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Abstract: Based on many previous experiments, the most efficient explicit and stable numerical
method to solve heat conduction problems is the leapfrog-hopscotch scheme. In our last paper, we
made a successful attempt to solve the nonlinear heat conduction–convection–radiation equation.
Now, we implement the convection and radiation terms in several ways to find the optimal implemen-
tation. The algorithm versions are tested by comparing their results to 1D numerical and analytical
solutions. Then, we perform numerical tests to compare their performance when simulating heat
transfer of the two-dimensional surface and cross section of a realistic wall. The latter case contains
an insulator layer and a thermal bridge. The stability and convergence properties of the optimal
version are analytically proved as well.

Keywords: heat equation; Stefan–Boltzmann law; explicit time integration; unconditionally stable
numerical methods

1. Introduction

Diffusion of particles and Fourier-type heat conduction are omnipresent mass or
energy transport processes. In the simplest linear case, they are described by the following
partial differential equation (PDE):

∂u(x, t)
∂t

= α
∂2u(x, t)

∂x2 , (1)

where x, t ∈ R are the independent variables, u = u(x, t) is the unknown concentration
of particles or the temperature in the case of heat transfer, and α is the coefficient of
(thermal) diffusivity. The thermal diffusivity of a material can be given as α = k/(cρ),
where c = c(

→
r , t), k = k(

→
r , t), and ρ = ρ(

→
r , t) are the specific heat, the heat conductivity,

and the density of the material, respectively. If these coefficients depend on space, one has
to use the more general equation

∂u
∂t

=
1
cρ
∇(k∇u), (2)

where it is assumed that the c and ρ functions are positive. This equation is now valid for
more than one space dimension.

According to Newton’s law of cooling, a term K(ua − u) can describe (free) convective
heat transfer [1], where ua is the ambient temperature (measured in Kelvin), which can be
considered as independent from u. On the other hand, according to Stefan–Boltzmann’s
law [2], the heat loss of a unit surface via electromagnetic radiation can be given by a term
−σu4. The incoming radiation, the Kua heat gain due to the nonzero temperature of the
ambient air, as well as other factors such as heat generated by electric currents, can be
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collected into a so-called heat source term denoted by q. Based on these considerations, the
heat conduction Equation (1) can be extended to include heat convection, radiation, and
source terms as follows:

∂u
∂t

=
1
cρ
∇(k∇u) + q− K · u− σ · u4, (3)

where the terms q, K · u, and σ · u4 should also be non-negative.
Several numerical methods, which have been proposed to solve Equations (1) and (2),

belong to the wide group of finite difference schemes (FDM) [3–5]. This can include
different kinds of methods of lines [6], where first the space variables are discretized, and
then a well-established ordinary differential equation (ODE) solver is employed to solve
the obtained ODE system. These methods are usually classified as either explicit or implicit,
but occasionally these two approaches are combined [7]. Implicit methods have excellent
stability properties; therefore, they are commonly used for these equations [8–13]. The
price for the stability is that a system of algebraic equations must be solved at each time
step. This can imply very slow calculations, particularly in cases when the number of space
dimensions is more than one, thus one has very large-sized and non-tridiagonal matrices. In
these cases, even the most trivial explicit (Euler) time integration can be considerably faster
than the implicit one [14]. Moreover, explicit algorithms can be parallelized much more
straightforwardly than in the implicit methods. The main obstacle against the rise of the
explicit algorithms is that they are typically only conditionally stable, i.e., the solutions can
blow up if the time step size is below the so-called Courant–Friedrichs–Lewy (CFL) limit.
For example, explicit Runge–Kutta methods can never be unconditionally stable [15] (p. 60).
The coefficients c, k, or the diffusion constant can be highly non-uniform in space [16],
e.g., when the physical properties have sharp discontinuities at the material boundaries.
In these cases, the range of the eigenvalues of the system matrix has several orders of
magnitude, the problem is very stiff, the CFL limit can be extremely small, thus the
simulation can be unacceptably time-consuming.

There are exceptions from the above restrictions: the explicit and unconditionally
stable algorithms [17–23] can be, at least partly, the solution for the above-explained
problems. For example, it is reported [24] that the Dufort–Frankel scheme can be more
effective in the case of fine meshes than the standard Crank–Nicolson scheme. During
the last few years, we have been constructing several new explicit algorithms and have
analytically proved that they are stable for the linear heat conduction equation. In those
original papers [25–29], we examined the new schemes numerically as well, and found
that they can outperform the widely used Runge–Kutta schemes [30] or the professionally
coded MATLAB ‘ode’ solvers. Among these new methods, almost always the so-called
leapfrog-hopscotch (LH) method has the best performance, but it can be outperformed
by the original odd–even hopscotch algorithm if the system is not stiff at all. In our last
paper [31], we applied some of these algorithms to Equation (3) to see whether they can be
efficient under realistic conditions, e.g., when heat transfer in an insulated wall has to be
calculated. However, in that paper, the convection and radiation terms were implemented
in a rather ad hoc way based on our previous experiences. Moreover, no analytical proof of
the stability or the convergence properties of the LH scheme has been published for the
case when the equation contains anything other than the conduction term. The aim of this
paper is to fill this gap. We try all possible implementations that can be simply coded. The
evaluation is mostly based on numerical experiments but partly on the truncation errors
and the theoretical examination of stability as well.

We are also going to use the idea contained in the nonstandard finite difference
schemes initiated by Mickens [32]. The procedure of the construction of these nonstandard
schemes can be found in [32] on p. 831, and in [33] on p. 1149, and one of the essential
points is that the nonlinear term is advised to be treated non-locally. Therefore, we try a
few different nonlocal implementations of the radiation term.



Algorithms 2022, 15, 400 3 of 28

The structure of the rest of the paper is as follows. We briefly present first the leapfrog-
hopscotch method, followed by the examined treatments of the convection and the radiation
terms, in Section 2. In Section 3, we perform numerical tests for the convection term, and
the algorithm with the best performance is analytically examined in Section 4. Further
numerical experiments are presented in Section 5 in one dimension, while the algorithms
are tested under realistic conditions in Section 6. The conclusions are finally summarized
in Section 7.

2. The Examined Numerical Methods
2.1. The Leapfrog-Hopscotch Method for the Heat Conduction Equation

To use the leapfrog-hopscotch method, or any other odd–even hopscotch method, the
space domain must be discretized using a special, so-called bipartite mesh. This means
that the mesh is divided into two disjoint subsets. The nodes or cells belong to the first
and second subsets that are labeled as odd and even, respectively. The main requirement
is that all the immediate neighbors of the odd cells must be even and vice versa, just like
on a checkerboard. We describe it in the case of a 1D interval x ∈ [x0 , xN ], L = xN − x0
on which an equidistant grid is constructed with coordinates x0, x1 , . . . , xN of nodes,
so xj = xj−1 + ∆x, j = 1, . . . , N, ∆x = L/N . The time domain is t ∈

[
t0, tfin] and it is

discretized as usual: tj = t0 + jh , j = 1, . . . , T , hT = tfin − t0, where h is the time step
size. The mesh ratio can be defined as r = αh

∆x2 , where α is defined after Equation (1). In
all stages, the following version of the theta formula (obtained from the central difference
formula for the space derivative) is used as a starting point:

un+1
i = un

i + r
[
un

i−1 + un
i+1 − 2θun

i − 2(1− θ)un+1
i

]
, (4)

where θ ∈ [0, 1]. The space–time structure of the algorithm is presented in Figure 1, where
one can see that the neighbors un

i±1 are almost always taken into account at the time level
half way between the actual old and new time levels. The first stage has the length of a
halved time step, and it calculates new values for the odd nodes using θ = 0, thus we have
the formula

