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Abstract: Fuzzy c-means (FCM), the fuzzy variant of the popular k-means, has been used for data
clustering when cluster boundaries are not well defined. The choice of initial cluster prototypes
(or the initialization of cluster memberships), and the fact that the number of clusters needs to be
defined a priori are two major factors that can affect the performance of FCM. In this paper, we
review algorithms and methods used to overcome these two specific drawbacks. We propose a new
cooperative multi-population differential evolution method with elitism to identify near-optimal
initial cluster prototypes and also determine the most optimal number of clusters in the data. The
differential evolution populations use a smaller subset of the dataset, one that captures the same
structure of the dataset. We compare the proposed methodology to newer methods proposed in the
literature, with simulations performed on standard benchmark data from the UCI machine learning
repository. Finally, we present a case study for clustering time-series patterns from sensor data related
to real-time machine health monitoring using the proposed method. Simulation results are promising
and show that the proposed methodology can be effective in clustering a wide range of datasets.

Keywords: fuzzy c-means; initial cluster prototypes; optimal number of clusters; differential
evolution; sparse sampling; Hopkins statistic; cluster validity indices

1. Introduction

Clustering is an unsupervised learning method that seeks to partition objects in a
dataset into several natural groupings called clusters such that objects within a cluster
tend to have similar attributes while objects belonging to different clusters have dissimilar
attributes. In other words, clustering methods that can produce self-similar groups charac-
terized by intra-group homogeneity and heterogeneity across groups, tend to create good
natural partitions of the dataset. This is conceptually different from supervised classifica-
tion or discriminant analysis where labeled data is used to train a classifier that is eventually
used to classify unlabeled data. Clustering is useful in several exploratory data analyses,
visualization, decision making, and machine-learning applications such as data mining,
image segmentation, and pattern recognition. There are several ways to categorize different
clustering methodologies, one of the most common is categorizing clustering methods as hi-
erarchical clustering or partitional clustering methods [1]. Hierarchical clustering methods
organize data into hierarchical structures of partitions starting from singleton clusters (each
object in the data is its own cluster) to one cluster over the entire data and every structure
in between. Partitional clustering methods, on the other hand, produce a single partition of
data for a pre-specified number of clusters based on the optimization of a pre-determined
clustering criterion. While defining a suitable proximity measure (or a distance measure) is
all that is often required for hierarchical clustering, partitional clustering methodologies
require specifying clustering criteria (objective functional), number of clusters sought, and
other parameters depending on the type of algorithm being used.

We focus on fuzzy clustering in this paper. Unlike hard clustering where an object
belongs to a single cluster, the notion of graded belongingness of objects to all clusters
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is key to fuzzy clustering [2]. The most widely used fuzzy clustering algorithm is fuzzy
c-means [3,4] which is the fuzzy equivalent of the hard k-means algorithm. It uses a
membership function grade to associate each object in the data to clusters. The clusters
themselves are defined as cluster centers or cluster prototypes or simply centroids (a
centroid is an object instance which is most central to the cluster being described). Objects
are assigned to the clusters based on their membership in the cluster. The alternating
optimization (AO) algorithm is the most popular implementation scheme for FCM [5]. The
prototypes are initialized, either randomly or procedurally. At each optimization step,
the partition memberships and the prototypes are updated, until a pre-defined stopping
criterion is met such as when prototypes have stabilized. The number of clusters to be
found is defined a priori. However, FCM is sensitive to the initialization of prototypes and
the fact that in many applications it is difficult to a priori define the number of clusters to
be found.

A novel method to find initial cluster prototypes (initialization) while concurrently
determining the optimal number of clusters to be found, is presented in this paper. Contri-
butions of this paper are as follows.

(1) A subset method is introduced to create the best subset of the dataset which still
preserves the underlying structure of the original dataset. This is performed using a
measure based on sparse sampling of the data, a concept widely used in clusterability
studies of datasets. The reduced subset is then used instead of the original dataset to
initialize cluster prototypes and find the optimal number of clusters.

(2) A coevolutionary scheme is presented which evolves candidate solutions that encode
for both cluster prototypes as d-dimensioned real-valued numbers as well as the
number of clusters. A multi-population differential evolution algorithm is presented
with each population using a randomly assigned variant of the differential evolution
algorithm. An elite population that does not evolve candidate solutions directly but
participates in the evolution of the other populations is fundamental to the proposed
scheme.

(3) A cluster-validity index is used as the fitness function to guide the evolution. The
cluster validity index is calculated by first computing memberships using the informa-
tion encoded in the evolutionary candidate vector and then using the memberships
to find the index as a single-step operation. Using the reduced subset method, the
implementation is less resource intensive compared to using the entire dataset.

The rest of the paper is organized as follows. We start with providing a background
of FCM with a review of recent literature in the determination of the optimal number of
clusters and the methods for cluster prototype initialization in Section 2. In Section 3 we
present the subset selection method, which is central to the proposed method, followed
by the multi-population coevolutionary differential evolution framework in Section 4. In
Section 5, we present simulation results using synthetic data and datasets from the Univer-
sity of California Irvine’s Machine Learning (UCI ML) repository. In Section 6, we present
a case study with a real-world dataset from the domain of machine health monitoring. In
Section 7, we conclude the paper and present some directions for future research.

2. Background

Fuzzy c-means or FCM is a partitional clustering algorithm based on the notion of
fuzzy membership of objects in a dataset to a cluster. FCM is useful when the natural
partitions in a dataset are not evident or very well defined. A data object xk has a certain
membership uik (which takes values between zero and one, not including 0 or 1) in a
cluster Ci, which is seen as the partial (fuzzy) belongingness of the data point to that cluster,
subject to the constraint that the sum of memberships across all clusters is unity and the
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contribution of memberships of all data points to any particular cluster is always less than
the cardinality of the dataset n (k = 1,2, . . . , n).

c

∑
i=1

uik = 1; 0 <
n

∑
k=1

uik < n (1)

The fuzzy sum-of-squared-error objective function is the least squares estimator function,

JFCM =
c

∑
i=1

n

∑
k=1

um
ik ||xk − υi||2 (2)

The exponent m is called the fuzzifier which determines the fuzziness of the partition,
m ∈ [1, ∞) and ||xk − υi||2 = (xk − υi)

′A(xk − υi) is the distance between cluster prototype
υi and data object xk where A is the norm matrix. The identity norm matrix A = I yields
Euclidean distance and results in spherical clusters while other norms are used for elliptical
clusters, etc. In this paper, the Euclidean distance has been used. The FCM-AO minimizes
the functional in Equation (2) by iteratively calculating cluster prototypes and updating
memberships until there is no change in the termination criterion, usually as measured by
a change in memberships between two successive iterations.

υi =

n
∑

k=1
um

ik xk

n
∑

k=1
um

ik

∀i = 1, 2, . . . , c (3)

uik =
1

c
∑

j=1

[
||xk−υi ||2

||xk−υj||2
] 1

m−1
(4)

The equations presented for FCM are from [4]. The algorithm often starts by initializing
cluster prototypes randomly, then calculating memberships using Equation (4), followed
by recalculating prototypes using Equation (3) until convergence. The final membership
matrix U = [uik]c×n is sensitive to the initialization of cluster prototypes. In addition, the
iterative optimization scheme assumes that the number of clusters c is known. The only
parameter to tune is the fuzzifier m which depending on the fuzzification required is often
set to m = 2 for most clustering problems (especially one involving spherical clusters).

2.1. Determination of Optimal Number of Clusters

For two-dimensional datasets, the number of clusters can be determined by simple
visualization. For higher dimensional data, the dataset can be mapped to a two-dimensional
plane using dimensionality reduction techniques such as principal component analysis
(PCA), kernel, locally linear embedding (LLE), diffusion maps, and sparse dictionary
representations. These techniques do not, however, provide a mapping that conserves the
internal partitional structure of the dataset. More popular are cluster validity methods that
quantify the goodness of a partition after the clustering method produces the partition.
Different partitions for different values of c are created and then the goodness of partition
is compared using a measurable index. The value of the index reaching a maximum or
minimum or an inflection point is often a good indicator of the goodness of partition and
the corresponding number of clusters is the optimal number of clusters. We use several of
these cluster validity measures in this paper. However, these are used not to determine an
optimal value for c, but instead to compare the performance of different algorithms.

