{1}: \theta_{2}\right)$ (contrast function [7]) induces a dualistic structure in information geometry [6]. For example, the KLD on the family $\Delta$ of probability mass functions defined on a finite alphabet $\mathcal{X}$ is equivalent to a Bregman divergence, and thus induces a dually flat space [6]. More generally, the $\alpha_{A}$-divergences on the probability simplex $\Delta$ induce the $\alpha_{A}$-geometry in information geometry [6].

We refer the reader to [3] for a richly annotated bibliography of many common statistical divergences investigated in signal processing and statistics. Building and studying novel statistical/parameter divergences from first principles is an active research area. For example, Li $[19,20]$ recently introduced some new divergence functionals based on the framework of transport information geometry [21], which considers information entropy functionals in Wasserstein spaces. Li defined (i) the transport information Hessian distances [20] between univariate densities supported on a compact, which are symmetric distances satisfying the triangle inequality, and obtained the counterpart of the Hellinger distance on the $L^{2}$-Wasserstein space by choosing the Shannon information entropy, and (ii) asymmetric transport Bregman divergences (including the transport Kullback-Leibler divergence) between densities defined on a multivariate compact smooth support in [19].

The $\alpha$-divergences are widely used in information sciences, see [22-27] just to cite a few applications. The singly parametric $\alpha$-divergences have also been generalized to biparametric families of divergences such as the $(\alpha, \beta)$-divergences [6] or the $\alpha \beta$-divergences [28].

In this work, based on the observation that the term $\alpha p+(1-\alpha) q-p^{\alpha} q^{1-\alpha}$ in the extended $I_{\alpha}^{+}(p: q)$ divergence for $\alpha \in(0,1)$ of Equation (4) is a difference between a weighted arithmetic mean $A_{1-\alpha}(p, q):=\alpha p+(1-\alpha) q$ and a weighted geometric mean $G_{1-\alpha}(p, q):=p^{\alpha} q^{1-\alpha}$, we investigate a generalization of $\alpha$-divergences with respect to a generic pair of strictly comparable weighted means [29]. In particular, we consider the class of quasi-arithmetic weighted means [30], analyze the condition for two quasi-arithmetic means to be strictly comparable, and report their induced $\alpha$-divergences with limit KL type divergences when $\alpha \rightarrow 1$ and $\alpha \rightarrow 0$.

### 1.2. Divergences and Decomposable Divergences

A statistical divergence $D(p: q)$ shall satisfy the following two basic axioms:

D1 (Non-negativity). $D(p: q) \geq 0$ for all densities $p$ and $q$,
D2 (Identity of indiscernibles). $D(p: q)=0$ if and only if $p=q \mu$-almost everywhere.
These axioms are a subset of the metric axioms, since we do not consider the symmetry axiom nor the triangle inequality axiom of metric distances. See [31,32] for some common examples of probability metrics (e.g., total variation distance or Wasserstein metrics).

A divergence $D(p: q)$ is said decomposable [6] when it can be written as a definite integral of a scalar divergence $d(\cdot, \cdot)$ :

$$
\begin{equation*}
D(p: q)=\int d(p(x): q(x)) \mathrm{d} \mu(x) \tag{13}
\end{equation*}
$$

or $D(p: q)=\int d(p: q) \mathrm{d} \mu$ for short, where $d(a, b)$ is a scalar divergence between $a>0$ and $b>0$ (hence one-dimensional parameter divergence).

The $\alpha$-divergences are decomposable divergences since we have

$$
\begin{equation*}
I_{\alpha}^{+}(p: q)=\int i_{\alpha}(p(x): q(x)) \mathrm{d} \mu \tag{14}
\end{equation*}
$$

with the following scalar $\alpha$-divergence:

$$
i_{\alpha}(a: b):= \begin{cases}\frac{1}{\alpha(1-\alpha)}\left(\alpha a+(1-\alpha) b-a^{\alpha} b^{1-\alpha}\right), & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{15}\\ i_{1}(a: b)=a \log \frac{a}{b}+b-a & \alpha=1 \\ i_{0}(a: b)=i_{1}(b: a), & \alpha=0\end{cases}
$$

### 1.3. Contributions and Paper Outline

The outline of the paper and its main contributions are summarized as follows:
We first define for two families of strictly comparable means (Definition 1) their generic induced $\alpha$-divergences in Section 2 (Definition 2). Then, Section 2.2 reports a closed-form formula (Theorem 3) for the quasi-arithmetic $\alpha$-divergences induced by two strictly comparable quasi-arithmetic means with monotonically increasing generators $f$ and $g$ such that $f \circ g^{-1}$ is strictly convex and differentiable (Theorem 1). In Section 2.3, we study the divergences $I_{0}^{+}$and $I_{1}^{+}$obtained in the limit cases when $\alpha \rightarrow 0$ and $\alpha \rightarrow 1$, respectively, (Theorem 2). We obtain generalized counterparts of the Kullback-Leibler divergence when $\alpha \rightarrow 1$ and generalized counterparts of the reverse Kullback-Leibler divergence when $\alpha \rightarrow 0$. Moreover, these generalized KLDs can be rewritten as generalized cross-entropies minus entropies. In Section 2.4, we show how to express these generalized $I_{1}$-divergences and $I_{0}$-divergences as conformal Bregman representational divergences, and briefly explain their induced conformally flat statistical manifolds (Theorem 4). Section 3 introduces the subfamily of bipower homogeneous $\alpha$-divergences (Definition 2) which belong to the family of Ali-Silvey-Csiszár $f$-divergences [16,17]. In Section 4, we consider $k$-means clustering [33] and $k$-means++ seeding [34] for the generic class of extended $\alpha$-divergences: we first study the robustness of quasi-arithmetic means in Section 4.1 and then the robustness of the newly class of generalized Kullback-Leibler centroids in Section 4.2. Finally, Section 5 summarizes the results obtained in this work and discusses perspectives for future research.

## 2. The $\alpha$-Divergences Induced by a Pair of Strictly Comparable Weighted Means

### 2.1. The $(M, N) \alpha$-Divergences

The point of departure for generalizing the $\alpha$-divergences is to rewrite Equation (4) for $\alpha \in \mathbb{R} \backslash\{0,1\}$ as

$$
\begin{equation*}
I_{\alpha}^{+}(p: q)=\frac{1}{\alpha(1-\alpha)} \int\left(A_{1-\alpha}(p, q)-G_{1-\alpha}(p, q)\right) \mathrm{d} \mu \tag{16}
\end{equation*}
$$

where $A_{\lambda}$ and $G_{\lambda}$ for $\lambda \in(0,1)$ stands for the weighted arithmetic mean and the weighted geometric mean, respectively:

$$
\begin{aligned}
& A_{\lambda}(x, y)=(1-\lambda) x+\lambda y \\
& G_{\lambda}(x, y)=x^{1-\lambda} y^{\lambda} .
\end{aligned}
$$

For a weighted mean $M_{\lambda}(a, b)$, we choose the (geometric) convention $M_{0}(x, y)=x$ and $M_{1}(x, y)=1$ so that $\left\{M_{\lambda}(x, y)\right\}_{\lambda \in[0,1]}$ smoothly interpolates between $x(\lambda=0)$ and $y$ $(\lambda=1)$. For the converse convention, we simply define $M_{\lambda}^{\prime}(a, b)=M_{1-\lambda}(a, b)$ and get the conventional definition of $I_{\alpha}^{+}(p: q)=\frac{1}{\alpha(1-\alpha)} \int\left(A_{\alpha}^{\prime}(p, q)-G_{\alpha}^{\prime}(p, q)\right) \mathrm{d} \mu$.

In general, a mean $M(x, y)$ aggregates two values $x$ and $y$ of an interval $I \subset \mathbb{R}$ to produce an intermediate quantity which satisfies the innerness property $[35,36]$ :

$$
\begin{equation*}
\min \{x, y\} \leq M(x, y) \leq \max \{x, y\}, \quad \forall x, y \in I \tag{17}
\end{equation*}
$$

This in-between property of means (Equation (17)) was postulated by Cauchy [37] in 1821. A mean is said strict if the inequalities of Equation (17) are strict whenever $x \neq y$. A mean $M$ is said reflexive iff $M(x, x)=x$ for all $x \in I$. The reflexive property of means was postulated by Chisini [38] in 1929.

In the remainder, we consider $I=(0, \infty)$. By using the unique dyadic representation of any real $\lambda \in(0,1)$ (i.e., $\lambda=\sum_{i=1}^{\infty} \frac{d_{i}}{2^{i}}$ with $d_{i} \in\{0,1\}$ the binary digit expansion of $\lambda$ ), one can build a weighted mean $M_{\lambda}$ from any given mean $M$; see [29] for such a construction.

In the remainder, we drop the " + " notation to emphasize that the divergences are defined between positive measures. By analogy to the $\alpha$-divergences, let us define the (decomposable) $(M, N) \alpha$-divergences between two positive densities $p$ and $q$ for a pair of weighted means $M_{1-\alpha}$ and $N_{1-\alpha}$ for $\alpha \in(0,1)$ as

$$
\begin{equation*}
I_{\alpha}^{M, N}(p: q):=\frac{1}{\alpha(1-\alpha)} \int\left(M_{1-\alpha}(p, q)-N_{1-\alpha}(p, q)\right) \mathrm{d} \mu \tag{18}
\end{equation*}
$$

The ordinary $\alpha$-divergences for $\alpha \in(0,1)$ are recovered as the $(A, G) \alpha$-divergences:

$$
\begin{align*}
I_{\alpha}^{A, G}(p: q) & =\frac{1}{\alpha(1-\alpha)} \int\left(A_{1-\alpha}(p, q)-G_{1-\alpha}(p, q)\right) \mathrm{d} \mu  \tag{19}\\
& =I_{1-\alpha}(p: q)=I_{\alpha}(q: p)=I_{\alpha}^{*}(p: q) \tag{20}
\end{align*}
$$

In order to define generalized $\alpha$-divergences satisfying axioms D1 and D2 of proper divergences, we need to characterize the class of acceptable means. We give a definition strengthening the notion of comparable means in [29]:

Definition 1 (Strictly comparable weighted means). A pair $(M, N)$ of means are said strictly comparable whenever $M_{\lambda}(x, y) \geq N_{\lambda}(x, y)$ for all $x, y \in(0, \infty)$ with equality if and only if $x=y$, and for all $\lambda \in(0,1)$.

Example 1. For example, the inequality of the arithmetic and geometric means states that $A(x, y) \geq$ $G(x, y)$ implies means $A$ and $G$ are comparable, denoted by $A \geq G$. Furthermore, the arithmetic and geometric weighted means are distinct whenever $x \neq y$. Indeed, consider the equation $(1-\alpha) x+\alpha y=x^{1-\alpha} y^{\alpha}$ for $x, y>0$ and $x \neq y$. By taking the logarithm on both sides, we get

$$
\begin{equation*}
\log ((1-\alpha) x+\alpha y)=(1-\alpha) \log x+\alpha \log y \tag{21}
\end{equation*}
$$

Since the logarithm is a strictly convex function, the only solution is $x=y$. Thus, $(A, G)$ is a pair of strictly comparable weighted means.

