
Citation: Fiorini, S.; Ciavotta, M.;

Maurino, A. Listening to the City,

Attentively: A Spatio-Temporal

Attention-Boosted Autoencoder for

the Short-Term Flow Prediction

Problem. Algorithms 2022, 15, 376.

https://doi.org/10.3390/a15100376

Academic Editors: Weiwei Jiang and

Haiyong Luo

Received: 8 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Listening to the City, Attentively: A Spatio-Temporal
Attention-Boosted Autoencoder for the Short-Term Flow
Prediction Problem
Stefano Fiorini * , Michele Ciavotta and Andrea Maurino

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca, 336,
20126 Milan, Italy
* Correspondence: s.fiorini2@campus.unimib.it

Abstract: In recent years, studying and predicting mobility patterns in urban environments has
become increasingly important as accurate and timely information on current and future vehicle
flows can successfully increase the quality and availability of transportation services (e.g., sharing
services). However, predicting the number of incoming and outgoing vehicles for different city areas
is challenging due to the nonlinear spatial and temporal dependencies typical of urban mobility
patterns. In this work, we propose STREED-Net, a novel autoencoder architecture featuring time-
distributed convolutions, cascade hierarchical units and two distinct attention mechanisms (one
spatial and one temporal) that effectively captures and exploits complex spatial and temporal patterns
in mobility data for short-term flow prediction problem. The results of a thorough experimental
analysis using real-life data are reported, indicating that the proposed model improves the state-of-
the-art for this task.

Keywords: spatial correlation; temporal correlation; autoencoder architecture; time-distributed
convolutions; attention mechanism; vehicle flow prediction

1. Introduction

In recent years, academia and industry have devoted much time and energy to the
study and creation of models to describe and predict mobility dynamics, or flow prediction
in urban areas. This interest is motivated by the need to comprehend displacement dynam-
ics, which are also rapidly changing due to alternative electric and shared public transport
systems, to define effective regulatory strategies for human mobility and freight transport
in the smart city [1]. This rush to create increasingly accurate predictive models is also
motivated by the pursuit of enhancing the quality of services provided to citizens by both
private companies, such as shared mobility companies, and public administrations. As
an example, private companies offering shared vehicles can benefit from accurate models
to estimate demand in order to improve vehicle relocation operations [2]. On the other
hand, the public decision maker can rely on real-time flow data and deep learning models
to swiftly identify risky traffic conditions [3].

The problem addressed in this work concerns the short-term flow prediction. More
precisely, given a tessellation of the area of interest in squared regions, the number of
vehicles entering (Inflow) and exiting (Outflow) each region is to be predicted for the
next time period. This problem has inherently spatio-temporal characteristics; evidently,
the vehicular flow entering (exiting) a region does not only present temporal dependencies
(time of day, flow in the previous hours) but also spatial dependencies as it strongly
depends on the traffic leaving (entering) adjacent areas. Formally, such considerations
relate to two widely recognized properties in the study of displacement dynamics [4],
namely temporal and spatial correlations. Mobility data are innately continuous time series,
generally not associated with abrupt changes. This means that the displacement dynamics

Algorithms 2022, 15, 376. https://doi.org/10.3390/a15100376 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100376
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5432-7584
https://orcid.org/0000-0002-2480-966X
https://orcid.org/0000-0001-9803-3668
https://doi.org/10.3390/a15100376
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100376?type=check_update&version=2

Algorithms 2022, 15, 376 2 of 22

in periods temporally close share similarities, and this phenomenon is all the more true
when the sampling frequency increases. Similarly, since the outflow of an area constitutes
the inflow of its neighbors (and vice versa), there is a manifest spatial correlation in traffic
dynamics that is widely recognized and exploited in the literature. The most recent research
has also shown that some spatial and temporal patterns influence forecasting more than
others. This is the case for some districts [5], conglomerate areas featuring similar functional
characteristics (e.g., residential, commercial and industrial areas), that show correlated
traffic patterns and explain much of the city’s traffic.

Finally, external factors also have a profound impact on the use of vehicles. For in-
stance, it is well known in the literature that weather conditions and the days of the week
(workdays vs. weekend) affect displacement dynamics, especially for lightweight transport
means like bikes [4].

The literature already proposes several models to address the traffic flow prediction
problem; some use convolutions [4,6,7], and others use a combination of convolutions and
LSTM [8,9], just to mention the most common approaches. Nevertheless, many architectural
solutions have not been fully investigated, and there is often a lack of clear indication as to
which features most impact the performance of a model. For this reasons, in this paper we
propose a new model, STREED-Net (Spatio Temporal REsidual Encoder-Decoder Network),
the result of a careful literature analysis and experiments, which not only presents a novel
architectural structure but consistently outperforms state-of-the-art methods.

Unlike existing models from the literature for this problem, implements an autoen-
coder architecture featuring time-distributed 2D convolutional layers [10], instead of stan-
dard convolutions. The rationale is to effectively process a sequence of frames (for spa-
tial and time coherence) rather than focusing on each frame separately. Although time-
distributed convolutions already (partially) capture temporal dependencies, our proposal
provides CMU layers [11] between the decoder and encoder in order to strengthen temporal
consistency without losing the advantage offered by the use of convolutions in learning
spatial patterns. As a matter of fact, compared with the more traditional LSTM [12] or
GRU [13], CMU is designed to handle spatial information over time using convolutional
layers natively, and it also allows time dependency to be modeled without using the state-
to-state transition (used instead by LSTM and GRU). Finally, in the decoder component is in
charge of building the prediction from the information processed by the encoder and CMUs
stage. The decoder includes two attention mechanisms, namely Temporal Attention and
Spatial Attention, to identify and reinforce the information that predominantly influences
the prediction.

The main contributions of this paper can be summarized as follows:

1. We propose a novel autoencoder-based architecture that outperforms the state-of-the-
art for the flow prediction problem. To the best of our knowledge, STREED-Net is the
first autoencoder architecture that combines the use of time-distributed convolutional
blocks with residual connections, a CMUs and two different attention mechanisms.
Moreover, unlike other state-of-the-art models [4,6–8], focuses only on recent time
dependencies (closeness), that is it only relies on a small number of time periods
preceding the one to be predicted. This results in fewer hyperparameters to tuned.

2. The impact of the most important components of the architecture on prediction is as-
sessed through an ablation study and discussed. In particular, the study demonstrates
the ability of the two different attention blocks to capture and harness important
underlying temporal and spatial information.

3. Finally, this work presents a methodologically sound comparative assessment against
the best models from the literature on real-life case studies. The analyses consider
different error measures, the number of trainable parameters, and a complexity
indicator (number of FLOPs). Results indicate that outperforms the considered state-
of-the-art approaches using a relatively reduced number of parameters and FLOPs.

The rest of this paper is organized as follows. In Section 2, the literature on techniques
used in flow and traffic prediction is analyzed. Section 3 defines the flow prediction

Algorithms 2022, 15, 376 3 of 22

problem in urban areas, while in Section 4, the core deep learning techniques exploited in
this work and the proposed framework are described in detail. In Section 5 data and results
of experiments are presented and analyzed. Finally, the conclusions and recommendations
for future work are discussed in Section 6.