The first cluster validity index was proposed by Zadeh called the degree of separa-
tion which was later refined as the concept of partition coefficient and the closely related
partition entropy by Bezdek [6]. Lee proposed a fuzzy clustering validity index using the
distinguishableness of clusters measured by the object proximities [7]. Based on Shannon
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entropy and fuzzy variation theory, Zhang and Jiang proposed a fuzzy clustering validity
index taking into account of the geometry structure of the dataset [8]. Saha et al. pre-
sented an algorithm based on differential evolution for automatic cluster detection, which
evaluated the validity of the clustering result [9]. Yue et al. partitioned the original data
space into a grid-based structure and proposed a cluster separation measure based on grid
distances [10]. Based on the idea that a natural partition is one that creates well-separated
compact clusters, measures of compactness and separation were proposed as part of several
cluster validity measures. These include Fukuyama–Sugeno index FS [11], Xie–Beni index
XB [12], Bensaid index SC [13], Tang index VT [14], Kwon index VK [15], PBMF index [16],
PCAES index [17], WL index [18], Wang index VW [19], CWB index [20], and Zhu index
Vz [21].

Since these measures compare and quantify the goodness of the partition after the
partition is generated, they are not practical for problems involving large datasets (high
cardinality n) or high number of dimensions d. Lately, some new clustering algorithms have
been proposed that adjust the number of clusters while the partition is being generated.
Competitive agglomeration [22] and split hierarchical clustering [23] have been used to
guide the optimization of the number of clusters in a partitional clustering process. A
similarity-based clustering method that combines single-point iteration with hierarchical
clustering to determine the number of clusters is proposed in [24]. A Mercer kernel-based
clustering [25] estimated the number of clusters by the eigenvectors of a kernel matrix.
A clustering algorithm based on maximal θ-distant subtrees [26] detected any number of
well-separated clusters of any shape.

2.2. Initialization of Cluster Prototypes

In most implementations of FCM-AO, the cluster centers are randomly initialized. The
random initialization affects the accuracy and running time of the algorithm, especially in
datasets where natural clusters overlap. Based on the initial choice of cluster prototype, the
algorithm can either quickly converge or get trapped in local minima. A subtractive clus-
tering algorithm has been used to find the initial cluster centers in [27,28]. However, there
are several parameters that need to be set to get the desired outcome, which are not trivial.
A cluster prototype initialization based on a density cluster algorithm is presented in [29].
A fuzzy entropy algorithm is proposed with a hybrid FCM algorithm to initialize cluster
centers in [30]. An improved FCM algorithm based on morphological reconstruction and
affiliation filtering (FRFCM) which can determine the number of clusters while optimizing
initial cluster prototypes has been presented in [31].

Metaheuristic methods such as evolutionary algorithms including genetic
algorithms [32,33], particle swarm optimization, and differential evolution [34] have been
used for cluster prototype initialization. A detailed recent review of metaheuristics used
to solve the problem of cluster prototype initialization for FCM in the area of image seg-
mentation can be found in [35]. A single population differential evolution algorithm called
automatic differential evolution-based fuzzy clustering (ADEFC) was used to optimize
initial cluster prototypes and number of clusters in [9]. The multiple population genetic
algorithm (MPGA) to optimize cluster prototypes using multiple evolving populations
was proposed in [36]. Each subpopulation is allowed to evolve independently; however,
a migration operator is used to relate the individually evolving populations. Recently,
the derivative multi-population genetic algorithm (DMGA) was proposed in [37] which
first initializes the population by using a derivative operator before each subpopulation is
evolved using canonical genetic operators. The probabilities of the genetic operators are
dynamically selected by an adaptive probability fuzzy control operator. The quality of the
initial cluster prototypes is shown to be superior to those found using MPGA. However,
these methods are very resource intensive for big datasets.
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3. Subset Selection

A co-evolutionary algorithm recognizes the diversity of the possible candidate solu-
tions in the population. It emphasizes the correlation between the domain of the problem
being solved and the candidate solutions. Evolutionary algorithms are prone to get trapped
in local optima, and performance depends on fine tuning a few or many parameters. Co-
evolutionary systems, on the other hand, have been shown to have the ability to avoid
local optima by dividing the solution space and also use different evolutionary strategies
to support either a competitive system or a cooperative system. Their strength lies in
the divide-and-conquer decomposition strategy and in their implicit parallelism. These
algorithms can be divided into competitive co-evolutionary systems and cooperative
co-evolutionary systems and include systems such as co-evolution of predator and prey sys-
tems, competing species, among others [38–40]. These systems can balance the exploration
and exploitation capability by utilizing cooperative or competitive mechanisms among
different subpopulations using different strategies for different subpopulations. They can
also improve convergence properties (not necessarily speed) by facilitating information
exchange among the subpopulations.

There are two important reasons for using coevolutionary algorithms for clustering
problems: (1) evolution of candidate solutions on a subset of the larger dataset improves
the convergence properties of the individual subpopulation. This is because a judiciously
selected subset of a larger dataset can capture the structure of the larger dataset and
since it is smaller than the original dataset, an evolutionary algorithm can converge faster.
(2) Coevolution, both competitive and cooperative, ensures that excellent candidates which
in a single-strategy one-population evolution may not be able to evolve for several genera-
tions which is an implicit strain on resources, now have a better chance of getting selected
for evolution.

The proposed co-evolutionary framework is described here. The dataset of size n to
be clustered is first divided into SP distinct subsets such that in each subset there are n/SP
objects. If n is not evenly divisible by SP, then the largest number < n evenly divisible by
SP is used. For example, if n = 528 and SP = 10, we select 520 objects at random from the
dataset and divide them into 10 subsets with 52 objects in each. Every subset is mutually
exclusive so that a data object is available to only one subset. This ensures an even coverage
of the entire dataset. The algorithm to create mutually exclusive subsets of the data is
shown as Algorithm 1.

Algorithm 1: Dividing dataset into subsets

Input: Dataset data of size n and dimensions d: X = {x1, x2, . . . xn}, where xj = {xj1, xj2, . . . xjd}, SP

1. Calculate rem = remainder(n/SP). If rem ! = 0, discard rem datapoints randomly from data
and retain (n − rem) datapoints as data

2. For k = 1 to SP
3. Select (n − rem)/SP datapoints at random from data to populate subset Pk
4. Remove the same (n − rem)/SP points from data: data = data − Pk
5. End

Output: SP Subsets P = {P1, P2, . . . PSP}, rem

Of these distinct datasets, only the one with a similar underlying structure as the
original dataset is then selected. This is performed by employing a sparse sampling statistic
based on a test of spatial randomness. Sparse sampling tests are based on sampling origins
randomly assigned in a sampling window and the underlying structure of the data can be
quantified by nearest neighbor measurement of sampling origins to points and comparing
them to the random nearest neighbor measurement of paired points within the sampling
window. Several tests involving sampling origins have been proposed in the literature,
mostly from the field of biological statistics, based on a multitude of tests such as the
Hopkins [41,42], Holgate [43], T-square [44], Eberhardt [45] and Cox-Lewis [46]. These
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have been used as a test of clusterability, clustering tendency, and cluster validation [47,48].
In this paper, we use the Hopkins statistic which is by far the easiest of the statistical
measures to implement. For a dataset X of size n in d-dimensions, n0 sampling origins
Y are placed at random in a sampling window such that n0 << n. The sampling origins
Y are d dimensional as well. Two types of distances are defined: uk is the distance of the
sampling origin yk to its nearest datapoint in X, and wk is the distance of a randomly chosen
datapoint xk to its nearest neighbor in X. The Hopkins statistic [41] is defined as,