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi

1 + r
, (5)

symbolized by thick red arrows in the figure. Then a full time step is made with θ = 1/2 for
the even nodes using

u1
i =

(1− r)u0
i + r

(
u1/2

i−1 + u1/2
i+1

)
+ hqi

1 + r
, (6)
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Figure 1. Space–time structure of the leapfrog-hopscotch (LH) scheme. Odd and even nodes are 
symbolized by light and dark dots, respectively. 
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We note that we exemplify the versions with a first-stage formula, since it is the least 
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we have 

( )1
2, temp

0 0 0
1 12 2
1

ii i i
i

hru u u q
u

r
− ++ + + ⋅
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We expect that this version has an outstanding stability, since the absolute value of 
the solution is always smaller than the temporary value 

1
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iu , where only the conduc-

tion and the source terms are taken into account. 
3. Pseudo-implicit treatment means that the u variable in the convection term is taken 

into account at the new time level, so Equation (4) is extended as follows: 

Figure 1. Space–time structure of the leapfrog-hopscotch (LH) scheme. Odd and even nodes are
symbolized by light and dark dots, respectively.
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After this, full time steps are taken alternately for the odd and even nodes with
Formula (6), symbolized by blue and green arrows in the figure. Finally, a half-length time
step (orange arrows) must close the calculations with θ = 1/2 for the odd nodes

uT
i =

(1− r/2)uT−1/2
i + r/2

(
uT

i−1 + uT
i+1
)
+ h/2 · qi

1 + r/2
. (7)

The key point here is that the latest values of the u function are always used, which
means that the time indices of the node variables have to be set according to this logic,
in which the figure can help. For example, when the odd node value u1+1/2

i is calculated,
u1

i−1 , u1
i+1, and u1/2

i are used, etc.

2.2. Implementations of the Convection Term

Until this point, the LH algorithm has been given only for the conduction and the heat
source term. Now, the −Ku term is also included, which is done in several ways.

1. The explicit treatment means that one calculates the increment due to the term and
simply adds it to the final value of the new u, just as it would happen for the explicit Euler
method. For example, in the case of the first stage with a halved time step, the increment is
−∆t

2 Ku0
i , thus we have

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ ∆t/2 · qi

1 + r
− h/2Ku0

i . (8)

We note that we exemplify the versions with a first-stage formula, since it is the least
nontrivial due to the half-sized time step.

2. Quasi-exact treatment means that we analytically solve the ODE

du
dt

= −K · u, (9)

and then take the effect of the convection terms into account in a separate calculation at
the end of each stage. For example, in the case of the first stage with a halved time step,
we have

u
1/2, temp
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi

1 + r
(10)

and
u1/2

i = e−Kh/2u
1/2, temp
i . (11)

We expect that this version has an outstanding stability, since the absolute value of the
solution is always smaller than the temporary value u

1/2, temp
i , where only the conduction

and the source terms are taken into account.
3. Pseudo-implicit treatment means that the u variable in the convection term is taken

into account at the new time level, so Equation (4) is extended as follows:

un+1
i = un

i + r
[
un

i−1 + un
i+1 − 2θun

i − 2(1− θ)un+1
i

]
− Khun+1

i . (12)

With this, the K term turns up only in the denominator, thus the first stage formula is
the following:

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi

1 + r + hK/2
. (13)

Note that in our last paper [31], only this implementation was proposed.
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4. Now, the u variable in the convection term is taken into account at the old time
level, so in Equation (12), the last term is changed to −Khun

i This means that the K term
turns up only inside the numerator, so the first stage formula is the following:

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khu0

i /2
1 + r

. (14)

Due to the lack of a better name, we call this version temporarily ‘inside’.
5. Mixed treatment means that we make a linear combination of the last two versions

(pseudo-implicit and inside) at the level of Equation (12), where the last term is changed to
−pKhun+1

i − (1− p)Khun
i . The real parameter p has a similar role as that which θ has for

the conduction case. Now, the formulas are the following:

First stage : u1/2
i =

u0
i +

r/2(u0
i−1+u0

i+1)+h/2·qi−(1−p)Khu0
i /2

1+r+pKh/2 ,

Intermediate stages : un+1
i =

(1−r)un
i +r

(
un+1/2

i−1 +un+1/2
i+1

)
+hqi−(1−p)Khun

i
1+r+pKh ,

Last stage : uT
i =

(1−r/2)uT−1/2
i +r/2(uT

i−1+uT
i+1)+h/2·qi−(1−p)KhuT−1/2

i /2
1+r/2+pKh/2 .

(15)

We performed tests with several values of p, but here we present them only for three
values, namely, p = 1/3, 1/2, 2/3.

2.3. Implementations of the Radiation Term

In Sections 3 and 4, it will turn out that the mixed treatment with p = 1/2 is the most
effective; thus, when defining different treatments of the radiation term, the convection
term will be taken into account that way. The radiation term will be implemented in similar
ways as the convection term, but now one has more possibilities.

1. Explicit treatment:

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khu0

i /2
1 + r + Kh/4

− σh
(

u0
i

)4
/2. (16)

2. Quasi-exact treatment: The analytical solution of the ODE

du
dt

= −σ · u4,

is

u(t) =
(
(u0)

−3 + 3σt
)− 1

3 . (17)

This means that we have the following two sub-stages:

Sub− stage 1 : u
1/2, temp
i =

u0
i +

r/2(u0
i−1+u0

i+1)+h/2·qi−Khu0
i /2

1+r+Kh/4 ,

Sub− stage 2 : u1/2
i =

((
u

1/2, temp
i

)−3
+ 3σh

)− 1
3
.

(18)

3. Pseudo-implicit treatment: Equation (4) is now modified as

un+1
i = un

i + r
[
un

i−1 − 2un
i + un

i+1 − 2θun
i − 2(1− θ)un+1

i

]
− Khun+1

i /2− Khun
i /2− σhun+1

i (un
i )

3 (19)

This yields

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khu0

i /2

1 + r + Kh/4 + σh
(
u0

i
)3/2

(20)
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4. ‘Inside’ treatment: The last term of Equation (19) is now written as −σh
(
un

i
)4,

which yields

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khu0

i /2− σh
(
u0

i
)4/2

1 + r + Kh/4
. (21)

5. Mixed treatment with equal share of the pseudo-implicit and inside treatments. The
last term of Equation (19) is the average of the previous two cases, i.e., it is −σh

(
un

i
)4/2−

σhun+1
i
(
un

i
)3/2, which yields

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khu0

i /2− σh
(
u0

i
)4/4

1 + r + Kh/4 + σh
(
u0

i
)3/4

(22)

Now, we turn our attention to the nonstandard or nonlocal treatments of the radiation
term. Aiming to avoid symmetry breakings and an extensive increase in the running times,
we try three different possibilities. Since the pseudo-implicit version (20) is the most suc-
cessful among the treatments presented so far, we modify this version, mostly by changing
one or two of the ui-s in the (ui)

3 product in the denominator of, e.g., Equation (20) in the
following three ways.

6. Product treatment (denoted by LH PI NL prod): Instead of
(
u0

i
)3 and

(
un

i
)3, we

write u0
i−1u0

i u0
i+1 and un

i−1un
i un

i+1, respectively.

7. Average treatment (denoted by LH PI NL av): Instead of
(
u0

i
)3 and

(
un

i
)3, we write

u0
i−1+u0

i+1
2

(
u0

i
)2 and

un
i−1+un

i+1
2

(
un

i
)2, respectively.

