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Abstract: The point clouds registration is a key step in data processing for the 3D laser scanner
to obtain complete information of the object surface, and there are many algorithms. In order to
overcome the disadvantages of slow calculation speed and low accuracy of existing point clouds
registration algorithms, a fast point clouds registration algorithm based on the improved voxel filter
and ISS-USC feature is proposed. Firstly, the improved voxel filter is used for down-sampling to
reduce the size of the original point clouds data. Secondly, the intrinsic shape signature (ISS) feature
point detection algorithm is used to extra feature points from the down-sampled point clouds data,
and then the unique shape context (USC) descriptor is calculated to describe the extracted feature
points. Next, the improved random sampling consensus (RANSAC) algorithm is used for coarse
registration to obtain the initial position. Finally, the iterative closest point (ICP) algorithm based
on KD tree is used for fine registration, which realizes the transform from the point clouds scanned
by the 3D laser scanner at different angles to the same coordinate system. Through comparing with
other algorithms and the registration experiment of the VGA connector for monitor, the experimental
results verify the effectiveness and feasibility of the proposed algorithm, and it has fastest registration
speed while maintaining high registration accuracy.

Keywords: point clouds registration; voxel filter; intrinsic shape signatures; unique shape context;
random sampling consensus; iterative closest point

1. Introduction

With the rapid development of 3D laser scanning technology, it has been widely
used in many fields such as robotics [1], reverse engineering [2], geological survey [3]
and cultural protection [4]. Due to the influence of the angle of the scanning device, the
shape of the scanned object and environmental factors, it is impossible to complete the
data collection of the physical scanning at one time. In order to obtain the complete 3D
information of the object surface, it is necessary to collect data from multiple angles and
blocks of the object, and then splice or register the 3D point clouds collected from different
angles, so as to obtain the point clouds containing complete information of the object under
the same coordinate system.

The point clouds registration [5] is a key step to obtain complete information of the
object surface, and it also plays an important role in 3D reconstruction, 3D localization
and pose estimation. Take the palletizing and sorting robot as an example, which have
been widely used in food, medicine, chemical and other automatic production enterprises,
point clouds registration technology is an essential step. It can also provide high-precision
services for intelligent mobile robots.

At present, the most widely used and classic registration algorithm is the iterative
closest point (ICP) algorithm [6]. The algorithm is simple, but it requires a good initial
position, and two point clouds must have overlapping parts, otherwise it is easy to fall
into the local optimal solution, which leads to poor final registration effect. In recent
years, researchers have put forward many improvement schemes based on the original
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ICP algorithm. For example, reference [7] proposes a cluster iterative closest point method
named CICP for sparse-dense point clouds registration, which is a new method that
surpassed the concept of density. It can handle registration of point clouds of different
densities acquired by the same sensor at different resolutions or from different sensors.
Reference [8] proposes a global optimal algorithm named Go-ICP, which integrates the
local ICP into the BnB scheme. It can not only ensure the global optimality but also improve
the speed of the algorithm. Reference [9] proposes LieTrICP algorithm. It is a robust
registration method of two-point sets based on Lie group parameterization, which combines
the advantages of Trimmed Iterative Closest Point (TrICP) and Lie group representation,
making the algorithm more robust and accurate. Some researchers first use the coarse
registration to obtain a good initial registration position, and then use ICP algorithm
for fine registration. Reference [10] proposes a feature descriptor based on the rotation
volume ratio to describe feature points. Based on the feature point descriptor, coarse
registration is used to obtain a good initial transformation matrix, and then the improved
ICP algorithm is used to obtain precise transformation matrix. Reference [11] proposes
the Fast Point Feature Histogram (FPFH) descriptor, and then the Best-Bin-First (BBF) is
used to reduce the data dimension, which greatly accelerates the iteration speed of ICP.
Reference [12] first uses sample consensus initial alignment algorithm (SAC-IA) for coarse
registration, and then iterative closest point algorithm based on point-to-face is used for
fine registration. Other researchers have proposed point clouds registration algorithms
different from the ICP model, such as the three-dimensional normal distributions transform
(3D-NDT) algorithm based on the probability density model [13], which does not need to
calculate the nearest neighbor matching points, and thus improves the calculation efficiency.
The 4PCS (4-points congruent sets) algorithm [14] reduces spatial matching operations by
constructing and matching congruent four-point pairs, which accelerates the registration
process. Reference [15] uses the deep learning model for point clouds registration. It
proposes a new unsupervised deep learning network-Binary Tree Network (BTreeNet),
which learns the features of rotation and translation matrices, respectively.