H =

n0
∑

k=1
ud

k

n0
∑

k=1
ud

k +
n0
∑

k=1
wd

k

(5)

The statistic, therefore, compares the nearest-neighbor distribution of randomly se-
lected locations in the dataset, to the nearest-neighbor distribution among objects in the
data. If the underlying structure of dataset X is random, then on an average the sum
of uk would be equal to the sum of wk over d dimensions and therefore H will be close
to 0.5. However, if dataset X has distinct separable clusters (without any notion of how
many clusters there are), then on an average the sum of uk will greatly exceed the sum
of wk and therefore H will be very close to unity. In most cases, real-world datasets will
fall somewhere within this spectrum of complete underlying randomness and distinct
separable clusters—as a result, Hopkins statistic H will range between 0.5 and 1.0 for most
datasets. If it is close to 0.5, the dataset is more random than clustered, and if close to 1.0
then there are distinct separable clusters. It is easy to see why the Hopkins statistic has
been so popular for use as a measure of clustering tendency (the question of whether a
dataset has an underlying cluster structure). In this paper, we use the statistic simply as a
quantification of the underlying structure and compare it to the underlying structure of the
subsets. The subset that under repeated spare sampling has a Hopkins statistic value close
to that of the entire dataset most likely captures the underlying structure of the dataset.
This is shown as Algorithm 2 below.

Algorithm 2: Identifying subset with similar underlying structure to the original dataset

Input: Dataset data of size (n − rem), SP subsets P = {P1, P2, . . . PSP} each of size (n − rem)/SP,
number of sampling origins n0 for data, convergence threshold ε

1. Populate n0 datapoints at random in data
2. Calculate Hopkins statistic H for data
3. diff = ε, best_subset = Ø
4. Repeat
5. For k = 1 to SP
6. Populate n0/SP datapoints at random in Pk
7. Calculate Hopkins statistic Hk for subset Pk
8. If |H − Hk| < diff, diff = |H − Hk| and best_subset = k
9. End
10. Until (best_subset ! = Ø)

Output: Subset Pbest_subset

4. Proposed Co-Evolutionary Framework

A co-evolutionary framework is proposed to optimize the initial cluster prototypes
and the number of clusters chosen. The most similar subset identified in Section 3 is
then acted upon by subpopulations each running a different variant of the differential
evolution (DE) algorithm. Candidate vectors are randomly created using a real-numbered
vector representation and a masker scheme and then evolved using a DE based on a fitness
criterion. In this section, we first describe the different variants of DE algorithms used in
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this work, followed by the vector representation and masker scheme, and conclude with a
discussion on the fitness function.

4.1. Differential Evolution Algorithms

Differential Evolution (DE) is a very popular population-based metaheuristic op-
timization technique used for multidimensional real-valued functions [49]. A distinct
advantage of population-based methods is that they do not require gradient information
for optimization as in the function being optimized (minimized or maximized) does not
have to be differentiable. The technique uses a simple differential operator to create new
candidate solutions by employing a one-to-one greedy competition between individuals in
the population to move the population to optimal regions of the solution space. However,
there is no guarantee that a global optimum will be attained. The differential operator
is a combination of mutation and crossover operators used commonly in evolutionary
algorithms to evolve populations. It uses the differences between randomly selected indi-
viduals in the population as the source of random variations for a third individual referred
to as the target vector. The mutation operator is first used to generate a mutant vector
by adding weighted difference vectors to the target vector. By computing the differences
between two individuals from the population, the algorithm estimates the gradient in that
zone rather than in a single point in the search space. There are many variations in the way
the mutant vector is created and those used in this paper are described below. For a more
detailed review of recent advances in differential evolution, the reader is referred to [50,51].

1. DE/rand/1: The mutant vector for the new generation is generated by adding the
weighted difference of two candidates (or vectors) in the present generation g to the
third vector known as the target vector in the present population.

mi(g + 1) = pi(g) + Fs[p1(g)− p2(g)] (6)

where p1 and p2 are randomly chosen vectors from the population, Fs is the scale
factor which controls the amplification level of the differential variation or more
simply the step size in the solution search process. The target vector is pi and the
mutant vector to be used for the evolution of the next generation is mi 1 ≤ i ≤ p. This
is the standard version of the differential evolution algorithm [49] and is still widely
used. Since a single difference of two randomly chosen candidates from the present
generation is used to create the mutant candidate, the version is called DE/rand/1.

2. DE/best/1: Instead of using the candidate vector, mutant vectors are generated using
the same difference vector but now the scaled difference is added to the best candidate
in the present generation, instead of the randomly chosen target vector.

mi(g + 1) = best(g) + Fs[p1(g)− p2(g)] (7)

where best is the best candidate based on fitness.
3. DE/rand/2: The mutation operator is first used to generate a mutant vector by adding

the scaled difference of two vectors to the third vector as,

mi(g + 1) = pi(g) + Fs[p1(g)− p2(g)] + Fs[p3(g)− p4(g)] (8)

where p3 and p4 are two more randomly chosen candidates in the present generation.
4. DE/best/2: The best candidate in the current generation is added to the scaled

differences of two vectors as,

mi(g + 1) = best(g) + Fs[p1(g)− p2(g)] + Fs[p3(g)− p4(g)] (9)

5. DE/current-to-rand/1: In this variation, the target vector is added to two scaled
differences—one of them being the difference between a randomly chosen candidate
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in the present generation and the target vector while the other is the difference between
two randomly chosen candidates from the present generation.

mi(g + 1) = pi(g) + Fs[p1(g)− pi(g)] + Fs[p2(g)− p3(g)] (10)

6. DE/current-to-best/1: The current-to-rand strategy is modified so that the scaled dif-
ference between a randomly chosen candidate and the target vector is replaced by the
difference between the best candidate in the present generation and the target vector.

mi(g + 1) = pi(g) + Fs[best(g)− pi(g)] + Fs[p1(g)− p2(g)] (11)

DE/rand/2 may result in better perturbation than strategies that use one difference
vector [52]. DE/best/1 and DE/best/2 take advantage of the best candidate solution in
the current population and have faster convergence towards the optimal solution [53].
DE/current-to-best/1 achieves a compromise between exploitation and exploration of
the solution space, whereas DE/current-to-rand/1 has a rotation-invariant mutation strat-
egy [54]. After mutation, the crossover operator is used to create trial candidates called trial
vectors which then replace the target vector in the next generation based on their relative
fitness. The trial vector is created using a bitwise or binomial crossover operator control by
the crossover rate parameter Cr from the interval [0, 1] as,

ui,j(g + 1) =

{
mi,j(g + 1) if η ≤ Cr or j = randint(1, d)

pi,j(g) otherwise
(12)

where, η is a random number generated by using the uniform probability distribution
in [0, 1]. The random integer randint(1, d) is an integer in the range [1, d] and is used to
ensure that at least one mutant vector parameter is taken into account for constructing the
trial vector. Since the binomial operator is used to effect bitwise crossover, the strategies are
suffixed with a /bin, e.g., DE/rand/1/bin. The other commonly used crossover operator
with differential evolution is the exponential operator. A starting point (bit) for crossover is
chosen at random, and bit-wise elements of the trial vector either come from the mutant
vector or the target vector depending on a series of Bernoulli experiments of probability Cr.
The trial vector takes the mutant vectors bits until the Bernoulli experiment is unsuccessful
for the first time or the trial vector is already complete. The remaining bits then come from
the target vector. Together, the two parameters (Fs and Cr) constitute the parameter set of
the differential evolution algorithm. It is not difficult to see why DE is so popular—unlike
other population-based optimization methods, DE only uses two parameters which for
most problems are easy to tune.

