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Abstract: As machine learning and AI continue to rapidly develop, and with the ever-closer end
of Moore’s law, new avenues and novel ideas in architecture design are being created and utilized.
One avenue is accelerating AI as close to the user as possible, i.e., at the edge, to reduce latency and
increase performance. Therefore, researchers have developed low-power AI accelerators, designed
specifically to accelerate machine learning and AI at edge devices. In this paper, we present an
overview of low-power AI accelerators between 2019–2022. Low-power AI accelerators are defined
in this paper based on their acceleration target and power consumption. In this survey, 79 low-power
AI accelerators are presented and discussed. The reviewed accelerators are discussed based on
five criteria: (i) power, performance, and power efficiency, (ii) acceleration targets, (iii) arithmetic
precision, (iv) neuromorphic accelerators, and (v) industry vs. academic accelerators. CNNs and
DNNs are the most popular accelerator targets, while Transformers and SNNs are on the rise.

Keywords: survey; hardware accelerator; low-power; performance; machine learning; artificial
intelligence; neural networks

1. Introduction

Deep learning is a popular machine learning approach, with many application
areas [1,2]. However, advances in technology and the ending of Moore’s Law [3,4] have
resulted in a rise in hardware devices specifically designed to accelerate Artificial Intel-
ligence (AI) and Deep Neural Networks (DNN), with a strong focus on Convolutional
Neural Networks (CNN) [5]. Both DNNs and CNNs are prevalent in acceleration due to
their numerous uses in a variety of fields (e.g., robotics, object detection, video processing,
branch prediction [1]) and their use of matrix operations, which is easy to parallelize.

As accelerator architectures continue to evolve and develop, and even commercialize,
the demand for efficient accelerators continues to grow. A focus on accelerating machine
learning directly at the edge has emerged, e.g., in low-power devices such as cellphones
or cameras, adding concerns for privacy and an ever-increasing demand for higher per-
formance [2]. With stricter power requirements, ranging from 1 mW [6] to ≤10 W, new
strategies to accommodate the limitation of both power and area are necessary.

This paper presents recent advances in low-power AI accelerators over the last four
years. Unlike previous surveys on AI accelerators [2,5,7–9], this survey focuses on a range
of different types of accelerators (e.g., CNN, DNN, LSTM, Transformer) and with an upper
bound on power of ≤10 W. The paper presents and discusses the findings using five differ-
ent aspects. AI accelerators are investigated in terms of (i) power, performance, and power-
efficiency, (ii) the types of models accelerated, i.e., acceleration targets, (iii) precision and
number formats supported, (iv) neuromorphic accelerators, and finally (v) accelerators
developed by companies.

The paper is organized as follow. Section 2 presents the background and related work.
This is followed by Section 3, which contains the aims and scope, and the methodology
used. Section 4 presents the findings. This section is divided into several subsections,
detailing the different aspects, e.g., power efficiency or accelerators by companies. Finally,
the findings are discussed in Section 5, and our conclusions are presented in Section 6.
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2. Background and Related Work

The idea of the accelerator is to be able to increase the performance and lower the
power consumption by utilizing optimization strategies specific to the problem that the
hardware are meant to solve. The most common of these strategies is parallelization;
the idea that multiple calculations, independent of each other, can be done in parallel.

The question is then: What applications are parallelizable and are in a dire need of
increased performance and decreased power consumption. AI, specifically neural networks
in the context of ML, is one answer [2].

Presented in this section is a short overview of the core mechanics for acceleration
in AI/ML models; what they are used for and how they can be accelerated. Following
that, a brief description of a common structure of an accelerator and how it applies the
knowledge learned from the core mechanics to be able to accelerate AI/ML models are
presented. Finally, other surveys on AI accelerators are briefly summarized, and the
difference between their and our work is presented and explained.

2.1. Core Operation in Artificial Neural Networks

The core operation found in all types of neural networks (CNN, DNN, LSTM, RNN,
Transformer, etc.) is the matrix multiplication and accumulation (MAC) operation, exclud-
ing Spiking Neural Networks (SNN).

For example, there are two common layers in all CNN models; convolution (CONV)
and fully connected (FC). In both layers, the scalar product (MAC) is the core in their
computations. Both layers use the scalar product to multiply inputs with weights (filter
elements for the convolution layer), and then accumulate the results into one value. In the
CONV layer, a sliding window (filter) is moved over the input data, calculating the scalar
product between the selected inputs and the filter. Similarly, one FC layer is constructed
with multiple neurons, each of which calculates the scalar product between the inputs and
the weights, adding a bias and then using the result in the activation function to produce
an output. As a demonstration, the calculation of one neuron in the FC layer of an artificial
neural network (ANN) is presented in Equation (1) and illustrated in Figure 1.

yj = f

(
N

∑
i=1

wji × xi + bj

)
, (1)

where w is a matrix of weights, x is a vector of inputs, b correspond to the bias, f refer to
the activation function, N is the number of inputs to the neuron, and y is the neuron output.
Because each neuron is computed with Equation (1) and independent of other neurons in
the same layer, it enables parallelization of the computation between neurons in a layer.
This is achieved by computing both the neurons and the individual input-weight pairs in
parallel (accumulating the results in the process).

The parallelization of the CONV layer is done in a similar way; computing each frame
of the sliding window with the corresponding inputs and the individual input–filter weight
pairs in parallel (also accumulating the results in the process). A similar process, using the
MAC operation, is used for other types of ANNs.

2.2. Typical Accelerator Structure

To understand how the parallelization of the MAC operations is achieved in most
accelerators, a generic, typical accelerator architecture is illustrated in Figure 2.

Weights and inputs (that may be inputs to the network itself or activation results from a
previous layer) move through the grid of processing elements (PEs) in a rhythmical fashion.
In the context of the FC layer in an ANN, a row (or column, depending on implementation)
represents one neuron. This grid of simple arithmetic logical units (ALUs, included in
each PE) is referred to as a systolic array, and is the core foundation of all accelerators.
The choice and placement of buffers (input, weight, and output buffers in Figure 2) varies
from accelerator to accelerator. However, the idea is basically the same; input data and
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weights are loaded into their respective buffers and propagate through the systolic array,
which computes the multiplication and then accumulates the results (either in the PEs
themselves or at the end of a lane of PEs, depending on the dataflow used).
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Figure 1. Graph diagram of a single neuron in a traditional ANN.
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Figure 2. Typical architecture of an ANN accelerator. Each PE has a private register attached to
them (gray box), used for storing partial sums. The structure of the grid of PEs varies depending on
dataflow used.

Many optimization strategies exist for these types of accelerators, e.g., pruning (reduce
number of operations), quantization (reduced precision, either fixed or dynamic), dataflows
(Weight Stationary, Output Stationary, No Local Reuse, etc.), Near-Memory Processing
(NMP), Compute-In-Memory (CIM), and compact architectures (reduce filter sizes and
number of weights). For a more detailed explanation of the mentioned strategies and
how DNNs are accelerated in hardware, we recommend the paper by Sze et al. [10].
Further, reducing the overhead of parallelization for DNN AI accelerators can be done
via different interconnection strategies. An overview of this topic has been written by
Nabavinejad et al. [11].
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2.3. Related Work

In recent years, the focus on research for domain-specific hardware accelerators,
specifically to accelerate DNNs, has increased drastically. With notable AI accelerators like
ICT’s DianNao [12] and its successors (DaDianNao [13], ShiDianNao [14], PuDianNao [15]),
IBM’s TrueNorth [16,17], and MIT’s Eyeriss [18] paving the way for the future of AI
accelerator research. Further, approaches for validating and testing implemented AI
accelerators is an important aspect, see, e.g., [19] which proposes an test architecture for
low-power ASIC AI accelerators. However, this is considered out-of-scope for this survey.

Different surveys discussing and analyzing the growing archive of AI accelerators,
both on the research and the commercial side, have been published over the years. The fol-
lowing paragraphs go through some of these published surveys.