2. Related Work

Several studies have addressed the problem of predicting vehicle flows in urban envi-
ronments. This problem has been initially modeled as a time series prediction problem for
each city area and approached through classical statistical methods at first, and ANN (e.g.,
deep learning) later. In particular, different statistical methods have been applied, including
autoregressive integrated moving average (ARIMA) [14], Kalman filtering [15], and their
variants, as well as other classical approaches such as Bayesian networks [16], Markov
chain [17], and SVR models [18]. Other approaches have used k-means clustering, princi-
pal component analysis, and self-organizing maps to mine spatio-temporal performance
trends [19]. However, classical statistics models show some weaknesses when applied
to the flow prediction problem, namely they are unable to capture the spatial dependen-
cies between the various areas because data for each region of the city are considered as
independent time series, and ii) they fail to capture the nonlinear relationship between
space and time, which is essential for reliable prediction. Further studies overcame these
downsides by considering spatial relationships [20] and external factors (e.g., environment
and weather conditions [21]) within traditional time-series prediction methods.

ANN have exploited in flow predictions for their capability of capturing the non-linear
spatial and temporal relationships within data. Initial works using ANN followed two
main approaches. The first one exploits variants of RNN [22] such as (i) LSTM [12] and
(ii) GRU [13], whose architectures can effectively capture both the long-term pattern and
short-term fluctuation of time series. The second research line applies models based on
CNN to identify spatial dependencies in traffic networks, treating dynamic traffic data as a
sequence of frames [23]. Noticeably, while 2D convolutions with residual units [4,6], 3D
convolutions [7] and a combination of 2D and 3D convolutions [24] are widely used, we are
unaware of any model incorporating time-distributed 2D convolutions or implementing
an autoencoder-based architecture. Those proposals, furthermore, do not feature specific
architectural elements to capture temporal patters.

Spatial and temporal dependencies are intrinsic to traffic data, making it essential to
consider both aspects at the same time when predicting mobility dynamics. In this direction,
deep learning-based approaches have been recently proposed, which exploit architectures
able to capture spatial and temporal patterns. For this reason, the authors in [8,9,25] have
combined convolution layers and LSTMs to capture both aspects: compared to models
using only convolutions, they try to strengthen the model’s ability to identify temporal
patterns. However, unlike STREED-Net, these are not autoencoders and do not explore
the possibility to employ more advanced solutions beyond LSTMs, like Multiplicative
Cascade Units (CMUs). Additionally, although in [9,25] an attention mechanism is used,
these are fundamentally different from our attention mechanisms. Lastly, the literature
returns a single architecture that simultaneously implements an autoencoder model with
inner CMU layers [11]. However, differs from [11] by proposing to use time-distributed 2D
convolutions in the encoder stage and by including two attention mechanisms (temporal
and spatial) in the decoder stage.

In recent years, with the development of graph convolutional networks [26], which
can be used to capture the structural characteristics of the graph network, we are witnessing
their use in the field of traffic prediction [27]. Those approaches assume the existence of an
origin-destination matrix, which provides details about the connections between different
areas. This information, however, is often not available. One of the first graph-based works
is [28] where the authors propose DCRNN, it is a model that captures the characteristic
space through random walks on the graphs, and the temporal feature through the encoder-
decoder architecture, while in [29] they apply the temporal graph convolutional network

Algorithms 2022, 15, 376 4 of 22

(T-GCN) model, which is in combination with the graph convolutional network (GCN) and
gated recurrent unit (GRU). In [30] the authors propose a method of forecasting the traffic
flow based on dynamic graphs: the traffic network is modeled by dynamic probability
graphs. The convolution of the graph is performed on the dynamic graphs to learn the
spatial features, which are then combined with the LSTM units to learn the temporal
features. Finally, in [31] the authors propose a dynamic perceptual graph neural network
model for the temporal and spatial hidden relationships of deep learning segments. Indeed,
the proposed model learns potential relationships of temporal features and spatial features.
For a comprehensive review, we refer the reader to [32,33], while a comprehensive library
providing an open-source implementation of a number of models for traffic problems is
presented in [34]. We provide a more detailed description of a selection of the approaches
mentioned above in Section 5.

3. Problem Statement

Given a tessellation of the area of interest (henceforth referred to as city) in regularly-
shaped regions, a set of historical observations regarding trajectories of vehicles within the
city and, possibly, other spatial and non-spatial data sources for a reference time horizon
TH of H time points, the citywide vehicle flow prediction problem [7] is defined as the problem
of minimizing the prediction error for vehicle Inflow and Outflow at time t′ that is the first
time point after TH .

In the literature, there are several definitions of location/region with different gran-
ularity and different semantic meaning [35]. However, when it comes of traffic forecasts,
the majority of works uses a rectangular tessellation, which maximizes the number of neigh-
boring areas. Similarly, in this study, the geographical space of interest (city) is logically
partitioned into a regular grid of size N ×M oriented by longitude and latitude [4]. Each
element of the grid is termed region and is addressable through a pair of coordinates (n, m)
corresponding to the nth row and the mth column of the grid.

The term Inflow (Outflow, respectively) refers to the number of vehicles entering
(leaving) a specific region in the considered time unit (Figure 1) [7]. More specifically,
the Inflow (Outflow) indicates the number of pedestrians, cars, public transport and
sharing vehicles entering (leaving) the region in a certain time period. As shown in Figure 1,
by analyzing the movement data of the vehicles, it is possible to obtain the Inflow and
Outflow matrix, which encompass the information about displacements between the areas
of the city at each time t. More in detail, let τi = {s1

i , s2
i , . . . st

i} be a trajectory where
st

i represents the position of vehicle i at time t, and let T be a collection of trajectories.
The Inflow (Outflow, respectively) of a region (n, m) at time t, namely ιtn,m (ωt

n,m) can be
formally defined as in Equations (1) and (2), respectively).

ιtn,m = ∑
τi∈T

φι(τi, t, n, m) (1)

ωt
n,m = ∑

τi∈T
φω(τi, t, n, m) (2)

where

φι(τi, t, n, m) =

{
1, if st−1

i /∈ (n, m) ∧ st
i ∈ (n, m)

0, otherwise.

and

φω(τi, t, n, m) =

{
1, if st−1

i ∈ (n, m) ∧ st
i /∈ (n, m)

0, otherwise.

Algorithms 2022, 15, 376 5 of 22

Figure 1. Measurement of flows. (a) Inflow and Outflow; (b) Measurement of flows.

Finally, the state of the vehicular flow at time t can be represented by a tensor (also
referred to as frame in what follows) Ft ∈ RN×M×C, where C indicates the number of flow
variables considered in the analysis, in this specific case C = 2 (Inflow/Outflow), whereas
N ×M is the total number of regions in the city. Then, to take into account the temporal
dependence, over the time horizon T (divided into H time points), the flow representation
is extended to a tensor of four dimensions F ∈ RH×N×M×C, which represents the main
input to our problem. The problem at issue then becomes predicting Ft given a volume, that
is a sequence of past tensors V ⊂ F. It is worth noting that the resulting problem shows
several similarities with the frame prediction problem [8] since the tensor F can be seen as
a four dimensional volume composed of H consecutive images, each of which featuring C
channels.