To evolve a candidate, a tournament selection operator is used to compare the trial
vector to the candidate vector using a one-to-one greedy selection criterion. The trial vector
replaces the candidate vector in the new generation if it is better as measured by the fitness
function f, otherwise the candidate vector in previous generation is retained.

pi(g + 1) =

{
ui(g + 1) if f (ui(g + 1)) > f (pi(g))
pi(g) otherwise

(13)

In addition, several updates of the basic strategy and its variations have been proposed
with a view of speeding up convergence with good exploration in the initial generations.
The other consideration is the self-tuning of the two parameters in the DE parameter set.
The updates used in this paper are listed below.

7. Composite DE (CoDE): This variant uses three different mutation strategies and three
control parameter settings, combining them randomly to create trial vectors [55]. The
three mutation strategies are rand/1/bin, rand/2/bin, and current-to-rand/1. The
binomial crossover operator is not applied to current-to-rand/1. The choice of three
control parameter settings will be discussed in Section 5. In a generation, for every
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target vector, three trial vectors are created using each of the mutation strategies with
one of the control parameter settings combined in a random manner. The best trial
vector is then compared to the target vector and if better, enters the next generation.

8. jDE: The problem of effectively optimizing control parameter settings is addressed by
a process of self-adapting these parameters within the DE process [56]. The control
parameters Fs and Cr are adapted as,

Fs(g + 1) =
{

Fl + rand1Fu if rand2 < τ1
Fs(g) otherwise

(14)

Cr(g + 1) =
{

rand3 if rand4 < τ2
Cr(g) otherwise

(15)

where rand1, rand2, rand3, and rand4 are uniform random variables in [0, 1], τ1 and
τ2 are probabilities to adjust the control parameters, Fl and Fu are lower and upper
bounds on the perturbation of the scale parameter in such a way that Fmin = Fl and
Fmax = Fl + Fu. The crossover rate parameter always takes values in [0, 1]. These
adaptions are made prior to mutation i.e., creation of trial vectors and as a result they
influence mutation, crossover, and selection operations going into the next generation.

9. JADE: JADE uses a differential mutation strategy called DE/current-to-pbest/1 and
adapts the control parameters at every generation [57]. The current-to-pbest/1 mu-
tation strategy is similar to current-to-best/1 except that instead of using the best
candidate from the population best, to create a trial vector for a target vector, a vector
bestp is randomly chosen as one of the top 100p% individuals in the current popula-
tion with p ∈ (0, 1]. This ensures that second-best or third-best candidates also play a
role in mutation for the next generation. The scale factor Fs and the crossover rate Cr
are defined for each candidate in the population and a set of successful values is kept
in an archive as evolution proceeds. Both parameters (Fs)i and (Cr)i for individual pi
are independently generated after every generation according to a Cauchy distribu-
tion for the scale factor and normal distribution for the crossover rate. The location
parameter for the Cauchy distribution and the mean of the normal distribution are
influenced by the previously found successful values of the parameters in the archive.

mi(g + 1) = pi(g) + (Fs)i[bestp(g)− pi(g)] + (Fs)i[p1(g)− p2(g)] (16)

4.2. Fitness Function

A candidate pi is decoded for the cluster number ci and cluster prototypes vi = {vi1,
vi2, . . . vici} and a preliminary assignment of data in the subset to clusters is performed as,

uihk =

(
1

||vih−xk ||2

) 1
m−1

ci
∑

j=1

(
1

||vij−xk||2
) 1

m−1
, 1 ≤ h ≤ ci, 1 ≤ k ≤ p (17)

The XB index is defined as the ratio of the total variation σ to the minimum separation
λ of the clusters [12]. The total variation is in fact the objective function with m = 2 and
depends on the memberships and location of the cluster prototypes, while the minimum
separation is the squared Euclidean distance between the closest cluster prototypes.

σi(Ui , Vi ; X) =
ni
∑

h=1

p
∑

k=1
u2

ihk

∣∣∣∣vih − xk
∣∣∣∣2

λi(Vi) = min
h 6=j
||vih − vij ||2

XBi =
σ(Ui ,Vi ;X)

pλ(Vi )

(18)

When the clustering is compact and the number of clusters is evaluated correctly, the
value of objective functional based σ is minimized and the value of separation function λ
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will be maximized, resulting in smaller values of the XB index. A cluster validity index Ψ
is defined in [58] as,

Ψ2
i =

J1(X)Di(Vi)

ni Ji(Ui, Vi; X)
(19)

where Ji(Ui, Vi; X) =
ci
∑

h=1

p
∑

k=1
uihk||vih − xk||, Di(Vi) = max

h 6=j
||vih − vij|| and J1(X) is constant

for a given dataset and is calculated by setting ci = 1 in the above equation (all datapoints
are considered to be in the same cluster). It has been shown that good, compact clusters
with the correct number of clusters identified will tend to maximize Ψ. The fitness for the
candidate pi in the population is evaluated for the differential evolution algorithm as a
weighted sum of the two cluster validity indices,

f (pi) =
a

XBi
+ bΨ2

i (20)

where a and b are weights in [0, 1] that define the relative importance of the respective
cluster validity index. In this paper, we choose a = b = 0.5.

4.3. Vector Representation

For the proposed method, a real number presentation is chosen to encode for cluster
locations. All vectors in a population are the same length which corresponds to an a priori
selected maximum number of clusters cmax. For a d-dimensional dataset, the vector will be
of length cmax × d. A binary masker for the vector of length cmax is also used which controls
for the activation of a cluster. For example, for d = 3 and cmax = 6, the real-number vector
will be of length 18 and the masker will be of length 6 as shown in Figure 1 below.

Figure 1. Example of an initial cluster prototype candidate vector and associated masker.

In the example above, the first, fourth and fifth cluster centers are activated using
the marker which means the vector along with the marker represent a c = 3 partition with
cluster centers v1 = (0.6,1.2,0.9), v2 = (0.2,1.8,1.9), and v3 = (0.3,0.4,1.2). The cluster centers
not activated in the representation do not participate in fitness measurement. Every vector
has an associated marker and although the vector participates in evolution, the marker
does not. Instead, after every generation, the markers associated with each target vector in
the new generation are updated with random binary numbers (simple mutation) except
the marker associated with the best candidate in the new generation. If the masker encodes
for c < 2, the masker is reinitialized until c ≥ 2.

4.4. Multi-Population Parallel Differential Evolution with Elitism

The subset most similar in structure to the dataset is then provided to different sub-
populations in the co-evolutionary algorithm. For each subpopulation, the p number of
possible candidate solutions is encoded using the encoding strategy. Every subpopulation
is also assigned a differential evolution (DE) strategy at random from a DE strategy set also
explained in detail in this section. Each subpopulation is run for a total of G generations.
An elite population is created after the first generation by sorting all individuals from every
subpopulation and then selecting the top pe individuals to populate the elite population.
Although the individuals in the elite population do not evolve, they participate in the
differential strategy being implemented for every subpopulation in the next generation and
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therefore contribute to the evolution of individuals in the subpopulations. At the culmina-
tion of every generation, the pe individuals of the elite population are mixed with the top
pe number of individuals from the subpopulations and the top pe from the 2pe combined
population are selected as the subsequent elite population for the next generation. After G
generations, instead of selecting the top individual in the elite population as the optimal
solution, we employ a consensus-based strategy. The pe individuals in the culminating elite
population are decoded and grouped into bins based on the number of clusters (decoded
via evolution). The most optimal individual from the largest bin is selected as the candidate
solution and the cluster centers encoded by this individual are chosen as the initial cluster
centers for FCM.

4.5. Evaluation of Clustering Results

After the initial cluster prototypes are evolved, they are then used as input to the FCM-
AO algorithm for clustering. In Section 5, we present results from simulations conducted
using both synthetic and benchmark datasets as well as a case study with exploratory data
analysis from experimental data in Section 6. We compare the performance of various algo-
rithms with our proposed method using several cluster validity indices from the literature.
Cluster validity measures have been used in the literature for accessing the correctness of a
partition. Since the Xie–Beni index XB and the Ψ index are used as a combined measure of
fitness, other cluster validity indices are used as a quantitative measure of comparison of
various clustering techniques. The Bensaid Index VB is insensitive to the number of data
points in a cluster [13]. The index is defined by the ratio of compactness of a cluster to the
separation between clusters.

