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Abstract: The main purpose of mathematical model building while employing statistical data anal-
ysis is to obtain high accuracy of approximation within the range of observed data and sufficient
predictive properties. One of the methods for creating mathematical models is to use the techniques of
regression analysis. Regression analysis usually applies single polynomial functions of higher order
as approximating curves. Such an approach provides high accuracy; however, in many cases, it does
not match the geometrical structure of the observed data, which results in unsatisfactory predictive
properties. Another approach is associated with the use of segmented functions as approximating
curves. Such an approach has the problem of estimating the coordinates of the breakpoint between
adjacent segments. This article proposes a new method for determining abscissas of the breakpoint for
segmented regression, minimizing the standard deviation based on multidimensional paraboloid us-
age. The proposed method is explained by calculation examples obtained using statistical simulation
and real data observation.

Keywords: mathematical model building; ordinary least squares; segmented regression; optimization
of breakpoint abscissa; multidimensional paraboloid; accuracy increment

1. Introduction

Scientists use various models when studying different environmental phenomena.
Mathematical models provide an opportunity to determine equations and dependencies to
correlate the parameters of miscellaneous objects and processes. Mathematical models are
built for various reasons, including the achievement of the best understanding of the objects
under study, the possibility of mathematical analysis, and the possibility of conducting
experimentation with the model in case it is difficult to repeat the experiment with the
objects under study [1].

The process of mathematical model building contains several steps:

(1) Experimental study and the measuring of the parameters of real-world systems and
phenomena;

(2) Collecting initial data for the model;
(3) Mathematical formulations and fitting one or more models;
(4) The statistical simulation of the model to validate it [2].

There are general rules for building mathematical models. These rules assume the
following: (1) collecting background information for the phenomenon under study, (2) us-
ing simple models at the first stage, (3) determining all parameters and the quantities and
correlations between them based on data analysis, (4) complicating the model based on the
nature of the phenomenon under study, (5) estimating the efficiency of the model, and (6)
others [3]. The efficiency analysis involves choosing the optimal mathematical model for
the problem considered.

Algorithms 2022, 15, 378. https://doi.org/10.3390/a15100378 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1535-4384
https://doi.org/10.3390/a15100378
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100378?type=check_update&version=2


Algorithms 2022, 15, 378 2 of 22

There are various efficiency measures for mathematical models. Generally, researchers
use the following parameters:

(1) Accuracy—for the coincidence analysis of the output of a mathematical model with
observed data;

(2) Reliability—for the analysis of the precision of a mathematical model;
(3) Transparency—for the analysis of choices and assumptions of the output expecta-

tions [4,5].

To analyze mathematical models, researchers can use additional criteria, such as model
simplicity, calculation time, costs, depth level, and others.

The main parameters for the efficiency level of mathematical models in terms of
accuracy analysis are standard deviation [6,7], the sum of absolute deviations between the
model output and the observed data [8], a weighted sum of squared deviations [9,10], and
the maximal deviation [11]. The criterion for these parameters is the minimum value of the
estimated parameter [12,13].

This article contains seven sections. The first section discusses the background infor-
mation for the problems of mathematical model building. The second section presents a
literature review regarding the topic of research and presents the statement of the problem.
The third section deals with the description of mathematical tools for segmented regression
building while using ordinary least squares. The fourth section proposes the step-by-step
procedure for accuracy increment during segmented regression usage. The fifth section
concentrates on the analysis of the proposed method based on statistical simulations. The
sixth section discusses the implementation of the proposed method in real data examples,
and the seventh section presents the conclusions.

2. Literature Review and Statement of the Problem

Mathematical model building aims at decreasing the uncertainty level for the objects
being studied [14,15]. The analysis of the level, location, and nature of uncertainty helps to
obtain more reliable information and adequate knowledge [16,17].

To build mathematical models, researchers use methods from different sciences, such
as mathematical analysis, probability theory, data science, regression analysis, mathematical
statistics, recognition theory, applied geometry, and others [18].

This article concentrates on the techniques of regression analysis for mathematical
model building, so corresponding methods are considered in detail. Regression analysis is
used to determine the relationship between two or more variables [19] and is widely used
to fit mathematical models to statistical data [20].

Regression analysis is frequently used in various applications due to its approximate
ease of calculation, high accuracy, and good predictive properties, depending on the
approximating function type usage. Regression analysis is applied to different fields in
different capacities, for example, in:

(1) Medicine: to detect Parkinson’s disease based on the analysis of finger-tapping data [21],
to forecast the uptake of oxygen based on genes evaluation and to predict data on
patient admission [22], and others;

(2) Econometrics: to predict the audit opinion using six financial indicators [23], to de-
termine the dependence of economic growth on the level of environmental pollu-
tion [24], to describe the trends of economical parameters in correlation with various
factors [25,26], and others;

(3) Transport systems: to determine the optimal periodicity of the implementation of
operation processes [27,28], and to analyze possible routes and traffic intensity [29–31];

(4) Aviation: to identify flight conditions and situations based on diagnostic parameter
monitoring [32,33], and to predict the human state and decision making depending
on various environmental factors [34,35];

(5) Radar systems: to estimate the efficiency of signal detection [36], to determine the
dependence of weather parameters on radar-received signals [37–39], and others;
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(6) Navigation systems: to build a mathematical model for the optimal selection of the navi-
gation equipment [40–42], to establish the correlation between navigation equipment
failures [43], to approximate operational data trends for the prediction of possible
aviation events [44], and others;

(7) Cybersecurity: to evaluate the efficiency of information web-resources functioning [45],
to synthesize data-processing algorithms while detecting cyberattacks [46–48], to en-
sure high-level security against cyberattacks [49,50], and others;

(8) Engineering and control: to describe nonlinear dynamic object behavior [51,52],
to build the mathematical model for statistical parameters while designing control
systems [53], to make decisions based on statistical information processing [54,55],
and others;

(9) Equipment maintenance: to build the mathematical model for diagnostic variable
trends [56], and to determine the uncertainty level while conducting condition moni-
toring and maintenance preference analysis [57,58];

(10) Reliability analysis: to describe the behavior of reliability parameters [59,60], to
simulate statistically nonstationary random processes of failures occurrence [61,62],
to describe the processes of technical condition deterioration in the trend of failure
rate [63,64], and others.