Point clouds registration methods can be divided into two categories: optimization-
based methods, and feature-based methods. Optimization-based methods search for
corresponding point pairs in the source point clouds and the target point clouds, and the
transformation matrix is estimated according to the correspondence. Above two steps will
be iterated to acquire the best transformation matrix. The disadvantage of this kind of
methods is that complex strategies are required to suppress noise, outliers and density
changes, which can increase computational burden. Feature-based methods do not search
for corresponding point pairs, they extract the feature points from the source point clouds
and the target point clouds. Then the feature descriptor is used to describe them, and
the feature is used to estimate the transformation matrix. Therefore, the selection of
feature points and feature descriptor must affect the registration effect. Due to the lack of
representativeness or insufficient number of feature points, these methods tend to have
low registration accuracy.

By analyzing and comparing the current point clouds registration algorithms, in order
to improve the registration speed and accuracy, this paper proposes a point clouds registra-
tion algorithm based on improved voxel filter combining ISS feature points detection [16]
algorithm and the USC [17] descriptor. The ISS feature points detection algorithm is used to
extract feature points from the point clouds with the improved voxel filter, and the extracted
feature points are described by the USC descriptor. Based on the initial registration position
obtained after the improved RANSAC coarse registration [18], the ICP algorithm based on
KD tree [19] is used to complete the final point clouds fine registration.

In summary, the main contributions of this paper include: (1) The traditional voxel
filter is improved, and the point closest to the voxel center of gravity in the original point
clouds data is used to replace the voxel center of gravity. This method not only maintains
the tiny features of the original point clouds, but also improves the accuracy of the point
clouds data, which is more conducive to the description of the surface corresponding to the
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sampling point. (2) USC feature descriptors are used to describe the extracted key points, it
only needs to calculate a certain descriptor on each feature point instead of multiple fuzzy
descriptors, which reduces memory usage and improves computational efficiency. (3) In
the process of RANSAC coarse registration, adding a pre-exclusion step can immediately
filter out the wrong hypothetical poses, thereby saving more time to generate more other
possibly correct hypothetical poses and reducing the time of coarse registration. (4) The
feasibility and effectiveness of the proposed algorithm are verified by comparing with other
algorithms and the registration experiment of the VGA connector for monitor.

The rest of this paper is organized as follows. Section 2 briefly introduces the proposed
algorithm flow. Section 3 introduces the principles of the five main steps of the proposed
algorithm in detail. Section 4 discusses the comparison experimental results of the proposed
algorithm and other algorithms on several models, and the registration experiment of the
VGA connector for monitor, as well as evaluates their accuracy and effectiveness. Finally,
Section 5 is the conclusion of this paper.

2. Algorithm Principle

The basic principle of the proposed algorithm mainly includes five processes. Firstly,
an improved voxel filter is used to down sample the source point clouds and the target point
clouds, respectively. Secondly, the feature points are extracted by the ISS feature points
detection algorithm to obtain a set of points with rich geometric feature information. Then
the extracted feature points are described with the USC descriptor to form ISS-USC feature
points descriptor. Next, the improved RANSAC algorithm is used for coarse registration to
obtain the optimal initial transformation matrix. Finally, the ICP algorithm based on KD
tree is used for fine registration. According to the final obtained transformation matrix,
the source point clouds are transformed into the coordinate system under the target point
clouds to complete the registration. The algorithm flow is shown in Figure 1.
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3. Algorithm Design
3.1. Improved Voxel Filter for Down-Sampling

Voxel filter [20] is to create a 3D voxel grid for the input point clouds data. It uses the
center of gravity of all points in each voxel to approximate display other points in the voxel,
that is, uses the center of gravity point to represent all points within this voxel. Using voxel
filter can not only reduce the number of points, but also maintain the shape characteristics
of the point clouds. However, when traditional voxel filter is used, the center of gravity
point is not necessarily a point in the original point clouds, which will lose the fine features
of the original point clouds. Therefore, it is necessary to improve the voxel filter. K-nearest
neighbor search [21] is performed on the center of gravity points with voxel filter of the
point clouds. For a given query point, that is, the center of gravity point, search its nearest
neighbor, and K = 1 at this time. The point closest to the voxel center of gravity in the
original point clouds data is used to replace the voxel center of gravity, and then perform
the same processing on all voxels to acquire the filtered point clouds. The improved voxel
filter not only reduces the execution time of the algorithm, but also effectively improves the
accuracy of the data.