VB =
c

∑
k=1

n
∑

i=1
um

ik

∣∣∣∣xi − υk
∣∣∣∣2

nk
c
∑

j=1

∣∣∣∣υj − υk
∣∣∣∣2 (21)

where nk is the fuzzy cardinality of cluster k defined by nk =
n
∑

i=1
uik.

The final cluster prototypes are denoted by
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= (υ1, υ2, . . . , υc). Note that the initial
cluster centers are denoted by v while the final cluster centers are denoted by υ to distinguish
the two. The Bensaid index for a good partition is lower when compared to an inferior
partition (one with an incorrect value of c or incorrect cluster prototypes υ). Tang et al. [14]
introduced a punishing function which is the average distance between cluster centers-
second term in the numerator in equation (22). This is used to counter the decreasing
tendency of any cluster validity index as c→ n. The second term in the denominator is also
a punishing function. The Tang index is denoted by VT.

VT =
c

∑
k=1

c
∑

k=1

n
∑

i=1
um

ik

∣∣∣∣xi − υk
∣∣∣∣2 + 1

c(c−1)

c
∑

k=1

c
∑

j = 1

j 6= k

∣∣∣∣υk − υj
∣∣∣∣2

min
j 6=k
||υj − υk ||2 + 1

c

(22)

The modified Kwon index VK2 proposed in [59] uses two terms in the numerator as
punishing functions applied to eliminate the decreasing tendency as c→ n and a dummy
term for the stability of the index when c→ n and m→ ∞, respectively. The second term of
the denominator is an ad hoc punishing function used to strengthen the numerical stability
as m→ ∞. The last term of the denominator is another ad hoc punishing function used to
strengthen the numerical stability as c→ n.

VK2 =

n−c+1
2

( c
c−1

)√2 c
∑

k=1

n
∑

i=1
u2
√

m/2
ik ||xi − υk ||2 +

c
∑

j=1

∣∣∣∣∣∣υj−υ
∣∣∣∣∣∣2

max
j
||υj−υ||2 + nc

(n−c+1)2


min
j 6=k
||υj − υk ||2 + 1

c + 1
cm−1

(23)
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where, υ = 1
n

n
∑

j=1
xj is the mean cluster prototype when c = 1.

Ren index VR [60] is an improvement on the Bensaid index VB. The numerator
represents the compactness of the cluster Ck, where nk is its fuzzy cardinality. Its second
item, an introduced punishing function, denotes the distance from the cluster prototype of
the kth cluster to the average of all cluster prototypes, which can eliminate the monotonically
decreasing tendency as the number of clusters increases to n. The denominator represents
the mean distance from the kth cluster prototype to all other cluster prototypes, which
is a measure of intercluster separation. The ratio of the numerator and the denominator
represents the clustering effect of the kth cluster. The clustering validity index is defined as
the sum of the clustering effect (the ratio) of all clusters. The smaller the index is, the better
the clustering effect of the dataset is, and the corresponding c to the minimum value is the
optimal number of clusters.

VR =
c

∑
k=1

1
nk

n
∑

i=1
um

ik

∣∣∣∣xi − υk
∣∣∣∣2 + 1

c ||υk − υ||2

1
c−1

c
∑

j=1

∣∣∣∣υj − υk
∣∣∣∣2 (24)

The cooperative multi-population differential evolution algorithm with elitism is presented
below as Algorithm 3 and will be referred to as parallel coevolution.

Algorithm 3: Parallel Coevolution

Input: Best Subset Pbest_subset, B number of DE strategies DE = {DE1, DE2, . . . DEB}, fitness
criterion f, total generations G, number of subpopulations P, number of individuals in each
subpopulation p, number of individuals in the elite population pe.

1. Create P subpopulations S = {S1, S2, . . . SP} by randomly populating p candidates for each
subpopulation

2. For i = 1 to P
3. rand = random number between 1 and B
4. DESi = Assign strategy DErand to Si
5. End
6. Elite population E = Ø
7. For gen = 1 to G
8. For i = 1 to S
9. Si = Si U E
10. Evolve subpopulation Pi using strategy DESi
11. End
12. TG = Sort all p x P individuals in decreasing order of fitness using criterion f
13. Transient elite population TE = [Top pe individuals from TG]
14. TTE = TE U E
15. E = [Top pe individuals from TTE]
16. End
17. //Consensus-Based Selection//
18. Create bins C = {C1, C2, . . . Cmax_n}
19. For j = 1 to pe
20. Decode Ej = [clusters_centersj, fitnessj, number of clusters Enj]
21. Assign Ej to bin Ck where k = Enj

22. End
23. largest_bin = {C1}
24. For j = 2 to max_n
25. If size(Cj) >= size(largest_bin)
26. largest_bin = largest_bin U Cj

27. End
28. End

Output: Select fittest individual from largest_bin, use cluster_centers from this individual as
initial cluster centers
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5. Simulation Results

The proposed method is compared to some standard algorithms from the literature
and their parameters used in this study are listed below.

1. The canonical FCM or FCM-AO is implemented with m = 2 and membership conver-
gence of ε = 0.001. The value of c is varied from c = 2 to c =

√
n. To compare with

the proposed method, FCM-AO is run parallelly with different initializations for each
value of c.

2. A single differential evolution-based FCM called automatic differential evolution-
based fuzzy clustering (ADEFC) in [9] is run for G = 100 generations with a population
size of 40. The crossover probability Cr = 0.8 and the scale factor Fs = 0.5. The vector
representation of DE-FCM is the same as that used in the proposed method.

3. The PSO-V variant of the particle swarm optimization-based FCM presented in [61] is
based on FCM-AO when the cluster prototypes are randomly initialized. The datasets
used are run for 50 particles (50 different cluster prototype initializations) for 1000
iterations. The acceleration parameters a1 = a2 = 1.5 and the maximum velocity is
chosen as ∆ymax = 0.25. The number of clusters are varied from c = 2 to c =

√
n and

all implementations are run parallelly.
4. The Kernel-based fuzzy c-means (KFCM) using genetic algorithms (GA) is named

GAKFCM [32]. It uses a standard RBF kernel and GA parameters: population size
of 50, max iterations of 500, crossover and mutation probabilities of 0.6 and 0.05,
respectively. The FCM parameters are the same as those used for FCM-AO. The
number of clusters is varied from c = 2 to c =

√
n and all implementations are run

parallelly.
5. The entropy weighted-FCM (or EwFCM) as presented in [30] is implemented with

an entropy threshold parameter set to 0.05, the maximum number of cycles of 150.
The number of clusters is varied from c = 2 to c =

√
n and all implementations are

run parallelly.

We do not present these algorithms in detail here and the reader is referred to the
original papers. The proposed algorithm will henceforth be referred to as Cooperative DE-
FCM or CDE-FCM. The parameters are SP = 10, number of subpopulations = 9 (one for each
instance of DE), generations G = 20, number of candidate vectors in each subpopulation p =
15. The individual parameter settings of the DE variants are listed in Tables 1 and 2. We
compared the performance of these algorithms using cluster validity measures listed in
Section 4.5 on two synthetic datasets and four datasets from the UCI ML repository [62].
All algorithms are implemented using MATLAB 2022a on an Intel® Core™ i7-8650U CPU
with 8 cores at 1.90 GHz.

Table 1. Parameter settings for DE variants 1–6.

DE/rand/1/bin DE/best/1/bin DE/rand/2/bin DE/best/2/bin DE/current-to-
rand/1

DE/current-to-
best/1

Fs 1.0 1.0 0.5 0.5 0.8 0.8

Cr 0.9 0.1 0.9 0.9 0.1 0.1
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Table 2. Parameter settings for DE variants 7–9.