Regression analysis usually starts with research on the possibility of using a linear re-
gression model. In the case of an unsatisfactory level of accuracy, more complicated models
are used [65]. These models are nonlinear regression models [66]. Nonlinear regression
models suggest parabolic, hyperbolic, exponential, segmented, and other approximating
functions [65,67]. Because of the complicated calculations required when using a nonlinear
regression model, various software can be utilized [68].

There are various methods for increasing the accuracy and predictive properties of
mathematical models. One approach is to use segmented regression [69,70]. In this case, it is
necessary to determine the coordinates of the breakpoint between adjacent segments. This
problem can be solved using various algorithms [69–75]. These algorithms use the maxi-
mum likelihood estimator [69,70], Bayesian changepoint models [71,72], inverted F test [73],
random search method, the method of cumulative sums [74,75], and others. A comparative
analysis showed some flaws in the algorithms for determining breakpoint coordinates.
These flaws are related to a need for prior limitations, as well as the effectiveness of the ob-
tained estimate in terms of robustness and bias. Additionally, the discussed algorithms do
not give the possibility to obtain a single mathematical formula for breakpoint coordinates
and require the usage of the iterative numerical method described in [76].

The considered literature review motivates authors to synthesize a new approach for
calculating the optimal coordinates of breakpoints while using segmented regression and
analyzing time series with nonstationary behavior. The building of a mathematical model
based on segmented regression usage is of considerable importance because:

1. Using segmented regression gives the possibility to obtain a model with greater accuracy.
2. Segmented regression more correctly describes the geometrical structure of time series.
3. The obtained segmented models have effective predictive properties.

The research gap in the field of mathematical model building is associated with the
absence of a step-by-step procedure for determining the optimal segmented regression
model in case of multiple breakpoints in a dataset structure. At the same time, to solve
such problems, the method of simple enumeration of the possible options is often used.
However, such an approach does not provide mathematical formulations and requires a
long computing time.

Therefore, the goal of this article is: (1) to describe the technique of segmented regres-
sion building and (2) to obtain mathematical equations for a step-by-step procedure of
accuracy increment based on optimal breakpoints abscissas calculations.

Let us state the research problem mathematically. Let us present the statistical dataset
in two arrays Y = {yi} and X = {xi}, each with sample size n. Y is the dependent or
response variable, while X is the independent or predictor variable. The relationship
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between the variables is determined by the function set φk(X,
→
c m, k), where k describes the

quantity of the model being fitted to the dataset and
→
c m, k is a vector of m parameters for the

k-th regression model. In this case, the regression model is determined by the equation [65]

Y = φk(X,
→
c m, k) + ∆,

where ∆ is an error, which can be described by a normal probability density function. Such
an assumption allows the use of ordinary least squares (OLS). For example, in the case
of linear regression, φ0(X,

→
c m, 0) = c0, 0 + c1, 0X, where c0, 0 and c1, 0 are coefficients to

be estimated.
This paper focuses on increasing the accuracy of mathematical models based on

segmented regression usage. In this case, the function set φk(X,
→
c m, k, xbr q, k) depends on

abscissas xbr q, k of the breakpoints, where q is the quantity of breakpoints. The accuracy of
the model using OLS is usually estimated by the standard deviation σ between the model
output and the observed data. The standard deviation depends on the values of abscissas
xbr q, k of the breakpoint. Thus, this paper aims to solve the minimization problem that can
be formulated as follows:{

xbr opt1, xbr opt2, . . . , xbr opt q

}
= arg min

(
σ
(

xbr 1, xbr 2, . . . , xbr q
) )

.

3. Segmented Regression Models

This section presents the basic mathematical equations for different segmented regression
models. Authors mostly employ piecewise linear, linear-quadratic, and quadratic models.

1. Segmented linear regression (SLR)

This regression type is a sequential connection of q + 1 straight-line segments without
discontinuities. The mathematical model of SLR is given as

φ1(X,
→
c m, 1, xbr q, 1) = c0, 1 + c1, 1X +

q

∑
i=1

ci+1, 1(X− xbr i)h(X− xbr i) (1)

where h(X − xbr i) is the Heaviside function. This function helps to obtain the single
mathematical equation for the segmented model.

An example of a mathematical model of three-segmented linear regression has the form

φ1(X,
→
c m, 1, xbr q, 1) = c0, 1 + c1, 1X + c2, 1(X− xbr 1)h(X− xbr 1) + c3, 1(X− xbr 2)h(X− xbr 2).

This model has two breakpoints, xbr 1 and xbr 2, and it requires the computation of
four unknown coefficients: c0, 1, c1, 1, c2, 1, and c3, 1. These coefficients are estimated based
on the OLS. The computation result can be presented in the form of matrix equations

C = Ω−1Ψ, C =


c0, 1
c1, 1
c2, 1
c3, 1

, Ψ =



n
∑

i=1
yi

n
∑

i=1
yixi

∑
∀xi>xbr 1

yi(xi − xbr 1)

∑
∀xi>xbr 2

(xi − xbr 2)


,
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Ω =



n
n
∑

i=1
xi ∑

∀xi>xbr 1

(xi − xbr 1) ∑
∀xi>xbr 2

(xi − xbr 2)

n
∑

i=1
xi

n
∑

i=1
xi

2 ∑
∀xi>xbr 1

xi(xi − xbr 1) ∑
∀xi>xbr 2

xi(xi − xbr 2)

∑
∀xi>xbr 1

(xi − xbr 1) ∑
∀xi>xbr 1

xi(xi − xbr 1) ∑
∀xi>xbr 1

(xi − xbr 1)
2 ∑

∀xi>xbr 2

(xi − xbr 1)(xi − xbr 2)

∑
∀xi>xbr 2

(xi − xbr 2) ∑
∀xi>xbr 2

xi(xi − xbr 2) ∑
∀xi>xbr 2

(xi − xbr 1)(xi − xbr 2) ∑
∀xi>xbr 2

(xi − xbr 2)
2


,

where ∀xi > xbr 1 (2) corresponds to all xi greater than xbr 1 (2).