Figure 2a is the Bunny model of the Stanford University point clouds library, which
has more than 30,000 points. In order to reduce the execution time of the algorithm, the
improved voxel filter is used to simplify the point clouds. Figure 2b shows the results of the
down-sampling using the improved voxel filter. After down-sampling, the number of point
clouds is significantly reduced, only more than 3000 points, and the shape characteristics of
the point clouds remain unchanged.
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Figure 2. Bunny model and down-sampling results. (a) Bunny model, (b) down-sampling results.

Figure 3 shows the original point clouds, the point clouds after voxel filter and the
point clouds after improved voxel filter of the Bunny model. The original point clouds are
set to green, the point clouds after voxel filter are set to blue, and the point clouds after
improved voxel filter are set to red. Three point clouds are put together for comparison.
The red point clouds and the green point clouds actually coincide. The blue point clouds
are the center of gravity of each voxel, which are different from the original point clouds.
Therefore, the improved voxel filter will not change the small features of the original point
clouds even after sampling, which can improve the point cloud data expression accuracy.
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3.2. ISS Feature Points Detection Algorithm

The intrinsic shape signatures (ISS) feature points detection algorithm is based on
eigenvalue decomposition of covariance matrix, which has rich geometric feature infor-
mation. The main steps of extracting ISS feature points of 3D point clouds data P are
as follows:

(1) Set a search radius rISS for each point Pi in P, and calculate the weight wij of all
points in the area with Pi as the center and rISS as the radius, as shown in Formula (1):

wij =
1∣∣pi − pj

∣∣ , ∣∣pi − pj
∣∣ < rISS (1)

where Pj is any point within the area with Pi as the center and rISS as the radius.
(2) Calculate the covariance matrix cov(Pi) of each point Pi, as shown in Formula (2):

cov(pi) =

∑
|pi−pj |<rISS

wij
(

pi − pj
)(

pi − pj
)T

∑
|pi−pj |<rISS

wij
(2)

(3) Calculate the eigenvalues {λi
1, λi

2, λi
3} of the covariance matrix cov(Pi), and arrange

λi
1, λi

2, λi
3 in decreasing order of size, and regard the feature points satisfying the Formula

(3) as candidate feature points of intrinsic shape signatures:

λ2
i

λ1
i
≤ ε1,

λ3
i

λ2
i
≤ ε2 (3)

where ε1 and ε2 are the set thresholds, 0 < ε1, ε2 < 1;
(4) For the candidate feature points of intrinsic shape signatures, the non-maximum

suppression strategy is used to filter out the final feature points.

3.3. USC Descriptor

Commonly, feature point description methods include Spin Image descriptor [22],
PFH descriptor, FPFH descriptor [23] and 3DSC descriptor. Reference [24] proposes PFH
feature descriptor and FPFH feature descriptor, and uses FPFH feature descriptor and
SAC-IA (SAmple Consensus Initial Alignment) for registration. Reference [25] proposes a
new 3D descriptor LP-PPF, which can identify repetitive structures correctly and achieve
accurate registration between adjacent point clouds pairs.
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3D Shape Context [26] (3SDC) is a 3D local feature point descriptor extended from 2D
shape context. Reference [27] uses the 3DSC descriptor to describe the extracted feature
points, then RANSAC algorithm is used for coarse registration and ICP algorithm is used
for fine registration. Compared with the ICP algorithm, the SAC-IA + ICP algorithm and
the 3DHoPD + ICP algorithm, the 3DSC + RANSAC + ICP has a faster registration speed.
Figure 3a shows the meshing diagram of 3DSC. It takes the normal vector n of a point as
the local reference coordinate axis, and its disadvantage is that it lacks a repeatable local
reference coordinate system and needs to calculate descriptors in multiple rotations in
different directions. Therefore, the 3DSC descriptor can be improved to use the unique
shape context (USC) descriptor. It only needs to calculate one descriptor at each model
feature, which not only reduces the memory consumption, but also improves the calculation
efficiency. The main steps for USC to describe feature points are as follows:

(1) Given a feature point k and a spherical neighborhood with k as the center and R as
the radius, the weighted covariance matrix M of the points in the neighborhood is shown
in Formula (4): 

M = 1
Z ∑

s:ds≤R
(R− ds)(ks − k)(ks − k)T

ds = ‖ks − k‖
Z = ∑

s:ds≤R
(R− ds)

(4)

where ks is any point in the spherical neighborhood, and s is the number that satisfies the
condition of ‖ks − k‖ ≤ R.