CoDE jDE JADE

DE Set
DE/rand/1/bin
DE/rand/2/bin

DE/current-to-rand/1

[Fs, Cr]
[1.0, 0.1]
[1.0, 0.9]
[0.8, 0.2]

Fl 0.1

Fu 0.9

τ1 0.1

τ2 0.1

Cr 0.5

Parameter adaption rate, c 0.1

% Top best, p 5

Initial Fs 0.5

Initial Cr 0.5

Data1 is a 900-point dataset in two dimensions. There are three well-separated and
compact clusters with 300 data points in each cluster. The clusters are generated using
normal distributions centered at (1,1), (3,3), and (4,5). The dataset is shown in Figure 2. The
three-cluster FCM-AO partition is shown in Figure 3 and the three-cluster CDE-FCM after
cluster prototype initialization is shown in Figure 4. The quality of the CDE-FCM can be
seen to be marginally better than randomly initialized FCM-AO.

Figure 2. Data1 (n = 900, c = 3, H = 0.9727).
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Figure 3. FCM-AO with randomly initialized cluster prototypes for c = 3.

Figure 4. CDE-FCM with evolved initial cluster prototypes for c = 3.

FCM-AO, PSO-V, GAKFCM, and EwFCM are run for c = 2 to c = 30. For ADEFC and
CDE-FCM the vector representation is of length 60 with d = 2 and cmax = 30. The run-time
parameters are chosen such as the convergence criteria for all algorithms are roughly the
same. For comparison, the run-time of the different algorithms is presented in Table 3. As
can be seen, there is not much to be gained by using sophisticated schemes to address
the problems of prototype initialization and unknown number of clusters for a small well-
separated dataset as Data1. The naïve version of FCM-AO with random initializations works
as well as any other scheme and in a fraction of the time.
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Table 3. Runtime of algorithms for Data1.

FCM-AO ADEFC PSO-V GAKFCM EwFCM CDE-FCM

Run time (s) 2.85 8.39 5.67 8.45 4.11 8.45

Data2 is a 2000-point dataset in two dimensions. Unlike Data1, the separation between
the clusters is not well defined. The data is generated using three normal distributions
centered at (3,2), (5.5,5.5) and (8.5,6). The intercluster variance is greater than that in Data1.
The dataset is shown in Figure 5. FCM-AO, PSO-V, GAKFCM and EwFCM are run for c = 2
to c = 45. For ADEFC and CDE-FCM, the vector representation is of length 90 with d = 2
and cmax = 45. FCM-AO, GAKFCM, and EwFCM identify c = 5 as the most-optimal cluster.
On the other hand, the evolutionary algorithm-based approaches, viz. PSO-V, ADEFC and
the proposed CDE-FCM correctly identify the c = 3 partition. In fact, the terminating elite
population in CDE-FCM has 22% individuals that encode for c = 3 and 10% that encode for c
= 5. The best subset of cardinality 200 as identified by Algorithm 2 is shown in Figure 6 and
the initial cluster prototypes evolved by the CDE (Algorithm 3) are shown in Figure 7. The
c = 5 partition as identified by FCM-AO as the most optimal partition is shown in Figure 8
and the c = 3 partition as identified by FCM-AO is shown in Figure 9. The correct c = 3
partition as identified by CDE-FCM with evolved initial prototypes is shown in Figure 10.
By simple visual inspection, it can be said that the quality of the partition in Figure 10 is
better than that in Figure 9 (same c = 3). The fact that FCM-AO with randomly initialized
cluster prototypes identifies c = 5 as better than c = 3 on the basis of all cluster validity
measures shows the promise of the proposed method. After the initial cluster prototypes
are identified by Algorithm 3, the FCM-AO converged on an average in 4.5 iterations over
10 implementations. This is in comparison to the naïve FCM-AO with random initialization
which took at least 25 iterations for an average of 28 iterations with the same convergence
criterion of ε = 0.001.

Figure 5. Data2 (n = 2000, c = 3, H = 0.9184).
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Figure 6. Best subset of Data2 using sparse sampling (n = 200, H = 0.9025).

Figure 7. Initial cluster prototype as calculated by CDE on best subset of Data2. The Xs mark the
initial cluster prototype location.
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Figure 8. Best partition by FCM-AO, c = 5 with randomly initialized cluster prototypes.

Figure 9. Partition by FCM-AO, c = 3 with randomly initialized cluster prototypes.
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Figure 10. Partition by CDE-FCM, c = 3 with initial cluster prototypes shown in Figure 7.

Iris data consists of n = 150 datapoints divided into three types of Iris flowers-Setosa,
Virginica, and Versicolor with 50 samples in each class. Each sample has four associated
features: sepal length, petal length, sepal width, and petal width. FCM-AO, PSO-V,
GAKFCM and EwFCM are run for c = 2 to c = 12. For ADEFC and CDE-FCM the vector
representation is of length 48 with d = 4 and cmax = 12. The performances of different
algorithms as measured by the cluster validity criteria are listed in Table 4. Two classes
(Versicolor and Virginica) are known to be linearly inseparable from each other although
Setosa is linearly separable from the other classes [63] and therefore many algorithms
identify the c = 2 solution as the most optimal one. Almost 20% of the candidate vectors
in the terminating elite population of CDE-FCM encoded for c = 2 while 18% encoded
for c = 3 with an equal number encoding for c = 9. The cluster prototypes identified by
CDE-FCM in almost all candidates (>85%) in the terminating elite population are almost
optimal, and a further application of FCM-AO converges on average in 4.1 iterations over
10 independent runs of the algorithm. On the other hand, the best-performing instance of
the naïve FCM-AO with random initializations took 22 iterations.

Table 4. Performance of algorithms on Iris data.

c VB VT VK2 VR

FCM-AO 2 0.2302 0.0682 8.9245 0.4789
3 0.1349 0.1371 19.235 0.5529
9 0.0284 0.3672 67.224 0.5849

ADEFC 9 0.0296 0.3619 71.344 0.5849

PSO-V 2 0.2311 0.0671 8.9382 0.4762
3 0.1245 0.1371 19.235 0.5529
9 0.0278 0.3774 67.334 0.5872

GAKFCM 2 0.2372 0.0680 8.9263 0.4821
3 0.1262 0.1371 18.936 0.5587

EwFCM 3 0.1263 0.1362 19.292 0.5529
4 0.1021 0.1942 32.039 0.6232
9 0.0287 0.3672 71.348 0.5869

CDE-FCM 2 0.2235 0.0590 8.4385 0.4741
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Cancer data has 683 datapoints in two classes (malignant and benign). The data has 9
features (attributes)—clump thickness, cell size uniformity, cell shape uniformity, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. There are
440 instances belonging to the benign cluster and 243 instances in the malignant cluster.
The cancer dataset is known to be linearly inseparable and it is often difficult for clustering
algorithms to achieve high levels of accuracy with this dataset. FCM-AO, PSO-V, GAKFCM
and EwFCM are run for c = 2 to c = 26. For ADEFC and CDE-FCM the vector representation
is of length 234 with d = 9 and cmax = 26. The performances of different algorithms as
measured by the cluster validity criteria are listed in Table 5. Little more than 18% of
the candidate vectors in the terminating elite population of CDE-FCM encoded for c = 2
while approximately 15% of candidate vectors encoded for c = 8. The cluster prototypes
identified by CDE-FCM in 72% of the candidates in the terminating elite population are
almost optimal, and a further application of FCM-AO converges on average in 8.5 iterations
over 10 independent runs of the algorithm. On the other hand, the best-performing instance
of the naïve FCM-AO with random initializations took 31 iterations.