2. Segmented quadratic regression (SQR)

This regression type is a sequential connection of q + 1 quadratic parabola segments
without discontinuities. The mathematical model of SQR is given as

φ2(X,
→
c m, 2, xbr q, 2) = c0, 2 + c1, 2X + c2, 2X2 +

q

∑
i=1

ci+2, 2(X− xbr i)
2h(X− xbr i) (2)

An example of a mathematical model of two-segmented quadratic regression has
the form

φ2(X,
→
c m, 2, xbr q, 2) = c0, 2 + c1, 2X + c2, 2X2 + c3, 2(X− xbr 1)

2h(X− xbr 1)

This model has one breakpoint,xbr 1, and it requires the computation of four unknown
coefficients: c0, 2, c1, 2, c2, 2, and c3, 2. These coefficients are estimated based on the OLS.
The computation result can be presented in the form of matrix equations

C = Ω−1ΨC =


c0, 1
c1, 1
c2, 1
c3, 1

, Ψ =



n
∑

i=1
yi

n
∑

i=1
yixi

n
∑

i=1
yix2

i

∑
∀xi>xbr 1

yi(xi − xbr 1)
2


,

Ω =



n
n
∑

i=1
xi

n
∑

i=1
xi

2 ∑
∀xi>xbr 1

(xi − xbr 1)
2

n
∑

i=1
xi

n
∑

i=1
xi

2
n
∑

i=1
xi

3 ∑
∀xi>xbr 1

xi(xi − xbr 1)
2

n
∑

i=1
xi

2
n
∑

i=1
xi

3
n
∑

i=1
xi

4 ∑
∀xi>xbr 1

xi
2(xi − xbr 1)

2

∑
∀xi>xbr 1

(xi − xbr 1)
2 ∑
∀xi>xbr 1

xi(xi − xbr 1)
2 ∑
∀xi>xbr 1

xi
2(xi − xbr 1)

2 ∑
∀xi>xbr 1

(xi − xbr 1)
4


.

3. Segmented linear-quadratic regression (SLQR)

This regression type is a sequential connection of q + 1 straight lines and quadratic
parabola segments without discontinuities. The mathematical model of SLQR is given as

φ3(X,
→
c m, 3, xbr q, 3) = c0, 3 + c1, 3X + c2, 3X2s(0) +

q

∑
i=1

ci+2, 3(X− xbr i)
s(i)+1h(X− xbr i), (3)

where s(i) is an indicator function. If the segment is a straight line, s(i) = 0. If the segment
is a quadratic parabola, s(i) = 1.
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An example of a mathematical model of two-segmented linear-quadratic regression
has the form

f3(X) = c0, 3 + c1, 3X + c2, 3X2 − c3, 3(X− xbr 1)
2h(X− xbr 1).

This model has one breakpoint,xbr 1, and it requires the computation of three unknown
coefficients: c0, 3, c1, 3, and c2, 3. The feature of this model is the equality of adjacent
coefficients for the transition between the quadratic parabola segment and the straight-
line segment. Thus, c3, 3 = c2, 3. The coefficients are estimated based on the OLS. The
computation result can be presented in the form of matrix equations

C = Ω−1Ψ, C =

c0, 3
c1, 3
c2, 3

, Ψ =



n
∑

i=1
yi

n
∑

i=1
yixi

n
∑

i=1
yixi

2 − ∑
∀xi>xbr 1

yi(xi − xbr 1)
2

,

Ω =


n

n
∑

i=1
xi

n
∑

i=1
xi

2 − ∑
∀xi>xbr 1

(xi − xbr 1)
2

n
∑

i=1
xi

n
∑

i=1
xi

2
n
∑

i=1
xi

3 − ∑
∀xi>xbr 1

xi(xi − xbr 1)
2

n
∑

i=1
xi

2 − ∑
∀xi>xbr 1

(xi − xbr 1)
2 n

∑
i=1

xi
3 − ∑

∀xi>xbr 1

xi(xi − xbr 1)
2 n

∑
i=1

xi
4 + ∑

∀xi>xbr 1

(
(xi − xbr 1)

4 − 2xi
2(xi − xbr 1)

2
)


4. Step-by-Step Procedure for Accuracy Increment during Segmented
Regression Usage

The method of accuracy increment during segmented regression usage is associated
with the estimation of breakpoint abscissas. The breakpoint is the point of connection
between two neighboring segments.

The step-by-step procedure contains the following operations:

1. Choosing of the regression model and the quantity of segments. At this stage, the
researcher analyzes the geometrical structure of the observed data presented graphi-
cally in the form of the dependence of Y on X. After that, based on their experience,
the researcher must choose one of the models SLR, SQR, and SLQR. To substantiate
the decision on segmented regression usage, the researcher can test the initial data for
nonlinearity. The geometrical structure of the observed data also gives the ability to
choose the quantity q of the breakpoints

2. Determining the possible range of values of the breakpoint abscissas. At this stage,
the researcher subjectively chooses the discrete range for all breakpoints. The minimal
quantity of discrete values should be greater than five. The result of this step is a
two-dimensional array xbr with size q× w, where w is the number of discrete values
in the range of breakpoint abscissas.

3. Building a regression model. At this stage, based on the matrix equations presented in
the previous section, the researcher calculates the unknown coefficients for the chosen
regression model and all possible values in the array xbr.