Reuther et al. [5] surveyed DNN and CNN accelerators published or announced
between 2014 and 2019 (both commercial and for research purposes). They analyze the
accelerators performance, numerical precision, power consumption, and inference ver-
sus training. The surveyed accelerators include CPU-based and GPU-based processors,
and ASIC, FPGA, and dataflow accelerators. Reuther et al. observed that many of the
previous processor trends are no longer increasing, resulting in the increased popularity of
domain-specific hardware accelerators. They observed that recent accelerators had a power
utilization between 10–300 W, and that processors/accelerators below 100 W focused solely
on inference. They noted that most accelerators are able to reduce their numerical precision
by half (16-bit) or even use single bit representations, thereby increasing operations per
second without impacting the accuracy overly much. Reuther et al. updated the survey
in the following two years [7,8]; adding more accelerators (the former focusing on pub-
licly announced accelerators and the latter focusing solely on commercial accelerators)
and including new architectures like neuromorphic designs [20,21], flash-based analog
memory processing [22], and photonic-based processing [23].

Talib et al. [24] published a systematic literature review on hardware implementation
for different AI algorithms. Reviewing 169 different research papers, published between
the years 2009 and 2019, focusing on ASIC, FPGA, and GPU based hardware accelerator
implementations. They observed that the majority were FPGA-based implementations,
focusing mostly on accelerating CNNs for object detection, with the GPU-based in second
place (third was the number of FPGA-based solutions). Talib et al. studied what tools,
platforms, and approaches were used in the last decade, and how the performance changes
depending on clock frequency and numerical precision.

Li et al. [25] published a short systematic literature review on ANN accelerators with
a focus on DNN/CNN co-processors; CPUs integrated with the co-processor acting as
the acceleration module for ANN acceleration. They observed that the representative
numerical precision formats used were 8-bit integer and 16-bit floating point, and that the
throughput varies from 100 GOPS to 10 TOPS.

Lin et al. [9] lists and reviews CNN accelerators for image recognition, focusing on
ASIC, FPGA, and coarse-grained reconfigurable array (CGRA) implementations.
They observe that CGRA uses 16-bit to 32-bit fixed point precision formats, while 16-bit
floating point or fixed point is preferred for ASIC and FPGAs.

Seo et al. [22] surveyed all-digital and analog/mixed-signal AI accelerators.
They discuss and present the common optimization strategies used in digital AI accel-
erators. Continuing with a deep look into analog/mixed-signal accelerators; discussing
what they are and how they work. Seo et al. conclude the paper by presenting the emerging
trends for both all-digital and analog/mixed-signal AI accelerators. Digital trends include
reconfigurable MAC arrays, dynamic mixed precision support, sparsity awareness for
weights and activations (pruning), and the support of a variety of AI models. On the other
hand, analog/mixed-signal trends include many-macro CIM, reduced overhead of ADC,
increased DNN accuracy, and sparsity awareness.

This survey differs from, and extends, previous surveys in three ways. First, it focuses
solely on low-power (≤10 W) AI accelerators published in the last four years (2019–2022).
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Second, previous surveys have mainly focused on a specific domain or a specific accelerator
target, e.g., CNN. This survey is not limited to AI accelerators based on ANNs, nor a
specific domain, providing a broader overview of low-power AI accelerator research. Third,
it investigates the relationship between throughput, power, and power efficiency. Some-
thing that has not been explicitly investigated in the previous research.

3. Method
3.1. Aim and Scope

We used a backward snowballing approach [26] with the initial papers taken from
two major conferences (ISCA and ASPLOS) in computer architecture and one workshop
(AccML) dedicated to ML acceleration. Under the snowballing processes, papers outside
the scope of the initial set were considered, including company affiliated accelerators (data
gathered from the companies own websites). However, papers outside the snowballing
process were not the focus under the searching process, hence the limited number of
company affiliated accelerators in our survey. The papers (including company briefs,
white papers, and other information gathered from companies’ websites) were accepted
based on certain criteria defined in Section 3.2. Therefore, the scope of our survey is on
the current and emerging research in domain-specific hardware accelerators. As with
any systematic literature method, there is no guarantee that all papers in the domain
were accounted for. However, we think that our chosen method, based on our initial
set, sufficiently represents the current research in the field to an acceptable degree for
this survey.

3.2. Criterias for Acceptance

The criterias for accepting an article were based on (i) the year it was published, (ii) if
it introduced an AI accelerator, and (iii) if it could be counted as low-power. The year it
was published is self explanatory; we only accepted papers published between the years
2019 and 2022.

Regarding if an accelerator accelerated AI or not, we based our decisions on our own
experiences and knowledge of current and emerging research in AI. In this survey, the
AI applications/algorithms are referred to as the acceleration targets. The total number
of targets found from the surveyed accelerators are presented in Table 1. Accelerators
that accelerate General Matrix Multiplications (GEMM) have been included due to the
prevalent use of matrix multiplication in a variety of AI algorithms, including DNNs.
Consequentially, MAC and other types of matrix algorithms were included for similar
reasons. We count Graph Mining and Personalized Recommendation (PR) systems as
AI applications too. As such, the acceleration targets are as follows: ANN, Multilayer
Perceptron (MLP), DNN, CNN, Generative Adversarial Network (GAN), GEMM (divided
into sparse and dense), PR system, Long Short-Term Memory (LSTM), Recurrent Neural
Network (RNN), Transformer, MAC, Sparse Matrix Transposition, Matrix Algorithms,
Graph Mining, and SNN.

We set the upper bound on power to be less than 10 W. The maximum power of a low-
power device (≤10 W) in this paper was derived from reviewing a variety of research papers
on AI accelerators. A higher value of power was not chosen to take into consideration
the power that other components of a device might need, i.e., camera, extra memory,
and sensors.

Low-power AI accelerators where the authors are affiliated with a company are also
considered. The same criteria as mentioned before were used, except for the mentioned
conferences and workshop, company affiliated accelerators from known AI accelerator
vendors were also included in this survey. We searched for vendors that we know design
accelerators specific for AI acceleration.
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Table 1. Number of acceleration targets per year. Divided into company and non-company (research)
acceleration targets. Note that an accelerator can accelerate more than one target.

Targets 2019 2020 2021 2022

Research Company Research Company Research Company Research Company

CNN 10 4 5 4 7 6 2 -
GAN 1 - 1 - 1 - 1 -
DNN 2 3 4 - 2 5 1 -
Transformer 1 - 1 - 3 2 3 -
SpGEMM 1 - 2 - 1 - - -
SNN 1 - 3 - 2 - 2 -
ANN 1 - 1 - - - - -
RNN 2 - - 4 1 3 1 -
LSTM 1 1 - 4 - 3 - -
PR system - - 1 - - - - -
GEMM - - 2 - 3 - 1 -
MAC - - 1 - - - - -
Matrix Alg. - - 1 - - - - -
MLP - - - - 1 - - -
Graph Mining - - - - - - 2 -
SpMatrix Transposition - - - - - - 1 -
Attention - - - - - - 1 -

Unique targets 9 3 11 3 9 5 10 0

Total targets 19 8 22 12 21 19 15 0

As presented in Table 2, there are more accelerators presented in academic research
papers than accelerators where the authors are affiliated with a company. This will be
reflected in the result, mostly when analyzing the company accelerators.

Table 2. Number of accelerators per year. Divided into company and non-company (research)
accelerators.

2019 2020 2021 2022

Company 6 4 8 0
Academia 16 17 16 12

Total 22 21 24 12

3.3. Missing Data

Since there exist no standards on what information should exist in both research papers
and company briefs for AI accelerators, a few metrics and measurements are missing from
the gathered information regarding different AI accelerators in our survey, e.g., power,
throughput, power efficiency, etc.

There are times when this could be rectified. In the data gathered from the surveyed ac-
celerators, we are able to compute some of these missing values. Throughput, or operations
per second, can be calculated with Equation (2).

Throughput = #MACs × Frequency = #MACs × Cycles
Second

, (2)

where #MACs is the number of MAC components in the accelerator (often calculated
from the number of PEs used and their internal components), Frequency is the frequency
in Hz, and Throughput is the number of operations per second, often translated to Giga
Operations per Second (GOPS) or Tera Operations per Second (TOPS). A similar approach
is used for calculating the throughput used in SNN accelerators, where Giga-synaptic
Operations per Second (GSyOPS) is often preferred.

If power is missing, we can calculate it by using Equation (3).
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Power =
Energy
Cycle

× Frequency =
Energy
Cycle

× Cycles
Second

, (3)

where the Energy of each component of the accelerator (if mentioned) is measured in J per
cycle (operation). The frequency is measured in Hz, i.e., cycles/s, and the result is Power,
measured in J/s = W.