For a weighted mean $M$, define $M_{\lambda}^{\prime}(x, y):=M_{1-\lambda}(x, y)$. We are ready to state the definition of generalized $\alpha$-divergences:

Definition $2\left((M, N) \alpha\right.$-divergences). The $(M, N) \alpha$-divergences $I_{\alpha}^{M, N}(p: q)$ between two positive densities $p$ and $q$ for $\alpha \in(0,1)$ is defined for a pair of strictly comparable weighted means $M_{\alpha}$ and $N_{\alpha}$ with $M_{\alpha} \geq N_{\alpha}$ by:

$$
\begin{align*}
I_{\alpha}^{M, N}(p: q) & :=\frac{1}{\alpha(1-\alpha)} \int\left(M_{1-\alpha}(p, q)-N_{1-\alpha}(p, q)\right) \mathrm{d} \mu, \quad \alpha \in(0,1)  \tag{22}\\
& =\frac{1}{\alpha(1-\alpha)} \int\left(M_{\alpha}^{\prime}(p, q)-N_{\alpha}^{\prime}(p, q)\right) \mathrm{d} \mu, \quad \alpha \in(0,1) \tag{23}
\end{align*}
$$

Using $\alpha=\frac{1-\alpha_{A}}{2}$, we can rewrite this $\alpha$-divergence as

$$
\begin{align*}
\hat{I}_{\alpha_{A}}^{M, N}(p: q) & :=\frac{4}{1-\alpha_{A}^{2}} \int\left(M_{\frac{1+\alpha_{A}}{2}}(p, q)-N_{\frac{1+\alpha_{A}}{2}}(p, q)\right) \mathrm{d} \mu, \quad \alpha_{A} \in(-1,1)  \tag{24}\\
& =\frac{4}{1-\alpha_{A}^{2}} \int\left(M_{\frac{1-\alpha_{A}}{2}}^{\prime}(p, q)-N_{\frac{1-\alpha_{A}}{2}}^{\prime}(p, q)\right) \mathrm{d} \mu, \quad \alpha_{A} \in(-1,1) \tag{25}
\end{align*}
$$

It is important to check the conditions on the weighted means $M_{\alpha}$ and $N_{\alpha}$ which ensures the law of the indiscernibles of a divergence $D(p: q)$, namely, $D(p: q)=0$ iff $p=q$ almost $\mu$-everywhere. This condition rewrites as $\int M_{\alpha}(p, q) \mathrm{d} \mu=\int N_{\alpha}(p, q) \mathrm{d} \mu$ if and only if $p(x)=q(x) \mu$-almost everywhere. A sufficient condition is to ensure that $M_{\alpha}(x, y) \neq N_{\alpha}(x, y)$ for $x \neq y$. In particular, this condition holds if the weighted means $M_{\alpha}$ and $N_{\alpha}$ are strictly comparable weighted means.

Instead of taking the difference $M_{1-\alpha}(x: y)-N_{1-\alpha}(x: y)$ between two weighted means, we may also measure the gap logarithmically, and thus define the family of $\log \frac{M}{N}$ $\alpha$-divergences as follows:

Definition $3\left(\log \frac{M}{N} \alpha\right.$-divergence). The $\log \frac{M}{N} \alpha$-divergences $L_{\alpha}^{M, N}(p: q)$ between two positive densities $p$ and $q$ for $\alpha \in(0,1)$ is defined for a pair of strictly comparable weighted means $M_{\alpha}$ and $N_{\alpha}$ with $M_{\alpha} \geq N_{\alpha}$ by:

$$
\begin{align*}
L_{\alpha}^{M, N}(p: q) & :=\int\left(\log \frac{M_{1-\alpha}(p, q)}{N_{1-\alpha}(p, q)}\right) \mathrm{d} \mu  \tag{26}\\
& =-\int\left(\log \frac{N_{1-\alpha}(p, q)}{M_{1-\alpha}(p, q)}\right) \mathrm{d} \mu \tag{27}
\end{align*}
$$

Note that this definition is different from the skewed Bhattacharyya type distance [39,40], which rather measures

$$
\begin{align*}
B_{\alpha}^{M, N}(p: q) & :=\log \frac{\int M_{1-\alpha}(p, q) \mathrm{d} \mu}{\int N_{1-\alpha}(p, q) \mathrm{d} \mu}  \tag{28}\\
& =-\log \frac{\int N_{1-\alpha}(p, q) \mathrm{d} \mu}{\int M_{1-\alpha}(p, q) \mathrm{d} \mu} . \tag{29}
\end{align*}
$$

The ordinary $\alpha$-skewed Bhattacharyya distance [39] is recovered when $N_{\alpha}=G_{\alpha}$ (weighted geometric mean) and $M_{\alpha}=A_{\alpha}$ the arithmetic mean since $\int A_{1-\alpha}(p, q) \mathrm{d} \mu=1$. The Bhattacharyya type divergences $B_{\alpha}^{M, N}$ were introduced in [41] in order to upper bound the probability of error in Bayesian hypothesis testing.

A weighted mean $M_{\alpha}$ is said symmetric if and only if $M_{\alpha}(x, y)=M_{1-\alpha}(y, x)$. When both the weighted means $M$ and $N$ are symmetric, we have the following reference duality [11]:

$$
\begin{equation*}
I_{\alpha}^{M, N}(p: q)=I_{1-\alpha}^{M, N}(q: p) \tag{30}
\end{equation*}
$$

We consider symmetric weighted means in the remainder.

In the limit cases of $\alpha \rightarrow 0$ or $\alpha \rightarrow 1$, we define the 0 -divergence $I_{0}^{M, N}(p: q)$ and the 1-divergence $I_{1}^{M, N}(p: q)$, respectively, by

$$
\begin{align*}
& I_{0}^{M, N}(p: q)=\lim _{\alpha \rightarrow 0} I_{\alpha}^{M, N}(p: q)  \tag{31}\\
& I_{1}^{M, N}(p: q)=\lim _{\alpha \rightarrow 1} I_{\alpha}^{M, N}(p: q)=I_{0}^{M, N}(q: p) \tag{32}
\end{align*}
$$

provided that those limits exist.
Notice that the ordinary $\alpha$-divergences are defined for any $\alpha \in \mathbb{R}$ but our generic quasiarithmetic $\alpha$-divergences are defined in general on $(0,1)$. However, when the weighted means $M_{\alpha}$ and $N_{\alpha}$ admit weighted extrapolations (e.g., the arithmetic mean $A_{\alpha}$ or the geometric mean $G_{\alpha}$ ) the quasi-arithmetic $\alpha$-divergences can be extended to $\mathbb{R} \backslash\{0,1\}$. Furthermore, when the limits of quasi-arithmetic $\alpha$-divergences exist for $\alpha \in\{0,1\}$, the quasiarithmetic $\alpha$-divergences may be defined on the full range of $\alpha \in \mathbb{R}$. To demonstrate the restricted range $(0,1)$, consider the weighted harmonic mean for $x, y>0$ with $x \neq y$ :

$$
\begin{equation*}
H_{\lambda}(x, y)=\frac{1}{(1-\lambda) \frac{1}{x}+\lambda \frac{1}{y}}=\frac{x y}{\lambda x+(1-\lambda) y}=\frac{x y}{y+\lambda(x-y)} \tag{33}
\end{equation*}
$$

Clearly, the denominator may become zero when $\lambda=\frac{y}{y-x}$ and even possibly negative. Thus, to avoid this issue, we restrict the range of $\alpha$ to $(0,1)$ for defining quasi-arithmetic $\alpha$-divergences.

### 2.2. The Quasi-Arithmetic $\alpha$-Divergences

A quasi-arithmetic mean (QAM) is defined for a continuous and strictly monotonic function $f: I \subset \mathbb{R}_{+} \rightarrow J \subset \mathbb{R}_{+}$as:

$$
\begin{equation*}
M^{f}(x, y):=f^{-1}\left(\frac{f(x)+f(y)}{2}\right) \tag{34}
\end{equation*}
$$

Function $f$ is called the generator of the quasi-arithmetic mean. These strict and reflexive quasi-arithmetic means are also called Kolmogorov means [30], Nagumo means [42] de Finetti means [43], or quasi-linear means [44] in the literature. These means are called quasiarithmetic means because they can be interpreted as arithmetic means on the arguments $f(x)$ and $f(y)$ :

$$
\begin{equation*}
f\left(M^{f}(x, y)\right)=\frac{f(x)+f(y)}{2}=A(f(x), f(y)) \tag{35}
\end{equation*}
$$

QAMs are strict, reflexive, and symmetric means.
Without loss of generality, we may assume strictly increasing functions $f$ instead of monotonic functions since $M^{-f}=M^{f}$. Indeed, $M^{-f}(x, y)=(-f)^{-1}\left(-f\left(M^{f}(x, y)\right)\right)$ and $\left((-f)^{-1} \circ(-f)\right)(u)=u$, the identity function. Notice that the composition $f_{1} \circ f_{2}$ of two strictly monotonic increasing functions $f_{1}$ and $f_{2}$ is a strictly monotonic increasing function. Furthermore, we consider $I=J=(0, \infty)$ in the remainder since we apply these means on positive densities. Two quasi-arithmetic means $M^{f}$ and $M^{g}$ coincide if and only if $f(u)=a g(u)+b$ for some $a>0$ and $b \in \mathbb{R}$, see [44]. The quasi-arithmetic means were considered in the axiomatization of the entropies by Rényi to define the $\alpha$-entropies (see Equation (2). 11 of [45]).

By choosing $f_{A}(u)=u, f_{G}(u)=\log u$, or $f_{H}(u)=\frac{1}{u}$, we obtain the Pythagorean's arithmetic $A$, geometric $G$, and harmonic $H$ means, respectively:

- the arithmetic mean (A): $A(x, y)=\frac{x+y}{2}=M^{f_{A}}(x, y)$,
- the geometric mean (G): $G(x, y)=\sqrt{x y}=M^{f_{G}}(x, y)$, and
- the harmonic mean (H): $H(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}=\frac{2 x y}{x+y}=M^{f_{H}}(x, y)$.

More generally, choosing $f_{P_{r}}(u)=u^{r}$, we obtain the parametric family of power means also called Hölder means [46] or binary means [47]:

$$
\begin{equation*}
P_{r}(x, y)=\left(\frac{x^{r}+y^{r}}{2}\right)^{\frac{1}{r}}=M^{f_{P_{r}}}(x, y), \quad r \in \mathbb{R} \backslash\{0\} . \tag{36}
\end{equation*}
$$

In order to get a smooth family of power means, we define the geometric mean as the limit case of $r \rightarrow 0$ :

$$
\begin{equation*}
P_{0}(x, y)=\lim _{r \rightarrow 0} P_{r}(x, y)=G(x, y)=\sqrt{x y} \tag{37}
\end{equation*}
$$

A mean $M$ is positively homogeneous if and only if $M(t a, t b)=t M(a, b)$ for any $t>0$. It is known that the only positively homogeneous quasi-arithmetic means coincide exactly with the family of power means [44]. The weighted QAMs are given by

$$
\begin{align*}
M_{\alpha}^{f}(p, q) & \left.=f^{-1}((1-\alpha) f(p)+\alpha f(q))\right)  \tag{38}\\
& =f^{-1}(f(p)+\alpha(f(q)-f(p)))=M_{1-\alpha}^{f}(q, p) \tag{39}
\end{align*}
$$

Let us remark that QAMs were generalized to complex-valued generators in [48] and to probability measures defined on a compact support in [49].

Notice that there exist other positively homogeneous means which are not quasiarithmetic means. For example, the logarithmic mean $[50,51] L(x, y)$ for $x>0$ and $y>0$ :

$$
\begin{equation*}
L(x, y)=\frac{y-x}{\log y-\log x} \tag{40}
\end{equation*}
$$

is an example of a homogeneous mean (i.e., $L(t x, t y)=t L(x, y)$ for any $t>0$ ) that is not a QAM. Besides the family of QAMs, there exist many other families of means [35]. For example, let us mention the Lagrangian means [52], which intersect with the QAMs only for the arithmetic mean, or a generalization of the QAMs called the Bajraktarevic means [53].

Let us now strengthen a recent theorem (Theorem 1 of [54], 2010):
Theorem 1 (Strictly comparable weighted QAMs). The pair ( $M^{f}, M^{g}$ ) of quasi-arithmetic means obtained for two strictly increasing generators $f$ and $g$ is strictly comparable provided that function $f \circ g^{-1}$ is strictly convex, where $\circ$ denotes the function composition.