(2) According to the eigenvector decomposition of M, the local reference coordinate
system of the feature point is determined, and the spherical neighborhood around the
feature point is uniquely divided into grids along the three coordinate axes of the local
reference coordinate system. The weighted value of the points in each grid is the USC
descriptor, as shown in Formula (5):

w(k j) =
1

ρj
3
√

V(x, y, z)
(5)

where V(x,y,z) represents the volume of x direction, y direction and z direction, and ρj is the
density of points in the corresponding volume.

Figure 4 shows the meshing diagram of 3DSC and USC.

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 20 
 

SAC-IA (SAmple Consensus Initial Alignment) for registration. Reference [25] proposes a 
new 3D descriptor LP-PPF, which can identify repetitive structures correctly and achieve 
accurate registration between adjacent point clouds pairs. 

3D Shape Context [26] (3SDC) is a 3D local feature point descriptor extended from 
2D shape context. Reference [27] uses the 3DSC descriptor to describe the extracted feature 
points, then RANSAC algorithm is used for coarse registration and ICP algorithm is used 
for fine registration. Compared with the ICP algorithm, the SAC-IA + ICP algorithm and 
the 3DHoPD + ICP algorithm, the 3DSC + RANSAC + ICP has a faster registration speed. 
Figure 3a shows the meshing diagram of 3DSC. It takes the normal vector n of a point as 
the local reference coordinate axis, and its disadvantage is that it lacks a repeatable local 
reference coordinate system and needs to calculate descriptors in multiple rotations in 
different directions. Therefore, the 3DSC descriptor can be improved to use the unique 
shape context (USC) descriptor. It only needs to calculate one descriptor at each model 
feature, which not only reduces the memory consumption, but also improves the calcula-
tion efficiency. The main steps for USC to describe feature points are as follows: 

(1) Given a feature point k and a spherical neighborhood with k as the center and R 
as the radius, the weighted covariance matrix M of the points in the neighborhood is 
shown in Formula (4): 

( )( )( )














−=

−=

−−−=





≤

≤

Rds
s

ss

T
ss

Rd
s

s

s

dRZ

kkd

kkkkdR
Z

M

:

:s

)(

1

 (4)

where ks is any point in the spherical neighborhood, and s is the number that satisfies the 
condition of ‖ks-k‖ ≤ R. 

(2) According to the eigenvector decomposition of M, the local reference coordinate 
system of the feature point is determined, and the spherical neighborhood around the 
feature point is uniquely divided into grids along the three coordinate axes of the local 
reference coordinate system. The weighted value of the points in each grid is the USC 
descriptor, as shown in Formula (5): 

3 ),,(
1)(

zyxV
kw

j
j ρ

=  (5)

where V(x,y,z) represents the volume of x direction, y direction and z direction, and ρj is 
the density of points in the corresponding volume.  

Figure 4 shows the meshing diagram of 3DSC and USC. 

 
(a) (b) 

Figure 4. The meshing diagram of 3DSC and USC. (a) The meshing diagram of 3DSC. (b) The
meshing diagram of USC.



Algorithms 2022, 15, 389 7 of 20

3.4. Improved RANSAC Coarse Registration

The goal of point clouds registration is to estimate the transformation matrix so that
the sum of squared distances between each point p in the source point clouds P and the
corresponding point q in the target point clouds Q is minimized, as shown in Formula (6):

T̂ = argmin
T

ε(T) = argmin
T

∑
p∈P

(Tp − q)2 (6)

The main steps of the coarse registration of the random sample consensus algorithm
are as follows:

(1) Select n random sample points p1, p2, . . . , pn in the source point clouds P, and
search for n corresponding points q1, q2, . . . , qn in the target point clouds Q through nearest
neighbor matching according to the USC descriptor, so that n corresponding point pairs
(p1, q1), (p2, q2), . . . , (pn, qn) can be obtained, where n ≥ 3;

(2) The pre-exclusion step to avoid incorrect hypothetical poses. First, calculate the
Euclidean distance between n points in their respective spaces, and n random sample
points will form the side lengths of multiple virtual polygons. Second, the dissimilar vector
→
δ between the side lengths of virtual polygons is calculated. Finally, compare

→
δ with

the preset side length similarity threshold εploy. If ‖
→
δ ‖ ≤ εploy, continue to the next step,

otherwise return to the first step. Taking n = 3 as an example, the calculation formula
→
δ is

shown in Formula (7):

δ =

[
dp

12 − dq
12

max(dp
12, dq

12)
,

dp
23 − dq

23

max(dp
23, dq

23)
,

dp
13 − dq

13

max(dp
13, dq

13)

]
(7)