We can calculate power efficiency (GOPS/W) if both throughput and power are
mentioned or if they can be calculated. This is done by dividing the throughput with the
power. Area efficiency is calculated in a similar fashion.

4. Results

This section is divided into eight parts, each covering different aspects of low-power
AI accelerators. Section 4.1 presents the results regarding power, throughput, and power
efficiency, while power vs. area is addressed in Section 4.2. Section 4.3 discusses common
approaches to reduce power in AI accelerators. In Section 4.4, we present which type of
AI models the accelerators target. In Section 4.5, we provide an overview of the different
number formats and precision the accelerators support. Section 4.6 presents neuromor-
phic accelerators, and Section 4.7 presents a focused view of accelerators developed by
companies. Finally, in Section 4.8, we summarize our findings.

As a foundation to base our results on, we compare our data with the conclusions and
findings found in the surveys by Reuther et al. [5,7,8]. In Appendix A, and in Tables A1–A4,
all reviewed low-power AI accelerators from the last four years are presented.

4.1. Power, Throughput, and Power Efficiency

We start our survey of low-power AI accelerators with a comparison of the power
consumption and the throughput. In Figure 3, we have plotted the power consumption
(measured in mW) vs. the number of operations performed per second (counted as Giga
Operations Per Second, GOPS). We have included three lines in the figure that correspond to
a power efficiency of 10 TOPS/W, 1 TOPS/W, and 100 GOPS/W, respectively. The different
colors in the figure correspond to the implementation technology, i.e., ASIC (red), FPGA
(green), or if the particular design is only simulated (blue). In addition, an empty circle
refers to an accelerator that only supports inference, while a filled circle refers to an
accelerator that also supports training.
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Figure 3. Power (mW) vs. throughput (GOPS) scatter plot of low-power AI accelerators at logarith-
mic scales.
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Compared to a similar graph by Reuther et al. [5,7,8], we can observe that the recent
accelerators stay mostly around the trendlines for a power efficiency between 100 GOPS/W
and 10 TOPS/W, which is inline with previous studies. There is, however, a homogeneity
we can see in the data. The low-power accelerators tend to have a power consumption
above ≈100 mW and a throughput above ≈1 GOPS; few accelerators lay beneath these
thresholds. Further, we can observe that ASIC implementations in general have a better
power efficiency than FPGA implementations, which is expected. Finally, we can observe
that the majority of the surveyed accelerators target only inference. A possible explanation
for that is that many low-power accelerators target edge or mobile devices, where a pre-
trained model is used and only inference needs to be done.

A question to ask is whether the type of target for acceleration is responsible for
these deviations in the data compared. For example, SNAFU-ARCH [6] and RedMulE [27]
accelerate GEMMs, and IMPULSE [28] accelerates SNNs, while others like WAX [29],
GoSPA [30], Wang et al. [31], and TIMELY [32], accelerate CNNs or DNNs. Looking into
more detail of SNAFU-ARCH [6], an Ultra-Low-Power (ULP) accelerator and framework
for GEMM, we find that it saves energy by configuring PEs and routers for a single operation
to minimize switching activity (e.g., specialized PE for basic ALU, multiplier, and memory),
resulting in very low power (below 1 mW) and an extremely small area footprint (less
than 1 mm2). From the data in Figure 3, we cannot observe any general trends based on
the acceleration target. Hence, we conclude that the type of acceleration target has no
significant, general effect on the throughput and power.

In Figure 4, we show for each accelerator which year it was published. The colors in
Figure 4 represent the publication years, i.e., 2019 (red), 2020 (green), 2021 (blue), and 2022
(purple). We observe that the throughput and power of low-power AI accelerators have not
changed significantly or systematically over the years. Almost all accelerators are placed
between the 10 TOPS/W and the 100 GOPS/W lines. Further, we cannot see any clear
trend that more recent accelerator designs are more power efficient than earlier designs,
i.e., they are not generally closer to the 10 TOPS/W line. A conclusion to draw from that
data is that no drastically new innovations have been made that significantly affects the
throughput, power, or power efficiency as compared to previous years.
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Figure 4. Power (mW) vs. throughput (GOPS) scatter plot of low-power AI accelerators at logarithmic
scales. The colors represent the year and the shapes (filled or hollow) represent if it can be used for
training and/or inference.
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We had an initial hypothesis that low-power AI accelerators designed for training
would use more energy than accelerators that are exclusively designed for inference.
However, the data presented in Figure 3 do not support this hypothesis. Looking closer
at this deviation from our hypothesis, we can observe that accelerators affiliated with a
company mostly follow our hypothesis, as shown in Figure 5 where the colors represent
company (green) vs. non-company (red) accelerators, respectively. Accelerators designed
for ML training tend to have higher power requirements than most other company affiliated
accelerators designed only for inference. However, non-company affiliated accelerators
do not follow our hypothesis. Neither does it change over time, i.e., the year it was pub-
lished does not affect if the accelerator itself would be designed for inference or training.
This holds true for both company and non-company affiliated low-power AI accelerators.
Further, we have observed that accelerators from companies tend to use more power in
exchange for higher throughput, as all accelerators from companies have a throughput
above 100 GOPS and a power consumption above 100 mW.
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Figure 5. Power (mW) vs. throughput (GOPS) scatter plot of low-power AI accelerators at logarithmic
scales. The colors represent an accelerator’s affiliation: company (green) or non-company (red)
affiliated accelerator.

This observation holds true for power efficiency as well, as shown in the box plot
in Figure 6. In Figure 6, the red line denotes the median, the box represents the interval
between the first quartile (Q1) and the third quartile (Q3). The boundaries of the whiskers
are based on 1.5× IQR, where the interquartile range (IQR) is defined as IQR = Q3 − Q1.
The rings outside the whiskers are outliers.

Accelerators from companies have slightly better performance and also tend to be
more power efficient. We believe that this observation is true, even though the number
of metrics in our data from company affiliated accelerators are not complete. Companies
often do not publicly announce all specifications and metrics of their accelerators, which
partly explains the low number of data entries from company affiliated accelerators in
2020 (left graph in Figure 6). The mean and median power consumption, performance,
and power efficiency for selected groups are presented in Table 3. The selected groups will
be presented further in Sections 4.6 and 4.7.



Algorithms 2022, 15, 419 10 of 28

2019 2020 2021
Years

101

102

103

104

105

Po
we

r E
ffi
cie

nc
y 
(G
OP

S/
W
)

2019 2020 2021 2022
Years

Figure 6. Power efficiency of AI accelerators throughout the years. Left figure: Data from accelerators
created by different companies. Right figure: Data from accelerators published as research papers
and not affiliated with a company.

Table 3. Power consumption, performance, and power efficiency for selected accelerator groups.

Power a Performance b Power Efficiency c

Mean Median Mean Median Mean Median

All 1654.6 478.0 5008.6 639.7 6060.7 1264.0

Company 2928.0 1931.2 11, 912.1 4423.5 5558.8 4125.0
Non Company 1270.2 206.0 2027.5 148.8 6272.0 1020.7

SNN 938.9 155.8 1172.8 1214.1 9389.3 1278.0
Non SNN 1748.5 500.0 5200.4 622.2 5864.9 1250.0

a Power is measured in mW. b Performance is measured in GOPS.c Power Efficiency is measured in GOPS/W.

4.2. Power, Area, and Clock Frequency

The next aspect that we would like to observe is to take a deeper look into the rela-
tionship between power and area. In Figure 7, the ratio of power vs. area over the years
is plotted. In Figures 7–9, the red line denotes the median, the box represents the interval
between the first quartile (Q1) and the third quartile (Q3). The boundaries of the whiskers
are based on 1.5× IQR, where the interquartile range (IQR) is defined as IQR = Q3 − Q1.
The rings outside the whiskers are outliers.

In Figure 7, we can observe that there has not been much change with regard to power
per square milliliter; there is an overall increase. The reason for this increase is related to
the power consumption, i.e., there is an increase in power consumption every year for all
accelerators, independent of the accelerator’s affiliation.