4. Calculating the standard deviations. In the case of OLS usage, the accuracy of the
model is determined by the standard deviation between the model output and the
observed data, which can be presented as follows:

σ =

√
1

n− l

n

∑
i=1

(yi − ŷi)
2,

where l is the degree of freedom for the chosen regression model.
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At this stage, it is necessary to determine the discrete multidimensional dependence
σ
(

xbr 1, xbr 2, . . . , xbr q
)

for all possible values in the array xbr.
Note that in the case of an alternative regression method (for example, least absolute

deviations regression), similar calculations for corresponding accuracy measures should
be completed.

5. Approximating the standard deviation dependence on the breakpoint abscissas by
multidimensional paraboloid using OLS. The dimension of the paraboloid corresponds
to the quantity q of breakpoints. It is possible to use one of two types of paraboloid:

(a) General:

Σ
(

xbr 1, xbr 2, . . . , xbr q

)
= α0 +

q

∑
i=1

αixbr i
2 +

q

∑
i=1

βixbr i + ∑
∀i<j

γi, jxbr ixbr j, (4)

(a) Simplified:

Σ
(
xbr 1, xbr 2, . . . , xbr q

)
= α0 +

q

∑
i=1

αixbr i
2 +

q

∑
i=1

βixbr i, (5)

where Ai, βi, and γi, j are approximation coefficients. The simplified paraboloid
(5) can be used in case of assumptions about γi, j = 0 for the general paraboloid (4).

The coefficients of Equations (4) and (5) are estimated based on OLS. Such a calculation
is possible, because all of the values of the possible breakpoints in the two-dimensional array
Xbr with size q× w are known, and function Σ

(
xbr 1, xbr 2, . . . , xbr q

)
values correspond

to the standard deviations σ
(
xbr 1, xbr 2, . . . , xbr q

)
obtained at the previous step.

Consider the case of a simplified paraboloid. According to OLS, it is necessary to solve
the system of equations

∂
∂α0

w
∑

i1=1
. . .

w
∑

iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q
∑

j=1
αjxbr j, ij

2 +
q
∑

j=1
β jxbr j, ij

))2

= 0,

∂
∂α1

w
∑

i1=1
. . .

w
∑

iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q
∑

j=1
αjxbr j, ij

2 +
q
∑

j=1
β jxbr j, ij

))2

= 0,

∂
∂β1

w
∑

i1=1
. . .

w
∑

iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q
∑

j=1
αjxbr j, ij

2 +
q
∑

j=1
β jxbr j, ij

))2

= 0,

. . .

∂
∂αq

w
∑

i1=1
. . .

w
∑

iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q
∑

j=1
αjxbr j, ij

2 +
q
∑

j=1
β jxbr j, ij

))2

= 0,

∂
∂βq

w
∑

i1=1
. . .

w
∑

iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q
∑

j=1
αjxbr j, ij

2 +
q
∑

j=1
β jxbr j, ij

))2

= 0.

Let us simplify the first equation in the system. After derivative calculation, it can be
presented as follows:

− 2
w

∑
i1=1

. . .
w

∑
iq=1

(
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
−
(

α0 +
q

∑
j=1

αjxbr j, ij
2 +

q

∑
j=1

β jxbr j, ij

))
= 0

or

w

∑
i1=1

. . .
w

∑
iq=1

(
α0 +

q

∑
j=1

αjxbr j, ij
2 +

q

∑
j=1

β jxbr j, ij

)
=

w

∑
i1=1

. . .
w

∑
iq=1

σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
Making simplifications in the left side of equation, we can get
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w

∑
i1=1

. . .
w

∑
iq=1

α0 +
w

∑
i1=1

. . .
w

∑
iq=1

q

∑
j=1

αjxbr j, ij
2 +

w

∑
i1=1

. . .
w

∑
iq=1

q

∑
j=1

β jxbr j, ij =
w

∑
i1=1

. . .
w

∑
iq=1

σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
.

Taking into account that
w

∑
i1=1

. . .
w

∑
iq=1

α0 = wq,

w

∑
i1=1

. . .
w

∑
iq=1

q

∑
j=1

αjxbr j, ij
2 = wq−1

q

∑
j=1

w

∑
ij=1

αjxbr j, ij
2,

w

∑
i1=1

. . .
w

∑
iq=1

q

∑
j=1

β jxbr j, ij = wq−1
q

∑
j=1

w

∑
ij=1

β jxbr j, ij ,

the first equation can be presented as follows:

α0wq + α1wq−1
w
∑

i1=1
xbr 1 i1

2 + β1wq−1
w
∑

i1=1
xbr 1 i1 + α2wq−1

w
∑

i2=1
xbr 2 i2

2 + β2wq−1
w
∑

i2=1
xbr 2 i2 + . . .+

+αqwq−1
w
∑

iq=1
xbr q iq

2 + βqwq−1
w
∑

iq=1
xbrq iq =

w
∑

i1=1
. . .

w
∑

iq=1
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
Similar simplifications can be made for other equations in the system. Therefore, the

computation result for paraboloid (5) can be presented in the form of matrix equations

C = Ω−1Ψ, C =



α0
α1
β1
. . .
αq
βq

, Ψ =



w
∑

i1=1
. . .

w
∑

iq=1
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
w
∑

i1=1
. . .

w
∑

iq=1
x2

br 1 i1
σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
w
∑

i1=1
. . .

w
∑

iq=1
xbr 1 i1 σ

(
xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
. . .

w
∑

i1=1
. . .

w
∑

iq=1
x2

brq iq σ
(

xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)
w
∑

i1=1
. . .

w
∑

iq=1
xbr q iq σ

(
xbr 1 i1 , xbr 2 i2 , . . . , xbr q iq

)