4. STREED-Net

STREED-Net, as shown in Figure 2, is a Autoencoder deep learning model that combines
time-distributed convolutions and CMU with two different types of Attentions (spatial
and temporal). This section presents STREED-Net, detailing its components and relations,
prefacing it with a brief introduction to the main underpinning concepts, namely the
autoencoder architecture and the attention mechanism.

Autoencoder architecture. Given a set of unlabeled training examples {x1, x2, x3, ...},
where xi ∈ Rn, an autoencoder neural network is an unsupervised learning algorithm that
applies backpropagation setting the target values to be equal to the inputs y(i) = x(i). It is
a neural network that is trained to learn a function hW,b(x) = x̂ ≈ x, where W and b are
weights and biases of the ANN, respectively. In other words, an autoencoder is a learned
approximation of the identity function, so as to output x̂ that is as much as possible similar
to x. The overall network can be decomposed into two parts: an encoder function h = f (x),
which maps the input vector space onto an internal representation, and a decoder that
transforms it back, that is x̂ = g(h). This type of architecture has been applied successfully
to different difficult tasks, including traffic prediction [11].

Attention mechanism. In DNN Attention Mechanism helps focus on important
features of the input, shadowing the others. This paradigm is inspired by the human neuro-
visual system, which quickly scans images and identifies sub-areas of interest, optimizing
the usage of the limited attention resources [36]. Similarly, the attention mechanism in
DNN determines and stresses on the most informative features in the input data that are
likely to be most valuable to the current activity.

Recently, attention has been widely applied to different areas of deep learning, such
as natural language processing [37], image recognition [38], image captioning [39], image
generation [40] and traffic prediction [41].

Algorithms 2022, 15, 376 6 of 22

Figure 2. STREED-Net Architecture.

4.1. Encoder

The encoder structure depicted in Figure 3 is the first block of the STREED-Net
architecture.

It is composed of an initial convolutional layer, a series of residual units, and a final con-
volution layer. Unlike similar approaches (e.g., STAR [6]), the proposed encoder structure
introduces three novel aspects: (i) each layer is time-distributed, meaning that the model
learns from a sequence of frames (for time coherence) instead of focusing on each frame sin-
gularly. (ii) it applies further convolutions after the residual unit, so that to reduce the frame
size and (iii) it applies a BN after each convolution to avoid gradient disappear/explode
problems and achieve faster and more efficient reported optimization [42,43].

Figure 3. Encoder.

Unlike other works from the literature, where the distant temporal information
is also used (from the previous day and previous week), the encoder takes as input
a four-dimensional tensor F ∈ RH×N×M×2. This tensor is a sequence of consecutive
three-dimensional frames conveying flow information of nearby periods (with regard to
the prediction time t′). Such a tensor (also referred to as closeness in the literature [7])
is obtained by selecting p points preceding the prediction time t′, i.e., the sequence
[Ft′−p, Ft′−(p+1),, Ft′−1]. In this way, STREED-Net can focus on the most recent dynamics
only. Each frame in F is processed by the convolution layer to extrapolate spatial infor-
mation. It is worth noting that in Figure 2, the encoder is represented by a collection of
identical blocks in parallel execution on the input frames instead of (as in reality) a single
convolution applied sequentially. Such a representation is used to highlight that a time-
distributed layer is trained by taking into account all input frames simultaneously. The use

Algorithms 2022, 15, 376 7 of 22

of this approach leads the model to identify temporal (that is, inter-frame) dynamics, rather
than looking only to spatial dependencies within each frame.

Each convolutional layer is followed by a ReLU activation function and a BN layer.
Formally, we have:

E(0)
t = BN(ReLU(W(0)

e ∗ Ft + b(0)e)) (3)

where E(0)
t corresponds to the output of the first convolutional layer, Ft is one of p frames in

input to the model and ∗ the convolution operator. W(0)
e and b(0)e are the weights and biases

of the respective convolutional operation. Next, L encoder blocks (see Figure 3) are placed.
Each of these blocks is composed of a residual unit followed by a downsampling layer:

E(l)
t = Downsampling(ResUnit(E(l−1)

t)) (4)

where E(l−1)
t and E(l)

t correspond respectively to the input and output of the encoder block;
l takes values in {1, ..., L}. The residual units have been implemented as a sequence of two
convolutional layers whose output is eventually summed to the block input. Mathemati-
cally, in STREED-Net the residual unit are defined as follows:

c1 = BN(ReLU(W(l)
1 ∗ E(l−1)

t + b(l)1)) (5)

c2 = BN(ReLU(W(l)
2 ∗ c1 + b(l)2)) (6)

ERU(l)
t = E(l−1)

t + c2 (7)

where E(l−1)
t is the residual unit input and ERU(l)

t (Encoder Residual Unit) is used to indicate

the result of ResUnit(E(l−1)
t). ∗ is the convolution operator, W(l)

1 , W(l)
2 and b(l)1 , b(l)2 are the

weights and biases of the respective convolutional operations.
For what concerns the Downsampling, it has been implemented as:

E(l)
t = BN(ReLU(W(l)

ds ∗ ERU(l)
t + b(l)ds)) (8)

where W(l)
ds , b(l)ds and ∗ indicate a convolutional layer with kernel size and stride parameters

set to halve the height and width of the input frame.
The rationale behind the design of this architecture is threefold: (i) a deep structure

is needed for the model to grasp dependencies not only among neighboring regions but
also among distant areas; (ii) Deep networks are difficult to train as they present both
the problem of the explosion or disappearance of the gradient and a greater tendency to
overfitting due to the large number of parameters. To try to avoid these obstacles and
to make the training model more efficient, we introduced residual units. Finally, (iii) the
downsampling layers were introduced to ensure translational equivariance [44].

Finally, the encoder structure ends with a closing convolution-ReLU-BN sequence,
which has as its main objective to reduce the number of feature maps. In this way, the next
architectural component (i.e., the Cascading Hierarchical Block) will receive and process a
smaller input, reducing the computational cost of the CMU array. The encoder output is:

E(L+1)
t = BN(ReLU(W(L)

e ∗ E(L)
t + b(L)

e)) (9)

The output of the encoder is a tensor E(L+1) ∈ RH×N/2L×M/2L×C′ , where C′ is the
number of feature maps generated by the last convolution of the encoder.

4.2. Cascading Hierarchical Block

A connection section between the encoder and the decoder is provided to handle
the temporal relationships among the frames. Unlike what is proposed in other works
that combine the use of CNN with the use of RNN such as LSTM [45], STREED-Net

Algorithms 2022, 15, 376 8 of 22

implements a Cascading Hierarchical Block with CMU (CMU) [11], which computes the
hidden representation of the current state directly using the input frames of both previous
and current time steps, rather than what happens in recurrent networks that model the
temporal dependency by a transition from the previous state to the current state. This
solution is designed to explicitly model the dependency between different time points
by conditioning the current state on the previous state, improving the model accuracy;
incidentally, it also reduces training times.