For the company affiliated accelerators, the increase in power consumption is substan-
tial, as shown in Figure 8, with a peak in 2021 (company affiliated accelerators from 2022 is
missing from our data set). It increases every year, excluding NVIDIA’s Jetson Nano [33]
from 2019, which has the highest overall power consumption reported. Meanwhile,
non-company affiliated accelerators have not had such a clear increase in power over
the years.
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Figure 8. Power consumption throughout the years. Left figure: The data are from accelerators
created by different companies. Right figure: The data are from accelerators published as research
papers and not affiliated with a company.

Plotting the clock frequencies with regard to year, the cause for the increase in power is
uncovered. Depicted in Figure 9, the clock frequencies for both company and non-company
affiliated accelerators are plotted. Similar to power, the clock frequencies used in low-
power accelerators also increase over time. As the power consumption is proportional to
the clock frequency, it follows that higher clock frequencies require more power to operate.
This is especially true since Dennard scaling [34] does not hold anymore, thus we cannot
obtain higher performance and clock frequencies as we reduce the technology nodes.
Therefore, the clock frequency also contributes to the overall increase in power per square
millimeter over time.
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Figure 9. Clock frequencies of AI accelerators throughout the years. Left figure: The data are from
accelerators created by different companies. Right figure: The data are from accelerators published as
research papers and not affiliated with a company.

Regarding clock frequencies, an observation can be done. The four accelerators that
differ significantly from the rest in terms of power (<10 mW), i.e., WAX [29], SNAFU-
ARCH [6], TIMELY [32], and IMPULSE [28], also have very low clock frequencies; between
40 MHz and 200 MHz. This shows that low-frequency accelerators use significantly less
power at the cost of lower throughput. However, there exist accelerators in the middle of
the cluster, such as Zhang et al. [35] and DOTA [36] with clock frequencies of 25 MHz and
100 MHz, that contradict that observation (if only with regards to frequencies). Taking the
targets into account, the low-power accelerators that have clock frequencies below or equal
to 100 MHz generally accelerate non-ANN targets, e.g., Zhang et al. [35] and DOTA [36]
accelerate MACs using CIM and Transformers, respectively. Hence, we can reason that
low-power accelerators, if they accelerate general ANNs, mostly have clock frequencies
higher than ≈200 MHz to be able to have a power and throughput above ≈200 mW and
≈10 GOPS, respectively. Of course, it is not absolute; other factors, both internal and
external, could affect this relationship between power, throughput and frequency.

Area, on the other hand, stays generally the same over the years. The non-company
affiliated accelerators’ area fluctuates throughout the years, nonetheless staying between
1–100 mm2. Company affiliated accelerators do report a higher overall area (except in 2020,
where they were similar to the non-company affiliated accelerators). Although, this differ-
ence in area between company and non-company affiliated accelerators is likely due to the
inclusion of other components rather than the core components of the reported accelerator.

We observe, by analyzing the power per square millimeter over the years separately for
company and non-company affiliated accelerators, that the company affiliated accelerators
do have a lower power-area ratio than the non-company affiliated accelerators. This
is probably due to the smaller technology nodes used in their manufacturing (5–28 nm
compared with simulated accelerators using 22–65 nm). The dynamic power consumption
is proportional to the effective capacitance load, which in a very general reasoning is similar
for similar chip areas. Thus, a similar amount of power is needed while increasing the
number of transistors per area, thereby increasing throughput. This reasoning matches
what is shown in Figure 5, i.e., the company affiliated accelerators have a more consistent
throughput vs. power, with the majority having the highest throughput vs. power among
all the accelerators.
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4.3. Strategies to Decrease Power

Low-power AI accelerators are defined in this survey as AI accelerators with a power
consumption of ≤10 W. However, how is the decrease in power consumption for low-
power AI accelerators achieved compared to other accelerators? In Section 2.2, optimization
strategies used in AI accelerators were briefly mentioned, and some of these strategies
are used abundantly in low-power AI accelerators to decrease the power consumption as
otherwise required. Presented in Table 4 are common strategies used for decreasing power
consumption in AI accelerators.

Table 4. Common strategies used to decrease power consumption in AI accelerators.

Strategy Description Examples

Pruning

Remove parameters based on different criteria,
thereby reducing the workload (e.g., zero valued

weights in DNNs and tokens in Transformers can be
removed, resulting in less computation).

[37–41]

Quantization
Mapping continuous values to discrete values (i.e.,

32-bit float to 16-bit integer), and doing the
computations on the discrete representation.

[37,38,42–46]

Dataflow
Reduce movement of data by specifying the flow of

data in the architecture (e.g., Weight Stationary,
Output Stationary, No Local Reuse, etc.).

[29,47–49]

Near-Memory
Processing

Reducing the distance between memory and
processing components. [40,50]

Compute-in-Memory
MAC computation in the analog domain, computed
in the memory array. Thereby removing the need for

movements of weights.
[28,32]

Reduced flexibility

Reduce the flexibility/reconfigurability of the
accelerator by restricting the hardware to perform
specific, predetermined tasks (e.g, a PE might only

compute a single operation, only support ReLU, etc.).

[6,51]

The descriptions of the different strategies mentioned in Table 4 are quite broad,
as there exist many different implementation choices for each one. An example for this is
Quantization, where one DNN accelerator might restrict the precision format to 8-bit inte-
gers only, while another accelerator might use a more dynamic approach (i.e., dynamically
changing the precision format depending on the task at hand). Due to the many different
implementations, it is hard to determine which strategy is best. As different implemen-
tations and designs can induce different effects on the power consumption. However, it
should be noted that all strategies do decrease the power consumption regardless of the
implementation used.

4.4. Acceleration Targets

In Table 1, we present all targets that the low-power AI accelerators in this survey
accelerate. In total, there are 17 different acceleration targets, divided into nine types
of neural networks (CNN, GAN, DNN, ANN, RNN, LSTM, MLP, Transformer, SNN),
four matrix algorithms (GEMM, SpGEMM, SpMatrix Transposition, Matrix Alg.), two
core mechanisms in neural networks (MAC and Attention), and two graph-based systems
(Personalized Recommendation and Graph Mining).

In Figure 10, we show the number of different acceleration targets over the years. We
group the targets together, based on similarities in their structures, as follows: RNN refers to
RNN and LSTM; DNN includes ANN and MLP; Transformer is grouped with the Attention
mechanism; GEMM with SpGEMM; and finally the remaining targets (MAC, SpMatrix
Transposition, PR, Graph Mining, Matrix Alg.) are grouped under the label ‘Other’.
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Figure 10. Accelerating targets throughout the years, where RNN refers to RNN and LSTM; DNN in-
cludes DNN, ANN, and MLP; Transformer groups the Transformer model and Attention mechanism
together; and finally, Other refers to the remaining acceleration targets. Note, however, that some
accelerators accelerate a variety of applications; having more than one acceleration target.

We observe that the most common acceleration target is CNN. This has been the case
for previous years too, where CNN is the most common choice for accelerating. This
stems from the start of the current popularity of neural networks and machine learning in
general, as it started with the CNN in the early 2000s [52]. As CNNs are very good at image
recognition tasks, and low-power AI accelerators include everything from accelerators
in smartphones to complementary components in sensors and cameras, the origin of
the CNN’s popularity for low-power AI accelerators becomes clear. The second most
commonly accelerated targets are DNNs and RNNs, the former can be attributed to the
current popularity concerning neural networks in general while the latter to their frequent
usage in speech recognition and natural language translation.

A more recent addition to these targets are Transformers, that were introduced in 2017
with the paper by Vaswani et al. [53]. As shown in Figure 10, the use of Transformer as the
acceleration target for low-power AI accelerators increased in 2021 compared to previous
years. In our opinion, this is attributed to the slow transition into the low-power domain
for Transformer models.

An example of another acceleration target is RecNMP [54], a NMP accelerator for
accelerating PR (Personalized Recommendation) systems. RecNMP maximally exploits
rank-level parallelism and temporal locality of production embedding traces to reduce
energy consumption by 45.8% and increase throughput by 4.2 times.

Accelerators can accelerate more than one target application. In the gathered data,
30% of all low-power accelerators used in this survey accelerate more than one target (12 of
79 are from company affiliated accelerators). However, this is not depicted in Figure 10.