8. In the case of the time-average treatment (denoted by LH PI NL time), there are two
sub-stages. First, we calculate the effect of the diffusion and the source terms by (5)–(7) to
obtain a temporary value utemp

i . Then the time average utimeav
i = (un

i + utemp
i )/2 is inserted

into Formula (20), as follows:

u1/2
i =

u0
i + r/2

(
u0

i−1 + u0
i+1
)
+ h/2 · qi − Khutimeav

i /2

1 + r + Kh/4 + σhutimeav
i

(
u0

i
)2/2

(23)

Due to the 1− r factor in the numerators of, e.g., the second equation of (15), the
formulas can give negative temperatures for large r. In these cases, large negative values of
the term (un

i )
3 can arise in the denominator, which may cause instability. To avoid this, in

some cases, we apply a simple trick by the following conditional statement:

if un+1
i < 0 then un+1

i = 0. (24)

When this simple trick of the prohibition of negative u values is applied, it is denoted
by the label ‘NoNeg’. The different treatments with their notations are summarized in
Table 1.

2.4. Methods Used for Comparison Purposes

We present three explicit methods, which are known to be unconditionally stable for
the heat conduction case. However, as far as we know, they have not been applied to the
case where convection and radiation are also present.
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Table 1. The different treatments of the convection and the radiation terms and the defining equations.

Equation Number
or Point

LH FullExp Fully explicit
convection, Section 2.2 (8)

radiation, Section 2.3 (16)

LH QuasiEx Quasi-exact
convection, Section 2.2 (11)

radiation, Section 2.3 (18)

LH PseudoImp Pseudo-implicit, PI
convection, Section 2.2 (13)

radiation, Section 2.3 (20)

LH Inside Inside (the numerator)
convection, Section 2.2 (14)

radiation, Section 2.3 (21)

LH Inside Noneg Inside with the
non-negative trick

convection, Section 2.2 (14) + (24)

radiation, Section 2.3 (21) + (24)

LH Mixed
Mixture of the

pseudo-implicit and inside
with the weight of the PI

convection, Section 2.2 (15)

radiation, Section 2.3 (22)

LH PI NL prod Pseudo-implicit, nonlocal
with product radiation, Section 2.3, 1D point 6

LH PI NL av
Pseudo-implicit, nonlocal

with space-average
radiation, Section 2.3, 1D point 7

radiation, Section 2.3, 2D (39)

LH PI NL time Pseudo-implicit, nonlocal
with time-average radiation, Section 2.3 point 8

1. The Dufort–Frankel (DF) method [34] (p. 313) is the textbook example of explicit and
unconditionally stable methods. It is a two-step but one-stage algorithm with the following
formula, where the convection and the radiation terms are treated in a mixed way:

un+1
i =

(1− 2r)un−1
i + 2r

(
un

i−1 + un
i+1
)
+ 2hqi − hKun

i − hσ
(
un

i
)4

1 + 2r + hK + hσ
(
un

i
)3 (25)

Since this algorithm is not a self-starter, u1
i must be calculated from u0

i by another
method. We employ the UPFD formula [31] for this purpose:

un+1
i =

un
i + r

(
un

i−1 + un
i+1
)
+ hqi

1 + 2r + hK + hσ
(
un

i
)3

2. The alternating direction explicit (ADE) scheme is a known, but non-conventional
method [23,35]. In a one-dimensional equidistant mesh, one splits the calculation into two
directions, first sweeping the mesh from the left to right (using auxiliary variable a) and
then vice versa (with variable b). In the case of Dirichlet boundary conditions at nodes 0
and N, one sets

an
i = un

i , i = 1, . . . N , an+1
0 = un+1

0 and bn
i = un

i , i = N, N − 1, ...1 , bn+1
N = un+1

N

Then, in case of pure conduction, the following equations are solved from left to right
and from right to left, respectively:

an+1
i − an

i
h

=
α

∆x2

(
an+1

i−1 − an+1
i − an

i + an
i+1

)
and

bn+1
i − bn

i
h

=
α

∆x2

(
bn

i−1 − bn+1
i − bn

i + bn+1
i+1

)
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Since, on the right hand side of these formulas, both ai and bi are taken into account
50–50% in the old and new time level, it is plausible to use the mixed treatment of the
convection and radiation term here, too. With this, the explicit expressions are the following:

an+1
i =

(1− r− hK/2)an
i + r

(
an+1

i−1 + an
i+1

)
+ hqi − hσ

(
an

i
)4/2

1 + r + hK + hσ
(
an

i
)3/2

bn+1
i =

(1− r− hK/2)bn
i + r

(
bn

i−1 + bn+1
i+1

)
+ hqi − hσ

(
bn

i
)4/2

1 + r + hK/2 + hσ
(
bn

i
)3/2

(26)

The final values are the simple averages of the two half-sided terms:
un+1

i =
(

an+1
i + bn+1

i

)
/2. We note that for non-uniform meshes, the ADE method loses

its fully explicit character, and matrix calculations would be necessary, so in Section 6 it is
not used.

3. The original odd–even hopscotch (OOEH) algorithm has been known for half a
century [36]. Its time–space structure is presented, e.g., in [25,37]. It uses the usual FTCS
formula (based on explicit Euler time discretization) at the first stage and the backward
time central space (BTCS) formula (implicit Euler time discretization) in the second stage.
We now adapt it to our case in a way where the convection term is always taken into
account at the new time level, while the radiation term is treated first explicitly and then in
the pseudo-implicit way. The used formulas are the following:

First stage:

un+1
i =

(1− 2r)un
i + r

(
un

i−1 + un
i+1
)
+ hqi − hσ

(
un

i
)4

1 + hK

Second stage:

un+1
i =

un
i + r

(
un+1

i−1 + un+1
i+1

)
+ hqi

1 + 2r + hK + hσ
(
un

i
)3 un+1

i =
un

i + r
(

un+1
i−1 + un+1

i+1

)
+ hqi

1 + 2r + hK + hσ
(
un

i
)3

3. Numerical Experiments for the Convection Term

In Sections 3 and 5, our aim is to mathematically examine the algorithms, thus the
units of the quantities are omitted. In this paper, the MATLAB software was used for
all numerical calculations. The accuracy is characterized by the usual L∞ error, which
compares the accurate reference value uref

i and the result unum
i obtained by the actual

numerical method at the final time tfin:

Error = max
1≤i≤N

∣∣∣uref
i (tfin)− unum

i (tfin)
∣∣∣. (27)

This error is calculated as a function of the time step size h. More concretely, the error
is first calculated for a very large h, then this is repeated with time step sizes subsequently
decreased by a factor of 2 until small error values are reached.

Experiment 1—moderately strong convection. We start with a case where the con-
vection coefficient is not very large, K = 3, while α = 1. The initial and the heat source
functions are the following:

u0(x) = 5ex/4[2 + sin(2x)] , q(x) = 10[1 + sin(5x + 0.2)]. (28)

The considered domain is x0 = 0 , xN = 5 , t0 = 1 , tfin = 2.2. The space step size
is ∆x = 0.0125. The fixed Dirichlet boundary conditions are simply the initial values at
the boundaries u0(x0) and u0(xN). We employed the ode15s solver to gain the reference
solution. It is a professionally coded, variable-step, variable-order solver based on the
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(implicit) numerical differentiation formulas of orders 1 to 5. It is used with a very narrow
tolerance (10−10) to create an accurate reference solution, which is utilized in Equation (27)
to compute the maximum error. These errors are presented as a log–log graph in Figure 2.
The thin dashed line is exactly proportional to the second power of the time step size, and
one can clearly see that the, e.g., ADE and the symmetric mixed version of the LH method
have second-order convergence.