The calculation principle of
→
δ is shown in Figure 5:
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(3) Use n corresponding point pairs (p1, q1), (p2, q2), . . . , (pn, qn) to estimate the
transformation matrix T̂, and the source point clouds P is transformed into point clouds
P′ after T̂ transformation. The nearest neighbor Euclidean distance between the point
clouds P′ and the target point clouds Q is then calculated. Next, let the point which its
nearest Euclidean distance in the point clouds P′ is less than the preset distance threshold
εRANSAC as the interior point, and calculate the distance between the interior point and
the corresponding point by the formula of ε(T) = ∑

p′∈P′
(p′ − q)2. If the number of interior

points is too small, return to the first step;
(4) Re-estimate the transformation matrix T̂ according to the relationship between the

interior point and the corresponding point in the target point clouds Q, and perform con-
tinuous iteration. When ε(T) reaches the minimum value or reaches the maximum number
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of iterations tRANSAC, the iteration is stopped, and the optimal transformation matrix T̂0 is
obtained at this time. The calculation formula of tRANSAC is shown in Formula (8):

tRANSAC =
log(1− ρ)

log(1−ωn)
(8)

where ρ is the given expected success probability and ω is the expected inline score. The
expected inline score is the percentage of interior points in a data set that contains both
interior points (points that are suitable for the model) and exterior points (points that are
not suitable for the model).

3.5. ICP Fine Registration Based on KD Tree

The iterative closest point algorithm is the most classic point clouds registration
algorithm, but it is easy to fall into the local optimal solution. Therefore, it is necessary to
provide a good initial position through coarse registration to increase the probability of
iterative convergence to the global optimal position. ICP fine registration based on KD tree
includes the following steps:

(1) Perform RANSAC coarse registration on the source point clouds P to obtain the
optimal transformation matrix T̂0, and perform T̂0 transform on the point clouds P to obtain
the point clouds P′′. For each point pi

′′ in the point clouds P′′, use the KD tree algorithm
to search for the point qi closest to the point pi

′′ in the target point clouds Q, and form a
corresponding point pair (pi

′′, qi). This makes up a total of N pairs of points;
(2) According to the point pair relationship, the rotation matrix R and the translation

matrix T are calculated by the least square method, and the error function G(R,T) is obtained.
The calculation formula is shown in Formula (9):

G(R, T) =
1
N

N

∑
i=1
‖Rp′′i

+ T − qi‖
2

(9)

(3) Transform each point pi
′′ in the point clouds P with the obtained rotation matrix R

and translation matrix T to obtain the transformed corresponding point p′′′ , p
′′′
i = Rp′′i

+ T,

and calculate the average distance D of the point pair (p′′′ , qi), as shown in Formula (10):

D =
1
N

N

∑
i=1
‖p
′′′
i − qi‖ (10)

(4) Set the maximum distance threshold εICP between corresponding points. If Dm −
Dm+1 ≤ εICP is satisfied, the iteration ends. Dm is the average distance of the mth iteration,
and Dm+1 is the average distance of the m+1th iteration. Otherwise, return to the first step
to change the optimal transformation matrix and continue the iteration, at this time the
initial transformation matrix is T0 × R × T.

(5) According to the final obtained rotation matrix R and translation matrix T, the
source point clouds P is transformed into the coordinate system of the target point clouds
Q to complete the registration.

4. Experimental Results and Analysis
4.1. Experimental Data

The experimental data in this paper adopts the Bunny, Armadillo, Dragon and Drill
models in the point clouds database of Stanford University. The original scale of Bunny1
and Bunny2 point clouds are 35,974, and the original scale of Armadillo1 and Armadillo2
point clouds are 204,800. The original scale of Dragon1 and Dragon2 point clouds are
29,103, and the original scale of Drill1 and Drill2 point clouds are 204,800. The experimental
hardware CPU is Intel(R) Core(TM) i5-9400 @ 2.90 GHz processor, the operating system
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software is Windows 10 Enterprise Edition, and the development environment is PCL 1.8.0
and visual studio 2013.

In order to reduce the execution time of the algorithm, the improved voxel filter is first
used for down-sampling to simplify the point clouds, and control the scale of points after
down-sampling to several thousand. Too many feature points will increase the execution
time of the algorithm, and too few feature points will affect the registration accuracy.

Table 1 shows the number of points and ISS feature points of the Bunny model under
different grid sizes. The grid size of the Bunny point clouds data is selected by experiment
to be 0.005 m, and the grid size of the Armadillo point clouds data is 0.003 m. The grid size
of the Dragon point clouds data is selected by experiment to be 0.03 m, and the grid size of
the Drill point clouds data is 0.001 m.

Table 1. The number of points and feature points of Bunny model under different grid sizes.