Proof. Since $f \circ g^{-1}$ is strictly convex, it is convex, and therefore it follows from Theorem 1 of [54] that $M_{\alpha}^{f} \geq M_{\alpha}^{g}$ for all $\alpha \in[0,1]$. Thus, the very nice property of QAMs is that $M^{f} \geq M^{g}$ implies that $M_{\alpha}^{f} \geq M_{\alpha}^{g}$ for any $\alpha \in[0,1]$. Now, let us consider the equation $M_{\alpha}^{f}(p, q)=M_{\alpha}^{g}(p, q)$ for $p \neq q$ :

$$
\begin{equation*}
f^{-1}((1-\alpha) f(p)+\alpha f(q))=g^{-1}((1-\alpha) g(p)+\alpha g(q)) \tag{41}
\end{equation*}
$$

Since $f \circ g^{-1}$ is assumed strictly convex, and $g$ is strictly increasing, we have $g(p) \neq g(q)$ for $p \neq q$, and we reach the following contradiction:

$$
\begin{align*}
(1-\alpha) f(p)+\alpha f(q) & =\left(f \circ g^{-1}\right)((1-\alpha) g(p)+\alpha g(q))  \tag{42}\\
& <(1-\alpha)\left(f \circ g^{-1}\right)(g(p))+\alpha\left(f \circ g^{-1}\right)(g(q))  \tag{43}\\
& <(1-\alpha) f(p)+\alpha f(q) . \tag{44}
\end{align*}
$$

Thus, $M_{\alpha}^{f}(p, q) \neq M_{\alpha}^{g}(p, q)$ for $p \neq q$, and $M_{\alpha}^{f}(p, q)=M_{\alpha}^{g}(p, q)$ for $p=q$.
Thus, we can define the quasi-arithmetic $\alpha$-divergences as follows:

Definition 4 (Quasi-arithmetic $\alpha$-divergences). The $(f, g) \alpha$-divergences $I_{\alpha}^{f, g}(p: q):=I_{\alpha}^{M^{f}, M^{g}}$ $(p: q)$ between two positive densities $p$ and $q$ for $\alpha \in(0,1)$ are defined for two strictly increasing and differentiable functions $f$ and $g$ such that $f \circ g^{-1}$ is strictly convex by:

$$
\begin{equation*}
I_{\alpha}^{f, g}(p: q):=\frac{1}{\alpha(1-\alpha)} \int\left(M_{1-\alpha}^{f}(p, q)-M_{1-\alpha}^{g}(p, q)\right) \mathrm{d} \mu \tag{45}
\end{equation*}
$$

where $M_{\lambda}^{f}$ and $M_{\lambda}^{g}$ are the weighted quasi-arithmetic means induced by $f$ and $g$, respectively.
We have the following corollary:
Corollary 1 (Proper quasi-arithmetic $\alpha$-divergences). Let ( $M^{f}, M^{g}$ ) be a pair of quasi-arithmetic means with $f \circ g^{-1}$ strictly convex, then the $\left(M^{f}, M^{g}\right) \alpha$-divergences are proper divergences for $\alpha \in(0,1)$.

Proof. Consider $p$ and $q$ with $p(x) \neq q(x) \mu$-almost everywhere. Since $f \circ g^{-1}$ is strictly convex, we have $M^{f}(x, y)-M^{g}(x, y) \geq 0$ with strict inequality when $x \neq y$. Thus, $\int M^{f}(p, q) \mathrm{d} \mu-\int M^{g}(p, q) \mathrm{d} \mu>0$ and $I_{\alpha}^{f, g}(p: q)>0$. Therefore the quasi-arithmetic $\alpha$-divergences $I_{\alpha}^{f, g}$ satisfy the law of the indiscernibles for $\alpha \in(0,1)$.

Note that the $(A, G) \alpha$-divergences (i.e., the ordinary $\alpha$-divergences) are proper divergences satisfying both the properties D1 and D2 because $f_{A}(u)=u$ and $f_{G}(u)=\log u$, and hence $\left(f_{A} \circ f_{G}^{-1}\right)(u)=\exp (u)$ is strictly convex on $(0, \infty)$.

Let us denote by $I_{\alpha}^{f, g}(p: q):=I_{\alpha}^{M^{f}, M^{g}}(p: q)$ the quasi-arithmetic $\alpha$-divergences. Since the QAMs are symmetric means, we have $I_{\alpha}^{f, g}(p: q)=I_{1-\alpha}^{f, g}(q: p)$.

Remark 2. Let us notice that Zhang [55] in their study of divergences under monotone embeddings also defined the following family of related divergences (Equation (71) of [55]):

$$
\begin{equation*}
\hat{I}_{\alpha_{A}}^{f, g}(p: q)=\frac{4}{1-\alpha_{A}^{2}} \int\left(M_{\frac{1+\alpha_{A}}{2}}^{f}(p, q)-M_{\frac{1+\alpha_{A}}{2}}^{g}(p, q)\right) \mathrm{d} \mu . \tag{46}
\end{equation*}
$$

However, Zhang did not study the limit case divergences $\hat{I}_{\alpha_{A}^{\prime}}^{f, g}(p: q)$ when $\alpha_{A} \rightarrow \pm 1$.

### 2.3. Limit Cases of 1-Divergences and 0 -Divergences

We seek a closed-form formula of the limit divergence $\lim _{\alpha \rightarrow 0} I_{\alpha}^{f, g}(p: q)$ when $\alpha \rightarrow 0$.
Lemma 1. A first-order Taylor approximation of the quasi-arithmetic mean [56] $M_{\alpha}^{f}$ for a $C_{1}$ strictly increasing generator $f$ when $\alpha \simeq 0$ yields

$$
\begin{equation*}
M_{\alpha}^{f}(p, q)=p+\frac{\alpha(f(q)-f(p))}{f^{\prime}(p)}+o(\alpha(f(q)-f(p))) \tag{47}
\end{equation*}
$$

Proof. By taking the first-order Taylor expansion of $f^{-1}(x)$ at $x_{0}$ (i.e., Taylor polynomial of order 1), we get:

$$
\begin{equation*}
f^{-1}(x)=f^{-1}\left(x_{0}\right)+\left(x-x_{0}\right)\left(f^{-1}\right)^{\prime}\left(x_{0}\right)+o\left(x-x_{0}\right) \tag{48}
\end{equation*}
$$

Using the property of the derivative of an inverse function

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{\left(f^{\prime}\left(f^{-1}\right)(x)\right)^{\prime}} \tag{49}
\end{equation*}
$$

it follows that the first-order Taylor expansion of $f^{-1}(x)$ is:

$$
\begin{equation*}
f^{-1}(x)=f^{-1}\left(x_{0}\right)+\left(x-x_{0}\right) \frac{1}{\left(f^{\prime}\left(f^{-1}\right)\left(x_{0}\right)\right)}+o\left(x-x_{0}\right) \tag{50}
\end{equation*}
$$

Plugging $x_{0}=f(p)$ and $x=f(p)+\alpha(f(q)-f(p))$, we get a first-order approximation of the weighted quasi-arithmetic mean $M_{\alpha}^{f}$ when $\alpha \rightarrow 0$ :

$$
\begin{equation*}
M_{\alpha}^{f}(p, q)=p+\frac{\alpha(f(q)-f(p))}{f^{\prime}(p)}+o(\alpha(f(q)-f(p))) \tag{51}
\end{equation*}
$$

Let us introduce the following bivariate function:

$$
\begin{equation*}
E_{f}(p, q):=\frac{f(q)-f(p)}{f^{\prime}(p)} \tag{52}
\end{equation*}
$$

Remark 3. Notice that $E_{f}(p, q)=E_{-f}(p, q)$ matches the fact that $M_{\alpha}^{f}(p, q)=M_{\alpha}^{-f}(p, q)$. That is, we may either consider a strictly increasing differentiable generator $f$, or equivalently a strictly decreasing differentiable generator $-f$.

Thus, we obtain closed-form formulas for the $I_{1}$-divergence and $I_{0}$-divergence:
Theorem 2 (Quasi-arithmetic $I_{1}$-divergence and reverse $I_{0}$-divergence). The quasi-arithmetic $I_{1}$-divergence induced by two strictly increasing and differentiable functions $f$ and $g$ such that $f \circ g^{-1}$ is strictly convex is

$$
\begin{align*}
I_{1}^{f, g}(p: q):=\lim _{\alpha \rightarrow 1} I_{\alpha}^{f, g}(p: q) & =\int\left(E_{f}(p, q)-E_{g}(p, q)\right) \mathrm{d} \mu \geq 0  \tag{53}\\
& =\int\left(\frac{f(q)-f(p)}{f^{\prime}(p)}-\frac{g(q)-g(p)}{g^{\prime}(p)}\right) \mathrm{d} \mu \tag{54}
\end{align*}
$$

Furthermore, we have $I_{0}^{f, g}(p: q)=I_{1}^{f, g}(q: p)=\left(I_{1}^{f, g}\right)^{*}(p: q)$, the reverse divergence.
Proof. Let us prove that $I_{1}^{f, g}$ is a proper divergence satisfying axioms D1 and D2. Note that a sufficient condition for $I_{1}^{f, g}(p: q) \geq 0$ is to check that

$$
\begin{align*}
E_{f}(p, q) & \geq E_{g}(p, q)  \tag{55}\\
\frac{f(q)-f(p)}{f^{\prime}(p)} & \geq \frac{g(q)-g(p)}{g^{\prime}(p)} \tag{56}
\end{align*}
$$

If $p=q \mu$-almost everywhere then clearly $I_{1}^{f, g}(p: q)=0$. Consider $p \neq q$ (i.e., at some observation $x$ : $p(x) \neq q(x))$.

We use the following property of a strictly convex and differentiable function $h$ for $x<y$ (sometimes called the chordal slope lemma, see [29]):

$$
\begin{equation*}
h^{\prime}(x) \leq \frac{h(y)-h(x)}{y-x} \leq h^{\prime}(y) \tag{57}
\end{equation*}
$$

We consider $h(x)=\left(f \circ g^{-1}\right)(x)$ so that $h^{\prime}(x)=\frac{f^{\prime}\left(g^{-1}(x)\right)}{g^{\prime}\left(g^{-1}(x)\right)}$. There are two cases to consider:

- $\quad p<q$ and therefore $g(p)<g(q)$. Let $y=g(q)$ and $x=g(p)$ in Equation (57). We have $h^{\prime}(x)=\frac{f^{\prime}(p)}{g^{\prime}(p)}$ and $h^{\prime}(y)=\frac{f^{\prime}(q)}{g^{\prime}(q)}$, and the double inequality of Equation (57) becomes

$$
\frac{f^{\prime}(p)}{g^{\prime}(p)} \leq \frac{f(q)-f(p)}{g(q)-g(p)} \leq \frac{f^{\prime}(q)}{g^{\prime}(q)}
$$

Since $g(q)-g(p)>0, g^{\prime}(p)>0$, and $f^{\prime}(p)>0$, we get

$$
\frac{g(q)-g(p)}{g^{\prime}(p)} \leq \frac{f(q)-f(p)}{f^{\prime}(p)}
$$

- $\quad q<p$ and therefore $g(p)>g(q)$. Then, the double inequality of Equation (57) becomes

$$
\frac{f^{\prime}(q)}{g^{\prime}(q)} \leq \frac{f(q)-f(p)}{g(q)-g(p)} \leq \frac{f^{\prime}(p)}{g^{\prime}(p)}
$$

That is,

$$
\frac{f(q)-f(p)}{f^{\prime}(p)} \geq \frac{g(q)-g(p)}{g^{\prime}(p)}
$$

since $g(q)-g(p)<0$.
Thus, in both cases, we checked that $E_{f}(p(x), q(x)) \geq E_{g}(p(x), q(x))$. Therefore, $I_{1}^{f, g}(p: q) \geq 0$, and since the QAMs are distinct, $I_{1}^{f, g}(p: q)=0$ iff $p(x)=q(x) \mu$-a.e.