Algorithms 2022, 15, 400 9 of 29 
 

 

This error is calculated as a function of the time step size h. More concretely, the error 
is first calculated for a very large h, then this is repeated with time step sizes subsequently 
decreased by a factor of 2 until small error values are reached. 

Experiment 1—moderately strong convection. We start with a case where the con-
vection coefficient is not very large, 3K = , while α = 1. The initial and the heat source 
functions are the following: 

( ) ( ) ( ) ( )0 /45 2 sin 2 , 10 1 sin 5 0.2xu x e x q x x   = + = + +    . (28)

The considered domain is 0 fin
0 0 5 1 2 2Nx , x , t , t .= = = = . The space step size is 

0 0125x .Δ = . The fixed Dirichlet boundary conditions are simply the initial values at the 
boundaries ( )0

0u x  and ( )0
Nu x . We employed the ode15s solver to gain the reference so-

lution. It is a professionally coded, variable-step, variable-order solver based on the (im-
plicit) numerical differentiation formulas of orders 1 to 5. It is used with a very narrow tol-
erance ( 1010− ) to create an accurate reference solution, which is utilized in Equation (27) to 
compute the maximum error. These errors are presented as a log–log graph in Figure 2. The 
thin dashed line is exactly proportional to the second power of the time step size, and one 
can clearly see that the, e.g., ADE and the symmetric mixed version of the LH method have 
second-order convergence. 

 
Figure 2. The L∞  errors as a function of the time step size h for large K (Experiment 1). 

In Figure 3, we also present the initial and final temperatures for the LH method for 
39 38 10h . −= ⋅ . In this case, the maximum error of the “inside” implementation is 0.949, 

while it is 0.926 for the mixed method. One can observe that the numerically obtained 
functions are very similar to the reference solution, even in the case of these rather large 
(absolute) errors. 

Figure 2. The L∞ errors as a function of the time step size h for moderate K (Experiment 1).

In Figure 3, we also present the initial and final temperatures for the LH method for
h = 9.38 · 10−3. In this case, the maximum error of the “inside” implementation is 0.949,
while it is 0.926 for the mixed method. One can observe that the numerically obtained
functions are very similar to the reference solution, even in the case of these rather large
(absolute) errors.
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the reference solution at tfin, and the LH method for h = 2 · 10−3 when the convection term is inside
the numerator, and when it is implemented in a mixed way.
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Experiment 2—very strong convection. Now, a case is considered where the convection
coefficient is much larger, K = 100, while α is still one. The initial and the heat source
functions are the following:

u0(x) = ex[1 + sin(2x)] , q(x) = 1000[1 + sin(8x + 0.2)].

The considered domain and all other circumstances are the same as in the previous
experiment, but the space step size is ∆x = 0.005. The error curves are presented in Figure 4.
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Figure 4. The L∞ errors as a function of the time step size h for large K (Experiment 2).

In Figure 5, we also present the initial and final temperatures for the LH method for
h = 2 · 10−3, when the maximum error of the “inside” implementation is 3.31, while it
is 1.35 for the mixed method. The numerical solutions are very similar to the reference
solution, even in the case of these rather large errors.
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4. Analytical Results for the Conduction–Convection Case
4.1. Consistency

We calculate the truncation error in the most common way, where subscripts with t or
x are for differentiation with respect to the time or space variables, respectively. The exact
solution is substituted into the equation containing the finite difference formulas, and

τ = D+
t u− D2

xu + Ku (29)

is the truncation error. In our case,

D+
t u =

u(xi , tn + ∆t)− u(xi , tn)

∆t

is the usual first order forward difference operator for the time derivative. However, the
second order central difference operator for the space derivative

D2
xu = α

u(xi − ∆x, tn + ∆t/2)− u(xi , tn)− u(xi , tn + ∆t) + u(xi + ∆x, tn + ∆t/2)

∆x2

and the convection term

Ku = Kpu(xi , tn + ∆t) + K(1− p)u(xi , tn)

contain different time levels. The Taylor series expansion of u is substituted into Equation (29).
The function u is supposed to be the exact solution, thus the identity ut = αu(2x) − Ku is
used. The obtained truncation error is

τ = τ0 − 1/2K(2p− 1)(Ku− αuxx)h +
1
8

(
K +

2α

∆x2

)
utth2 +

1
24

u(3t)h
2, (30)

where τ0 is the discretization error of the standard central difference formula (used in,
e.g., the FTCS method):

τ0 = − α

12
u(4x)∆x2 − α

360
u(6x)∆x4 − α

20160
u(8x)∆x6 + h. o. t.. (31)
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The highest order term cancels out only if 2p = 1. In the case of traditional methods,
such as the FTCS scheme, the discretization error of the D+

t and D2
x operators depend

on only ∆t and ∆x, respectively. In those cases, the space- and time-dependent terms
in the truncation error can be clearly separated. This does not hold in our case, where
there is a term containing the ratio of ∆t and ∆x. We can summarize these results in the
following theorem.

Theorem 1. When applied to PDE ut = αuxx − Ku , the algorithm given by Formulas (15)
is conditionally consistent. The order of temporal consistency/convergence is two if and only if
p = 1/2. In this case, if the space and time step size tend to zero ∆x → 0 , h→ 0 , such that

h
∆x → 0 , then the error of the numerical solution compared to the analytical solution of the PDE
tends to zero with h2.

4.2. Stability

To perform a von Neumann stability analysis, the u values in the expression of the
general (i.e., not the first and the last) step of the algorithm

un+1
i = un

i + r
[
un+1/2

i−1 + un+1/2
i+1 − un

i − un+1
i

]
− Kh

(
un

i + un+1
i

)
/2 (32)

must be replaced by the appropriate errors ε. Then, the error functions must be decomposed
into Fourier series, as follows:

εn
i = ∑

m
Em(t)eIkmx, εn+1/2

i± 1 = ∑
m

Em(t + h/2)eIkm(x±∆x)

and,
εn+1

i = Em(t + h)eIkmx

where Em(t) is the amplitude of the m-th term eIkmx in the Fourier series of the error, and I
is the imaginary unit

√
−1. For brevity, the m index is omitted, and the notations γ = km∆x

and κ = Kh/2 are introduced. Now, the following relations can be written

εn+1/2
i−1 + εn+1/2

i+1 = E(t + h/2)eIkx
(

e−Iγ + eIγ
)
= 2E(t + h/2)eIkx cos γ.

For the sake of simplicity, we denote E(t), E(t + h/2) and E(t + h) by g0 = 1 , g1 = g,
and g2. Performing all of these substitutions and simplifying with eIkmx, we obtain a
second-order algebraic equation for the factor g:

g2 = 1 + r
[
2g cos γ− 1− g2

]
− κ
(

1− g2
)

(33)

If the solutions

g1,2 =
r cos γ±

√
r2 cos2 γ + 1− r2 − κ(2r + κ)

1 + r + κ
(34)

of this equation are in the closed interval [−1, 1] for arbitrary parameter values r, κ, and γ,
then the errors cannot be amplified, which means unconditional stability. We performed a
thorough investigation of these two functions and obtained that it is indeed the case, so the
following theorem can be stated.