Grid Size/m 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Bunny1 points 34,461 15,897 7822 4639 3006 2131 1567
ISS feature points 1 66 1020 425 245 158 105 74

Bunny2 points 33,940 16,243 8053 4771 3112 2188 1605
ISS feature points 2 59 1048 460 255 162 107 73

The neighborhood radius searched by the algorithm and grid size are the same, which
are 0.005 m, 0.003 m, 0.03 m and 0.001 m, respectively. The final feature points are filtered
out by non-maximum suppression strategy, and the selected non-maximum suppression
radius is twice the radius of the searched neighborhood, which is 0.01 m, 0.006 m, 0.06 m
and 0.002 m, respectively. The final scale of improved voxel filter down-sampling points
and extracted feature points are shown in Table 2. Figures 6 and 7 are the feature point
plots extracted from Bunny1, Bunny2, ArmAdillo1 and ArmAdillo2 models, respectively,
after down-sampling with improved voxel filter. Figures 8 and 9 are the feature point
plots extracted from Dragon1, Dragon2, Drill1 and Drill2 models, respectively, after down-
sampling with improved voxel filter.
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Table 2. The number of point clouds for different models.

Model Original Point
Clouds

Improved Voxel Filter
Down-Sampling Points ISS Feature Points

Bunny1 35,947 3006 158
Bunny2 35,947 3112 162

Armadillo1 204,800 2822 147
Armadillo2 204,800 2758 138

Dragon1 29,103 5611 283
Dragon2 29,103 5704 272

Drill1 204,800 1551 108
Drill2 204,800 1503 103
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4.2. Experimental Procedure

In order to verify the advancement and effectiveness of the improved voxel filter, the
traditional ICP algorithm, the ICP algorithm with voxel filter and the ICP algorithm with
the improved voxel filter are used for registration comparison of the four models. The
standard to measure the registration accuracy uses the getFitnessScore in PCL, which is the
average of the squared distances of all corresponding points after registration. The smaller
the value is, the smaller the error is, which is defined as:

getFitnessScore = ∑N
i=1 (pi − qi)

2

N
(11)

where pi is any point in the source point clouds P, qi is the corresponding point in the target
point clouds Q, and N is the corresponding point pairs after the completion of ICP fine
registration iteration based on KD tree.

Table 3 shows the registration results of the three algorithms for the four models.
Figure 10 shows the comparison curves of registration time and registration error of three
algorithms under four model conditions. In the figure, the left axis is the registration time,
and the right axis is the registration error. It can be seen that the registration time of the
traditional ICP algorithm is longest, and the registration accuracy is sometimes high and
sometimes low with the change of the model. For the ICP algorithm with voxel filter, the
registration is faster after down-sampling, but the registration accuracy is significantly
reduced. For the ICP algorithm with improved voxel filter, not only the registration time is
reduced, but the registration accuracy can be stable in a higher range. The results of this
registration comparison show that the improved voxel filter can more accurately represent
the original data, which has stronger enhancement to the extraction of key points, coarse
registration and fine registration. The more accurate the data, the faster the registration
speed will be.

Table 3. Registration results of the three algorithms for the four models.

Model

ICP ICP+ Voxel Filter ICP+ Improved Voxel Filter

Time Registration
Error Time Registration

Error Time Registration
Error

Bunny 50.451 6.62234 × 10−5 2.210 1.96057 × 10−4 3.283 4.37225 × 10−6

Armadillo 45.606 4.15124 × 10−5 3.162 2.2289 × 10−5 3.017 2.24228 × 10−5

Dragon 40.574 9.28518 × 10−3 6.246 9.12843 × 10−3 6.202 3.91463 × 10−3

Drill 4.558 1.754 × 10-5 0.087 2.30307 × 10−5 0.043 2.28272 × 10−5
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In order to verify the validity and accuracy of the proposed algorithm, three other
algorithms are designed for comparative experiments under the same conditions. The three
other algorithms are: the 3DSC + RANSAC + ICP algorithm without improved voxel filter,
the 3DSC + RANSAC + ICP with improved voxel filter and the USC + RANSAC + ICP
algorithm without improved voxel filter.

In the process of RANSAC coarse registration, adding a pre-exclusion step can imme-
diately filter out the wrong hypothetical poses, thereby saving more time to generate more
other possibly correct hypothetical poses and reducing the time of coarse registration. The
distance threshold εRANSA is the judgment criterion for interior point, but the selection of
its value will affect the registration accuracy. For the KD tree based ICP registration, the
selection of the maximum distance threshold εICP between corresponding points also has a
certain affect to the registration accuracy.