Tallying the number of accelerators released per year and comparing it with the
number of targets per year, the trend of how common it is to release accelerators that
target multiple applications becomes apparent. As observed in Figure 11, the number of
targets increases faster than the number of accelerators for company affiliated accelerators.
This indicates an increased popularity for accelerators with multiple targets, assuming the
trend continues in 2022. A conclusion from this data is that for low-power AI accelerators,
domain-specific accelerators become more general over time. However, note that domain-
specific accelerators that accelerate multiple targets, often accelerate applications that
are similar to each other, e.g., ETHOS-U55 [55] accelerates CNNs, LSTMs, and RNNs.
Meaning they accelerate applications that theoretically belong to the same general group of
applications, sharing many internal components among them.
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Figure 11. Number of accelerators and targets for both company and non-company affiliated acceler-
ators over the years.

4.5. Number and Precision Formats

Similarly to the acceleration targets, the number and precision formats used for each
accelerator are plotted and presented in Figure 12. For similar reasons as for the acceleration
targets, the precision formats are grouped together for clarity. The five categories that the
accelerators were grouped into are as follows: INT denotes the usage of integers, FP denotes
the usage of floating point formats, FxP denotes fixed-point formats, BFP refers to Google
Brain’s bfloat format, Bit denotes all accelerators where the number of bits used were
mentioned but not the data type (integer, float, fixed-point, etc.), and unspecified denotes
accelerators where the precision format was not explicitly mentioned, nor the type of the
format. It should be noted, however, that similar to acceleration targets, accelerators can
use more than one precision format.
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Figure 12. Occurrences of different precision formats throughout the years. Where unspecified denotes
all accelerators where the precision format used was not explicitly mentioned, and Bit denotes
all accelerators where the number of bits used were mentioned, but not the type (integer, float,
fixed-point, etc.).

Based on the highest number of accelerators that uses a specific format, it is apparent
that Bit is the most common one. As Bit denotes the accelerators that did not specify the
type of precision format, we can assume that most, if not all, of these accelerators use
integers. This conclusion is based on the fact that most AI accelerators accelerate some
kind of neural networks, often models that are quite large. Therefore, integers are often
used when accelerating these kind of models, both because it is faster and due to it being
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more energy efficient. This hypothesis is backed up by analyzing the results in the survey
paper from 2021 by Reuther et al. [8], where they observe that INT8 is the most common
precision format, with INT16 and FP16 as close runners-up. Inspecting only accelerators
with a power of less than 10 W, it becomes apparent that INT8 and INT16 are the only
precision formats used in the multiplication and accumulation for low-power accelerators
gathered in surveys by Reuther et al. [8]. Following this observation and assuming that our
assumption of the Bit format is correct, the integers dominate the field.

The second most common format, ignoring the unspecified formats, is the floating point
format (FP), as seen in Figure 12. According to our results, the use of floating points has
not changed much over the years. On the other hand, for FxP and BFP, a clear increase
in usage over time is observed. Regarding the FxP format, there is a steady increase of
its usage in low-power accelerators. An underlying reason is probably the stricter power
budget in low-power AI accelerators. Looking at the BFP format, an observation can be
made. The popularity of the bfloat increases significantly in 2021, and as bfloat was first
announced in 2018, we can assume that the underlying reason for this increase now, instead
of before, is due to the transition time into the low-power domain.

Presented in Figure 13, the precision formats are grouped together with regard to the
number of bits used. Divided into less or equal to 8-bit precision and above 8-bit precision,
it is observed that most accelerators use less than or equal to 8-bit precision formats, which
is in line with the results from the survey by Reuther et al. [8]. One might reason that the
trend is that more accelerators tend to use ≤8-bit precision formats over >8-bit precision
formats over time, e.g., as a result of power constraints. However, we have observed that
≤8-bit precision formats are often complemented by >8-bit precision formats, or at least
16-bit precision formats.

2019 2020 2021 2022
Years

5

10

15

20

25

Oc
cu

rre
nc

es

unspecified
<= 8-bit
> 8-bit

Figure 13. Occurrences of different precision formats throughout the years. Where ≤8-bit and
>8-bit denote precision formats for less then or equal to 8-bits and greater then 8-bits, respectively.
Unspecified denotes all accelerators where the precision format used was not explicitly mentioned.

Looking at Figure 13, there is a large increase in higher precision formats in 2021
(more bits). Analyzing the company affiliated accelerators for this year, we see that more
than half of them use mixed precisions; 11 use a mix of high and low number of bits in
their precision formats, two use only a high number of bits (FP16 for Jetson Nano [33]
and Oh et al. [56]), two use only a low number of bits (8-bit for KL520 [57] and KL720 [58]),
and the rest (Lightspeeur 5801S [59] and Lightspeeur 2801S [60]) did not specify which
precision format their accelerators support. Due to the latter, the number of company
affiliated accelerators in 2021 is the sum of the two previous years, and this could induce a
bias in our results.

Assuming the spike in our data for higher number of bits precision formats is caused
by a larger number of company affiliated accelerators in 2021, we can deduce that there
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is an increase in higher precision formats over time, but it is most likely less than what is
shown in Figure 13.

4.6. Neuromorphic Accelerators

Another interesting aspect that can be observed in the gathered data is the popularity
of SNNs (Spiking Neural Networks) as an acceleration target. In Table 5, we list all
low-power SNN accelerators gathered in this survey. Regarding the popularity of low-
power SNN accelerators, we can observe from the table that it has not changed much
over the four years, staying mostly the same. Even before 2019, many accelerators were
designed for SNN acceleration. An example of this is IBM’s TrueNorth from 2015 [16],
which accelerates rate-based SNNs with a power consumption of around 70 mW. For more
details on neuromorphic computing and hardware, we refer the reader to the surveys by
Schuman et al. [21] and Shrestha et al. [20]. With regard to the power consumption, SNN
accelerators tend to use much less power than its ANN-based counterparts. Calculating
the mean and median power used in the accelerators in Table 5 results in a mean power
of 0.9 W and a median power of 0.2 W for SNN accelerators, as compared to 1.7 W mean
power and 0.5 W median power of non-SNN low-power accelerators.

Table 5. Low-power SNN accelerators.

Accelerator Year Tech Area Power Freq. Perf. Power
Eff.

Area
Eff. Type Acc. Target

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

Tianjic [61,62] 2019 28 14.44 950.0 300.0 1214.1 * 1278.0 84.1 * ASIC SNN, ANN
SpinalFlow [48] 2020 28 2.09 162.4 200.0 25.6 *† 157.6 *† 32.0 *† simulated SNN
NEBULA [51] 2020 32 86.73 5200.0 1200.0 - - - simulated SNN, ANN
YOSO [42] 2020 22 - 0.73 <1.0 1.3 *† 1757.8 *† - simulated SNN
IMPULSE [28] 2021 65 0.09 0.2 200.0 0.2 990.0 2.2 ASIC SNN
VSA [63] 2021 40 - 88.97 500.0 2304.0 25,900.0 - simulated SNN
Chen et al. [64] 2022 28 0.89 149.3 500.0 - - - simulated SNN
Skydiver [65] 2022 - - 960.0 200.0 22.6 † 19.3 † - FPGA SNN

* Calculated based on configuration and/or published metrics of specified accelerator. † Corresponding research
paper display results in GSyOPS (Giga-Synaptic Operations per Second) instead of GOPS.

Looking closer at the acceleration targets in Table 5, two of the accelerators stand out
from the rest, i.e., Tianjic [61,62] and NEBULA [51].

Tianjic [61,62] is a many-core AI research chip developed at Tsinghua University.
It supports inference on SNN, ANN, and SNN-ANN hybrid models, where SNN-ANN
hybrid models are models with mixed spiking (SNN) and non-spiking (ANN) layers.
ANN, in this instant, refers to a variety of common neural network models (CNN, RNN,
MLP), with arbitrary activation functions made possible with a look-up-table. Tianjic is
able to accelerate more than one model at a time, due to its many-core architecture and
decentralized structure.