Theorem 2. If p = 1/2, then Algorithm (15) is unconditionally stable for the equation ut = αuxx −Ku
for arbitrary values of K and α = k/(cρ).
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5. Numerical Experiments for the Radiation Term in 1D
5.1. Verification with an Analytical Reference Solution

Experiment 3. The following function

uexact(x, t) = te x− t (35)

is a simple exponential analytical solution [28] of the one-dimensional
conduction–convection–radiation equation if α = 1 , K = 2, and if the heat source
function is q(x, t) = σt4e4x−4t + ex−t. The initial u0 function and the time-dependent
Dirichlet boundary conditions are calculated straightforwardly by substituting the initial
time and boundary space values to the analytical solution (35), respectively. The computa-
tional domain is (t, x) ∈ [1, 3]× [0, 3], while the space step size is ∆x = 0.005. We use an
extremely large, non-physical value σ = 10 for the radiation coefficients in order to obtain
information about the behavior of the schemes in general conditions. With this, the largest
value of the term σ · u4 is above 1.2 · 104, which means that the nonlinearity is very strong.
The errors as a function of the time step size are presented in Figure 6. As one can see on
the left side of the figure, the errors tend to very small numbers for decreasing time step
sizes, so the algorithms are verified. However, some of the algorithms are unstable, and for
medium time step sizes (around h = 10−2), their markers are missing from the figure. These
are the DF, ADE, the LH fully explicit, LH inside, and LH mixed schemes. The OOEH is not
literally unstable but it produced errors which are as large as 103, thus it is also not robust in
this strongly nonlinear case. The error of the other methods is limited, even for these large
step sizes in this experiment, which means they have very good stability properties. The
nonlocal treatment of the radiation term with the product of the neighbors performs the
best, but the other nonlocal and the pseudo-implicit treatment is also successful. In the case
of the ‘inside’ and ‘mixed’ versions, the non-negative condition (24) helped to maintain the
stability, but they are still outperformed by the nonlocal and the pseudo-implicit versions.

5.2. Results in Case of a Numerical Reference Solution

Experiment 4. The coefficients are set to α = 1, K = 10, and σ = 10−7. The initial and
the heat source functions are the following:

u0(x) = 100 + 5ex/2 sin(x/2)[5 + sin(4x)] , q(x) = 10,000 sin14(6x + 0.2). (36)

The considered domain is x0 = 0 , xN = 6 , t0 = 1 , tfin = 1.2. The space step
size is ∆x = 0.01. The fixed Dirichlet boundary conditions are u0(x0) and u0(xN), and
the reference solution is served by ode15s, as in Section 3. The errors are presented in
Figure 7. The three algorithms with the non-negative trick (24) produced the same errors as
their counterparts without the trick, so we omitted them from the figure. The temperature
variable is plotted as a function of space in Figure 8 for the initial and the reference solution,
as well as for the LH method with the nonlocal product treatment for h = 2 · 10−3, when its
maximum error is 5.72.
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6. Simulation of a Realistic Wall
6.1. The Structure and the Materials of the Wall

In this part, a wall segment is simulated with dimensions 1 m in the x and z direction
and 0.2 m in the y direction. As one can see in Figure 9, the following two geometries
are considered:
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Figure 9. (A) surface of the wall, (B) wall with insulator and thermal bridge.

(A) A wall’s surface is examined, which is entirely built of brick.
(B) Cross section of a wall with two layers composed of brick and rigid polyurethane

foam insulator with a steel beam thermal bridge.
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Real material attributes are taken into consideration, which are presented in Table 2.
One should keep in mind that, although these coefficients are constants (that is, they do not
change with time, space, or temperature) within a material, they have a sharp discontinuity
at the boundaries of different materials.

Table 2. Properties of the applied materials [2].

ρ (kg·m−3) c(J·kg−1·K−1) k(W·m−1·K−1)

Brick 1900 840 0.73
Rigid Polyurethane Foam 320 1400 0.023

Steel Beam 7800 840 16.2

6.2. Mesh Construction

In the used approximation, no heat flows and no physical quantities change in the
y direction, which is perpendicular to the surface of Figure 9. We use ∆yi = 0.2 m in
order to obtain a realistic problem. The other two coordinates are in the unit interval,
(x, z) ∈ [0, 1]× [0, 1], thus the surface area of the meshes is 1 m2. Two kinds of meshes
were constructed: the equidistant mesh has square-shaped cells, and the non-equidistant
mesh has rectangular cells. We set Nx = 100 and Nz = 100 for the number of cells in the
x and in the z direction; therefore, N = Nx Nz = 10,000 is the total number of cells. The
non-equidistant mesh contains high cells on the upper side and low ones on the lower side
of the wall, as well as the cells being wide on the left side of the wall and narrow on the
right. The width and height decrease gradually both in the x and z directions, consecutively,
following a geometric series. The sum of the first n + 1 terms of a geometric sequence, up
to the term rn, (r 6= 1), is

n

∑
k=0

ark = a
(

1− rn+1

1− r

)
= a + ar + ar2 + ar3 + . . . . . . + arn. (37)

where n = Nx − 1 = Nz − 1. The values r = 0.98 and a = 0.0234 are used, which give
∆x1 = 0.0234 and ∆z1 = 0.0234 on the left and the upper sides, respectively, while
∆zNz = ∆xNx = 0.9899 · ∆x1 = 0.00317 on the right and lower sides. The obtained meshes
are shown in Figure 10.
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+

Δ
≈ . Here, iAx y z= Δ Δ  is the area of the 

cell surface orthogonal to x. Therefore, the horizontal and vertical resistances in the surface 
simulation case (with homogenous material and uniform mesh) can be expressed as 

, 1i i
i

xR
k z y+

Δ≈
Δ Δ

 and , x
i

i i N
i

zR
k x y+

Δ≈
Δ Δ

,  

respectively, where the cell with the second subscript i + Nx is just below the cell i. If the 
sizes and/or the material properties of the two adjacent cells are different, the horizontal 
and vertical resistance between cells i and i + 1 are 
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Figure 10. (a) Equidistant mesh. (b) Gradual change in the x and z directions.

In the case of the wall’s surface, we apply only the equidistant grid. However, in the
case of the cross section of the wall with an insulator, we apply both kinds of mesh: the
equidistant and the non-equidistant. For programming simplicity, in a cross section, bricks
always make up the left half of the cells, whereas the insulator (containing the thermal
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bridge) makes up the right half. This means that, in the equidistant case, the thermal bridge
has the same thickness and volume as the insulator, but the thickness of the insulator
is smaller (0.269 m) in the non-equidistant case, as shown in Figure 9B. The horizontal
position of the thermal bridge is between x = 0.5 m and x = 1 m for the equidistant mesh
and between x = 0.735 m and x = 1 m for the non-equidistant one. The height of the thermal
bridge is two cells (2 cm) in the z direction, i.e., 0.02 m, while it is vertically positioned in
rows number 20 and 21 from z = 0.37 m to z = 0.39 m.

As in our previous work, we apply a resistance–capacitance-type model [38] of heat
conduction, where it is necessary to switch to cell variables. The cell temperature is defined
as the temperature in the middle of the cell. We calculate the heat capacity of the cells
using the formula Ci = ciρi∆xi∆zi∆y, while for the approximate formula for the thermal
resistance in the x-direction, we use Ri,i+1 ≈ ∆xi

ki,i+1 Ax . Here, Ax = ∆y∆zi is the area of the
cell surface orthogonal to x. Therefore, the horizontal and vertical resistances in the surface
simulation case (with homogenous material and uniform mesh) can be expressed as

Ri,i+1 ≈
∆x

ki∆z∆y
and Ri,i+Nx ≈

∆z
ki∆x∆yi

,

respectively, where the cell with the second subscript i + Nx is just below the cell i. If the
sizes and/or the material properties of the two adjacent cells are different, the horizontal
and vertical resistance between cells i and i + 1 are

Ri,i+1 ≈
∆xi

2ki∆zi∆y
+

∆xi+1

2ki+1∆zi∆y

and
Ri,i+Nx ≈

∆xi
2ki∆zi∆y

+
∆xi,i+Nx

2ki,i+Nx ∆zi∆y
.