According to the experimental comparison and analysis of the four models’ registra-
tion, set the parameters εRANSAC = 0.001 and εICP = 0.4 of the Bunny model, εRANSAC = 0.01
and εICP = 0.03 of the Armadillo model, εRANSAC = 0.3 and εICP = 0.3 of the Dragon model
and εRANSAC = 0.003 and εICP = 0.009 of the Drill model.

Table 4 shows the registration time for four models of each algorithm. Figure 11
clearly shows the trend of registration time for the four models of each algorithm. It can
be seen that the registration time of proposed algorithm is the shortest. Table 5 shows the
registration error for four models of each algorithm.

Table 4. Registration time for four models of each algorithm/s.

Model Voxel Filter+ 3DSC +
RANSAC + ICP

Improved Voxel Filter +
3DSC + RANSAC + ICP

Voxel Filter+ USC +
RANSAC + ICP Proposed Algorithm

Bunny 49.321 25.61 61.607 20.803
Arm Adillo 25.414 15.134 33.234 10.296

Dragon 45.74 10.302 4.649 5.78
Drill 5.654 4.69 5.131 4.386



Algorithms 2022, 15, 389 13 of 20Algorithms 2022, 15, x FOR PEER REVIEW 13 of 20 
 

 
Figure 11. Total registration time for four models of each algorithm. 

Table 5. Registration error for four models of each algorithm/m. 

Model Voxel Filter+ 3DSC + 
RANSAC + ICP 

Improved Voxel Fil-
ter + 3DSC + RAN-

SAC + ICP 

Voxel Filter+ USC 
+ RANSAC + ICP 

Proposed Al-
gorithm  

Bunny 6.69635 × 10−5 6.69635 × 10−5 6.69635 × 10−5 6.69635 × 10−5 
ArmAdillo 4.06044 × 10−5 4.67503 × 10−5 4.06102 × 10−5 4.67117 × 10−5 

Dragon 0.00233421 0.00229143 0.80076627 0.00228654 
Drill 4.84577 × 10−6 4.68711 × 10−6 4.81674 × 10−6 4.71003 × 10−6 

For the Bunny point clouds data, the proposed algorithm is optimal in both registra-
tion error and algorithm execution time. In terms of algorithm execution time, the pro-
posed algorithm is reduced by 50% compared with the Voxel filter + 3DSC + RANSAC + ICP 
algorithm, and the speed is greatly improved. Since the shape characteristics of the point 
clouds with the improved voxel filter are more similar to the original point clouds, the 
3DSC + RANSAC + ICP algorithm combining the improved voxel filter also has a faster reg-
istration speed, and a shorter algorithm execution time. 

For the Armadillo point clouds data, the Vovel filter + 3DSC + RANSAC + ICP algorithm 
is better than the proposed algorithm on the registration error. However, the registration 
error of the proposed algorithm is only 0.00058 × 10−5 lower than the Vovel filter + 3DSC + 
RANSAC + ICP algorithm, with a very small difference. Compared with the Voxel filter + 
3DSC + RANSAC + ICP algorithm, registration time has been reduced by 50%. When the 
registration accuracy error is not very large, the execution time of the algorithm can be 
given priority. 

For the Dragon point clouds data, in terms of registration accuracy and registration 
time, the registration effect of the proposed algorithm is the best. Compared with the 
Voxel filter + 3DSC + RANSAC + ICP algorithm, the registration time of the proposed algo-
rithm is greatly reduced. The Voxel filter + 3DSC + RANSAC + ICP algorithm with the im-
proved voxel filter also increases the registration time by more than four times, and the 
registration accuracy is also higher, indicating that the improved voxel filter can improve 
the registration speed. 

Figure 11. Total registration time for four models of each algorithm.

Table 5. Registration error for four models of each algorithm/m.

Model Voxel Filter+ 3DSC +
RANSAC + ICP

Improved Voxel Filter +
3DSC + RANSAC + ICP

Voxel Filter+ USC +
RANSAC + ICP Proposed Algorithm

Bunny 6.69635 × 10−5 6.69635 × 10−5 6.69635 × 10−5 6.69635 × 10−5

ArmAdillo 4.06044 × 10−5 4.67503 × 10−5 4.06102 × 10−5 4.67117 × 10−5

Dragon 0.00233421 0.00229143 0.80076627 0.00228654
Drill 4.84577 × 10−6 4.68711 × 10−6 4.81674 × 10−6 4.71003 × 10−6

For the Bunny point clouds data, the proposed algorithm is optimal in both registration
error and algorithm execution time. In terms of algorithm execution time, the proposed
algorithm is reduced by 50% compared with the Voxel filter + 3DSC + RANSAC + ICP
algorithm, and the speed is greatly improved. Since the shape characteristics of the point
clouds with the improved voxel filter are more similar to the original point clouds, the
3DSC + RANSAC + ICP algorithm combining the improved voxel filter also has a faster
registration speed, and a shorter algorithm execution time.