,

Ω =



wq wq−1
w
∑

i1=1
x2

br 1 i1
wq−1

w
∑

i1=1
xbr 1 i1 . . . wq−1

w
∑

iq=1
x2

br q iq wq−1
w
∑

iq=1
xbr q iq

wq−1
w
∑

i1=1
x2

br 1 i1
wq−1

w
∑

i1=1
x4

br 1 i1
wq−1

w
∑

i1=1
x3

br 1 i1
. . . wq−2

w
∑

i1=1

w
∑

iq=1
x2

br 1 i1
x2

br q iq wq−2
w
∑

i1=1

w
∑

iq=1
x2

br 1 i1
xbr q iq

wq−1
w
∑

i1=1
xbr 1 i1 wq−1

w
∑

i1=1
x3

br 1 i1
wq−1

w
∑

i1=1
x2

br 1 i1
. . . wq−2

w
∑

i1=1

w
∑

iq=1
xbr 1 i1 x2

br q iq wq−2
w
∑

i1=1

w
∑

iq=1
xbr 1 i1 xbr q iq

. . . . . . . . . . . . . . . . . .

wq−1
w
∑

iq=1
x2

br q iq wq−2
w
∑

i1=1

w
∑

iq=1
x2

br 1 i1
x2

br q iq wq−2
w
∑

i1=1

w
∑

iq=1
xbr 1 i1 x2

br q iq . . . wq−1
w
∑

iq=1
x4

br q iq wq−1
w
∑

iq=1
x3

br q iq

wq−1
w
∑

iq=1
xbr q iq wq−2

w
∑

i1=1

w
∑

iq=1
x2

br 1 i1
xbr q iq wq−2

w
∑

i1=1

w
∑

iq=1
xbr 1 i1 xbr q iq . . . wq−1

w
∑

iq=1
x3

br q iq wq−1
w
∑

iq=1
x2

br q iq


6. Calculating the coordinates of paraboloid optimum. To obtain the minimum standard

deviation, it is necessary to determine the coordinates of the minimum multidimen-
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sional paraboloid. To do this, the partial derivatives are calculated and equated to
zero [77]: 

∂Σ(xbr 1, xbr 2, ..., xbr q)
∂xbr 1

= 0,
∂Σ(xbr 1, xbr 2, ..., xbr q)

∂xbr 2
= 0,

...
∂Σ(xbr 1, xbr 2, ..., xbr q)

∂xbr q
= 0.

This system for general paraboloid (4) can be presented in the form of q linear equations
system. For paraboloid (5), the solution of the system is given as

xbr i opt = −
βi

2αi
.

7. Calculating the coefficients of the model for the optimal case. The coefficients of SLR,
SQR, or SLQR are computed for the optimal location of the breakpoints using OLS. The
final model can be used for the explanation and prediction of the response variable.

Consider the simple example for proposed method. Let us use the dataset with a small
sample size presented in [6]. These data describe the relationship between production lot
size x and the average production cost per unit y (in dollars) and are given in Table 1.

Table 1. Relationship between production lot size x and the average production cost per unit y.

№ X Y № X Y № X Y

1 100 9.73 5 180 5.87 9 260 4.02

2 120 9.61 6 200 4.98 10 280 4.46

3 140 8.15 7 220 5.09 11 300 3.82

4 160 6.98 8 240 4.79

Consider this step-by-step procedure.

1. To describe the presented data, the SLR model with q = 1 breakpoint is chosen.
2. The possible breakpoint abscissas values are xbr = {160; 180; 200; 220; 240}. There-

fore, in this case xbr is a two-dimensional array with size 1× 5.
3. There are five alternative SLR models for all possible values in the array xbr:

φ1, 1(X) = 14.446− 0.0619X + 0.0408(X− 160)h(X− 160),

φ1, 2(X) = 15.825− 0.05601X + 0.0397(X− 180)h(X− 180),

φ1, 3(X) = 15.117− 0.0502X + 0.03885(X− 200)h(X− 200),

φ1, 4(X) = 14.324− 0.0443X + 0.0373(X− 220)h(X− 220),

φ1, 5(X) = 13.713− 0.04002X + 0.0391(X− 240)h(X− 240).

4. The standard deviations for the obtained SLR models are σ = {0.5; 0.362; 0.316; 0.435;
0.53}.

5. Because of one breakpoint, this multidimensional paraboloid converts into simple
parabola. The result of the calculation is

Σ(xbr 1) = 4.41715− 0.04446xbr 1 + 1.128 · 10−4x2
br 1.

6. The optimal value of the breakpoint abscissa is

xbr 1 opt = −
β1

2α1
= 197.031.
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7. The optimal SLR model is calculated for the obtained breakpoint abscissa. The final
equation is

φ1 opt(X) = 15.256− 0.0513X + 0.03945(X− 197.031)h(X− 197.031)

The standard deviation for the optimal SLR model is 0.313. The result of the model
building using the SLR model is shown in Figure 1.
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5. Analysis of Proposed Method Based on Statistical Simulation

The analysis of the proposed method is performed using statistical simulation and
real data examples. This section presents the statistical simulation results. During the
simulation, a dataset with two breakpoints is generated using build-in software operators.
The dataset is an additive mixture of deterministic components and random noise.

Assume that the deterministic component corresponds to an SLR model

φ1(X,
→
c m, 1, xbr q, 1) = c0, 1 + c1, 1X + c2, 1(X− xbr 1)h(X− xbr 1) + c3, 1(X− xbr 2)h(X− xbr 2)

The random noise is distributed according to the Gaussian probability density function.
The initial data for the simulation are as follows:

(1) Sample size n = 120;
(2) Sampling time δ = 1(for discrete representation of the deterministic component);
(3) Predetermined parameters of the SLR model: c0, 1 = 220, c1, 1 = −3, c2, 1 = 5,

c3, 1 = −4, xbr 1 = 25, and xbr 2 = 70 (such parameters correspond, for example, to
the real process of deterioration occurrence when monitoring the values of voltage for
the supply of electronic devices [63]);

(4) Predetermined parameters of Gaussian noise: the expected value is equal to zero and
the standard deviation equal to 20 (additionally, it is assumed that the noise values
are independent random variables for any sampling time moment);

(5) The quantity of simulations reiteration N = 1000.

Consider the calculation procedure of the proposed method for one of the generated
datasets. Table 2 shows one of the generated datasets. Figure 2 presents three realizations
of the generated datasets, and each realization is marked by circle, triangle, or diamond
(the circles correspond to the data in Table 2).
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Table 2. Example of obtained dataset.