Using these quantities and approximations, one can obtain the ODE system for the
time derivative of the cell variables for a general grid, as follows:

dui
dt

= ∑
j 6=i

uj − ui

Ri ,jCi
+ qi − K · ui − σ · u4

i

This equation is the spatially discretized form of Equation (3). The examined methods
have to be adapted to this form, but actually only the conduction term is different, since all
other terms are local. The quantity r = αh

∆x2 is not a constant anymore. In the denominators,
it must be replaced by h/2 ∑

j 6=i

1
Ci Rij

, while the terms such as r
(
un

i−1 + un
i+1
)

must also be

replaced by, e.g., h ∑
j 6=i

un
j

Ci Rij
. For instance, instead of Formula (20), now we have

u1/2
i =

u0
i +

h
2 ∑

j 6=i

un
j

Ci Rij
+ h/2 · qi − Khu0

i /2

1 + h
2 ∑

j 6=i

1
Ci Rij
− Kh/4 + σh

(
u0

i
)3/2

. (38)

The DF and the original OEH methods can be modified similarly, but as we mentioned,
the ADE method cannot, so we omit that from this section. One can read more about this
formalism in our previous publications [27,37].

Since now most cells have four neighbors instead of two, as in the 1D case, the spatially
nonlocal treatments cannot be applied exactly the same way. We were not able to adapt the
product treatment (point 6 in Section 2.3) into this case in any simple way, so we decided to
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discard it. The nonlocal average version can be adapted by simply calculating the average
of the existing neighbors. For example, we can write

un
1 + un

3 + un
Nx+2

3
(un

i )
2 (39)

in the case of the second cell, which has three neighbors.

6.3. The Initial and the Boundary Conditions

In this part, the final time (the end of the analyzed time span) is tfin = 10,000 s.
The time step size is measured in seconds as well. In all cases and all boundaries, zero
Neumann boundary conditions are used, which prohibits the flow of conductive heat at
the boundaries:

∂u
∂x

(x, z = 0, t) =
∂u
∂x

(x, z = 1, t) =
∂u
∂z

(x, z = 0, t) =
∂u
∂z

(x, z = 1, t) = 0

This is accomplished by setting the necessary resistances to infinity and setting the
value for the matrix elements representing heat conduction through the boundary as zero.

(A) In the case of the surface area simulation, the heat transfer by radiation and
convection is happening in the y direction, i.e., orthogonal to the plane of Figure 9.

A linear function of the x variable is applied as the initial condition:

u(x, z, t = 0) = 300− 280x

For the convection heat transfer coefficient hc, we have taken values from the liter-
ature [2], as one can see in Table 3. Regarding radiation, the Stefan–Boltzmann constant
is a universal number 5.67 · 10−8 W

m2·K4 . The surface is not an ideal black body; thus, we
multiplied the Stefan–Boltzmann constant by the appropriate emissivity constant to obtain
realistic values for σ∗. We estimate the value of q∗ for the heat source term, which includes
the solar radiation as it is shown below. The temperature of the ambient air is taken to be
27 ◦C ≈ 300 K.

Table 3. The parameters of convection, radiation, and heat source in case of wall surface area [39].

hc ( W
m2·K ) σ∗ ( W

m2·K4×10−8) q∗shadow( W
m2 ) q∗sunny( W

m2 )

All elements 4 4 300 800

Due to the nonzero temperature ua of the air (in Kelvin), the expression q also contains
the convective heat gain. We can obtain the value of q as follows

q =
q∗

cρ∆y
+

hc

cρ∆y
· ua

The convective and radiative energy transfer occurs in the y direction, i.e., perpendicu-
lar to the surface. Consequently, these terms are proportional to the element’s free surface
area, which is ∆x∆z here. This information yields the following values for the coefficients
in Equations (2) and (3):

K =
hc

cρ∆y
, σ =

σ∗

cρ∆y
.

We assumed that the lower-half side of the surface is in the shade, resulting in much
less incoming heat there. Specifically, we have

- the first portion of N (sunny side):

q =
1

cρ∆y
× 800

W
m2 +

hc

cρ∆y
× 300K;
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- the second portion of N (shaded side):

q =
1

cρ∆y
× 300

W
m2 +

hc

cρ∆y
× 300K.

(B) In the case of the simulation of the cross-sectional area with the thermal bridge,
the interior components cannot absorb or lose heat via convection, radiation, and the heat
source. According to Table 4, elements on the right and left sides may transfer heat in the x
direction through radiation and convection.

Table 4. The convection, radiation, and heat source characteristics on both sides of the wall compo-
nents in the case of the cross-sectional area.

hc( W
m2·K ) σ∗ ( W

m2·K4×10−8) q∗(W)

Right Elements 2 5 500

Left Elements 4 4 500

The coefficient values in our equations are obtained as follows:

K =
hc

cρ∆x
, σ =

σ∗

cρ∆x
, q =

q∗

cρ∆x
+

hc

cρ·∆x
·ua

The ambient air temperature is taken to be 20 ◦C ≈ 293 K and 40 ◦C ≈ 313 K on the
brick and the insulation side (inside and outside of the building), respectively. It gives the
following convection and radiation heat sources for left and right elements:

In terms of the left-hand side:

q =
1
cρ
× 500

W
m2 +

hc

cρ · ∆x
× 293K

In terms ofthe right-hand side:

q =
1
cρ
× 500

W
m2 +

hc

cρ · ∆x
× 313K

In this case, a linear function of the z variable is used for the initial condition:

u(x, z, t = 0) = 313− 293z.

Until this point, all temperatures were close to room temperature. However, for
significantly larger temperatures, the nonlinear radiation term has a much stronger effect.
Thus, in the following point, we try to simulate a case, e.g., a furnace, where the temperature
on the left side of the wall is much higher than on the right side.

(C) In case of the cross section of the wall with high temperatures, the geometry is
similar to the previous case. The concrete values of the constants change according to
Table 5.
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Table 5. The heat source, convection, and radiation characteristics are on both sides of the wall
components in the case of a cross section of the wall.

hc ( W
m2·K ) σ∗ ( W

m2·K4×10−8) q∗(W)

Right Elements 2 5 500

Left Elements 25 4 3500

The “ambient” air temperature inside the furnace is taken to be 227 ◦C ≈ 500 K. This yields
the following convection and radiation heat sources for right and left elements, respectively:

q =
1
cρ
× 500

W
m2 +

hc

cρ · ∆x
× 303K

and
q =

1
cρ
× 3500

W
m2 +

hc

cρ · ∆x
× 500K.

In this case, a linear function of the x variable is used again for the initial condition

u(x, z, t = 0) = 500− 303x.

In this section, we used Equation (27) to calculate the maximum error where the ode15s
solver was employed to obtain the reference solution. We calculated the maximum time
step size (CFL limit, above which the explicit Euler time integration becomes unstable) and
the stiffness ratio in the usual way [28,37], considering only the conduction term. Table 6
shows the values of these quantities for different cases.

Table 6. The CFL limit and the stiffness ratio quantities for the different cases.