We can interpret the $I_{1}$ divergences as generalized KL divergences and define generalized notions of cross-entropies and entropies. Since the KL divergence can be written as the cross-entropy minus the entropy, we can also decompose the $I_{1}$ divergences as follows:

$$
\begin{align*}
I_{1}^{f, g}(p: q) & =\int\left(\frac{f(q)}{f^{\prime}(p)}-\frac{g(q)}{g^{\prime}(p)}\right) \mathrm{d} \mu-\int\left(\frac{f(p)}{f^{\prime}(p)}-\frac{g(p)}{g^{\prime}(p)}\right) \mathrm{d} \mu  \tag{58}\\
& =h_{\times}^{f, g}(p: q)-h^{f, g}(p) \tag{59}
\end{align*}
$$

where $h_{\times}^{f, g}(p: q)$ denotes the $(f, g)$-cross-entropy (for a constant $c \in \mathbb{R}$ ):

$$
\begin{equation*}
h_{\times}^{f, g}(p: q)=\int\left(\frac{f(q)}{f^{\prime}(p)}-\frac{g(q)}{g^{\prime}(p)}\right) \mathrm{d} \mu+c \tag{60}
\end{equation*}
$$

and $h^{f, g}(p)$ stands for the $(f, g)$-entropy (self cross-entropy):

$$
\begin{equation*}
h^{f, g}(p)=h_{\times}^{f, g}(p: p)=\int\left(\frac{f(p)}{f^{\prime}(p)}-\frac{g(p)}{g^{\prime}(p)}\right) \mathrm{d} \mu+c \tag{61}
\end{equation*}
$$

Notice that we recover the Shannon entropy for $f(x)=x$ and $g(x)=\log (x)$ with $\left.f \circ g^{-1}\right)(x)=\exp (x)$ (strictly convex) and $c=-1$ to annihilate the $\int p \mathrm{~d} \mu=1$ term:

$$
\begin{equation*}
h^{\mathrm{id}, \log }(p)=\int(p-p \log p) \mathrm{d} \mu-1=-\int p \log p \mathrm{~d} \mu \tag{62}
\end{equation*}
$$

We define the generalized $(f, g)$-Kullback-Leibler divergence or generalized $(f, g)$ relative entropies:

$$
\begin{equation*}
\operatorname{KL}_{f, g}(p: q):=h_{\times}^{f, g}(p: q)-h^{f, g}(p) \tag{63}
\end{equation*}
$$

When $f=f_{A}$ and $g=f_{G}$, we resolve the constant to $c=0$, and recover the ordinary Shannon cross-entropy and entropy:

$$
\begin{align*}
& h_{\times}^{f_{A}, f_{G}}(p: q)=\int(q-p \log q) \mathrm{d} \mu=h_{\times}(p: q)  \tag{64}\\
& h^{f_{A}, f_{G}}(p: q)=h_{\times}^{f_{A}, f_{G}}(p: p)=\int(p-p \log p) \mathrm{d} \mu=h(p) \tag{65}
\end{align*}
$$

and we have the $\left(f_{A}, f_{G}\right)$-Kullback-Leibler divergence that is the extended Kullback-Leibler divergence:

$$
\begin{equation*}
\mathrm{KL}_{f_{A}, f_{G}}(p: q)=\mathrm{KL}^{+}(p: q)=h_{\times}(p: q)-h(p)=\int\left(p \log \frac{p}{q}+q-p\right) \mathrm{d} \mu \tag{66}
\end{equation*}
$$

Thus, we have the $(f, g)$-cross-entropy and $(f, g)$-entropy expressed as

$$
\begin{align*}
h_{\times}^{f, g}(p: q) & =\int\left(\frac{f(q)}{f^{\prime}(p)}-\frac{g(q)}{g^{\prime}(p)}\right) \mathrm{d} \mu  \tag{67}\\
h^{f, g}(p) & =\int\left(\frac{f(p)}{f^{\prime}(p)}-\frac{g(p)}{g^{\prime}(p)}\right) \mathrm{d} \mu . \tag{68}
\end{align*}
$$

In general, we can define the $(f, g)$-Jeffreys divergence as:

$$
\begin{equation*}
J^{f, g}(p: q)=\mathrm{KL}^{f, g}(p: q)+\mathrm{KL}^{f, g}(q: p) \tag{69}
\end{equation*}
$$

Thus, we define the quasi-arithmetic mean $\alpha$-divergences as follows:
Theorem 3 (Quasi-arithmetic $\alpha$-divergences). Let $f$ and $g$ be two strictly continuously increasing and differentiable functions on $(0, \infty)$ such that $f \circ g^{-1}$ is strictly convex. Then, the quasi-arithmetic $\alpha$-divergences induced by $(f, g)$ for $\alpha \in[0,1]$ is

$$
I_{\alpha}^{f, g}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(M_{1-\alpha}^{f}(p, q)-M_{1-\alpha}^{g}(p, q)\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\} .  \tag{70}\\ I_{1}^{f, g}(p: q)=\int\left(\frac{f(q)-f(p)}{f^{\prime}(p)}-\frac{g(q)-g(p)}{g^{\prime}(p)}\right) \mathrm{d} \mu & \alpha=1, \\ I_{0}^{f, g}(p: q)=\int\left(\frac{f(p)-f(q)}{f^{\prime}(q)}-\frac{g(p)-g(q)}{g^{\prime}(q)}\right) \mathrm{d} \mu, & \alpha=0 .\end{cases}
$$

When $f(u)=f_{A}(u)=u\left(M^{f}=A\right)$ and $g(u)=f_{G}(u)=\log u\left(M^{g}=G\right)$, we get

$$
\begin{equation*}
I_{1}^{A, G}(p: q)=\int\left(q-p-p \log \frac{q}{p}\right) \mathrm{d} \mu=\mathrm{KL}^{+}(p: q)=I_{1}(p: q) \tag{71}
\end{equation*}
$$

the Kullback-Leibler divergence (KLD) extended to positive densities, and $I_{0}=\mathrm{KL}^{+*}$ the reverse extended KLD.

Let $\mathcal{M}$ denote the class of strictly increasing and differentiable real-valued univariate functions. An interesting question is to study the class of pairs of functions $(f, g) \in \mathcal{M} \times \mathcal{M}$ such that $I_{1}^{f, g}(p: q)=\operatorname{KL}(p: q)$. This involves solving integral-based functional equations [57].

We can rewrite the $\alpha$-divergence $I_{\alpha}^{f, g}(p: q)$ for $\alpha \in(0,1)$ as

$$
\begin{equation*}
I_{\alpha}^{f, g}(p: q)=\frac{1}{\alpha(1-\alpha)}\left(S_{1-\alpha}^{f}(p, q)-S_{1-\alpha}^{g}(p, q)\right) \tag{72}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\lambda}^{h}(p, q):=\int M_{\lambda}^{h}(p, q) \mathrm{d} \mu \tag{73}
\end{equation*}
$$

Zhang [11] (pp. 188-189) considered the $\left(A, M^{\rho}\right) \alpha_{A}$-divergences:

$$
\begin{equation*}
D_{\alpha}^{\rho}(p: q):=\frac{4}{1-\alpha^{2}} \int\left(\frac{1-\alpha}{2} p+\frac{1+\alpha}{2} q-\rho^{-1}\left(\frac{1-\alpha}{2} \rho(p)+\frac{1+\alpha}{2} \rho(q)\right)\right) \mathrm{d} \mu . \tag{74}
\end{equation*}
$$

Zhang obtained for $D_{ \pm 1}^{\rho}(p: q)$ the following formula:

$$
\begin{equation*}
D_{1}^{\rho}(p: q)=\int\left(p-q-\left(\rho^{-1}\right)^{\prime}(\rho(q))(\rho(p)-\rho(q))\right) \mathrm{d} \mu=D_{-1}^{\rho}(q: p) \tag{75}
\end{equation*}
$$

which is in accordance with our generic formula of Equation (53) since $\left(\rho^{-1}(x)\right)^{\prime}=$ $\frac{1}{\rho^{\prime}\left(\rho^{-1}(x)\right)}$. Notice that $A_{\alpha} \geq P_{\alpha}^{r}$ for $r \leq 1$; the arithmetic weighted mean dominates the weighted power means $P^{r}$ when $r \leq 1$.

Furthermore, by imposing the homogeneity condition $I_{\alpha}^{A, M^{\rho}}(t p: t q)=t I_{\alpha}^{A, M^{\rho}}(p: q)$ for $t>0$, Zhang [11] obtained the class of $\left(\alpha_{A}, \beta_{A}\right)$-divergences for $\left(\alpha_{A}, \beta_{A}\right) \in[-1,1]^{2}$ :

$$
\begin{gather*}
D_{\alpha_{A}, \beta_{A}}(p: q):=\frac{4}{1-\alpha_{A}^{2}} \frac{2}{1+\beta_{A}} \int\left(\frac{1-\alpha_{A}}{2} p+\frac{1+\alpha_{A}}{2} q\right. \\
\left.-\left(\frac{1-\alpha_{A}}{2} p^{\frac{1-\beta_{A}}{2}}+\frac{1+\alpha_{A}}{2} q^{\frac{1-\beta_{A}}{2}}\right)^{\frac{2}{1-\beta_{A}}}\right) \mathrm{d} \mu . \tag{76}
\end{gather*}
$$

### 2.4. Generalized KL Divergences as Conformal Bregman Divergences on Monotone Embeddings

Let us rewrite the generalized KLDs $I_{1}^{f, g}$ as a conformal Bregman representational divergence [58-60] as follows:

Theorem 4. The generalized $K L D s I_{1}^{f, g}$ divergences are conformal Bregman representational divergences

$$
\begin{equation*}
I_{1}^{f, g}(p: q)=\int \frac{1}{f^{\prime}(p)} B_{F}(g(q): g(p)) \mathrm{d} \mu \tag{77}
\end{equation*}
$$

with $F=f \circ g^{-1}$ a strictly convex and differentiable Bregman convex generator defining the scalar Bregman divergence [61] $B_{F}$ :

$$
B_{F}(a: b)=F(a)-F(b)-(a-b) F^{\prime}(b) .
$$

Proof. For the Bregman strictly convex and differentiable generator $F=f \circ g^{-1}$, we expand the following conformal divergence

$$
\begin{align*}
\frac{1}{f^{\prime}(p)} B_{F}(g(q): g(p)) & =\frac{1}{f^{\prime}(p)}\left(F(g(q))-F(g(p))-(g(q)-g(p)) F^{\prime}(g(p))\right)  \tag{78}\\
& =\frac{1}{f^{\prime}(p)}\left((f(q)-f(p))-(g(q)-g(p)) \frac{f^{\prime}(p)}{g^{\prime}(p)}\right) \tag{79}
\end{align*}
$$

since $\left(g^{-1} \circ g\right)(x)=x$ and $F^{\prime}(g(x))=\frac{f^{\prime}(x)}{g^{\prime}(x)}$. It follows that

$$
\begin{align*}
\frac{1}{f^{\prime}(p)} B_{F}(g(q): g(p)) & =\frac{f(q)-f(p)}{f^{\prime}(p)}-\frac{g(q)-g(p)}{g^{\prime}(p)}  \tag{80}\\
& =E_{f}(p, q)-E_{g}(p, q)=I_{1}^{f, g}(p: q) \tag{81}
\end{align*}
$$

Hence, we easily check that $I_{1}^{f, g}(p: q)=\int \frac{1}{f^{\prime}(p)} B_{F}(g(q): g(p)) \mathrm{d} \mu \geq 0$ since $f^{\prime}(p)>0$ and $B_{F} \geq 0$.

In general, for a functional generator $f$ and a strictly monotonic representational function $r$ (also called monotone embedding [62] in information geometry), we can define the representational Bregman divergence [63] $B_{f \circ r^{-1}}(r(p): r(q))$ provided that $F=f \circ r^{-1}$ is a Bregman generator (i.e., strictly convex and differentiable).