For the Armadillo point clouds data, the Vovel filter + 3DSC + RANSAC + ICP
algorithm is better than the proposed algorithm on the registration error. However, the
registration error of the proposed algorithm is only 0.00058 × 10−5 lower than the Vovel
filter + 3DSC + RANSAC + ICP algorithm, with a very small difference. Compared with
the Voxel filter + 3DSC + RANSAC + ICP algorithm, registration time has been reduced
by 50%. When the registration accuracy error is not very large, the execution time of the
algorithm can be given priority.

For the Dragon point clouds data, in terms of registration accuracy and registration
time, the registration effect of the proposed algorithm is the best. Compared with the
Voxel filter + 3DSC + RANSAC + ICP algorithm, the registration time of the proposed
algorithm is greatly reduced. The Voxel filter + 3DSC + RANSAC + ICP algorithm with the
improved voxel filter also increases the registration time by more than four times, and the
registration accuracy is also higher, indicating that the improved voxel filter can improve
the registration speed.

Figure 12 shows the original image of the Dragon point clouds registration, and the
result under the USC descriptor algorithm without the improved voxel filter. It can be
seen that when the USC descriptor algorithm lacking the improved voxel filter is used, the
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registration effect of the Dragon point clouds is wrong. However, the proposed algorithm
can accurately register using the improved voxel filter under the USC feature descriptor,
which shows that the improved voxel filter can improve the registration accuracy. Figure 13
shows the original image of the Dragon point clouds registration and the result under the
proposed algorithm.
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image. (b) Registration result image.

For the Drill point clouds data, the data is relatively simple, so there is little difference
in time and registration accuracy. The registration time of the proposed algorithm is
the shortest and the registration accuracy is relatively high. Whether it is 3DSC feature
descriptor or USC descriptor, the registration time is reduced, and the registration accuracy
is improved after using the improved voxel filter.

Figure 14 shows the registration results of four models under the proposed algorithm.
The source point clouds, the target point clouds, and the registered point clouds are
displayed in one figure. The source point clouds are set to green, the target point clouds are
set to blue, and the registered point clouds are set to red. It can be seen that the blue point
clouds and the red point clouds almost overlap, indicating that the proposed algorithm has
high registration accuracy.
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Figure 14. Registration results of the proposed algorithm with four models. (a) Bunny registration
result. (b) Armadillo registration result. (c) Dragon registration result. (d) Drill registration result.

In order to further verify the feasibility of the proposed algorithm, the registration
experiment of the VGA connector for monitor is carried out. First, a single VGA connector
point clouds are obtained as the template point clouds, and then different scene point
clouds are obtained as the target point clouds. The template point clouds are used as the
source point clouds and the target scene point clouds for registration. The final registration
pose information can be sent to the robot for decision-making. Point clouds from two
different scenes are collected, and the obtained point clouds of the two scenes are shown in
Figure 15.
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under the two scenes. The template point clouds are set to green, the target scene point
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Table 6. The number of points and feature points of the two scenes under different grid sizes.
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5. Conclusions

With the development of 3D laser scanner, point clouds have become the primary data
format to represent the 3D world, and point clouds registration technology is an important
step. In order to overcome the problems of slow calculation speed and low registration
accuracy in the process of point clouds registration, this paper proposes a point clouds
registration algorithm based on improved voxel filter combining ISS-USC features. First
of all, the source point clouds and target point clouds are sampled by the improved voxel
filter, respectively, to simplify the point clouds. Secondly, the ISS feature points detection
algorithm is used to extract the feature points, and the USC descriptor is used to describe
the feature points. Next, coarse registration is carried out by RANSAC algorithm, and
the incorrect corresponding point pairs are eliminated to obtain a good initial registration
position. Finally, ICP algorithm based on KD tree is used for fine registration. Through
comparing with other algorithms and the registration experiment of the VGA connector
for monitor, the proposed algorithm has a fast registration speed. The registration time
is reduced by 50%, and the registration accuracy is higher. Considering that there are
still threshold adaptation problems of some parameters in the proposed algorithm and
the construction of covariance matrix that need to be further optimized, the proposed
algorithm will continue to be improved in future scientific research work.
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