CFL Limit Stiffness Ratio

Surface 55.78 8.1× 103

cross section with
thermal bridge

equidistant 5.01 5.167× 105

non-equidistant 2.28 4.29× 105

6.4. Results for the Surface of the Wall

Experiment 5. We begin with the examination of the effect of convection only, so no
radiation presents. A one-layer brick wall is simulated here (see Figure 10A), and only the
equidistant mesh is used. The initial and boundary conditions as stated in point (A) above
are considered, with the exception that σ∗ and q∗ are set to zero, so there is no sunshine in
this experiment. The maximum errors as a function of time step size are shown in Figure 11
for all methods of Section 2.2. For smaller time step sizes, the mixed treatment of the
convection terms with 50% weight for the PI and the ‘inside’ treatment is the most accurate.
It clearly has a second-order convergence, in accordance with the results of the previous
sections. Thus, from this point, the convection term is always treated in this optimal way.
For some large time step sizes, however, the original hopscotch method is slightly more
accurate, which may be due to the low stiffness ratio of the problem. In Figure 12, we show
the initial and final temperature distributions.
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Figure 12. The temperature distribution contour in Kelvin units for the equidistant mesh at initial
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Experiment 6. Now, the surface of the brick wall is simulated with radiation, where
conditions in point (A) and the values from Table 3 are used. The errors are shown in
Figure 13, and the temperature distributions are shown in Figure 14. The influence of the
initial condition, as well as the shadow, on the lower part of the wall is clearly visible.
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6.5. Results for the Cross Section of the Insulated Wall with Thermal Bridging

Experiment 7. In this case, the initial and boundary conditions listed in point (B)
are applied to the multilayer wall with the equidistant mesh. The errors are plotted in
Figure 15. The temperature distribution contour for the initial and final time moments are
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presented in Figure 16. The temperature on the right side of the wall rises because of the
higher outside temperature, albeit the insulator allows this heat to enter the wall at a very
slow rate.
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Experiment 8—non-equidistant mesh. Everything is the same as in Experiment 7, but
the mesh is replaced by the non-equidistant one presented in Figure 10b. The errors, as
well as the temperature contours, are shown in Figures 17 and 18, respectively.
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Experiment 9—high-temperature boundary conditions, non-equidistant mesh.
In this case, a multilayer wall with the thermal bridge is simulated using the non-

equidistant mesh. The linear initial and the Neumann boundary conditions of point (C) are
used. The errors are plotted in Figure 19. One can see that the mixed and inside versions
produce rather large errors, and they are clearly outperformed by the PI treatment. The
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temperature distribution contour for the initial and final time moments are presented in
Figure 20.
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Figure 20. The distribution contour of the temperature in Kelvin units for the equidistant mesh at
initial and final time (left and right figure, respectively), in the case of Experiment 9. The numbers
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7. Discussion and Summary

We have studied several implementations of the free convection and radiation terms
using the leapfrog-hopscotch method, which had originally been optimized to solve the
heat conduction equation. In our last paper [31], we proposed the fully pseudo-implicit
treatment of the convection term. In this paper, it was observed that, usually, the best
performance is achieved when the convection term is treated in a mixed way, i.e., taking into
account 50% at the old and 50% at the new time level. The order of temporal convergence
reaches two only for this optimal version, which was also proven by the calculation of
the truncation errors. The unconditional stability of this version was also proven by von
Neumann analysis in the linear case (conduction + convection).

On the other hand, according to the numerical experiments, the radiation term should
be taken into account fully in the pseudo-implicit way. In this case, one of the four powers
is taken into account at the new time level, so the term turns up only in the denominator,
which ensures very good stability properties. We performed four numerical experiments in
the one-dimensional case, and then another five to simulate heat transfer of a realistic wall.
The proposed algorithm performs quite well, even when the CFL limit for the mainstream
explicit methods is rather low.

In our next work, we are going to make extensive measurements of the running times
of the best algorithms here, and compare them to those of other available methods and
solvers, e.g., the built-in solvers of MATLAB and Ansys Fluent. Then, the best methods will
be used for real simulations, aiming to design and optimize buildings with better thermal
properties. The studied methods can also be used to simulate multiphysics problems,
e.g., when the drift diffusion of the charge carriers in semiconductors is coupled with heat
transfer, or when underground heat transfer is assisted by groundwater flow [39].
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Nomenclature
Symbols Greek Symbols

c Specific heat (kJ/kg.K) α Thermal diffusivity (m2/s)
h Time step size (sec) ∆ Difference

hc Heat transfer coefficient (W/m2.K) ρ Mass density (kg/m3)

K Convection coefficient (1/sec) σ Coefficient of the radiation term (sec−1 K−3)

k Thermal conductivity (W/m.K) σ∗ realistic values of non-black body (W/m2.K4)
Q Heat transfer rate (W) Subscripts
q∗ heat generation (W/m2) a Ambient air
q Heat source rate(1/K) sunny Sunny surface
t time (sec) shadow Shadow surface
u Temperature (Kº)
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3. Savović, S.M.; Djordjevich, A. Numerical solution of diffusion equation describing the flow of radon through concrete. Appl.

Radiat. Isot. 2008, 66, 552–555. Available online: https://www.sciencedirect.com/science/article/pii/S0969804307002874
(accessed on 1 October 2022). [CrossRef] [PubMed]

http://doi.org/10.12988/ces.2017.79124
https://www.sciencedirect.com/science/article/pii/S0969804307002874
http://doi.org/10.1016/j.apradiso.2007.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17976999


Algorithms 2022, 15, 400 27 of 28

4. Suárez-Carreño, F.; Rosales-Romero, L. Convergency and stability of explicit and implicit schemes in the simulation of the heat
equation. Appl. Sci. 2021, 11, 4468. [CrossRef]

5. Alberti, L.; Angelotti, A.; Antelmi, M.; La Licata, I. Borehole Heat Exchangers in aquifers: Simulation of the grout material impact.
Rend. Online Soc. Geol. Ital. 2016, 41, 268–271. [CrossRef]

6. Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 33, ISBN 978-3-642-05707-6.

7. Ndou, N.; Dlamini, P.; Jacobs, B.A. Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–
Reaction Equations. Mathematics 2022, 10, 2639. [CrossRef]

8. Amoah-mensah, J.; Boateng, F.O.; Bonsu, K. Numerical solution to parabolic PDE using implicit finite difference approach. Math.
Theory Model. 2016, 6, 74–84.

9. Mbroh, N.A.; Munyakazi, J.B. A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the
method of lines. Int. J. Comput. Math. 2021, 99, 1139–1158. [CrossRef]

10. Aminikhah, H.; Alavi, J. An efficient B-spline difference method for solving system of nonlinear parabolic PDEs. SeMA J. 2018,
75, 335–348. [CrossRef]

11. Ali, I.; Haq, S.; Nisar, K.S.; Arifeen, S.U. Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and
Fibonacci polynomials. Arab. J. Math. 2021, 10, 513–526. [CrossRef]

12. Singh, M.K.; Rajput, S.; Singh, R.K. Study of 2D contaminant transport with depth varying input source in a groundwater
reservoir. Water Sci. Technol. Water Supply 2021, 21, 1464–1480. [CrossRef]

13. Ji, Y.; Zhang, H.; Xing, Y. New Insights into a Three-Sub-Step Composite Method and Its Performance on Multibody Systems.
Mathematics 2022, 10, 2375. [CrossRef]

14. Essongue, S.; Ledoux, Y.; Ballu, A. Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to
the forward Euler time-integration scheme: A critical assessment. Finite Elem. Anal. Des. 2022, 211, 103825. Available online:
https://linkinghub.elsevier.com/retrieve/pii/S0168874X22000981 (accessed on 28 August 2022). [CrossRef]

15. Iserles, A. A First Course in the Numerical Analysis of Differential Equations; Cambridge University Press: Cambridge, UK, 2009;
ISBN 9788490225370.