The fundamental constituent of CMU architecture is the MU [46], which is a non-
recurrent convolutional structure whose neuron connectivity, except for the lack of residual
connections, is quite similar to that of LSTM [47]; the output, however, only depends on
the single input frame h. Formally, MU is defined by the following equation set:

g1 = σ(W1 ∗ h + b1) (10)

g2 = σ(W2 ∗ h + b2) (11)

g3 = σ(W3 ∗ h + b3) (12)

u = tanh(W4 ∗ h + b4) (13)

MU(h; W) = g1 � tanh(g2 � h + g3 � u) (14)

where σ is the sigmoid activation function, ∗ the convolution operator and � the element-
wise multiplication operator. W1 ∼ W4 and b1 ∼ b4 are the weights and biases of the
respective convolutional gates and W denotes all MU parameters.

CMU incorporates three MU. Unlike MU, CMU accepts two consecutive frames as
input to model explicitly the temporal dependencies between them. The more recent frame
in time is inputted to a MU to capture the spatial information of the current representation.
The older frame is instead processed by two MU in sequence to overcome the time gap.
The partial outputs are then added together and finally, thanks to two gated structures
containing convolutions along with non-linear activation functions, the output of the CMU
(Xl+1

t) is generated. CMU is described by the following equations:

h1 = MU(MU(El
(t−1); W1); W1) (15)

h2 = MU(El
t; W2) (16)

h = h1 + h2 (17)

o = σ(Wo ∗ h + bo) (18)

Xl+1
t = o� tanh(Wh ∗ h + bh) (19)

where W1 and W2 are the parameters of the MU in the left branch and of the MU in the
right branch respectively, Wo, Wh, bo and bh are the weights and biases of the corresponding
convolutional gates. The cascading hierarchical block uses CMUs to process all frames at
the same time (see Figure 4):

Xcmu = CascadeCMU(E(L+1)) (20)

where Xcmu ∈ RN×M×C′ .

Algorithms 2022, 15, 376 9 of 22

Figure 4. Cascading Hierarchical Block.

4.3. External Factors

As mentioned in Section 1, many complex external factors, such as the day of the week,
holidays, and weather conditions, affect displacement dynamics. For this reason, following
similar approaches from the literature [4,6], features a specific input branch to integrate
external information. The input is a one-dimensional vector that contains information that
refers to prediction time t′.

Through the use of two fully connected overlapping layers, this information is con-
veyed, encoded, into the mainstream of the network. The first level is used to embed each
sub-factor, while the second reshapes the external factors embedding space to match the
size of the CMU output vector.

4.4. Decoder

The decoder is the last component of and its task is to generate the flow prediction
starting from the latent representation that corresponds to the output of the cascading
hierarchical block.

As shown in Figure 5, the decoder takes as input a tensor z = Xcmu + Xext, where
z ∈ RN×M×C′ , which is the result of the sum of the outputs of the hierarchical structure
and the network dedicated to incorporate external factors. Xext is added at this point of
the network to allow the model to use the information extracted from the external factors
during the reconstruction phase.

Figure 5. Decoder.

Algorithms 2022, 15, 376 10 of 22

The decoder architecture features a structure that is somehow symmetrical to that of
the encoder with an array of residual units preceded and followed by a convolutional layer
(Equation (21)).

D(0) = BN(ReLU(W(0)
d ∗ z + b(0)d)) (21)

Nevertheless, this symmetry is breached by the presence of two significant differences.
The first one is the presence of a long skip connection before every residual unit. The long
skip connection is used to improve the accuracy and to recover the fine-grained details
from the encoder. Another benefit is a significant speed up in model convergence [48]. The
impact of the long skip connection on the prediction quality is assessed and discussed in
Section 5.4.

A generic decoding block D(l), ∀l ∈ {1 . . . L} can be formally defined as the sequential
application of the following three operations:

sc(l) = Conv2DTranspose(D(l−1)) + ERU(L+1−l)
1 (22)

U(l) = BN(ReLU(sc(l))) (23)

D(l) = ResUnit(U(l)) (24)

where D(l−1) corresponds to the input block, Conv2DTranspose indicates the transposed
convolution operation (also known as deconvolution), which doubles the height and width
of the input, and sc(l) (skip connection) is the sum of u with ERU(L+1−l)

1 , i.e., the output of
the remaining encoder unit at level L + 1− l for the most recent frame. The residual units
of the decoder are structured exactly like those of the encoder.

The second difference is the presence of two attention blocks (viz. Channel and
Temporal Attention) before the final convolution layer. More details are provided in the
following subsections.

Channel Attention

After the convolutional stage of the decoder, a three-dimensional tensor, referred to
as D(L) ∈ RN×M×C′ , is obtained with the channel size C′. Since the dimension of the
channel also includes the temporal aspects compressed by the cascading hierarchical block,
the channel attention [49] has been introduced to identify and emphasize the most valuable
channels. Figure 6 depicts the inner structure of the Channel Attention Block. Given the input
tensor, D(L) a channel attention map Ac ∈ R1×1×C′ is created by applying attention block
deduction operations on the channels. More precisely, through the operation of global
average pooling and global max pooling performed simultaneously, two different feature
maps (Xmax and Xavg) of size 1× 1× C′ each are spawned. The rationale behind the choice
to use both pooling strategies is that the avg pooling (Xavg) allows for the computation of
spatial statistics [50], whereas max pooling (Xmax) provides basic translation invariance to
the internal representation by observing the maximum presence of different features.

Algorithms 2022, 15, 376 11 of 22

Figure 6. Channel Attention Block.

The two feature maps (Xmax and Xavg) go through two Fully Connected (FC) layers
that allow the model to learn (and assess) the importance of each channel. The first layer
performs a dimensionality reduction, downsizing the input feature maps to 1× 1× C′

s ,
based on the choice of the reduction ratio s; the second layer restores the feature maps
to their original size. This approach has proven to increase the model efficiency without
accuracy reduction [41]. Once these two steps have been completed, the two resulting
feature maps are combined into a single tensor through a weighted summation as:

Ac =σ(Λ1 ⊗ FC(FC(Xmax)) + Γ1 ⊗ FC(FC(Xavg))) =

σ(Λ1 ⊗W2(W0(Xmax)) + Γ1 ⊗W3(W1(Xavg))) (25)

where σ denotes the sigmoid function, W0 ∈ RC
′× C

′
s , W1 ∈ RC

′× C
′

s , W2 ∈ R
C
′

s ×C
′

and

W3 ∈ R
C
′

s ×C
′

represent the weights of the FC layers, and Λ1 and Γ1 are two trainable
tensors with the same size as the two feature maps. Λ and γ are set during the training
phase and weight the relative importance of each element of the two feature maps. Finally,
the process of getting channel attention can be summarized as:

D
′
= Ac ⊗ D(L) (26)

where D
′

is the operation output and ⊗ denotes the element-wise multiplication.
Unlike its original version [49], the weights of Fully Connected layers are independent

of each other, and we add two variables Λ and Γ to enable the network to learn how to best
balance the impact of the two branches.

Spatial Attention

Cities are made up of a multitude of different functional areas. Areas have different
vehicle concentrations and mobility patterns; thus, the spatial attention mechanism has the
task of identifying where are located the most significant areas and scale their contribution
to improve the prediction. Figure 7 presents the main internals involved in the calculation
of the spatial attention map.