The Itakura-Saito divergence [64] (IS) between two densities $p$ and $q$ is defined by:

$$
\begin{align*}
D_{\mathrm{IS}}(p: q) & =\int\left(\frac{p}{q}-\log \frac{p}{q}-1\right) \mathrm{d} \mu  \tag{82}\\
& =\int D_{\mathrm{IS}}(p(x): q(x)) \mathrm{d} \mu(x) \tag{83}
\end{align*}
$$

where $D_{\mathrm{IS}}(x: y)=\frac{x}{y}-\log \frac{x}{y}-1$ is the scalar IS divergence. This divergence was originally designed in sound processing for measuring the discrepancy between two speech power spectra. Observe that the IS divergence is invariant by rescaling: $D_{\mathrm{IS}}(t p: t q)=D_{\mathrm{IS}}(p: q)$ for any $t>0$. The IS divergence is a Bregman divergence [61] obtained for the Burg information generator (i.e., negative Burg entropy): $F_{\text {Burg }}(u)=-\log u$ with $F_{\text {Burg }}^{\prime}(u)=-\frac{1}{u}$. It follows that we have

$$
\begin{equation*}
I_{1}^{f}(p: q)=\int p B_{f}(q: p) \mathrm{d} \mu \tag{84}
\end{equation*}
$$

The Itakura-Saito divergence may further be extended to a family of $\alpha$-Itakura-Saito divergences (see [6], Equation (10). 45 of Theorem 10.1):

$$
D_{\mathrm{IS}, \alpha}(p: q)= \begin{cases}\int \frac{1}{\alpha^{2}}\left(\left(\frac{p}{q}\right)^{\alpha}-\alpha \log \frac{p}{q}-1\right) \mathrm{d} \mu & \alpha \neq 0  \tag{85}\\ \frac{1}{2} \int(\log q-\log p)^{2} \mathrm{~d} \mu & \alpha=0\end{cases}
$$

In [56], a generalization of the Bregman divergences was obtained using the comparative convexity induced by two abstract means $M$ and $N$ to define ( $M, N$ )-Bregman divergences as limit of scaled $(M, N)$-Jensen divergences. The skew $(M, N)$-Jensen divergences are defined for $\alpha \in(0,1)$ by:

$$
\begin{equation*}
\left.J_{F, \alpha}^{M, N}(p: q)=\frac{1}{\alpha(1-\alpha)}\left(N_{\alpha}(F(p), F(q))\right)-F\left(M_{\alpha}(p, q)\right)\right) \tag{86}
\end{equation*}
$$

where $M_{\alpha}$ and $N_{\alpha}$ are weighted means that should be regular [56] (i.e., homogeneous, symmetric, continuous, and increasing in each variable). Then, we can define the ( $M, N$ )Bregman divergence as

$$
\begin{align*}
B_{F}^{M, N}(p: q) & =\lim _{\alpha \rightarrow 1^{-}} J_{F, \alpha}^{M, N}(p: q)  \tag{87}\\
& \left.=\lim _{\alpha \rightarrow 1^{-}} \frac{1}{\alpha(1-\alpha)}\left(N_{\alpha}(F(p), F(q))\right)-F\left(M_{\alpha}(p, q)\right)\right) \tag{88}
\end{align*}
$$

The formula obtained in [56] for the quasi-arithmetic means $M^{f}$ and $M^{g}$ and a functional generator $F$ that is $\left(M^{f}, M^{g}\right)$-convex is:

$$
\begin{align*}
B_{F}^{f, g}(p: q) & =\frac{g(F(p))-g(F(q))}{g^{\prime}(F(q))}-\frac{f(p)-f(q)}{f^{\prime}(q)} F^{\prime}(q),  \tag{89}\\
& =\frac{1}{f^{\prime}(F(q))} B_{g \circ F \circ f^{-1}}(f(p): f(q)) \geq 0 . \tag{90}
\end{align*}
$$

This is a conformal divergence [58] that can be written using the $E_{f}$ terms as:

$$
\begin{equation*}
B_{F}^{f, g}(p: q)=E_{g}(F(q), F(p))-E_{f}(q, p) F^{\prime}(q) \tag{91}
\end{equation*}
$$

A function $F$ is $\left(M^{f}, M^{g}\right)$-convex iff $g \circ F \circ f^{-1}$ is (ordinary) convex [56].

The information geometry induced by a Bregman divergence (or equivalently by its convex generator) is a dually flat space [6]. The dualistic structure induced by a conformal Bregman representational divergence is related to conformal flattening [59,60]. The notion of conformal structures was first introduced in information geometry by Okamoto et al. [65].

Following the work of Ohara [59,60,66], the Kurose geometric divergence $\rho(p, r)$ [67] (a contrast function in affine differential geometry) induced by a pair ( $L, M$ ) of strictly monotone smooth functions between two distributions $p$ and $r$ of the $d$-dimensional probability simplex $\Delta_{d}$ is defined by (Equation (28) in [59]):

$$
\begin{equation*}
\rho(p: r)=\frac{1}{\Lambda(r)} \sum_{i=1}^{d+1} \frac{L\left(p_{i}\right)-L\left(r_{i}\right)}{L^{\prime}\left(r_{i}\right)}=\frac{1}{\Lambda(r)} \sum_{i=1}^{d+1} E_{L}\left(r_{i}, p_{i}\right) \tag{92}
\end{equation*}
$$

where $\Lambda(r)=\sum_{i=1}^{d+1} \frac{1}{L^{\prime}\left(p_{i}\right)} p_{i}$. Affine immersions [67] can be interpreted as special embeddings.
Let $\rho$ be a divergence (contrast function) and ( $\left.\rho_{g},{ }^{\rho} \nabla, \rho^{\rho} \nabla^{*}\right)$ be the induced statistical manifold structure with

$$
\begin{align*}
\rho_{g_{i j}}(p) & :=-\left.\left(\partial_{i}\right)_{p}\left(\partial_{j}\right)_{p} \rho(p, q)\right|_{q=p},  \tag{93}\\
\Gamma_{i j, k}(p) & :=-\left.\left(\partial_{i}\right)_{p}\left(\partial_{j}\right)_{p}\left(\partial_{k}\right)_{q} \rho(p, q)\right|_{q=p},  \tag{94}\\
\Gamma_{i j, k}^{*}(p) & :=-\left.\left(\partial_{i}\right)_{p}\left(\partial_{j}\right)_{q}\left(\partial_{k}\right)_{q} \rho(p, q)\right|_{q=p}, \tag{95}
\end{align*}
$$

where $\left(\partial_{i}\right)_{s}$ denotes the tangent vector at $s$ of a vector field $\partial_{i}$.
Consider a conformal divergence $\rho_{\kappa}(p: q)=\kappa(q) \rho(p: q)$ for a positive function $\kappa(q)>0$, called the conformal factor. Then, the induced statistical manifold [6,7] $\left(\rho_{\kappa} g,{ }^{\rho_{\kappa}} \nabla, \rho_{\kappa} \nabla^{*}\right)$ is 1-conformally equivalent to $\left({ }^{\rho} g^{\prime},{ }^{\rho} \nabla,{ }^{\rho} \nabla^{*}\right)$ and we have

$$
\begin{align*}
\rho_{\kappa} g & =\kappa \rho_{g}  \tag{96}\\
\rho_{g}\left(\rho_{\kappa} \nabla_{X} Y, Z\right) & =\rho_{g}\left({ }^{\rho} \nabla_{X} Y, Z\right)-d(\log \kappa)(Z)^{\rho} g(X, Y) . \tag{97}
\end{align*}
$$

The dual affine connections ${ }^{\rho_{k}} \nabla^{*}$ and ${ }^{\rho} \nabla^{*}$ are projectively equivalent [67] (and ${ }^{\rho} \nabla^{*}$ is said -1-conformally flat).

Conformal flattening [59,60] consists of choosing the conformal factor $\kappa$ such that $\left(\rho_{\kappa} g,{ }^{\rho_{\kappa}} \nabla, \rho_{\kappa} \nabla\right)$ becomes a dually flat space [6] equipped with a canonical Bregman divergence.

Therefore, it follows that the statistical manifolds induced by the 1-divergence $I_{1}^{f, g}$ is a representational 1-conformally flat statistical manifold. Figure 1 gives an overview of the interplay of divergences with information-geometric structures. The logarithmic divergence [68] $L_{G, \alpha}$ is defined for $\alpha>0$ and an $\alpha$-exponentially concave generator $G$ by:

$$
\begin{equation*}
L_{G, \alpha}\left(\theta_{1}: \theta_{2}\right)=\frac{1}{\alpha} \log \left(1+\alpha \nabla G\left(\theta_{2}\right)^{\top}\left(\theta_{1}-\theta_{2}\right)\right)+G\left(\theta_{2}\right)-G\left(\theta_{1}\right) \tag{98}
\end{equation*}
$$

When $\alpha \rightarrow 0$, we have $L_{G, \alpha}\left(\theta_{1}: \theta_{2}\right) \rightarrow B_{-G}\left(\theta_{1}: \theta_{2}\right)$, where $B_{F}$ is the Bregman divergence [61] induced by a strictly convex and smooth function $F$ :

$$
B_{F}\left(\theta_{1}: \theta_{2}\right)=F\left(\theta_{1}\right)-F\left(\theta_{2}\right)-\left(\theta_{1}-\theta_{2}\right)^{\top} \nabla F\left(\theta_{2}\right) .
$$



Figure 1. Interplay of divergences and their information-geometric structures: Bregman divergences are canonical divergences of dually flat structures, and the $\alpha$-logarithmic divergences are canonical divergences of 1-conformally flat statistical manifolds. When $\alpha \rightarrow 0$, the logarithmic divergence $L_{F, \alpha}$ tends to the Bregman divergence $B_{F}$.

## 3. The Subfamily of Homogeneous ( $r, s$ )-Power $\alpha$-Divergences for $r>s$

In particular, we can define the $(r, s)$-power $\alpha$-divergences from two power means $P_{r}=M^{\mathrm{pow}_{r}}$ and $P_{s}=M^{\mathrm{pow}_{s}}$ with $r>s$ (and $P_{r} \geq P_{s}$ ) with the family of generators $\operatorname{pow}_{l}(u)=u^{l}$. Indeed, we check that $f_{r s}(u):=\operatorname{pow}_{r} \circ \operatorname{pow}_{s}^{-1}(u)=u^{\frac{r}{s}}$ is strictly convex on $(0, \infty)$ since $f_{r s}^{\prime \prime}(u)=\frac{r}{s}\left(\frac{r}{s}-1\right) u^{\frac{r}{s}-2}>0$ for $r>s$. Thus, $P_{r}$ and $P_{s}$ are two QAMs which are both comparable and distinct. Table 1 lists the expressions of $E_{r}(p, q):=E_{\mathrm{pow}_{r}}(p, q)$ obtained from the power mean generators $\operatorname{pow}_{r}(u)=u^{r}$.

Table 1. Expressions of the terms $E_{r}$ for the family of power means $P_{r}, r \in \mathbb{R}$.

| Power Mean | $E_{r}(p, q)$ |
| :--- | :--- |
| $P_{r}(r \in \mathbb{R} \backslash\{0\})$ | $\frac{q^{r}-p^{r}}{r r^{r-1}}$ |
| $Q(r=2)$ | $\frac{q^{2}-p^{2}}{2 p}$ |
| $A(r=1)$ | $q-p$ |
| $G(r=0)$ | $p \log \frac{q}{p}$ |
| $H(r=-1)$ | $-p^{2}\left(\frac{1}{q}-\frac{1}{p}\right)=p-\frac{p^{2}}{q}$ |

We conclude with the definition of the $(r, s)$-power $\alpha$-divergences:
Corollary 2 (power $\alpha$-divergences). Given $r>s$, the $\alpha$-power divergences are defined for $r>s$ and $r, s \neq 0$ by

$$
I_{\alpha}^{r, s}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(\left(\alpha p^{r}+(1-\alpha) q^{r}\right)^{\frac{1}{r}}-\left(\alpha p^{s}+(1-\alpha) q^{s}\right)^{\frac{1}{s}}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\} .  \tag{99}\\ I_{1}^{r, s}(p: q)=\int\left(\frac{q^{r}-p^{r}}{r p^{r-1}}-\frac{q^{s}-p^{s}}{s p^{s-1}}\right) \mathrm{d} \mu & \alpha=1 \\ I_{0}^{r, s}(p: q)=I_{1}^{r, s}(q: p) & \alpha=0 .\end{cases}
$$

When $r=0$, we get the following power $\alpha$-divergences for $s<0$ :

$$
I_{\alpha}^{0, s}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(p^{\alpha} q^{1-\alpha}-\left(\alpha p^{s}+(1-\alpha) q^{s}\right)^{\frac{1}{s}}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{100}\\ I_{1}^{0, s}(p: q)=\int\left(p \log \frac{q}{p}-\frac{q^{s}-p^{s}}{s p^{s-1}}\right) \mathrm{d} \mu & \alpha=1 \\ I_{0}^{0, s}(p: q)=I_{1}^{r, s}(q: p) & \alpha=0\end{cases}
$$

When $s=0$, we get the following power $\alpha$-divergences for $r>0$ :

$$
I_{\alpha}^{r, 0}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(\left(\alpha p^{r}+(1-\alpha) q^{r}\right)^{\frac{1}{r}}-p^{\alpha} q^{1-\alpha}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{101}\\ I_{1}^{r, 0}(p: q)=\int\left(\frac{q^{r}-p^{r}}{r p^{r-1}}-p \log \frac{q}{p}\right) \mathrm{d} \mu & \alpha=1 \\ I_{0}^{r, 0}(p: q)=I_{1}^{r,}(q: p) & \alpha=0\end{cases}
$$