Table 5. Performance of algorithms on cancer data.

c VB VT VK2 VR

FCM-AO 2 0.1233 0.0121 12.897 0.2868
8 0.0129 0.6792 128.329 0.3862

ADEFC 2 0.1234 0.0123 12.775 0.2854

PSO-V 2 0.1293 0.0129 12.292 0.2841
8 0.0137 0.6822 137.850 0.3922

GAKFCM 2 0.1224 0.0174 12.325 0.2833
8 0.0193 0.6891 129.825 0.3851

EwFCM 2 0.1239 0.0132 12.457 0.2857
8 0.0174 0.6891 135.839 0.3823

CDE-FCM 2 0.1197 0.0121 12.775 0.2803

Glass data has 214 different glass samples with 9 features (refractive index, weight
percent of corresponding oxide of Na, Mg, Al, Si, K, Ca, Ba, and Fe). There are 6 different
types of glasses—building window (float), building window (non-float), vehicle window
(float), container glass, tableware glass and headlamp glass. FCM-AO, PSO-V, GAKFCM
and EwFCM are run for c = 2 to c = 15. For ADEFC and CDE-FCM the vector representation
is of length 135 with d = 9 and cmax = 15. The performances of different algorithms as
measured by cluster validity criteria are listed in Table 6. Almost all cluster validity indices
agreed, and all algorithms produced very similar partitions at either c = 5, c = 6, and c = 8.

Table 6. Performance of algorithms on glass data.

c VB VT VK2 VR

FCM-AO 5 0.8251 0.1925 12.854 3.332
6 0.8149 0.1786 12.779 3.297

ADEFC 5 0.8135 0.1883 12.775 3.472

PSO-V 5 0.8238 0.1937 12.854 3.974
8 0.9244 0.2215 32.975 8.773

GAKFCM 5 0.8188 0.1875 12.695 3.224
6 0.8275 0.1786 12.702 3.133

EwFCM 6 0.8175 0.1775 12.972 3.297
8 0.8924 0.2232 37.395 9.725

CDE-FCM 6 0.8077 0.1760 12.715 3.109
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Wine dataset has 178 samples of wine differentiated by 13 attributes—percent contents
of alcohol, malic acid, ash, magnesium, total phenols, flavonoids, nonflavonoid phenols,
proanthocyanins, alkalinity of ash, color intensity, OD280/OD315 of diluted wines (protein
content), and proline content. The wines are categorized into three classes (red, white,
and rosé) with 59 instances in the first cluster, 71 in the second, and the rest in the third
cluster. FCM-AO, PSO-V, GAKFCM, and EwFCM are run for c = 2 to c = 13. For ADEFC
and CDE-FCM the vector representation is of length 169 with d = 13 and cmax = 13. The
performances of different algorithms as measured by cluster validity criteria are listed in
Table 7. The clusters are well-defined, and all the cluster validity measures reach their
minimum at either c = 3 or c = 4.

Table 7. Performance of algorithms on Wine data.

c VB VT VK2 VR

FCM-AO 3 1.025 0.0997 8.726 2.970

ADEFC 4 1.133 0.1029 12.339 3.892

PSO-V 3 1.025 0.0987 8.697 2.835

GAKFCM 3 1.025 0.0997 8.645 2.754

EwFCM 3 1.175 0.0984 8.772 2.663

CDE-FCM 3 1.025 0.0984 8.597 2.754

Wine Quality dataset has 1898 samples of wines divided into 11 classes (quality scores
ranging from 0 to 10). The data are defined over 11 attributes—fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free SO2, total SO2, density, pH, sulphates, and
alcohol content. This is the largest of the UCI datasets tested for this work both in terms of
cardinality and dimensions. FCM-AO, PSO-V, GAKFCM and EwFCM are run for c = 2 to
c = 45. For ADEFC and CDE-FCM the vector representation is of length 495 with d = 11
and cmax = 45. The performances of different algorithms as measured by cluster validity
criteria are listed in Table 8. FCM-AO, PSO-V, GAKFCM, and EwFCM identify at least 8
of the classes with moderately high accuracy. Accuracy decreases for c = 11 as is evident
from the cluster validity measures. ADEFC identifies c = 10 clusters, with an accuracy
below 90% while the proposed CDE-FCM identifies 12 clusters with initial cluster centers
almost optimal for 8 of the real classes. The FCM-AO implemented with cluster prototypes
identified by CDE-FCM converges on an average of 12 iterations over 10 independent runs,
while FCM-AO randomly initialized converges after an average of 33 iterations for c = 8
and 37 iterations for c = 11.

Table 8. Performance of algorithms on wine quality data.

c VB VT VK2 VR

FCM-AO 8 8.775 0.3721 72.456 5.978
10 13.942 0.9885 125.814 8.775
11 22.857 0.9925 216.380 12.394
12 23.617 1.0225 229.773 12.945

ADEFC 10 14.332 0.9885 120.035 8.674

PSO-V 8 8.456 0.3389 70.990 5.825
10 13.880 0.9727 118.336 8.650
11 21.352 0.9880 207.350 12.218
12 21.445 1.0225 219.872 12.945

GAKFCM 8 8.356 0.3392 71.855 5.978
11 21.335 0.9891 208.392 12.218

EwFCM 8 8.470 0.3391 70.990 5.824
10 13.442 0.9738 115.275 8.458
11 21.832 0.9890 208.360 12.394
12 21.975 1.0225 220.825 12.945

CDE-FCM 12 21.329 1.0225 217.375 12.885

6. Case Study—Rolling Bearing Fault Analysis

Rolling element bearings are commonly used in supporting rotor components and
assemblies in rotating machinery. Bearing defects can lead to undesirable vibrations, noise,
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or machine failure. Bearing fault diagnosis has been a subject of great importance in
machine condition monitoring, predictive maintenance, and machine failure prevention
and analysis [64]. Bearings conditions are presented in [65]. Techniques used in fault
severity evaluation in rolling bearings are reviewed and discussed in [66]. The review is
mainly focused on data-driven approaches such as signal processing for extracting the
fault signatures associated with the fault degradation, and the approaches that are used to
identify degradation patterns. Modern predictive maintenance techniques are increasingly
adopting data analysis techniques such as pattern recognition and machine learning for
bearing fault diagnosis. In this case study using the proposed cluster initialization method,
wavelet analysis is used to process vibration signals from three bearing cases—no fault,
inner race fault, and ball fault, under varying rotating speeds.

A schematic of the experimental setup is shown in Figure 11. The faults are introduced
as a single rough surface spot simulating pitting wear and are created by using a small
grinder as shown in Figure 12. The rotor is run at 10 different speeds (from 500 rpm to 1400
rpm) in increments of 100 rpm. At each speed level, vibration signals are acquired using
a PCB accelerometer (model PCB 302A) which is mounted on the outboard test bearing
as indicated in Figure 10. The sampling rate is 10,000 samples/s. A radial load of about
2000 lb was kept constant during all tests. A small unbalance mass is added to the rotor to
introduce sustained periodic vibration excitation.

Figure 11. Experimental setup.

Figure 12. (a) Ball bearing used in the test, (b) ball fault, (c) inner race fault.

Three sets of samples are collected, each for 0.5 s. The analysis is performed for each of
the three sets, followed by sets obtained using a 50% overlap between the non-overlapping
sets resulting in five sample sets (3 non-overlapping sets and 2 overlapping sets) for a single
operating condition—speed and type of fault (10 different speeds and 3 fault conditions
including no fault). The raw time series is analyzed for statistical features such as mean,
variance, standard deviation, skewness, and kurtosis. The times series are also subject to fast
Fourier transform (FFT) and continuous wavelet transform (CWT) techniques. Figure 13
shows two sample raw vibration time series and their corresponding frequency spectrum
obtained using FFT. After experimenting with several wavelet transform functions, the
‘Mexican hat’ and the Coiflet wavelet functions were used. The CWT implementation was
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performed using MATLAB’s wavelet toolbox. MATLAB’s CWT can be considered as a filter
that scales a mother wavelet function along the time axis. At each scale, the CWT function
will superimpose the scaled mother wavelet wave form over a segment of the signal under
analysis. The similarities and differences between the form of the wavelet wave and the
signal being analyzed are determined by CWT as,

C(a, T) =
∫ 1√

a
ψ(t)

(
t− T

a

)
x(t)dt (25)

where ψ(t) represents the CWT mother wavelet function which is shifted in time by T and
dilated or contracted by a factor and then correlated with the vibration signal represented
by x(t).