Algorithms 2022, 15, 376 12 of 22

Figure 7. Spatial Attention Block

The spatial attention map As ∈ RN×M×1 can be calculated by applying pooling
operations along the axes of the channel to highlight informative regions [51]. Therefore,
first the global average pooling (Xavg) and global max pooling (Xmax) operations are applied
along the channel axes and, as in the Channel Attention Block, two distinct feature maps of
size N ×M× 1 are obtained. Instead of simply concatenating these two feature maps as
in [49], they are combined by a weighted sum to enhance the network’s learning capability.
Subsequently, the combined feature map passes through a convolution layer with a filter
size of 4× 4 and the sigmoid activation function is applied, as reported in Equation (27).

As = σ(f 4×4(Λ2 ⊗ Xmax + Γ2 ⊗ Xavg)) (27)

where σ denotes the sigmoid function and f 4×4 represents a convolution operation with the
filter size of 4× 4. It is worth noting that the filter size depends on the size of the areas that
make up the city. For the case studies addressed in this work (see Section 5), which feature
rather large regions, the proposed model does not need to focus on large area clusters;
therefore, the size of the filter in this work (4× 4) is reduced compared to those proposed
in [49].

Finally, the process of getting spatial attention can be summarized as:

D
′′
= As ⊗ D

′
(28)

5. Experimental Analysis

This section reports on an extensive experimental evaluation of the proposed model
by comparing it against several reference models (see Section 5.1) using three different
performance metrics and three different case studies (detailed in Section 5.2). An ablation
study and the analysis of computational complexity complete the section.

5.1. Reference Methods

The proposed model is compared against the following state-of-the-art methods
expressly devised to solve the citywide vehicle flow prediction problem [7]:

ST-ResNet [4]: it is one of the first deep learning approaches to traffic prediction. It
predicts the flow of crowds in and out each individual region of activity. ST-ResNet uses
three residual networks that model the temporal aspects of proximity, period, and trend
separately.

Algorithms 2022, 15, 376 13 of 22

MST3D [7]: this model is architecturally similar to ST-ResNet. The three time depen-
dencies and the external factors are independently modeled and dynamically merged by
assigning different weights to different branches to obtain the new forecast. Differently
from ST-ResNet, MST3D learns to identify space-time correlations using 3D convolutions.

ST-3DNet [24]: the network uses two distinct branches to model the temporal compo-
nents of closeness and trend, while the daily period is left out. Both branches start with a
series of 3D convolutional layers used to capture the spatio-temporal dependencies among
the input frames. In the closeness branch, the output of the last convolutional layer is linked
to a sequence of residual units to further investigate the spatial dependencies between the
frames of the closeness period. The most innovative architectural element is the Recalibration
Block. It is a block inserted at the end of each of the two main branches to explicitly model
the contribution that each region makes to the prediction.

3D-CLoST [8]: the model uses sequential 3D convolutions to capture spatio-temporal
dependencies. Afterwards, a fully-connected layer encloses the information learned in a
one-dimensional vector that is finally passed to an LSTM block. LSTM layers in sequence
allow the model to dwell on the temporal dependencies of the input. The output of the
LSTM section is added to the output produced by the network for external features. The
output is multiplied by a mask, which allows the user to introduce domain knowledge: the
mask is a matrix with null values in correspondence with the regions of the city that never
have Inflow or Outflow values greater than zero (such areas can exist or not depending on
the conformation of the city) while it contains 1 in all other locations.

STAR [6]: this approach aims to model temporal dependencies by extracting represen-
tative frames of proximity, period and trend. However, unlike other solutions, the structure
of the model consists of a single branch: the frames selected for the prediction are concate-
nated along the axis of the channels to form the main input to the network. In STAR as
well, there is a sub-network dedicated to external factors and the output it generates is
immediately added to the main network input. Residual learning is used to train the deep
network to derive the detailed outcome for the expected scenarios throughout the city.

PredCNN [11]: this network builds on the core idea of recurring models, where
previous states in the network have more transition operations than future states. PredCNN
employs an autoencoder with CMU, which proved to be a valid alternative to RNN.
Unlike the models discussed above, this approach considers only the temporal component
of closeness but has a relatively complex architecture. The key idea of PredCNN is to
sequentially capture spatial and temporal dependencies using CMU blocks.

ACFM [25]: this module is composed of two progressive Convolutional Long Short-
Term Memory (ConvLSTM [52]) units connected via a convolutional layer. Specifically,
the first ConvLSTM unit takes the sequential flow features as input and generates a hidden
state at each time-step, which is further fed into the connected convolutional layer for
spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic
spatial-temporal representations from the attentionally weighted traffic flow features.

HA: the algorithm generates Inflow and Outflow forecasts by performing the arith-
metic average of the corresponding values of the same day of the week at the same time as
the instant in time to be predicted. This classical method represents a baseline in our com-
parative analysis, as it has not been developed specifically for the flow prediction problem.

Excluding MST3D, which has been entirely reimplemented following the indications of
the original paper strictly, and PredCNN, whose original code has been completed of some
missing parts, for all the other models the implementation released by the original authors
has been used. The STREED-Net code, together with all the code realized for this research
work, is freely available (https://github.com/UNIMIBInside/Smart-Mobility-Prediction,
accessed on 7 October 2022).

We conclude this section by pointing out that, although the literature offers numerous
proposals for deep learning models based on graphs with performances often superior
to those of convolutional models, for the problem addressed in this paper, preliminary
experiments that we conducted with graph-based models did not lead to satisfactory results.

https://github.com/UNIMIBInside/Smart-Mobility-Prediction

Algorithms 2022, 15, 376 14 of 22

This is due to the nature of the problem considered, whose basic assumption is to be able to
observe only the inflow and outflow across all areas of the city. Such a scenario is feasible
and more realistic than one in which the trajectory or origin-destination pair of all vehicles
is known but makes it impossible to create graphs with nontrivial connections (i.e., not
between adjacent areas) for the problem under consideration.

5.2. Case Studies

Three real-life case studies are considered for the experimental analysis, which differ
in both the city considered (New York and Beijing) and the type of vehicle considered
(bicycle and taxi). This choice allow the models to be assessed on usage patterns that are
expected to be significantly distinct. Follows a brief description of the considered case
studies:

BikeNYC. In this first case study the behavior of bicycles in New York city is analyzed.
The data has been collected by the NYC Bike system in 2014, from 1 April to 30 September.
Records from the last 10 days form the testing data set, while the rest is used for training.
The length of each time period is of 1 h.

TaxiBJ. In the second case study, a fleet of cabs and the city of Beijing are considered.
Data have been collected in 4 different time periods: 1 July 2013–30 October 2013, 1 March
2014–30 June 2014, 1 March 2015–30 June 2015, 1 November 2015–15 April 2016. The last
four weeks are test data and the others are used for training purposes. The length of each
time period is set to 30 min.

TaxiNYC. Finally, a data set containing data from a fleet of taxicabs in New York is
considered. Data have been collected from 1 January 2009 to 31 December 2014. The last
four weeks are test data and the others are used for training purposes. The length of each
time period is set to one hour. This case study has been specifically created to perform a
more thorough and sound experimental assessments than those presented in the literature.