In particular, we get the following family of $(A, H) \alpha$-divergences

$$
I_{\alpha}^{A, H}(p: q)=I_{\alpha}^{1,-1}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(\alpha p+(1-\alpha) q-\frac{p q}{\alpha q+(1-\alpha) p}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{102}\\ I_{1}^{1,-1}(p: q)=\int\left(q-2 p+\frac{p^{2}}{q}\right) \mathrm{d} \mu & \alpha=1 \\ I_{0}^{1,-1}(p: q)=I_{1}^{1,-1}(q: p) & \alpha=0\end{cases}
$$

and the family of $(G, H) \alpha$-divergences:

$$
I_{\alpha}^{G, H}(p: q)=I_{\alpha}^{0,-1}(p: q)= \begin{cases}\frac{1}{\alpha(1-\alpha)} \int\left(p^{\alpha} q^{1-\alpha}-\frac{p q}{\alpha q+(1-\alpha) p}\right) \mathrm{d} \mu, & \alpha \in \mathbb{R} \backslash\{0,1\}  \tag{103}\\ I_{1}^{0,-1}(p: q)=\int\left(p \log \frac{q}{p}-p+\frac{p^{2}}{q}\right) \mathrm{d} \mu & \alpha=1 \\ I_{0}^{0,-1}(p: q)=I_{1}^{0,-1}(q: p) & \alpha=0\end{cases}
$$

The ( $r, s$ )-power $\alpha$-divergences for $r, s \neq 0$ yield homogeneous divergences: $I_{\alpha}^{r, s}(t p$ : $t q)=t I_{\alpha}^{r, s}(p: q)$ for any $t>0$ because the power means are homogeneous: $P_{\alpha}^{r}(t x, t y)=$ $t P_{\alpha}^{r}(x, y)=t x P_{\alpha}^{r}\left(1, \frac{y}{x}\right)$. Thus, the $I_{\alpha}^{r, s}$-divergences are Csiszár $f$-divergences [17]

$$
\begin{equation*}
I_{\alpha}^{r, s}(p: q)=\int p(x) f_{r, s}\left(\frac{q(x)}{p(x)}\right) \mathrm{d} \mu \tag{104}
\end{equation*}
$$

for the generator

$$
\begin{equation*}
f_{r, s}(u)=\frac{1}{\alpha(1-\alpha)}\left(P_{\alpha}^{r}(1, u)-P^{s}(1, u)\right) . \tag{105}
\end{equation*}
$$

Thus, the family of $(r, s)$-power $\alpha$-divergences are homogeneous divergences:

$$
\begin{equation*}
I_{\alpha}^{r, s}(t p: t q)=t I_{\alpha}^{r, s}(p: q), \quad \forall t>0 \tag{106}
\end{equation*}
$$

## 4. Applications to Center-Based Clustering

Clustering is a class of unsupervised learning algorithms which partitions a given $d$-dimensional point set $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ into clusters such that data points falling into a same cluster tend to be more similar to data points belonging to different clusters. The celebrated $k$-means clustering [69] is a center-based method for clustering $\mathcal{P}$ into $k$ clusters $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ (with $\mathcal{P}=\cup_{i=1}^{k} \mathcal{C}_{i}$ ), by minimizing the following $k$-means objective function

$$
\begin{equation*}
L(\mathcal{P}, \mathcal{C})=\frac{1}{n} \sum_{i=1}^{n} \min _{j \in\{1, \ldots, k\}}\left\|p_{i}-c_{j}\right\|^{2} \tag{107}
\end{equation*}
$$

where the $c_{j}$ 's denote the cluster representatives. Let $\mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}$ denote the set of cluster centers. The cluster $\mathcal{C}_{j}$ is defined as the points of $\mathcal{P}$ closer to cluster representative $c_{j}$ than any other $c_{i}$ for $i \neq j$ :

$$
\mathcal{C}_{j}=\left\{p \in \mathcal{P}:\left\|p-c_{j}\right\|^{2} \leq\left\|p-c_{l}\right\|^{2}, \forall l \in\{1, \ldots, k\}\right\} .
$$

When $k=1$, it can be shown that the centroid of the point set $\mathcal{P}$ is the unique best cluster representative:

$$
\arg \min _{c_{1}} L\left(\mathcal{P},\left\{c_{1}\right\}\right) \Rightarrow c_{1}=\frac{1}{n} \sum_{i=1}^{n} p_{i} .
$$

When $d>1$ and $k>1$, finding a best partition $\mathcal{P}=\cup_{j=1}^{k} \mathcal{C}_{j}$ which minimizes the objective function of Equation (107) is NP-hard [70]. When $d=1, k$-means clustering can be solved efficiently using dynamic programming [71] in subcubic $O\left(n^{3}\right)$ time.

The $k$-means objective function can be generalized to any arbitrary (potentially asymmetric) divergence $D(\cdot: \cdot)$ by considering the following objective function:

$$
\begin{equation*}
L_{D}(\mathcal{P}, \mathcal{C}):=\frac{1}{n} \sum_{i=1}^{n} \min _{j \in\{1, \ldots, k\}} D\left(p_{i}: c_{j}\right) \tag{108}
\end{equation*}
$$

Thus, when $D(p: q)=\|p-q\|^{2}$, one recovers the ordinary $k$-means clustering [69]. When $D(p: q)=B_{F}(p: q)$ is chosen as a Bregman divergence, one gets the right-sided Bregman $k$-means clustering [72] as the minimization of the cluster centers are defined on the right-sided arguments of $D$ in Equation (108). When $F(x)=\|x\|_{2}^{2}$, Bregman $k$-means clustering (i.e., $D(p: q)=B_{F}(p: q)$ in Equation (108)) amounts to the ordinary $k$-means clustering. The right-sided Bregman centroid for $k=1$ coincides with the center of mass and is independent of the Bregman generator $F$ :

$$
\arg \min _{c_{1}} L_{B_{F}}\left(\mathcal{P},\left\{c_{1}\right\}\right) \Rightarrow c_{1}=\frac{1}{n} \sum_{i=1}^{n} p_{i} .
$$

The left-sided Bregman $k$-means clustering is obtained by considering the right-sided Bregman centroid for the reverse Bregman divergence $\left(B_{F}\right)^{*}(p: q)=B_{F}(q: p)$, and the left-sided Bregman centroid [73] can be expressed as a multivariate generalization of the quasi-arithmetic mean:

$$
c_{1}=(\nabla F)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla F\left(p_{i}\right)\right) .
$$

In order to study the robustness of $k$-means clustering with respect to our novel family of divergences $I_{\alpha}^{f, g}$, we first study the robustness of the left-sided Bregman centroids to outliers.

### 4.1. Robustness of the Left-Sided Bregman Centroids

Consider two $d$-dimensional points $p=\left(p_{1}, \ldots, p_{d}\right)$ and $p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{d}^{\prime}\right)$ of a domain $\Theta \subset \mathbb{R}^{d}$. The centroid of $p$ and $p^{\prime}$ with respect to any arbitrary divergence $D(\cdot: \cdot)$ is by definition the minimizer of

$$
L_{D}(c)=\frac{1}{2} D(p: c)+\frac{1}{2} D\left(p^{\prime}: c\right),
$$

provided that the minimizer $\min _{c \in \Theta} L_{D}(c)$ is unique. Assume a separable Bregman divergence induced by the generator $F(p)=\sum_{i=1}^{d} F\left(p_{i}\right)$. The left-sided Bregman centroid [73] of $p$ and $p^{\prime}$ is given by the following separable quasi-arithmetic centroid:

$$
c=\left(c_{1}, \ldots, c_{d}\right)
$$

with

$$
c_{i}=M^{f}\left(p_{i}, p_{i}^{\prime}\right)=f^{-1}\left(\frac{f\left(p_{i}\right)+f\left(p_{i}^{\prime}\right)}{2}\right),
$$

where $f(x)=F^{\prime}(x)$ denotes the derivative of the Bregman generator $F(x)$.
Now, fix $p$ (say, $p=(1, \ldots, 1) \in \Theta$ ), and let the coordinates $p_{i}^{\prime}$ of $p^{\prime}$ all tend to infinity: That is, point $p^{\prime}$ plays the role of an outlier data point. We use the general framework of influence functions [74] in statistics to study the robustness of divergence-based centroids. Consider the $r$-power mean, a quasi-arithmetic mean induced by $\operatorname{pow}_{r}(x)=x^{r}$ for $r \neq 0$ and by extension $\operatorname{pow}_{0}(x)=\log x$ when $r=0$ (geometric mean).

When $r<0$, we check that

$$
\begin{align*}
\lim _{p_{i}^{\prime} \rightarrow+\infty} M^{\mathrm{pow}_{r}}\left(p_{i}, p_{i}^{\prime}\right) & =\lim _{p_{i}^{\prime} \rightarrow+\infty}\left(\frac{1+p_{i}^{r}}{2}\right)^{\frac{1}{r}}  \tag{109}\\
& =\left(\frac{1}{2}\right)^{\frac{1}{r}}<\infty \tag{110}
\end{align*}
$$

That is, the $r$-power mean is robust to an outlier data point when $r<0$ (see Figure 2). Note that if instead of considering the centroid, we consider the barycenter with $w$ denoting the weight of point $p$ and $1-w$ denoting the weight of the outlier $p^{\prime}$ for $w \in(0,1)$, then the power $r$-mean falls in a square box of side $w^{\frac{1}{r}}$ when $r<0$.

$$
p^{\prime}=(t, t)
$$


$p=(1,1)$
Figure 2. Illustration of the robustness property of the $r$-power mean $M^{\text {Pow }_{r}}\left(p, p^{\prime}\right)$ when $r<0$ for two points: a prescribed point $p=(1,1)$ and an outlier point $p^{\prime}=(t, t)$. When $t \rightarrow+\infty$, the $r$-power mean of $p$ and $p^{\prime}$ for $r<0$ (e.g., coordinatewise harmonic mean when $r=-1$ ) is contained inside the box anchored at $p$ of size length $\left(\frac{1}{2}\right)^{\frac{1}{r}}$. The $r$-power mean can be interpreted as a left-sided Bregman centroid for $F^{\prime}(x)=-x^{r}$, i.e., $F(x)=-\frac{1}{r} x^{r+1}$ when $r<-1$ and $F(x)=-\log x$ when $r=-1$.

On the contrary, when $r>0$ or $r=0$, we have $\lim _{p_{i}^{\prime} \rightarrow+\infty} M^{\operatorname{pow}_{r}}\left(p_{i}, p_{i}^{\prime}\right)=\infty$, and the $r$-power mean diverges to infinity.

Thus, when $r<0$, the quasi-arithmetic centroid of $p=(1, \ldots, 1)$ and $p^{\prime}$ is contained in a bounding box of length $\left(\frac{1}{2}\right)^{\frac{1}{r}}$ with left corner $(1, \ldots, 1)$, and the left-sided Bregman power centroid minimizing

$$
\frac{1}{2} B_{F}(c: p)+\frac{1}{2} B_{F}\left(c: p^{\prime}\right)
$$

is robust to outlier $p^{\prime}$.
To contrast with this result, notice that the right-sided Bregman centroid [72] is always the center of mass (arithmetic mean), and therefore not robust to outliers as a single outlier data point may potentially drag the centroid to infinity.

Example 2. Since $M^{f}=M^{-f}$ for any strictly smooth increasing function $f$, we deduce that the quasi-arithmetic left-sided Bregman centroid induced by $F(x)=-\log x$ with $f(x)=F^{\prime}(x)=$ $-x^{-1}=-\frac{1}{x}$ for $x>0$ is the harmonic mean which is robust to outliers. The corresponding Bregman divergence is the Itakura-Saito divergence [72].

Notice that it is enough to consider without loss of generality two points $p$ and $p^{\prime}$ : Indeed, the case of the quasi-arithmetic mean of $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ and $p^{\prime}$ can be rewritten as an equivalent weighted quasi-arithmetic mean of two points $\bar{p}=M^{f}\left(p_{1}, \ldots, p_{n}\right)$ with weight $w=\frac{n}{n+1}$ and $p^{\prime}$ of weight $\frac{1}{n+1}$ using the replacement property of quasi-arithmetic means:

$$
M^{f}\left(p_{1}, \ldots, p_{k}, p_{k+1}, \ldots, p_{n}\right)=M^{f}\left(\bar{p}, \ldots, \bar{p}, p_{k+1}, p_{n}\right)
$$

where $\bar{p}=M^{f}\left(p_{1}, \ldots, p_{k}\right)$.