Figure 13. Vibration time signatures and corresponding FFT spectrum for two cases.

All feature attributes are scaled and normalized across the column before clustering.
The datasets are unlike others used in the paper—high dimensional data with relatively low
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cardinality. The idea is to see if the fault conditions can themselves be or if any combination
of operating speed and fault condition can be partitioned. The datasets are described below:

BearingData1 is three non-overlapping segments with 16 FFT averages, n = 90, d = 16
BearingData2 is three non-overlapping segments with 64 Mexican Hat averaged

wavelet coefficients, n = 90, d = 64
BearingData3 is three non-overlapping segments with 64 Coiflet-averaged wavelet

coefficients, n = 90, d = 64
BearingData4 is three non-overlapping segments with kurtosis, skewness, RMS, and

crest factors for 10 wavelet approximations and 10 wavelet details, n = 90, d = 80.
We also use a low dimensional data with non-overlapping and overlapping regions of

the raw data (50% overlap). BearingData5 is three non-overlapping and two overlapping
segments with four statistical features of the raw time signal—mean, skewness, standard
deviation, and kurtosis, n = 150, d = 4.

The performance of the proposed method is compared with FCM-AO with random
initialization of cluster prototypes using the four cluster validity indices. FCM-AO is
implemented for c = 2 to c = 10. The vector representation used in CDE-FCM is d × 10. The
results are tabulated in Table 9.

Table 9. Performance of FCM-AO and CDE-FCM for five bearing fault datasets.

c VB VT VK2 VR

BearingData1, n = 90

FCM-AO 3 0.0245 1.2238 10.3762 1.8856
5 0.0291 2.1925 22.4657 2.5320
10 0.0132 2.5490 43.6115 6.9894

CDE-FCM 3 0.0239 1.2197 9.3250 1.7534

BearingData2, n = 90

FCM-AO 3 0.4578 17.895 71.965 5.3372
5 0.5120 23.559 123.189 7.8900
10 0.3251 14.358 53.172 4.3256

CDE-FCM 5 0.5052 19.856 112.885 7.2505

BearingData3, n = 90

FCM-AO 3 0.7925 8.6690 45.890 3.897
5 0.8456 12.367 119.559 4.673
10 1.6251 22.145 145.335 8.212

CDE-FCM 3 0.8280 8.5241 36.879 3.865

BearingData4, n = 90

FCM-AO 3 0.8955 8.356 67.189 2.9836
6 0.7341 5.3536 50.338 2.5620
10 1.3802 12.7467 121.298 3.2461

CDE-FCM 6 0.6821 5.1130 48.827 2.5465

BearingData5, n = 150

FCM-AO 3 0.0026 1.2876 8.9281 0.3653
6 0.0012 1.1926 6.7172 0.3156
10 0.0104 1.8927 11.602 0.7253

CDE-FCM 6 0.0011 1.2110 6.5670 0.3267

The proposed algorithm CDE-FCM almost always outperforms FCM-AO. In cases
where the three natural groupings are not found, CDE-FCM finds approximately 6 clusters
which are decoded as two subclusters based on speed (high and low) in most cases. The
accuracy, precision, and recall rate of both FCM-AO and CDE-FCM are similar meaning
they uncover very similar clusters although with FCM-AO it is often difficult to ascertain
the optimal number of clusters.

A comparative evaluation is performed using sensitivity analysis. In clustering evalu-
ation, a true positive (TP) is defined as the decision that assigns two similar data objects in
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the same cluster and a true negative (TN) is a decision that assigns two dissimilar objects
to different clusters. These are both desirable outcomes. The errors can either be a false-
positive (FP) decision for an assignment of two dissimilar objects to the same cluster or
a false-negative (FN) decision when two similar objects are assigned to different clusters.
These metrics are evaluated using pairwise measurements—for a dataset of cardinality n,
there are n(n − 1)/2 pairs of objects. The precision (P) and recall (R) are defined as,

P =
TP

TP + FP
, R =

TP
TP + FN

(26)

The Rand index RI measures the percentage of decisions that are correct (also called
the accuracy). The F-score is a measure of the harmonic mean of the method’s precision
and recall. The F-score is implemented as F1 in this paper (which gives equal weight to
precision and recall) [67].

RI =
TP + TN

TP + FP + FN + TN
, F1 =

2PR
P + R

(27)

Results of the sensitivity analysis comparing CDE-FCM with FCM-AO are provided
in Table 10. As can be seen, the proposed method CDE-FCM achieves accuracies of ap-
proximately 75% with two of the five datasets. The best accuracy of FCM-AO approaches
75% for only one of the five datasets. The F1 score equally weighing precision and re-
call for CDE-FCM is also better than FCM-AO for all five datasets. This is a promising
result that shows the superiority of the proposed method over the original FCM with
randomized initialization.

Table 10. Comparative evaluation of FCM-AO and CDE-FCM for five bearing fault datasets.

TP FP TN FN P R RI F1

BearingData1, n = 90, c = 3

FCM-AO 1295 721 1366 263 0.642 0.675 0.664 0.658

CDE-FCM 1481 694 1404 426 0.681 0.777 0.720 0.725

BearingData2, n = 90, c = 5

FCM-AO 1326 1926 1228 525 0.589 0.716 0.638 0.646

CDE-FCM 1497 612 1478 418 0.710 0.782 0.742 0.744

BearingData3, n = 90, c = 3

FCM-AO 1205 629 1516 655 0.657 0.648 0.679 0.652

CDE-FCM 1422 598 1498 487 0.704 0.745 0.729 0.724

BearingData4, n = 90, c = 6

FCM-AO 1375 826 1075 729 0.625 0.654 0.612 0.639

CDE-FCM 1457 683 1190 675 0.680 0.683 0.661 0.682

BearingData5, n = 150, c = 6

FCM-AO 4219 1622 4143 1191 0.772 0.780 0.748 0.750

CDE-FCM 4522 1433 4291 929 0.760 0.830 0.789 0.793

7. Conclusions and Directions of Future Work

A novel method of initializing cluster prototypes for fuzzy c-means (FCM) is presented
in this paper. The method also simultaneously finds the optimal number of clusters in the
partition. These two constitute the biggest drawbacks of clustering techniques such as FCM.
Many attempts have been made in addressing the two issues-we present a very detailed
review of the existing literature in this paper. The concept presented in this paper not only
complements the body of work in this field but is also a non-trivial improvement on present
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techniques. We propose a co-evolutionary multi-population differential evolution-based
technique to evolve a candidate vector that would encode for the most optimal set of initial
cluster prototypes to use and also for the optimal number of clusters to find. This is based on
a smaller subset of the original data thus reducing effort during evolution. The best subset
is chosen based on a sparse sampling statistic from literature. A novel fitness evaluation
function based on two cluster validity measures is also proposed. The proposed method
called cooperative differential evolution for fuzzy c-means (CDE-FCM) is compared to
some state-of-art improvements of FCM and also to the original FCM with random initial
cluster prototypes implemented for a range of values for the number of clusters. The
comparison is performed using a distinct set of cluster validity indices. In many of the
cases with synthetic two-dimensional data and larger dimensional data from the UCI ML
repository, the proposed algorithm performs better than the methods compared, and in
almost all the cases, is almost as effective as the best of the other methods. The proposed
method is also used on a real-world experimental dataset to partition rolling-bearing fault
data. The technique worked well in real time and with very minimal improvements can be
deployed to a live data analysis project such as this.

For future work, modifications to improve the proposed methodology will be investi-
gated. Although the fitness evaluation and candidate evolution in the multi-population
method are not resource intensive for parallel implementation, they can both be improved
further. Statistical testing to evaluate the level of significance in performance improvement
of the proposed method will also be performed as part of future work. This will result in
ranking the comparative clustering methods used in this paper over other datasets from
the UCI ML repository and on other benchmark datasets.
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