The city of New York has been tessellated into 16× 8 regions, while the city of Beijing
has been divided into 32× 32 areas; the discrepancy in the number of regions considered is
due to the large difference in extension between the two cities. The Beijing area (16,800 km2)
is 22 times bigger than the New York area (781 km2).

The Beijing taxi data set (TaxiBJ) and New York Bike data set (BikeNYC) are available
via [4]; they are already structured to carry out the experiments reported in this work.
As for the TaxiNYC dataset, available for experiments on GitHub (https://github.com/
UNIMIBInside/Smart-Mobility-Prediction/tree/master/data/TaxiNYC, accessed 5 Oc-
tober 2022.), it has been expressly built for this work by processing and structuring data
available from the NYC government website (https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page, accessed 20 September 2021.).

A Min-Max normalization has been applied to all data sets to convert traffic values
based on the scale [−1, 1]. Note, however, that in the experiments a denormalization is
applied to the expected values to be used in the evaluation.

In the three experiments, public holidays, metadata (i.e., DayOfWeek, Weekday/
Weekend) and weather have been considered as external factors. Specifically, the meteoro-
logical information reports the temperature, the wind speed, and the specific atmospheric
situation (viz., sun, rain and snow).

5.3. Analysis of Results

This section presents and discusses the results of experiments performed by running
STREED-Net and the models presented in Section 5.1 on the three case studies. Moreover,
three different evaluation metrics are used in this study to compare the results obtained:

https://github.com/UNIMIBInside/Smart-Mobility-Prediction/tree/master/data/TaxiNYC
https://github.com/UNIMIBInside/Smart-Mobility-Prediction/tree/master/data/TaxiNYC
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Algorithms 2022, 15, 376 15 of 22

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Absolute Per-
centage Error (APE), which are defined as follows:

RMSE =

√√√√√√
N

∑
n=1

M

∑
m=1

[(ι̂n,m − ιn,m)
2 + (ω̂n,m −ωn,m)

2]

N ×M
(29)

MAPE = 100 ·

N

∑
n=1

M

∑
m=1

∣∣∣∣ (ι̂n,m − ιn,m) + (ω̂n,m −ωn,m)

(ι̂n,m − ιn,m)

∣∣∣∣
N ×M

(30)

APE = 100 ·
N

∑
n=1

M

∑
m=1

∣∣∣∣ (ι̂n,m − ιn,m) + (ω̂n,m −ωn,m)

(ι̂n,m − ιn,m)

∣∣∣∣ (31)

where ι̂n,m and ω̂n,m are, respectively, the predicted Inflow and Outflow for region (n, m) at
time t′ and N ×M is the total number of regions in the city.

Finally, it is worth noting that to account for and reduce the inherent stochasticity of
learning-based models, each experiment was repeated ten times (replicas) using a different
random seed in each replica. Mean and standard deviation are reported for each metric to
provide a robust indication of the overall behavior of the compared methods.

5.3.1. BikeNYC

For the BikeNYC case study STREED-Net parameters have been set as follows.
The number n of input frames has been set to 4, the number L of encoding and decoding
blocks has been set to 2. This decision has been dictated by the size of the grid (16× 8):
setting L greater than 2 (for example 3) would result in an encoder output tensor of size
4× 2× 1× C, which would be too small to allow the CMU block to effectively capture the
time dependencies in the section located between the encoder and decoder. After some
preliminary tests, the number of convolutional filters has been set to 64 in the first layer
of the encoder and in the subsequent blocks, while in the last layer it has been set equal
to 16. In this way, the dimensionality of the input vector goes from I ∈ R4×16×8×2 to
O ∈ R4×4×2×16 as the encoder output. Symmetrically, the convolutions within the decoder
use 64 filters, except for the final layer which uses only 2 filters to generate the prediction
of the Inflow and Outflow channels. The parameters corresponding to the dimensionality
of the convolution kernel (kernel size equal to 3, batch size equal to 16 and learning rate
equal to 0.0001. The number of epochs is set to 150), to the batch size and to the learning
rate have been optimized with the Bayesian optimization technique.

As for the models from the literature, they have been arranged and trained following
carefully the parameter values and indications reported in the respective publications.

As shown in Table 1, STREED-Net outperforms all other considered approaches for
all evaluation metrics. In addition, the small standard deviation values are evidence of
the robustness of the proposed approach. Nonetheless, it is worth observing that all
learning-based approaches return similar results. We believe this is mainly due to the
reduced size of the data set that does not allow the models to be adequately trained.
Moreover, the tessellation used in this case study (widely used in the literature), with a
small grid of dimensions (16× 8), tends to level off the metrics and hinder a more precise
performance assessment.

Algorithms 2022, 15, 376 16 of 22

Table 1. Results obtained for the Bike NYC data set.

Model RMSE MAPE APE

HA 6.56 26.46 4.09 ·105

ST-ResNet 5.01 ± 0.07 21.97 ± 0.26 3.40 ·105 ± 4.06 ·105

MST3D 4.98 ± 0.05 22.03 ± 0.47 3.41 ·105 ± 7.26 ·105

3D-CLoST 4.90 ± 0.04 21.38 ± 0.20 3.31 ·105 ± 3.12 ·105

PredCNN 4.81 ± 0.04 21.38 ± 0.24 3.31 ·105 ± 3.76 ·105

ST-3DNet 4.75 ± 0.06 21.42 ± 0.28 3.31 ·105 ± 4.36 ·105

STAR 4.73 ± 0.05 20.97 ± 0.13 3.24 ·105 ± 2.02 ·105

ACFM 4.68 ± 0.13 20.98 ± 0.68 3.25 ·105 ± 1.05 ·105

STREED-Net 4.67 ± 0.03 20.85 ± 0.15 3.23 ·105 ± 2.31 ·105

5.3.2. TaxiBJ

As with the experiment discussed above, for the TaxiBJ case study, the parameters of
the models have been set according to the specifications given in the respective publications.
In the case of STREED-Net, the hyperparameters are kept unchanged in the two experi-
ments, except for the number L of encoding and decoding blocks, which has been increased
to 3 because the grid is larger (32× 32) in this experiment and more convolutional layers
are needed to map the input tensor of the model. Also for this experiment, the kernel size,
batch size, and learning rate parameters have been optimized with Bayesian optimization
and the best values found were 3, 16, and 0.0001 respectively. The number of epochs has
been set at 150. Notice that these values are the same used in the BikeNYC experiment.

As can be seen from Table 2, STREED-Net outperforms all other methods, in particular,
reducing MAPE and APE by 2.9%, and 2.8%, respectively, compared with the second-best
approach. The difference in performance in favor of the proposed model, in this experiment
is more appreciable because the data set used for the training process is more significant
but also because the number of regions is higher. This last consideration highlights how
the proposed model seems suitable to be applied in real-world scenarios, i.e., where high
model accuracy and dense tessellation are required (i.e., the city is partitioned into a large
number of small regions).

Table 2. Results obtained for the Taxi Beijing data set.