NEBULA [51], developed at the Pennsylvania State University, is a spin-based, neuro-
morphic inference accelerator that accelerates SNN, ANN, and SNN-ANN hybrids, similar
to Tianjic, barring the simultaneous execution of multiple models and the restriction on
using ReLU as the only activation function. NEBULA accelerates one single network parti-
tioned into spiking (SNN) and non-spiking (ANN) layers in the hybrid mode that preserves
the low-power benefits of SNNs, with the additional advantage of reduced latency of SNNs
over ANNs. NEBULA makes use of an ultra-low power spintronics-based Magnetic Tunnel
Junction (MTJ) design for its neuron cores, instead of the traditional CMOS technology,
to reduce the required voltage to be in the range of mV, instead of V.

Although popular in 2019 and 2020, the hybrid models have not gained traction in
research in the later years, i.e., no more hybrid SNN-ANN accelerators were published in
2021 and 2022. Below, we go through some notable low-power SNN accelerators from the
last four years.
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YOSO [42] is a scalable and configurable low-power accelerator targeting TTFS-
encoded SNNs. Time To First Spike (TTFS) is a common temporal encoding scheme
in hardware SNN accelerators, but is usually not used in favor of the traditional rate-
based scheme due to their low accuracy compared with the latter. YOSO solves this by
introducing a new training algorithm that reduces the approximation error which accu-
mulates as a result of converting ANNs to SNNs, thereby increasing the accuracy. Thus,
TTFS-encoded SNNs can be considered for traditional ANN tasks, at higher efficiency and
with comparable accuracy (within 0.2% to ANN). In addition, YOSO operates at very low
clock frequencies, i.e., <1.0 MHz.

IMPULSE [28] is a low-power SNN accelerator, incorporating a SRAM-based compute-
in-memory (CIM) macro for all necessary instructions in a SNN, including a fused weight and
membrane potential memory. Further, IMPULSE consumes extremely low power, i.e., only
0.2 mW. The proposed SRAM-based CIM allows for a decreased memory access time com-
pared to previous SNN accelerators; membrane potential usually incurs additional memory
accesses in traditional SNN hardware.

VSA [65] is a configurable low-power SNN accelerator for both inference and training.
As shown in Table 5, VSA has the highest power efficiency of the reviewed SNN accelerators.
A binary weight spiking model which integrates and fires based on batch normalization is
proposed, which allows for small time steps when direct training with the input encoding
layer and spatio-temporal back propagation. The previous mentioned model and the
support for different inference spike times and multi-bit input to the encoding layer,
allowing VSA to have a high power efficiency.

4.7. Summary of Company Accelerators

This section is dedicated to accelerators where the authors are affiliated with a company.
In Table 6, we have gathered all accelerators by different companies. One thing to notice
in the table is the relatively high power of the company affiliated accelerators compared to
the other accelerators discussed in this survey. With a mean power of 2.9 W and a median
power of 1.9 W, the company affiliated accelerators have a 2.2x increase in mean power and
9.5x increase in median power compared to non-company affiliated accelerators (1.3 W and
0.2 W, respectively, for non-company affiliated accelerators). This could indicate that the
power used in real hardware are higher than what the simulated systems usually predict.
Below, we go through some selected company affiliated AI accelerators in more detail.

Table 6. Low-power AI accelerators by companies.

Company Accelerator Year Tech Area Power Freq. Perf. Power Eff. Area Eff. Type

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

Samsung NPU’19 [66] 2019 8 5.50 796.00 933.0 4423.5 8000.0 804.3 * ASIC
Gyrfalcon † Lightspeeur 5801S [59] 2019 28 36.00 224.00 200.0 2800.0 12,600.0 77.8 * ASIC
Gyrfalcon † Lightspeeur 2801S [60] 2019 - 49.00 600.00 100.0 5600.0 9300.0 114.3 * ASIC
Hailo Hailo-8 [67] 2019 - 225.00 2500.00 - 26,000.0 10,400.0 * 115.6 * ASIC
Kneron KL520 [57] 2019 - - 575.00 * 300.0 345.0 600.0 - ASIC
NVIDIA Jetson Nano [33] 2019 - 3150.00 7500.00 - 250.0 37.5 * 0.1 * ASIC
IBM Oh et al. [56] 2020 14 9.80 2727.00 * 1500.0 3000.0 1100.0 300.0 ASIC
ARM ETHOS-U55 [55] 2020 16 0.10 - 1000.0 512.0 - 2880.0 * ASIC
ARM ETHOS-U65 [68] 2020 16 0.60 - - 1000.0 - 1666.7 * ASIC
Kneron KL720 [58] 2020 - - 1362.50 696.0 1500.0 1250.0 * - ASIC
Cambricon Cambricon-Q [69] 2021 45 9.18 * 1030.31 1000.0 2000.0 1941.2 * 217.9 * simulated
IBM RaPiD [70,71] 2021 7 36.00 6206.00 * 1600.0 51,200.0 8250.0 2610.0 ASIC
Samsung NPU’21 [72,73] 2021 5 5.46 327.00 1196.0 14,700.0 13,600.0 4447.2 * simulated
ARM Ethos-N78 [74] 2021 - - - - 10,000.0 - - ASIC
Kneron KL530 [75] 2021 - - 500.00 - 1000.0 2000.0 * - ASIC
quadric q16 [76] 2021 16 256.00 5500.00 1000.0 64,000.0 11,636.4 * 253.9 ASIC
Mythic M1076 AMP [77] 2021 - 294.50 4000.00 - 25,000.0 6250.0 * 84.9 ASIC
Xilinx VE2002 [78] 2021 7 - 6000.00 - 5000.0 833.3 * - ASIC
Xilinx VE2102 [78] 2021 7 - 7000.00 - 8000.0 1142.9 * - ASIC

* Calculated based on configuration and/or published metrics of specified accelerator. † Gyrfalcon Technology Inc.
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RaPID [70] is a server/data center AI accelerator for ultra-low precision training and
inference proposed by IBM researchers. RaPID accelerates CNNs, LSTMs, and Transformers.
According to the authors, a single-core includes all necessary features to be used as a single-
core edge accelerator. Thus, RaPID are designed for dual use in both data centers and
edge devices.

NPU’21 [72] is a commercial neural processing unit (NPU) architecture for Samsung’s
flagship mobile system-on-chip (SoC). Using an energy-efficient inner product engine
that utilizes the input feature map sparsity in combination with a re-configurable MAC
array, a single NPU core achieves a throughput of 290.7 frames/s and 13.6 TOPS/W when
executing an 8-bit quantized Inception-v3 model. NPU uses the latest technology (5 nm)
and has the highest power efficiency of all reviewed company affiliated accelerators.

Gyrfalcon Technology’s Lightspeeur 5801S [59] is an ultra low-power AI accelerator,
targeting only CNN models. The accelerator is used in LG Electronics’s smartphone as
its AI chip. The accelerator’s AI core is Gyrfalcon’s patented APiMTM (Al Processing in
Memory) technology, allowing for on-chip parallelism. Lightspeeur 5801S has the lowest
power of all reviewed company affiliated accelerators.

ARM’s ETHOS-U55 [55] is a micro neural processing unit (NPU) for area-constrained
embedded and IoT devices. It has a re-configurable MAC array, and can compute the core
kernels used in many neural network tasks, such as convolutions, LSTM, RNN, pooling,
activation functions, and primitive element wise functions, while other kernels run on the
host CPU. ETHOS-U55 has the smallest area of all reviewed company affiliated accelerators.

Quadric’s first generation AI accelerator, q16 [76], uses 256 Vortex cores (4 kB per core
memory) with 8 MB on-chip memory. The accelerator supports multiple precision formats
for its MAC operations and comes embedded into an M.2 form factor. q16 has the highest
throughput of all reviewed company affiliated accelerators.

One observation that we made when going through the company accelerators was
that none of them use fixed point arithmetic, which several research accelerators do. An ex-
planation could be that when a company designs and implements an accelerator, both
the development and the life time of the product are long. Thus, by using more flexible
formats, such as floating point arithmetic, companies are more prepared for changes in
future workloads.