X Y X Y X Y X Y

1 198.903 31 130.969 61 225.826 91 196.18

2 194.804 32 173.305 62 235.963 92 199.174

3 230.13 33 177.699 63 225.268 93 186.254

4 241.929 34 135.858 64 235.382 94 159.026

5 205.046 35 146.671 65 240.457 95 180.743

6 207.058 36 166.772 66 226.665 96 186.322

7 221.116 37 191.347 67 264.917 97 198.164

8 196.142 38 151.133 68 208.282 98 155.179

9 185.149 39 180.641 69 238.465 99 172.515

10 168.836 40 176.754 70 247.729 100 177.046

11 140.462 41 224.396 71 220.332 101 148.359

12 164.657 42 141.499 72 256.255 102 212.448

13 181.903 43 196.572 73 250.635 103 170.645

14 189.763 44 179.661 74 244.736 104 171.808

15 193.573 45 166.336 75 216.803 105 139.09

16 153.473 46 175.007 76 225.626 106 162.471

17 173.226 47 192.467 77 241.812 107 178.876

18 173.601 48 162.748 78 248.445 108 147.776

19 164.416 49 175.224 79 228.271 109 168.604

20 144.779 50 208.317 80 193.772 110 177.17

21 165.477 51 179.932 81 215.457 111 151.077

22 156.022 52 202.743 82 209.727 112 153.421

23 191.786 53 183.889 83 223.962 113 125.35

24 124.953 54 182.191 84 202.548 114 135.484

25 144.006 55 204.996 85 206.732 115 152.601

26 181.289 56 212.034 86 238.368 116 111.133

27 131.828 57 192.96 87 214.105 117 131.803

28 148.114 58 240.106 88 204.29 118 142.927

29 189.118 59 230.511 89 185.714 119 151.265

30 159.11 60 188.666 90 184.075 120 145.401

To describe the obtained dataset, we choose the SLR model with three segments with
q = 2 breakpoints. To simplify the calculations, we choose the quantity of discrete values
within the range of possible breakpoints to be w = 5. According to the geometrical structure
of the observed dataset (Figure 2), the ranges for two breakpoints are as follows:

xbr 1 = {15; 20; 25; 30; 35},

xbr 2 = {60; 65; 70; 75; 80}.

The next step is to evaluate the unknown coefficients c0, 1, c1, 1, c2, 1, and c3, 1 for all
possible values of the first and second breakpoints using OLS. As a result, 25 alternative
SLR models are obtained.
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After that, the standard deviations between the model output and the observed data
for these SLR models are determined. Table 3 shows the computation results.

Table 3. Computation results for standard deviation.

Standard Deviation
Abscissa of the Second Breakpoint

xbr2 = 60 xbr2 = 65 xbr2 = 70 xbr2 = 75 xbr2 = 80

The abscissa of the first
breakpoint

xbr1 = 15 22.947 21.042 19.928 19.911 20.948

xbr1 = 20 21.692 19.813 18.879 19.166 20.534

xbr1 = 25 20.912 19.145 18.454 19.041 20.667

xbr1 = 30 20.637 19.053 18.622 19.454 21.229

xbr1 = 35 20.818 19.443 19.249 20.239 22.051

Even visual analysis of the data on the standard deviation (Table 3) indicates that
the minimal standard deviation is located approximately near xbr 1 = 25 and xbr 2 = 70.
To estimate the exact values of breakpoint abscissas, paraboloids (4) and (5) are built
using OLS.

After the calculations, the following mathematical equations were obtained:

Σ(xbr 1, xbr 2) = 148.8− 1.1295xbr 1 − 3.2925xbr 2 + 0.01008x2
br 1 + 0.02188x2

br 2 + 8.534 · 10−3xbr 1xbr 2,

Σ(xbr 1, xbr 2) = 133.87− 0.5321xbr 1 − 3.0791xbr 2 + 0.01008x2
br 1 + 0.02188x2

br 2.

Figures 3 and 4 show the visual presentation of paraboloids (4) and (5) for this numer-
ical example, respectively.
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To determine the optimum coordinates for three-dimensional general paraboloid (4),
it is necessary to solve the following system of two linear equations:{

∂Σ(xbr 1, xbr 2)
∂xbr 1

= 0,
∂Σ(xbr 1, xbr 2)

∂xbr 2
= 0.

In this case, the calculation gives the following solution:

xbr 1 opt =
β2γ1, 2 − 2α2β1

4α1α2 − γ2
1, 2

,
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xbr 2 opt =
β1 + 2α1xbr 1 opt

γ1, 2
.

The general paraboloid (4) has a minimum standard deviation at the coordinates

x(gen)
br 1 opt = 26.361,

x(gen)
br 2 opt = 70.086.

The simplified paraboloid (5) has a minimum standard deviation at the coordinates

x(sim)
br 1 opt = 26.397,

x(sim)
br 2 opt = 70.351

The results of the calculation for paraboloids (4) and (5) almost coincide. The relative
error for the first and second breakpoint abscissa is equal to 5.558% and 0.5014%, respectively.

After the calculation of the model’s coefficients for the optimal case, the optimal SLR
models for paraboloids (4) and (5) are obtained:

φ1(X,
→
c m, 1, xbr q, 1) = 212.169− 2.526X + 4.711(X− 26.361)h(X− 26.361)−

−4.440(X− 70.086)h(X− 70.086),

φ1(X,
→
c m, 1, xbr q, 1) = 212.022− 2.509X + 4.678(X− 26.397)h(X− 26.397)−

−4.443(X− 70.351)h(X− 70.351).

The obtained SLR models give almost the same standard deviations equal to 18.429
and 18.424, respectively.

Figure 5 shows the generated dataset and final optimal SLR models. Visual analysis
shows the coincidence of both SLR models.
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Figure 5. Generated dataset and final optimal SLR models.