16. Saghyan, A.; Lewis, D.P.; Hrabe, J.; Hrabetova, S. Extracellular diffusion in laminar brain structures exemplified by hippocampus.
J. Neurosci. Methods 2012, 205, 110–118. [CrossRef] [PubMed]

17. Appadu, A.R. Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer.
Methods Heat Fluid Flow 2017, 27, 1412–1429. [CrossRef]

18. Sanjaya, F.; Mungkasi, S. A simple but accurate explicit finite difference method for the advection-diffusion equation. J. Phys.
Conf. Ser. 2017, 909, 1–5. [CrossRef]

19. Pourghanbar, S.; Manafian, J.; Ranjbar, M.; Aliyeva, A.; Gasimov, Y.S. An efficient alternating direction explicit method for solving
a nonlinear partial differential equation. Math. Probl. Eng. 2020, 2020, 9647416. [CrossRef]

20. Al-Bayati, A.; Manaa, S.; Al-Rozbayani, A. Comparison of Finite Difference Solution Methods for Reaction Diffusion System in
Two Dimensions. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 21–36. [CrossRef]

21. Nwaigwe, C. An Unconditionally Stable Scheme for Two-Dimensional Convection-Diffusion-Reaction Equations; State University: Port
Harcourt, Nigeria, 2022.

22. Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–
diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. Ric. Mat. 2021,
71, 245–252. [CrossRef]

23. Liu, H.; Leung, S. An Alternating Direction Explicit Method for Time Evolution Equations with Applications to Fractional
Differential Equations. Methods Appl. Anal. 2020, 26, 249–268. Available online: http://arxiv.org/abs/2002.08461 (accessed on 20
August 2022). [CrossRef]

24. Bouwer, A. The Du Fort and Frankel Finite Difference Scheme Applied to and Adapted for a Class of Finance Problems. Master’s
Thesis, University of Pretoria, Pretoria, South Africa, 2008.

25. Saleh, M.; Nagy, Á.; Kovács, E. Part 1: Construction and investigation of new numerical algorithms for the heat equation.
Multidiszcip. Tudományok 2020, 10, 323–338. [CrossRef]

26. Kovács, E.; Nagy, Á.; Saleh, M. A New Stable, Explicit, Third-Order Method for Diffusion-Type Problems. Adv. Theory Simul.
2022, 5, 2100600. Available online: https://onlinelibrary.wiley.com/doi/10.1002/adts.202100600 (accessed on 1 October 2022).
[CrossRef]

27. Nagy, Á.; Omle, I.; Kareem, H.; Kovács, E.; Barna, I.F.; Bognar, G. Stable, Explicit, Leapfrog-Hopscotch Algorithms for the
Diffusion Equation. Computation 2021, 9, 92. [CrossRef]

28. Jalghaf, H.K.; Kovács, E.; Majár, J.; Nagy, Á.; Askar, A.H. Explicit stable finite difference methods for diffusion-reaction type
equations. Mathematics 2021, 9, 3308. [CrossRef]

29. Kovács, E. A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial Differ. Equ.
2020, 37, 2469–2489. [CrossRef]

30. Saleh, M.; Kovács, E.; Barna, I.F.; Mátyás, L. New Analytical Results and Comparison of 14 Numerical Schemes for the Diffusion
Equation with Space-Dependent Diffusion Coefficient. Mathematics 2022, 10, 2813. [CrossRef]

http://doi.org/10.3390/app11104468
http://doi.org/10.3301/ROL.2016.145
http://doi.org/10.3390/math10152639
http://doi.org/10.1080/00207160.2021.1954621
http://doi.org/10.1007/s40324-017-0139-8
http://doi.org/10.1007/s40065-021-00330-4
http://doi.org/10.2166/ws.2021.010
http://doi.org/10.3390/math10142375
https://linkinghub.elsevier.com/retrieve/pii/S0168874X22000981
http://doi.org/10.1016/j.finel.2022.103825
http://doi.org/10.1016/j.jneumeth.2011.12.008
http://www.ncbi.nlm.nih.gov/pubmed/22230768
http://doi.org/10.1108/HFF-01-2016-0038
http://doi.org/10.1088/1742-6596/909/1/012038
http://doi.org/10.1155/2020/9647416
http://doi.org/10.33899/csmj.2011.163605
http://doi.org/10.1007/s11587-021-00665-2
http://arxiv.org/abs/2002.08461
http://doi.org/10.4310/MAA.2019.v26.n3.a3
http://doi.org/10.35925/j.multi.2020.4.36
https://onlinelibrary.wiley.com/doi/10.1002/adts.202100600
http://doi.org/10.1002/adts.202100600
http://doi.org/10.3390/computation9080092
http://doi.org/10.3390/math9243308
http://doi.org/10.1002/num.22730
http://doi.org/10.3390/math10152813


Algorithms 2022, 15, 400 28 of 28

31. Jalghaf, H.K.; Kovács, E.; Bolló, B. Comparison of Old and New Stable Explicit Methods for Heat Conduction, Convection, and
Radiation in an Insulated Wall with Thermal Bridging. Buildings 2022, 12, 1365. [CrossRef]

32. Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific Publishing: Singapore, 1993; ISBN 978-
981-02-1458-6.

33. Agbavon, K.M.; Appadu, A.R. Construction and analysis of some nonstandard finite difference methods for the FitzHugh–
Nagumo equation. Numer. Methods Partial Differ. Equ. 2020, 36, 1145–1169. [CrossRef]

34. Hirsch, C. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization; Wiley: Hoboken,
NJ, USA, 1988.

35. Barakat, H.Z.; Clark, J.A. On the solution of the diffusion equations by numerical methods. J. Heat Transf. 1966, 88, 421–427.
[CrossRef]

36. Gourlay, A.R.; McGuire, G.R. General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations. IMA J.
Appl. Math. 1971, 7, 216–227. [CrossRef]

37. Jalghaf, H.K.; Omle, I.; Kovács, E. A Comparative Study of Explicit and Stable Time Integration Schemes for Heat Conduction in
an Insulated Wall. Buildings 2022, 12, 824. [CrossRef]

38. Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M. A resistance-capacitance model for real-time calculation of cooling load in HVAC-R
systems. J. Therm. Sci. Eng. Appl. 2015, 7, 41008. [CrossRef]

39. Angelotti, A.; Alberti, L.; La Licata, I.; Antelmi, M. Borehole heat exchangers: Heat transfer simulation in the presence of a
groundwater flow. J. Phys. Conf. Ser. 2014, 501, 12033. [CrossRef]

http://doi.org/10.3390/buildings12091365
http://doi.org/10.1002/num.22468
http://doi.org/10.1115/1.3691590
http://doi.org/10.1093/imamat/7.2.216
http://doi.org/10.3390/buildings12060824
http://doi.org/10.1115/1.4030640
http://doi.org/10.1088/1742-6596/501/1/012033

	Introduction 
	The Examined Numerical Methods 
	The Leapfrog-Hopscotch Method for the Heat Conduction Equation 
	Implementations of the Convection Term 
	Implementations of the Radiation Term 
	Methods Used for Comparison Purposes 

	Numerical Experiments for the Convection Term 
	Analytical Results for the Conduction–Convection Case 
	Consistency 
	Stability 

	Numerical Experiments for the Radiation Term in 1D 
	Verification with an Analytical Reference Solution 
	Results in Case of a Numerical Reference Solution 

	Simulation of a Realistic Wall 
	The Structure and the Materials of the Wall 
	Mesh Construction 
	The Initial and the Boundary Conditions 
	Results for the Surface of the Wall 
	Results for the Cross Section of the Insulated Wall with Thermal Bridging 

	Discussion and Summary 
	References