4.8. Summary of Recent AI Accelerators

Summarizing the results from the previous five sections, we observe that company
affiliated low-power AI accelerators tend to have a higher throughput (≥10 GOPS) and
power consumption (≥100 mW) compared with non-company affiliated accelerators (2.2x
less power consumption than company affiliated accelerators). This observation can be
observed in other aspects of the accelerators too, i.e., higher overall frequency, better power
efficiency, and smaller area. This could indicate that the power used in real hardware
is higher than what the simulated systems usually predict. Another reason is the use of
different technology parameters in simulations vs. real implementations, e.g., different
circuit technology generations. In addition, the number of targets for acceleration is likely
to contribute to the increase. Company affiliated accelerators tend to accelerate multiple
targets, i.e., they accelerate applications which theoretically belong to the same general
group of applications, sharing many internal components among them, compared with
non-company affiliated accelerators.

We observed that integers continue to be the most common precision format used
(≤8-bit) for low-power AI accelerators. The fixed point (FxP) format and Google Brain’s
bfloat (BFP) format have increased in popularity during the last four years. We contribute
the former to stricter power requirements, and the latter to the transition period from when
it was announced (2018) to being used in AI accelerators in the low-power domain.

Finally, we have observed that low-power SNN accelerators have increased in popu-
larity in recent years. A possible reason for that is that they tend to use less power than
non-SNN accelerators (47% less power).
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5. Discussion

As we presented in Section 4, simulations and ASIC dominate the field of research and
commercial low-power AI accelerators between the years, 2019 to 2022, respectively. How-
ever, according to the study by Talib et al. [24], FPGA-based accelerators and CPU-based
processors were mainstream between 2009 and 2019. This differs from our observations
(excluding CPU-based processors, as we did not consider them in our survey) where FPGA-
based accelerators are not common (4 of 79 reviewed accelerators are FPGA-based systems).
In our survey, we have found that most company affiliated accelerators are ASICs, and not
FPGA-based.

According to Reuther et al. [5,7,8], accelerators that have a power consumption below
100 W focuses solely on inference. However, our results show that is not the case. From our
observations and findings, AI accelerators dedicated to both training and inference do exist
in the low-power domain. Their power consumption tend to be in the higher spectrum of
low-power (≥≈90 mW) for AI accelerators.

We also observed that ASIC-based accelerators have higher power requirements com-
pared to simulated systems. Our results show a clear distinction between the two groups
(simulated and ASIC). This could be caused by the simulation itself; as we cannot be certain
of how accurate the simulations models real hardware. When simulating an accelerator
based on an architecture, it is common to use systems that model the hardware by specify-
ing parameters for the energy consumption of each component. Therefore, the resulting
power consumption for the simulated system is based on the values chosen to represent the
energy consumption of the components, and this will induce variations in the consump-
tion of energy compared to a real hardware with physical components and fluctuating
energy usage. Further, we have observed that real hardware implementations (by compa-
nies) use more advanced circuit technology to increase performance, thus increasing clock
frequencies, which in turn drive a higher power consumption.

Regarding the numerical precision formats, we found that the 8-bit and 16-bit formats
are still prevalently used in AI accelerators, even more so in the low-power domain. We
observed that the fixed point and bfloat formats have increased in usage in non-company
low-power accelerators, and we speculate that the increase in fixed point is due to the
stricter power requirements and the increase in the usage of the bfloat is due to the transition
period from when it was announced until it is used in the low-power domain. Our argument
is two-fold: (i) the fact that research in low-power AI accelerators tend to focus on gaining
higher throughput by reducing flexibility and as the fixed point format locks and restricts
the number of decimals used, and (ii) as the bfloat format uses a wider dynamic range of
values, but with reduced accuracy, they are often preferred over the traditional floating
point formats.

We observed an increased interest in Transformers, see Section 4.4. Our intuition for
this increase is based on the fact that the Transformer is a recent algorithm (published
in 2017) and therefore the increased interest now is due to the transition time into the
low-power domain for Transformer models. Since Transformer models in general are very
computational demanding, the transition into the low-power domain occurred later (2021).
We predict that the popularity of the Transformer will continue in the coming years.

In Section 4.4, we observed that accelerators could accelerate more than one acceler-
ation target, and when that is the case, the targets for acceleration are often applications
that are similar to each other. We found that this is most prevalent in company affiliated
accelerators; where they tend to support multiple applications, meaning they can accelerate
multiple acceleration targets. Assuming this will continue to be the case for later years,
and that the company affiliated accelerators continue to trade higher throughput for higher
power (to be able to achieve the former results), we can assume that the lowest power
that a commercial low-power AI accelerator will follow the current trend, i.e., a power
consumption higher than ≈200 mW.
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6. Conclusions

In this paper, we present an overview of the recent development of low-power AI
accelerators for the last four years. In total, we have covered 79 different accelerators,
both from academia and industry. The number of accelerators presented has been quite
stable in between the years, but a majority of the accelerators seem to come from research
organizations. It seems that very low-power (<100 mW) accelerators are quite rare, as are
devices with a very high throughput (>10 TOPS/W). However, it should be noted that
the trend regarding power efficiency seems to follow the trends observed in previous,
non-low-power accelerators [8]. Low-power accelerators are within the same trend-lines,
only with a lower power consumption.

Interestingly, there does not seem to be any increase in power efficiency over the years
among the observed accelerators. Instead, most accelerators seems to cluster between
100 mW–10 W and between 100 GOPS/W–10 TOPS/W. Another interesting aspect to
note is that while companies implement more accelerators (i.e., non-simulated), the power
consumption for company accelerators tends to be higher compared to non-companies
(mean power of 2.9 W compared to 1.3 W for non-company accelerators). This might be a
consequence of how power consumption is calculated for simulated devices, which could
be considered a theoretical lower limit. It could also be because implemented company
accelerators tend to accelerate multiple targets.

Finally, while CNNs and DNNs are the most popular accelerator targets, Transformers
are becoming more popular. While interest in SNN seems to be quite stable, spiking
accelerators tend to use less power than non-spiking (mean power of 0.9 W and 1.7 W,
respectively). As such, it is an interesting technology for low-power environments.
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Appendix A

All accelerators included in this survey are listed in Tables A1–A4. Due to size
restrictions, some information are omitted.
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Table A1. Low-power AI accelerators from 2019.

Accelerator Acc. Target Tech Area Power Freq. Perf. Power Eff. Area Eff. Type

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

Eyeriss v2 [47] CNN 65 - 476.25 * 200.0 153.6 578.3 - simulated
Khabbazan et al. [79] CNN - - 1770.00 160.0 41.0 23.1 - FPGA
Wang et al. [31] CNN 40 2.16 68.00 50.0 3.2 * 47.1 * 1.5 * FPGA
SparTen [80] CNN 45 0.77 118.30 800.0 25.6 * 216.4 * 33.4 * simulated
DT-CNN [81] CNN, GAN 65 6.80 196.00 200.0 639.7 3260.0 94.1 simulated
Dante [82] DNN 14 2.30 - 330.0 - - - simulated
TIE [83] DNN 28 1.74 154.80 1000.0 7640.0 72,900.0 43,807.3 * simulated
MnnFast [84] Transformer 28 - - 1000.0 120.0 - - FPGA
ExTensor [85] SpGEMM 32 98.89 - 1000.0 128.0 - - simulated
WAX [29] CNN 28 0.33 1.55 * 200.0 26.2 * 16,938.5 * 206.0 simulated
CGNet-NM [41] CNN 28 3.86 159.50 500.0 144.0 * 902.8 * 37.3 * simulated
Tianjic [61,62] SNN, ANN 28 14.44 950.00 300.0 1214.1 * 1278.0 84.1 * ASIC
MASR [86] RNN 16 4.70 375.00 1000.0 544.0 * 1051.4 * 194.6 * simulated
Li et al. [87] CNN 28 10.92 154.03 240.0 604.7 2970.0 55.4 * ASIC
NPU’19 [66] ‡ DNN, CNN 8 5.50 796.00 933.0 4423.5 8000.0 804.3 * ASIC
LNPU [88] CNN, LSTM, RNN 45 16.00 367.00 200.0 2482.8 * 3382.5 * 77.6 * ASIC
eCNN [89] CNN 40 55.23 6950.00 250.0 41,000.0 5899.3 742.4 simulated
Lightspeeur 5801S [59] ‡ CNN 28 36.00 224.00 200.0 2800.0 12,600.0 77.8 * ASIC
Lightspeeur 2801S [60] ‡ CNN - 49.00 600.00 100.0 5600.0 9300.0 114.3 * ASIC
Hailo-8 [67] ‡ DNN - 225.00 2500.00 - 26,000.0 10,400.0 * 115.6 * ASIC
KL520 [57] ‡ LSTM, CNN - - 575.00 * 300.0 345.0 600.0 - ASIC
Jetson Nano [33] ‡ DNN - 3150.00 7500.00 - 250.0 37.5 * 0.1 * ASIC

∗ Calculated based on configuration and/or published metrics of specified accelerator. ‡ Published research
paper’s authors are affiliated with a company (see Table 6 for specifics).