We consider the general simulation results for all iterations. Repeating the simula-
tion provides an opportunity to perform a complete statistical analysis of the breakpoint
estimation during mathematical model building. An analysis was performed by plotting
histograms and evaluating the numerical characteristics of the random variables. Figure 5
shows the histograms for the estimate of two breakpoint abscissas and the usage of different
optimization options (general and simplified paraboloids). The parameter λ in Figure 6
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is the quantity of breakpoint abscissa estimates, which are located in the corresponding
grouping interval of the histogram.
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Figure 6. Histograms for breakpoint abscissas for different optimization options: (A)—estimates
of the first breakpoint for general paraboloid; (B)—estimates of the second breakpoint for general
paraboloid; (C)—estimates of the first breakpoint for simplified paraboloid; (D)—estimates of the
second breakpoint for simplified paraboloid.

Table 4 shows the numerical characteristics of the breakpoint abscissas estimates
(mathematical expectation, standard deviation, range of change, and skewness).

Table 4. Numerical characteristics of breakpoint abscissas estimates.

Statistical Characteristic General Paraboloid Simplified Paraboloid

Mathematical expectation of xbr1 25.746 25.753

Standard deviation for xbr1 2.218 2.13

Minimum of xbr1 17.158 17.07

Maximum of xbr1 36.143 36.306

Skewness for xbr1 –0.055 0.054

Mathematical expectation of xbr2 70.113 70.35

Standard deviation for xbr2 2.397 2.274

Minimum of xbr2 62.138 63.486

Maximum of xbr2 84.242 83.238

Skewness for xbr2 0.583 0.536

To describe the obtained estimates of breakpoint abscissa completely, it is necessary to
fit the histogram by theoretical probability density function. Approximate assumptions
can be made based on the graphical view of the histograms in Figure 6. The shape of the
histogram can correspond to the Gaussian probability density function. Such an assumption
can be proven using the chi-squared test with high confidence probability.

The breakpoint estimation bias has preferable values when the general paraboloid
method is used. However, the benefit is negligible and averages 0.337% compared with the
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simplified paraboloid method. The highest percentage of estimate bias (in relative values)
is 3.012%. In the case of a long-term breakpoint, the simplified paraboloid method has, on
average, a narrower range of change of breakpoint estimates.

Let us analyze the proposed method in comparison with the method of simple enumer-
ation. To obtain the approximately 3% of breakpoint abscissas estimate bias, the method of
simple enumeration requires at least 33 possible values for each breakpoint. Therefore, it is
necessary to repeat computations for at least 1089 iterations in the case of two breakpoints.
At the same time, the proposed method requires 25 iterations and additional calculations
of the paraboloid optimum. Therefore, the proposed method reduces the computing time
by at least 30 times compared to the method of simple enumeration.

A comparison of the simulation results for a range of initial data provides the ability
to conclude approximately the same accuracy characteristics for SLR models based on
general and simplified paraboloid usage. Therefore, in practical cases, the adoption of the
simplified paraboloid method usage is more advantageous when creating a segmented
regression model because of the reduction in computations and calculation time.

6. Real Data Example

Consider the example of real data on the number of earthquakes with a magnitude of
7 or higher by year, according to the United States Geological Survey [78]. Table 5 presents
the corresponding data from 1922 to 2021.

Table 5. Quantity of earthquakes of magnitude 7 or higher by year.

i X Y i X Y i X Y i X Y

1 1922 6 26 1947 13 51 1972 16 76 1997 16

2 1923 16 27 1948 12 52 1973 9 77 1998 12

3 1924 8 28 1949 13 53 1974 11 78 1999 18

4 1925 10 29 1950 8 54 1975 13 79 2000 15

5 1926 9 30 1951 6 55 1976 14 80 2001 16

6 1927 12 31 1952 9 56 1977 11 81 2002 13

7 1928 18 32 1953 6 57 1978 12 82 2003 15

8 1929 14 33 1954 9 58 1979 8 83 2004 16

9 1930 4 34 1955 5 59 1980 6 84 2005 11

10 1931 17 35 1956 19 60 1981 10 85 2006 11

11 1932 7 36 1957 7 61 1982 8 86 2007 18

12 1933 8 37 1958 6 62 1983 14 87 2008 12

13 1934 12 38 1959 13 63 1984 14 88 2009 17

14 1935 13 39 1960 11 64 1985 15 89 2010 24

15 1936 9 40 1961 9 65 1986 11 90 2011 20

16 1937 9 41 1962 17 66 1987 13 91 2012 16

17 1938 23 42 1963 9 67 1988 11 92 2013 19

18 1939 14 43 1964 15 68 1989 8 93 2014 12

19 1940 8 44 1965 8 69 1990 18 94 2015 19

20 1941 11 45 1966 10 70 1991 17 95 2016 16

21 1942 13 46 1967 20 71 1992 13 96 2017 7

22 1943 17 47 1968 14 72 1993 12 97 2018 17

23 1944 12 48 1969 15 73 1994 13 98 2019 10

24 1945 7 49 1970 15 74 1995 20 99 2020 9

25 1946 12 50 1971 13 75 1996 15 100 2021 19
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Table 5 contains data observed from 1922 to 2021, where i is the number of observations,
X is the year, and Y is the quantity of earthquakes.

Figure 7 shows the graphical view of the dataset.
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To simplify the presentation and calculations, the first year of observation (1922) is
assigned a zero point at the abscissa axis in the next computations. Thus, to return to the
original data, it is necessary to add 1922 for the shifted abscissa axis.

According to the visual analysis of the dataset, let us assume that there are five
breakpoints in this realization. The following are the ranges for these breakpoints:

xbr 1 = {17; 18; 19; 20; 21},

xbr 2 = {35; 36; 37; 38; 39},

xbr 3 = {46; 47; 48; 49; 50},

xbr 4 = {55; 56; 57; 58; 59} and

xbr 5 = {82; 83; 84; 85; 86}.