Model RMSE MAPE APE

HA 40.93 30.96 6.77 ·107

ST-ResNet 17.56 ± 0.91 15.74 ± 0.94 3.45 ·107 ± 2.05 ·106

MST3D 21.34 ± 0.55 22.02 ± 1.40 4.81 ·107 ± 3.03 ·105

3D-CLoST 17.10 ± 0.23 16.22 ± 0.20 3.55 ·107 ± 4.39 ·105

PredCNN 17.42 ± 0.12 15.69 ± 0.17 3.43 ·107 ± 3.76 ·105

ST-3DNet 17.29 ± 0.42 15.64 ± 0.52 3.43 ·107 ± 1.13 ·106

STAR 16.25 ± 0.40 15.40 ± 0.62 3.38 ·107 ± 1.36 ·106

ACFM 15.67 ± 0.23 15.16 ± 0.33 3.32 ·107 ± 7.25 ·105

STREED-Net 15.61 ± 0.11 14.73 ± 0.21 3.22 ·107 ± 4.51 ·105

5.3.3. TaxiNYC

As mentioned earlier, the TaxiNYC case study was created specifically to be able to
evaluate the behavior of the proposed model in a wider set of scenarios than the literature.
Consequently, in order to make a fair comparison, it was necessary to search for the best
configuration of hyperparameters not only for the STREED-Net model but also for all the
other approaches considered. The optimized parameters and the relative values used in the
training phase are briefly summarized below for each model. Unreported configuration
values have been set as for the BikeNYC case study since the two experiments share the
same map size (16× 8). The parameters for each model are as follows:

Algorithms 2022, 15, 376 17 of 22

• ST-ResNet*. Optimized parameters: number of residual units, batch size and learning
rate. Optimal values found: 2, 16 and 0.0001.

• MST3D. Optimized parameters: batch size and learning rate. Optimal values found:
16 and 0.00034.

• PredCNN. Optimized parameters: encoder length, decoder length, number of hidden
units, batch size and learning rate. Optimal values found: 2, 3, 64, 16 and 0.0001.

• ST-3DNet. Optimized parameters: number of residual units, batch size and learning
rate. Best values found: 5, 16 and 0.00095.

• STAR*. Optimized parameters: number of remaining units, batch size and learning
rate. Optimal values found: 2, 16 and 0.0001.

• 3D-CLoST. Optimized parameters: number of LSTM layers, number of hidden units
in each LSTM layer, batch size, and learning rate. Optimal values found: 2, 500, 16,
and 0.00076.

• ACFM. Optimized parameter: learning rate. Optimal value found: 0.0003.
• STREED-Net. Optimized parameters: kernel size, batch size, and learning rate.

Optimal values found: 3, 64 and 0.00086.

It is worth noting that, preliminary experiments showed a convergence issue for the
training phase of both STAR and ST-ResNet models. In particular, they were unable to
converge for any combination of parameters. This behavior is due to the strong presence of
outliers and to the concentration of the relevant Inflow and Outflow values in a few central
regions of the city. To overcome this issue, Batch Normalization layers have been inserted
in the structure of the two models. In particular, Batch Normalization layers have been
added after each convolution present in the residual units (a possibility that has already
been foreseen in the original implementations) and after the terminal convolution of the
networks (an option not considered in the source code provided by the original authors).
For this reason, ST-ResNet and STAR are marked with an asterisk in the Table 3, which
summarizes the experimental results.

Table 3. Results obtained for the Taxi New York data set.

Model RMSE MAPE APE

HA 164.31 27.19 7.94 ·105

ST-ResNet* 35.87 ± 0.60 22.52 ± 3.43 6.57 ·105 ± 1.00 ·105

MST3D 48.91 ± 1.98 23.98 ± 1.30 6,98 ·105 ± 1.34 ·104

3D-CLoST 48.17 ± 3.16 22.18 ± 1.05 6.48 ·105 ± 3.08 ·104

PredCNN 40.91 ± 0.51 25.65 ± 2.16 7.49 ·105 ± 6.32 ·104

ST-3DNet 41.62 ± 3.44 25.75 ± 6.11 7.52 ·105 ± 1.78 ·105

STAR* 36.44 ± 0.88 25.36 ± 5.24 7.41 ·105 ± 1.53 ·105

ACFM 36.75 ± 0.94 19.10 ± 1.08 5.58 ·105 ± 2.21 ·104

STREED-Net 36.22 ± 0.72 20.29 ± 1.48 5.93 ·105 ± 4.31 ·104

As it can be seen from Table 3, STREED-Net achieved excellent results in this ex-
periment as well, ranked as one of the best models. In particular, as far as the RMSE
is concerned, the performances obtained are very close to the best one (achieved by ST-
ResNet*, which is considerably different from the original ST-ResNet). As for MAPE and
APE values, place our proposal ranks as the second-best approach, closely after ACFM.

5.4. Ablation Study

In this section, an ablation study conducted on STREED-Net is presented, in which
variations in the input structure and in the network architecture are analyzed. The study,
for reasons of space, refers only to BikeNYC case study and does not involve the full
combinatorics of all possible variants of the proposed model but aims to assess the impact
on performance metrics of some parameters (namely, the number of input time points n)
and specific architectural choices (viz., long skip connection, attention blocks, and external

Algorithms 2022, 15, 376 18 of 22

factors input branch), while maintaining all other conditions. More precisely, in what
follows, STREED-Net is compared against the 5 different variations described below:

• STREED-Net_N3. Same architecture as STREED-Net, but input volumes with 3 frames
([Xt−3, Xt−2, Xt−1]).

• STREED-Net_N5. Same architecture as STREED-Net, but input volumes with 5 frames
([Xt−5, Xt−4, Xt−3, Xt−2, Xt−1]).

• STREED-Net_NoLSC. STREED-Net by removing the long skip connection between
encoder and decoder.

• STREED-Net_NoAtt. STREED-Net without the attention blocks.
• STREED-Net_NoExt. STREED-Net without the external factors.

Notice that the study does not consider the variations with n = 1 and n = 2 as such
values would not allow the network to capture meaningful temporal patterns between
traffic flows.

Table 4 reports the results of the ablation study conducted. Each data point in the table
has been obtained performing 10 times the training procedure for each model variation
changing the random seed, and evaluating the resulting network on the test set. The mean
and standard deviation are reported.

Table 4. Results obtained from ablation studies.

Model RMSE MAPE APE

STREED-Net_N3 4.75 ± 0.04 21.18 ± 0.18 3.28 ·105 ± 2.73 ·103

STREED-Net_N5 4.74 ± 0.03 21.03 ± 0.22 3.26 ·105 ± 3.43 ·103

STREED-Net_NoLSC 4.84 ± 0.04 21.53 ± 0.24 3.33 ·105 ± 3.71 ·103

STREED-Net_NoAtt 4.78 ± 0.04 20.95 ± 0.27 3.25 ·105 ± 4.20 ·103

STREED-Net_NoExt 4.76 ± 0.04 20.99 ± 0.29 3.26 ·105 ± 4.55 ·103

STREED-Net 4.67 ± 0.03 20.85 ± 0.15 3.23 ·105 ± 2.31 ·103

The results show that regarding the time horizon, for the BikeNYC case study, n = 4
allows the model to obtain better results. This means that, considering the particular setup,
for the city of New York 4 hours of data allow to predict more accurately the dynamics of
bicycle mobility whereas considering a greater amount of information (n = 5) would reduce
the accuracy of the network. It is plausible to believe that considering a larger number
of temporal instants would lead the network to grow in the number of parameters to be
trained and thus require a larger amount of data to identify possible longer-term patterns.