### 4.2. Robustness of Generalized Kullback-Leibler Centroids

The fact that the generalized KLDs are conformal representational Bregman divergences can be used to design efficient algorithms in computational geometry [60]. For example, let us consider the centroid (or barycenter) of a finite set of weighted probability measures $P_{1}, \ldots, P_{n} \ll \mu$ (with RN derivatives $p_{1}, \ldots, p_{n}$ ) defined as the minimizer of

$$
\min \sum_{i=1}^{n} w_{i} I_{1}^{f, g}\left(p_{i}: c\right)
$$

where the $w_{i}$ 's are positive weights summing up to one ( $\sum_{i=1}^{n} w_{i}=1$ ). The divergences $I_{1}^{f, g}\left(p_{i}: c\right)$ are separable. Thus, consider without loss of generality, the scalar-generalized KLDs so that we have

$$
I_{1}^{f, g}(p: q)=\frac{1}{f^{\prime}(p)} B_{F}(g(q): g(p))
$$

where $p$ and $q$ are scalars.
Since the Bregman centroid is unique and always coincide with the center of mass [72]

$$
c^{*}=\arg \min w_{i} \sum_{i=1}^{n} B_{F}\left(p_{i}: c\right)=\sum_{i=1}^{n} w_{i} p_{i}
$$

for positive weights $w_{i}$ 's summing up to one, we deduce that the right-sided generalized KLD centroid

$$
\arg \min _{c} \frac{1}{n} \sum_{i=1}^{n} I_{1}^{f, g}\left(p_{i}: c\right)=\arg \min _{c} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{f^{\prime}\left(p_{i}\right)} B_{F}\left(g(c): g\left(p_{i}\right)\right)
$$

amounts to a left-sided Bregman centroid with un-normalized positive weights $W_{i}=\frac{1}{f^{\prime}\left(p_{i}\right)}$ for the scalar Bregman generator $F(x)=f\left(g^{-1}(x)\right)$ with $F^{\prime}(x)=\frac{f^{\prime}\left(g^{-1}(x)\right)}{g^{\prime}\left(g^{-1}(x)\right)}$. Therefore, the right-sided generalized $\operatorname{KLD}$ centroid $c^{*}$ is calculated for normalized weights $w_{i}=\frac{W_{i}}{\sum_{j=1}^{n} W_{j}}$ as:

$$
\begin{align*}
c^{*} & =\left(F^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} w_{i} F^{\prime}\left(g\left(p_{i}\right)\right)\right)  \tag{111}\\
& =\left(F^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} \frac{1}{f^{\prime}\left(p_{i}\right) \sum_{j=1}^{n} \frac{1}{f^{\prime}\left(p_{j}\right)}} \frac{f^{\prime}\left(p_{i}\right)}{g^{\prime}\left(p_{i}\right)}\right)  \tag{112}\\
& =\left(F^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} \frac{1}{g^{\prime}\left(p_{i}\right) \sum_{j=1}^{n} \frac{1}{f^{\prime}\left(p_{j}\right)}}\right) . \tag{113}
\end{align*}
$$

Thus, we obtain a closed-form formula when $\left(F^{\prime}\right)^{-1}$ is computationally tractable. For example, consider the $(r, s)$-power KLD (with $r>s$ ). We have $f^{\prime}(x)=r x^{r-1}, g^{\prime}(x)=s x^{s-1}$, $F(x)=x^{\frac{r}{s}}, F^{\prime}(x)=\frac{r}{s} x^{\frac{r-s}{s}}$ and therefore, we get $F^{\prime-1}(x)=\left(\frac{s}{r} x\right)^{\frac{s}{r-s}}$. Thus, we get a closed-form formula for the right-sided $(r, s)$-power Kullback-Leibler centroid using Equation (113).

Overall, we can design a $k$-means-type algorithm with respect to our generalized KLDs following [72]. Moreover, we can initialize probabilistically $k$-means with a fast $k$-means++ seeding [34] described in Algorithm 1. The performance of the $k$-means++ seeding (i.e., the ratio $\left.\frac{L_{D}(\mathcal{P}, \mathcal{C})}{\min _{\mathcal{C}} L_{D}(\mathcal{P}, \mathcal{C})}\right)$ is $O(\log k)$ when $D(p: q)=\|p-q\|^{2}$, and the analysis has been extended to arbitrary divergences in [75]. The merit of using the $k$-means++ seeding is that we do not need to iteratively update the cluster representatives using Lloyd's heuristic [69] and we can thus bypass the calculations of centroids and merely choose the cluster representatives from the source data points $\mathcal{P}$ as described in Algorithm 1.

```
Algorithm 1 Generic seeding of \(k\)-means with divergence-based \(k\)-means++.
    input : A finite set \(\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}\) of \(n\) points, the number of cluster
            representatives \(k \geq 1\), and an arbitrary divergence \(D(\cdot: \cdot)\)
    Output: Set of initial cluster centers \(\mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}\)
    Choose \(c_{1} \leftarrow p_{i}\) with uniform probability and \(\mathcal{C}=\left\{c_{1}\right\}\);
    for \(i \leftarrow 2\) to \(k\) do
        Pick at random \(c_{i}=p_{j} \in \mathcal{P}\) with probability
                    \(\pi\left(p_{j}\right)=\frac{D\left(p_{j}: \mathcal{C}\right)}{\sum_{p \in \mathcal{P}} D(p: \mathcal{C})}\)
        where \(D(p: \mathcal{C}):=\min _{c \in \mathcal{C}} D(p: c)\);
        \(\mathcal{C} \leftarrow \mathcal{C} \cup\left\{c_{i}\right\} ;\)
    end
    return \(\mathcal{C}\);
```

The advantage of using a conformal Bregman divergence such as a total Bregman divergence [33] or $I_{1}^{f, g}$ is to potentially ensure robustness to outliers (e.g., see Theorem III. 2 of [33]). Robustness property of these novel $I_{1}^{f, g}$ divergences can also be studied for statistical inference tasks based on minimum divergence methods [4,76].

## 5. Conclusions and Discussion

For two comparable strict means [35] $M(p, q) \geq N(p, q)$ (with equality holding if and only if $p=q$ ), one can define their $(M, N)$-divergence as

$$
\begin{equation*}
I^{M, N}(p: q):=4 \int(M(p, q)-N(p, q)) \mathrm{d} \mu \tag{114}
\end{equation*}
$$

When the property of strict comparable means extend to their induced weighted means $M_{\alpha}(p, q)$ and $N_{\alpha}(p, q)$ (i.e., $M_{\alpha}(p, q) \geq N_{\alpha}(p, q)$ ), one can further define the family of $(M, N) \alpha$-divergences for $\alpha \in(0,1)$ :

$$
\begin{equation*}
I_{\alpha}^{M, N}(p: q):=\frac{1}{\alpha(1-\alpha)} \int\left(M_{1-\alpha}(p, q)-N_{1-\alpha}(p, q)\right) \mathrm{d} \mu \tag{115}
\end{equation*}
$$

so that $I^{M, N}(p: q)=I_{\frac{1}{2}}^{M, N}(p: q)$. When the weighted means are symmetric, the reference duality holds (i.e., $\left.I_{\alpha}^{M, N}(q: p)=I_{1-\alpha}^{M, N}(p: q)\right)$, and we can define the $(M, N)$-equivalent of the Kullback-Leibler divergence, i.e., the $(M, N)$ 1-divergence, as the limit case (when it
exists): $I_{1}^{M, N}(p: q)=\lim _{\alpha \rightarrow 1} I_{\alpha}^{M, N}(p: q)$. Similarly, the $(M, N)$-equivalent of the reverse Kullback-Leibler divergence is obtained as $I_{0}^{M, N}(p: q)=\lim _{\alpha \rightarrow 0} I_{\alpha}^{M, N}(p: q)$.

We proved that the quasi-arithmetic weighted means [30] $M_{\alpha}^{f}$ and $M_{\alpha}^{g}$ were strictly comparable whenever $f \circ g^{-1}$ was strictly convex. In the limit cases of $\alpha \rightarrow 0$ and $\alpha \rightarrow 1$, we reported a closed-form formula for the equivalent of the forward and the reverse Kullback-Leibler divergences. We reported closed-form formulas for the quasi-arithmetic $\alpha$-divergences $I_{\alpha}^{f, g}(p: q):=I_{\alpha}^{M^{f}, M^{g}}(p: q)$ for $\alpha \in[0,1]$ (Theorem 3) and for the subfamily of homogeneous $(r, s)$-power $\alpha$-divergences $I_{\alpha}^{r, s}(p: q):=I_{\alpha}^{M^{\text {pow }_{r}, M^{p^{p o w_{s}}}}(p: q) \text { induced }}$ by power means (Corollary 2). The ordinary $(A, G) \alpha$-divergences [12], the $(A, H) \alpha$ divergences, and the $(G, H) \alpha$-divergences are examples of $(r, s)$-power $\alpha$-divergences obtained for $(r, s)=(1,0),(r, s)=(1,-1)$ and $(r, s)=(0,-1)$, respectively.

Generalized $\alpha$-divergences may prove useful in reporting a closed-form formula between densities of a parametric family $\left\{p_{\theta}\right\}$. For example, consider the ordinary $\alpha$ divergences between two scale Cauchy densities $p_{1}(x)=\frac{1}{\pi} \frac{s_{1}}{x^{2}+s_{1}^{2}}$ and $p_{2}(x)=\frac{1}{\pi} \frac{s_{2}}{x^{2}+s_{2}^{2}}$; there is no obvious closed-form for the ordinary $\alpha$-divergences, but we can report a closedform for the $(A, H) \alpha$-divergences following the calculus reported in [41]:

$$
\begin{align*}
I_{\alpha}^{A, H}\left(p_{1}: p_{2}\right) & =\frac{1}{\alpha(1-\alpha)}\left(1-\int H_{1-\alpha}\left(p_{1}(x), p_{2}(x)\right) \mathrm{d} \mu(x)\right)  \tag{116}\\
& =\frac{1}{\alpha(1-\alpha)}\left(1-\frac{s_{1} s_{2}}{\left(\alpha s_{1}+(1-\alpha) s_{2}\right) s_{1-\alpha}}\right) \tag{117}
\end{align*}
$$

with $s_{\alpha}=\sqrt{\frac{\alpha s_{1} s_{2}^{2}+(1-\alpha) s_{2} s_{1}^{2}}{\alpha s_{1}+(1-\alpha) s_{2}}}$. For probability distributions $p_{\theta_{1}}$ and $p_{\theta_{2}}$ belonging to the same exponential family [77] with cumulant function $F$, the ordinary $\alpha$-divergences admit the following closed-form solution:

$$
\begin{align*}
& I_{\alpha}\left(p_{\theta_{1}}: p_{\theta_{2}}\right)= \\
& \begin{cases}\frac{1}{\alpha(1-\alpha)}\left(1-\exp \left(F\left(\alpha \theta_{1}+(1-\alpha) \theta_{2}\right)-\left(\alpha F\left(\theta_{1}\right)+(1-\alpha) F\left(\theta_{2}\right)\right)\right),\right. & \alpha \in(0,1) \\
I_{1}\left(p_{\theta_{1}}: p_{\theta_{2}}\right)=\operatorname{KL}\left(p_{\theta_{1}}: p_{\theta_{2}}\right)=B_{F}\left(\theta_{2}: \theta_{1}\right), & \alpha=1 \\
I_{0}\left(p_{\theta_{1}}: p_{\theta_{2}}\right)=\operatorname{KL}\left(p_{\theta_{2}}: p_{\theta_{1}}\right)=B_{F}\left(\theta_{1}: \theta_{2}\right) & \alpha=0\end{cases} \tag{118}
\end{align*}
$$

where $B_{F}$ is the Bregman divergence: $B_{F}\left(\theta_{2}: \theta_{1}\right)=F\left(\theta_{2}\right)-F\left(\theta_{1}\right)-\left(\theta_{2}-\theta_{1}\right)^{\top} \nabla F\left(\theta_{1}\right)$.
Instead of considering ordinary $\alpha$-divergences in applications, one may consider the $(r, s)$-power $\alpha$-divergences, and tune the three scalar parameters $(r, s, \alpha)$ according to the various tasks (say, by cross-validation in supervised machine learning tasks, see [13]). For the limit cases of $\alpha \rightarrow 0$ or of $\alpha \rightarrow 1$, we further proved that the limit KL type divergences amounted to conformal Bregman divergences on strictly monotone embeddings and explained the connection of conformal divergences with conformal flattening [60], which allows one to build fast algorithms for centroid-based $k$-means clustering [72], Voronoi diagrams, and proximity data-structures [60,63]. Some ideas left for future directions is to study the properties of these new $(M, N) \alpha$-divergences for statistical inference [2,4,76].