With such a range of variables, 3125 different SLR model options are available.
The standard deviation is calculated for each case. As a result, a six-dimensional ar-
ray σ(xbr 1, xbr 2, xbr 3, xbr 4, xbr 5) is generated. To approximate the obtained data, OLS
is used on a six-dimensional optimization paraboloid. For simplicity, we used a simplified
paraboloid as follows:

Σ(xbr 1, xbr 2, xbr 3, xbr 4, xbr 5) = −55431− 3.085xbr 1 + 4.832xbr 2 + 79.227xbr 3 + 33.495xbr 4
+1251xbr 5 + 0.0811x2

br 1 − 0.0651x2
br 2 − 0.8251x2

br 3 − 0.2937x2
br 4 − 7.445x2

br 5.

This simplified paraboloid has optimum standard deviation at the coordinates

x(sim)
br 1 opt = 19.01, x(sim)

br 2 opt = 37.086, x(sim)
br 3 opt = 48.008,

x(sim)
br 4 opt = 57.019, x(sim)

br 5 opt = 84.005.

After the calculation of the model’s coefficients for the optimal case of breakpoint
locations using OLS, the final SLR model is obtained:

φ1(X,
→
c m, 1, xbr q, 1) = 10.197 + 0.1356X− 0.3553(X− 19.01)h(X− 19.01)

+0.8002(X− 37.086)h(X− 37.086)− 1.1212(X− 48.008)h(X− 48.008)
+0.7777(X− 57.019)h(X− 57.019)− 0.4252(X− 48.008)h(X− 84.005).
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The standard deviation for the obtained SLR model is equal to 3.799. Figure 8 shows
the observed dataset and the final optimal SLR model.

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 24 
 

{ }59;58;57;56;554br =x  and 

{ }86;85;84;83;825br =x . 

With such a range of variables, 3125 different SLR model options are available. The 
standard deviation is calculated for each case. As a result, a six-dimensional array 

( )5br4br3br2br1br ,,,, xxxxxσ  is generated. To approximate the obtained data, OLS is used 
on a six-dimensional optimization paraboloid. For simplicity, we used a simplified parab-
oloid as follows: 

( ) ++++−−=Σ 4br3br2br1br5br4br3br2br1br 495.33227.79832.4085.355431,,,, xxxxxxxxx
2

5br
2

4br
2

3br
2

2br
2

1br5br 445.72937.08251.00651.00811.01251 xxxxxx −−−−++ . 
This simplified paraboloid has optimum standard deviation at the coordinates 

01.19)sim(
opt1br =x , 086.37)sim(

opt2br =x , 008.48)sim(
opt3br =x , 

019.57)sim(
opt4br =x , 005.84)sim(

opt5br =x . 

After the calculation of the model’s coefficients for the optimal case of breakpoint 
locations using OLS, the final SLR model is obtained: 

+−−−+=ϕ )01.19()01.19(3553.01356.0197.10),,( 1,br1,1 XhXXxcX qm


 

+−−−−−+ )008.48()008.48(1212.1)086.37()086.37(8002.0 XhXXhX  
)005.84()008.48(4252.0)019.57()019.57(7777.0 −−−−−+ XhXXhX . 

The standard deviation for the obtained SLR model is equal to 3.799. Figure 8 shows 
the observed dataset and the final optimal SLR model. 

 
Figure 8. Observed dataset and final optimal SLR model. 

The method of simple enumeration for a given dataset gives approximately the same 
result as that shown in Figure 8. However, this method increases the computing time ap-
proximately twice. Polynomial regression using a seventh-order polynomial is character-
ized by a faster computation time; however, it gives unacceptable predictive properties. 

The results of the mathematical model building can be used for solving prediction 
problems. Consider this problem for the observed dataset based on generally known re-
sults that have been extensively described in the literature (for example, [76,77]) and in-
novative methods that may be used in accordance with the properties of segmented re-
gression models. 

Figure 8. Observed dataset and final optimal SLR model.

The method of simple enumeration for a given dataset gives approximately the same
result as that shown in Figure 8. However, this method increases the computing time
approximately twice. Polynomial regression using a seventh-order polynomial is character-
ized by a faster computation time; however, it gives unacceptable predictive properties.

The results of the mathematical model building can be used for solving prediction
problems. Consider this problem for the observed dataset based on generally known
results that have been extensively described in the literature (for example, [76,77]) and
innovative methods that may be used in accordance with the properties of segmented
regression models.

To predict the future trend, let us determine the range of the SLR model change.
For this purpose, we used a straight line and OLS to approximate the upper and lower
ordinates of the breakpoints. The lower line contains the zero point, and the second and fourth
breakpoints. The upper line contains the first, third, and fifth breakpoints. The numerical
values of the calculated equations are

Y(lower)(X) = 9.871− 3.606 · 10−3X, Y(upper)(X) = 11.881 + 0.0592X.

The last segment of the SLR model is continued to the intersection point with the
lower straight line. Figure 9 shows the visual representation of the trend prediction.
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This method of prediction and the obtained SLR model allow us to anticipate that,
through 2042, the average annual number of earthquakes with a magnitude of 7 or higher
would decrease.

In general, the proposed method can be applied to different datasets and, in the case
of using multidimensional optimization, to determine breakpoints.

7. Conclusions

This article presents a method of accuracy increment when segmented regression is
used. The main problem for segmented regression model building is the estimation of the
coordinates of the breakpoint between adjacent segments. To solve this problem, two types of
multidimensional optimization paraboloids are used. The paraboloids contain information
on standard deviations between the model output and the observed data for different sets
of possible values of breakpoint abscissas. The minimum standard deviation of each
paraboloid coincided with the optimal position of the breakpoints.

A step-by-step procedure for the proposed method was described by examples based
on statistical simulation and real data observation.

Generally, the use of SLR, SQR, and SLQR models provides a mathematical model
with high accuracy, more accurately describes the geometrical structure of the analyzed
dataset, and has good predictive properties.

The results of this research can be used during mathematical model building for
statistical data obtained in various branches of human activity.
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