Table A2. Low-power AI accelerators from 2020.

Accelerator Acc. Target Tech Area Power Freq. Perf. Power Eff. Area Eff. Type

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

JPEG-ACT [90] CNN - 1.48 1360.00 1455.0 - - - simulated
TIMELY [32] DNN, CNN 65 91.00 0.41 * 40.0 4.2 * 21000.0 0.0 * simulated
RecNMP [54] PR 40 0.54 169.25 240.0 - - - simulated
uGEMM [91] GEMM 45 0.60 165.00 400.0 102.4 * 670.5 * 185.6 * simulated
SpinalFlow [48] SNN 28 2.09 162.40 200.0 25.6 *† 157.6 *† 32.0 *† simulated
NEBULA [51] SNN, ANN 32 86.73 5200.00 1200.0 - - - simulated
XpulpNN [43] DNN, CNN 22 1.00 100.00 250.0 5.0 550.0 55.0 * simulated
YOSO [42] SNN 22 - 0.73 <1.0 1.3 *† 1757.8 *† - simulated
DRQ [44] DNN 45 0.32 71.96 * 500.0 1584.0 * 22160.2 * 4950.0 * simulated
SmartExchange [92] DNN, CNN 28 - 2853.00 * 1000.0 8192.0 * 4054.0 * - simulated
MatRaptor [93] SpGEMM 28 2.26 1344.95 2000.0 32.0 23.8 * 14.2 * simulated
DT-CNN [94] CNN, GAN 65 6.80 206.00 200.0 664.4 3220.0 97.6 simulated
Zhang et al. [35] MAC 45 - 199.68 25.0 121.4 610.0 - simulated
A3 [95] Transformer 40 2.08 98.92 1000.0 221.0 2234.1 * 106.1 * simulated
OPTIMUS [96] GEMM 28 5.19 928.14 200.0 - - - simulated
SpArch [97] SpGEMM 40 28.49 9260.00 1000.0 16.0 1.7 * 0.6 * simulated
Oh et al. [56] ‡ CNN, LSTM, RNN 14 9.80 2727.00 * 1500.0 3000.0 1100.0 300.0 ASIC
REVEL [98] Matrix Alg. 28 1.93 1663.30 1250.0 - - - simulated
ETHOS-U55 [55] ‡ CNN, LSTM, RNN 16 0.10 - 1000.0 512.0 - 2880.0 * ASIC
ETHOS-U65 [68] ‡ CNN, LSTM, RNN 16 0.60 - - 1000.0 - 1666.7 * ASIC
KL720 [58] ‡ CNN, LSTM, RNN - - 1362.50 696.0 1500.0 1250.0 * - ASIC

* Calculated based on configuration and/or published metrics of specified accelerator. † Corresponding research
paper display results in GSyOPS (Giga-Synaptic Operations per Second) instead of GOPS. ‡ Published research
paper’s authors are affiliated with a company (see Table 6 for specifics).
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Table A3. Low-power AI accelerators from 2021.

Accelerator Acc. Target Tech Area Power Freq. Perf. Power Eff. Area Eff. Type

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

GoSPA [30] CNN 28 0.25 * 26.64 500.0 16.0 * 600.6 * 64.0 * simulated
RingCNN [45] CNN 40 23.36 2220.00 250.0 41.0 28,400.0 1755.1 * simulated
SNAFU-ARCH [6] GEMM 28 1.00 0.32 50.0 0.2 * 625.0 * 0.2 * simulated
Cambricon-Q [69] ‡ CNN, RNN 45 9.18 * 1030.31 1000.0 2000.0 1941.2 * 217.9 * simulated
ELSA [99] Transformer 40 2.10 1472.89 1000.0 1088.0 738.7 * 518.1 * simulated
RaPiD [70,71] ‡ CNN, LSTM,

RNN, Transformer
7 36.00 6206.00 * 1600.0 51,200.0 8250.0 2610.0 ASIC

NPU’21 [72,73] ‡ DNN, CNN 5 5.46 327.00 1196.0 14,700.0 13,600.0 4447.2 * simulated
Lin et al. [37] MLP 40 0.57 93.00 1600.0 899.0 9700.0 1577.2 * simulated
PremCNN [46] DNN, CNN 28 3.44 500.00 800.0 102.4 * 204.8 * 29.8 * simulated
GAMMA [100] SpGEMM 45 30.60 - 1000.0 20.0 - 0.7 * simulated

FPRaker [38] CNN 65 771.61 * 3942.00 * 600.0 11,059.2
* 2835.7 * 14.3 * simulated

Bitlet [101] DNN, CNN, GAN,
Transformer

28 1.54 366.00 1000.0 744.7 1335.9 483.6 * simulated

RASA [102] GEMM 15 0.90 * - 500.0 128.0 * - 138.5 * simulated
StepStone PIM [103] GEMM - - 1400.00 1200.0 - - - simulated
SpAtten [39] Transformer 40 18.71 8300.00 1000.0 2880.0 * 347.0 * 153.9 * simulated
IMPULSE [28] SNN 65 0.09 0.20 200.0 0.2 990.0 2.2 ASIC
VSA [63] SNN 40 - 88.97 500.0 2304.0 25900.0 - simulated
Zeng et al. [104] CNN 65 - 478.00 250.0 576.0 1205.0 - simulated
Ethos-N78 [74] ‡ CNN, LSTM, RNN - - - - 10,000.0 - - ASIC
KL530 [75] ‡ CNN, LSTM,

RNN, Transformer
- - 500.00 - 1000.0 2000.0 * - ASIC

q16 [76] ‡ DNN 16 256.00 5500.00 1000.0 64,000.0 11636.4 * 253.9 ASIC
M1076 AMP [77] ‡ DNN - 294.50 4000.00 - 25,000.0 6250.0 * 84.9 ASIC
VE2002 [78] ‡ DNN, CNN 7 - 6000.00 - 5000.0 833.3* - ASIC
VE2102 [78] ‡ DNN, CNN 7 - 7000.00 - 8000.0 1142.9 * - ASIC

* Calculated based on configuration and/or published metrics of specified accelerator. ‡ Published research
paper’s authors are affiliated with a company (see Table 6 for specifics).

Table A4. Low-power AI accelerators from 2022.

Accelerator Acc. Target Tech Area Power Freq. Perf. Power
Eff.

Area
Eff. Type

nm mm2 mW MHz GOPS GOPS/W GOPS/mm2

RedMulE [27] GEMM 22 0.50 43.50 476.0 30.0 688.0 60.0 * simulated
DOTA [36] Transformer 22 2.75 3020.00 100.0 2048.0 * 678.1 * 745.8 * simulated
EcoFlow [49] CNN, GAN 45 - 332.00 200.0 39.0 * 117.5 * - simulated
FINGERS [105] Graph Mining 28 18.68 * 3682.00 * 1000.0 - - - simulated
DTQAtten [106] Transformer 40 1.41 - 1000.0 952.8 - 678.4 simulated
Chen et al. [64] SNN 28 0.89 149.30 500.0 - - - simulated
Skydiver [65] SNN - - 960.00 200.0 22.6 † 19.3 † - FPGA
DIMMining [40] Graph Mining 32 0.38 105.82 500.0 - - - simulated
MeNDA-PU [50] SpMatrix Transposition 40 7.10 92.40 800.0 - - - simulated
Ubrain [107] DNN, CNN, RNN 32 4.00 45.00 400.0 - - - simulated
Mokey [108] Transformer 65 23.90 4478.00 * 1000.0 - - - simulated
HP-LeOPArd [109] Attention 65 3.47 - 800.0 574.1 - 165.5 simulated

* Calculated based on configuration and/or published metrics of specified accelerator. † Corresponding research
paper display results in GSyOPS (Giga-Synaptic Operations per Second) instead of GOPS.
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