Funding: This research received no external funding
Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Keener, R.W. Theoretical Statistics: Topics for a Core Course; Springer: Berlin/Heidelberg, Germany, 2011.
2. Basu, A.; Shioya, H.; Park, C. Statistical Inference: The Minimum Distance Approach ; CRC Press: Boca Raton, FL, USA, 2011.
3. Basseville, M. Divergence measures for statistical data processing - An annotated bibliography. Signal Process. 2013, 93, 621-633. [CrossRef]
4. Pardo, L. Statistical Inference Based on Divergence Measures ; CRC Press: Boca Raton, FL, USA, 2018.
5. Oller, J.M. Some geometrical aspects of data analysis and statistics. In Statistical Data Analysis and Inference; Elsevier: Amsterdam, The Netherlands, 1989; pp. 41-58.
6. Amari, S. Information Geometry and Its Applications; Applied Mathematical Sciences; Springer: Tokyo, Japan, 2016.
7. Eguchi, S. Geometry of minimum contrast. Hiroshima Math. J. 1992, 22, 631-647. [CrossRef]
8. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley \& Sons: Hoboken, NJ, USA, 2012.
9. Cichocki, A.; Amari, S.i. Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities. Entropy 2010, 12, 1532-1568. [CrossRef]
10. Amari, S.i. $\alpha$-Divergence is Unique, belonging to Both $f$-divergence and Bregman Divergence Classes. IEEE Trans. Inf. Theory 2009, 55, 4925-4931. [CrossRef]
11. Zhang, J. Divergence function, duality, and convex analysis. Neural Comput. 2004, 16, 159-195. [CrossRef]
12. Hero, A.O.; Ma, B.; Michel, O.; Gorman, J. Alpha-Divergence for Classification, Indexing and Retrieval; Technical Report CSPL-328; Communication and Signal Processing Laboratory, University of Michigan: Ann Arbor, MI, USA, 2001.
13. Dikmen, O.; Yang, Z.; Oja, E. Learning the information divergence. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1442-1454. [CrossRef]
14. Liu, W.; Yuan, K.; Ye, D. On $\alpha$-divergence based nonnegative matrix factorization for clustering cancer gene expression data. Artif. Intell. Med. 2008, 44, 1-5. [CrossRef]
15. Hellinger, E. Neue Begründung der Theorie Quadratischer Formen von Unendlichvielen Veränderlichen. J. Für Die Reine Und Angew. Math. 1909, 1909, 210-271. [CrossRef]
16. Ali, S.M.; Silvey, S.D. A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. Ser. B 1966, 28, 131-142. [CrossRef]
17. Csiszár, I. Information-type measures of difference of probability distributions and indirect observation. Stud. Sci. Math. Hung. 1967, 2, 229-318.
18. Qiao, Y.; Minematsu, N. A study on invariance of $f$-divergence and its application to speech recognition. IEEE Trans. Signal Process. 2010, 58, 3884-3890. [CrossRef]
19. Li, W. Transport information Bregman divergences. Inf. Geom. 2021, 4, 435-470. [CrossRef]
20. Li, W. Transport information Hessian distances. In Proceedings of the International Conference on Geometric Science of Information (GSI), Paris, France, 21-23 July 2021 ; Springer: Berlin/Heidelberg, Germany, 2021; pp. 808-817.
21. Li, W. Transport information geometry: Riemannian calculus on probability simplex. Inf. Geom. 2022, 5, 161-207. [CrossRef]
22. Amari, S.i. Integration of stochastic models by minimizing $\alpha$-divergence. Neural Comput. 2007, 19, 2780-2796. [CrossRef] [PubMed]
23. Cichocki, A.; Lee, H.; Kim, Y.D.; Choi, S. Non-negative matrix factorization with $\alpha$-divergence. Pattern Recognit. Lett. 2008, 29, 1433-1440. [CrossRef]
24. Wada, J.; Kamahara, Y. Studying malapportionment using $\alpha$-divergence. Math. Soc. Sci. 2018, 93, 77-89. [CrossRef]
25. Maruyama, Y.; Matsuda, T.; Ohnishi, T. Harmonic Bayesian prediction under $\alpha$-divergence. IEEE Trans. Inf. Theory 2019, 65, 5352-5366. [CrossRef]
26. Iqbal, A.; Seghouane, A.K. An $\alpha$-Divergence-Based Approach for Robust Dictionary Learning. IEEE Trans. Image Process. 2019, 28, 5729-5739. [CrossRef]
27. Ahrari, V.; Habibirad, A.; Baratpour, S. Exponentiality test based on alpha-divergence and gamma-divergence. Commun. Stat.-Simul. Comput. 2019, 48, 1138-1152. [CrossRef]
28. Sarmiento, A.; Fondón, I.; Durán-Díaz, I.; Cruces, S. Centroid-based clustering with $\alpha \beta$-divergences. Entropy 2019, $21,196$. [CrossRef]
29. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach, 1st ed.; Springer Science \& Business Media: Berlin/Heidelberg, Germany, 2006.
30. Kolmogorov, A.N. Sur la notion de moyenne. Acad. Naz. Lincei Mem. Cl. Sci. His. Mat. Natur. Sez. 1930, 12, 388-391.
31. Gibbs, A.L.; Su, F.E. On choosing and bounding probability metrics. Int. Stat. Rev. 2002, 70, 419-435. [CrossRef]
32. Rachev, S.T.; Klebanov, L.B.; Stoyanov, S.V.; Fabozzi, F. The Methods of Distances in the Theory of Probability and Statistics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 10.
33. Vemuri, B.C.; Liu, M.; Amari, S.I.; Nielsen, F. Total Bregman divergence and its applications to DTI analysis. IEEE Trans. Med Imaging 2010, 30, 475-483. [CrossRef]
34. Arthur, D.; Vassilvitskii, S. $k$-means++: The advantages of careful seeding. In Proceedings of the SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7-9 January 2007; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 1027-1035.
35. Bullen, P.S.; Mitrinovic, D.S.; Vasic, M. Means and Their Inequalities; Springer Science \& Business Media: Berlin/Heidelberg, Germany, 2013; Volume 31.
36. Toader, G.; Costin, I. Means in Mathematical Analysis: Bivariate Means; Academic Press: Cambridge, MA, USA, 2017.
37. Cauchy, A.L.B. Cours d'analyse de l'École Royale Polytechnique; Debure frères: Paris, France 1821.
38. Chisini, O. Sul concetto di media. Period. Di Mat. 1929, 4, 106-116.
39. Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 1943, 35, 99-109.
40. Nielsen, F.; Boltz, S. The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 2011, 57, 5455-5466. [CrossRef]
41. Nielsen, F. Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means. Pattern Recognit. Lett. 2014, 42, 25-34. [CrossRef]
42. Nagumo, M. Über eine klasse der mittelwerte. Jpn. J. Math. Trans. Abstr. 1930, 7, 71-79. [CrossRef]
43. De Finetti, B. Sul concetto di media. Ist. Ital. Degli Attuari 1931, 3, 369-396.
44. Hardy, G.; Littlewood, J.; Pólya, G. Inequalities; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 1988.
45. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June-30 July 1960; The Regents of the University of California: Oakland, CA, USA, 1961; Volume 1: Contributions to the Theory of Statistics;
46. Holder, O.L. Über einen Mittelwertssatz. Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. 1889, 44, 38-47.
47. Bhatia, R. The Riemannian mean of positive matrices. In Matrix Information Geometry; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35-51.
48. Akaoka, Y.; Okamura, K.; Otobe, Y. Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution. Ann. Inst. Stat. Math. 2022, 74, 1-29. [CrossRef]
49. Kim, S. The quasi-arithmetic means and Cartan barycenters of compactly supported measures. Forum Math. Gruyter 2018, 30, 753-765. [CrossRef]
50. Carlson, B.C. The logarithmic mean. Am. Math. Mon. 1972, 79, 615-618. [CrossRef]
51. Stolarsky, K.B. Generalizations of the logarithmic mean. Math. Mag. 1975, 48, 87-92. [CrossRef]
52. Jarczyk, J. When Lagrangean and quasi-arithmetic means coincide. J. Inequal. Pure Appl. Math. 2007, 8, 71.
53. Páles, Z.; Zakaria, A. On the Equality of Bajraktarević Means to Quasi-Arithmetic Means. Results Math. 2020, 75, 19. [CrossRef]
54. Maksa, G.; Páles, Z. Remarks on the comparison of weighted quasi-arithmetic means. Colloq. Math. 2010, 120, 77-84. [CrossRef]
55. Zhang, J. Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 2013, 15, 5384-5418. [CrossRef]
56. Nielsen, F.; Nock, R. Generalizing Skew Jensen Divergences and Bregman Divergences with Comparative Convexity. IEEE Signal Process. Lett. 2017, 24, 1123-1127. [CrossRef]
57. Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality; Springer Science \& Business Media: Berlin/Heidelberg, Germany, 2009.
58. Nock, R.; Nielsen, F.; Amari, S.i. On conformal divergences and their population minimizers. IEEE Trans. Inf. Theory 2015, 62, 527-538. [CrossRef]
59. Ohara, A. Conformal flattening for deformed information geometries on the probability simplex. Entropy 2018, 20, 186. [CrossRef]
60. Ohara, A. Conformal Flattening on the Probability Simplex and Its Applications to Voronoi Partitions and Centroids. In Geometric Structures of Information; Springer: Berlin/Heidelberg, Germany, 2019; pp. 51-68.
61. Bregman, L.M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 1967, 7, 200-217. [CrossRef]
62. Zhang, J. On monotone embedding in information geometry. Entropy 2015, 17, 4485-4499. [CrossRef]
63. Nielsen, F.; Nock, R. The dual Voronoi diagrams with respect to representational Bregman divergences. In Proceedings of the Sixth International Symposium on Voronoi Diagrams (ISVD), Copenhagen, Denmark, 23-26 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 71-78.
64. Itakura, F.; Saito, S. Analysis synthesis telephony based on the maximum likelihood method. In Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan, 21-28 August 1968; pp. 280-292.
65. Okamoto, I.; Amari, S.I.; Takeuchi, K. Asymptotic theory of sequential estimation: Differential geometrical approach. Ann. Stat. 1991, 19, 961-981. [CrossRef]
66. Ohara, A.; Matsuzoe, H.; Amari, S.I. Conformal geometry of escort probability and its applications. Mod. Phys. Lett. B 2012, 26, 1250063. [CrossRef]
67. Kurose, T. On the divergences of 1-conformally flat statistical manifolds. Tohoku Math. J. Second Ser. 1994, 46, 427-433. [CrossRef]
68. Pal, S.; Wong, T.K.L. The geometry of relative arbitrage. Math. Financ. Econ. 2016, 10, 263-293. [CrossRef]
69. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129-137. [CrossRef]
70. Mahajan, M.; Nimbhorkar, P.; Varadarajan, K. The planar k-means problem is NP-hard. Theor. Comput. Sci. 2012, 442, $13-21$. [CrossRef]
71. Wang, H.; Song, M. Ckmeans. 1d.dp: Optimal $k$-means clustering in one dimension by dynamic programming. R J. 2011, 3, 29. [CrossRef]
72. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J.; Lafferty, J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005, 6, 1705-1749.
73. Nielsen, F.; Nock, R. Sided and symmetrized Bregman centroids. IEEE Trans. Inf. Theory 2009, 55, 2882-2904. [CrossRef]
74. Ronchetti, E.M.; Huber, P.J. Robust Statistics; John Wiley \& Sons: Hoboken, NJ, USA, 2009.
75. Nielsen, F.; Nock, R. Total Jensen divergences: Definition, properties and clustering. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19-24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2016-2020.
76. Eguchi, S.; Komori, O. Minimum Divergence Methods in Statistical Machine Learning; Springer: Berlin/Heidelberg, Germany, 2022.
77. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52-60. [CrossRef]