From the architectural point of view, the two components attention block and long
skip connection, confirm their importance in improving the performance of the proposed
model, accounting for a 2.36% and 3.64% increase in RMSE, respectively. In particular,
as regards the attention block, not only STREED-Net reaches lower average error values,
but also the standard deviation is reduced, proving that the attention blocks are effective
in helping the network single out the most meaningful information and in making the
training process more stable. Finally, the experiment shows also a strong impact of the long
skip connection mechanism, which, as illustrated in Section 4.4, connects the encoder to the
decoder to convey fine-grained details through the network.

5.5. Number of Trainable Parameters and FLOPs

A brief analysis of the number of trainable parameters and the computational com-
plexity (measure in number of FLOPs) of each model for the different case studies is
reported in this section. For what concerns the number of trainable parameters, as shown
in Table 5, STREED-Net has a generally low number compared to other models as only
STAR features lesser parameters to train. Such a reduced number of parameters is due
to the fact that the dimensionality of the input is reduced by the encoder downsampling
mechanism. The model with the highest number of parameters is 3D-CLoST, which uses
both 3D convolutions and LSTM.

Algorithms 2022, 15, 376 19 of 22

Table 5. Number of trainable parameters.

Model BikeNYC TaxiNYC TaxiBJ

ST-ResNet 906,272 458,304 2,696,992
MST3D 668,218 668,378 8,674,370

3D-CLoST 13,099,090 19,477,648 72,046,714
PredCNN 3,967,906 3,967,906 4,827,842
ST-3DNET 540,696 617,586 903,242

STAR 161,052 310,076 476,388
ACFM 182,065 270,581 969,893

STREED-Net 582,673 582,673 765,497

Finally, Table 6 provide the computational complexity of each model in terms of
floating point operations (FLOPs) as in [53] for each case study. As can be seen from
the results obtained, the model with the higher computational complexity is PredCNN,
which is based on CMUs. While, 3DCLoST is the model with the shortest forward and
backward times. STREED-Net, instead, has a middle-range computational complexity
compared to the other models, despite its autoencoder structure, the use of attention blocks,
and CMUs. This occurs because although the number of network parameters is small,
the network employs high complexity operators. However, the training and execution
times of STREED-Net are compatible with its applicability in full-scale real-world scenarios.

Table 6. Computational complexity (in number of FLOPs).

Model BikeNYC TaxiNYC TaxiBJ

ST-ResNet 230,849,450 115,735,786 5,459,663,018
MST3D 33,042,250 33,042,570 272,483,226

3D-CLoST 29,613,094 9,601,920 338,148,804
PredCNN 1,015,468,288 1,015,468,288 9,883,813,888
ST-3DNET 171,242,496 190,130,922 1,823,295,898

STAR 40,449,706 78,231,530 928,100,922
ACFM 41,687,924 93,643,568 621,498,864

STREED-Net 130,047,738 130,047,738 1,067,063,882

6. Conclusions

Predicting vehicular flow is one of the central topics in the domain of intelligent
mobility. It is a challenging task, influenced by several complex factors, such as spatio-
temporal dependencies and external factors. In this study, we have developed a new deep
learning architecture, based on convolutions and CMU to forecast the Inflow and Outflow in
each region of the smart city. A comprehensive experimental campaign has been conducted
on three different real-world case studies. The results showed that consistently outperforms
state-of-the-art models in predicting dynamics in all the experiments conducted on the
three performance metrics considered. This work also reports and analyzes the results from
an ablation study and complexity analysis.

For future developments, the possible integration of other external factors, such as the
territorial characteristics of each geographical area, should be tested. Moreover, it would be
appropriate to increase the granularity of the city tessellation, as well as conduct transfer
learning experiments to study the applicability of the proposed model to scenarios with a
reduced amount of data available.

Author Contributions: Conceptualization, S.F. and M.C.; methodology, S.F. and M.C.; software, S.F.;
validation, S.F. and M.C.; formal analysis, S.F. and M.C.; writing—original draft preparation, S.F.,
M.C. and A.M.; writing—review and editing, S.F. and M.C.; supervision, A.M.; project administration,
A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Algorithms 2022, 15, 376 20 of 22

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this paper are freely available and can be found at the
following link: https://github.com/UNIMIBInside/Smart-Mobility-Prediction/tree/master/data
(accessed on 6 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CMU Cascade Multiplicative Unit
CNN Convolutional Neural Network
GRU Gated Recurrent Unit
HA Historical Average
LSTM Long Short-Term Memory
MU Multiplicative Unit
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SVR Support Vector Regression
BN Batch Normalization
DNN Deep Neural Network

References
1. Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell.

Syst. Technol. (TIST) 2014, 5, 1–55. [CrossRef]
2. Tolomei, L.; Fiorini, S.; Ciociola, A.; Vassio, L.; Giordano, D.; Mellia, M. Benefits of Relocation on E-scooter Sharing—A Data-

Informed Approach. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
Indianapolis, IN, USA, 19–22 September 2021; pp. 3170–3175. [CrossRef]

3. Yuan, C.; Li, Y.; Huang, H.; Wang, S.; Sun, Z.; Li, Y. Using traffic flow characteristics to predict real-time conflict risk: A novel
method for trajectory data analysis. Anal. Methods Accid. Res. 2022, 35, 100217. [CrossRef]

4. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; Li, T. Predicting citywide crowd flows using deep spatio-temporal residual networks.
Artif. Intell. 2018, 259, 147–166. [CrossRef]

5. Liu, Y.; Lyu, C.; Khadka, A.; Zhang, W.; Liu, Z. Spatio-Temporal Ensemble Method for Car-Hailing Demand Prediction. IEEE
Trans. Intell. Transp. Syst. 2019, 21, 1–6. [CrossRef]

6. Wang, H.; Su, H. STAR: A Concise Deep Learning Framework for Citywide Human Mobility Prediction. In Proceedings of the
2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 304–309.

7. Chen, C.; Li, K.; Teo, S.G.; Chen, G.; Zou, X.; Yang, X.; Vijay, R.C.; Feng, J.; Zeng, Z. Exploiting spatio-temporal correlations with
multiple 3d convolutional neural networks for citywide vehicle flow prediction. In Proceedings of the 2018 IEEE International
Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 893–898.

8. Fiorini, S.; Pilotti, G.; Ciavotta, M.; Maurino, A. 3D-CLoST: A CNN-LSTM Approach for Mobility Dynamics Prediction in Smart
Cities. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 3180–3189.

9. Yao, H.; Tang, X.; Wei, H.; Zheng, G.; Li, Z. Revisiting spatial-temporal similarity: A deep learning framework for traffic
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 5668–5675.

10. Chowanda, A. Spatiotemporal Features Learning from Song for Emotions Recognition with Time Distributed CNN. In
Proceedings of the 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI), Jakarta, Indonesia,
28 October 2021; Volume 1, pp. 407–412.

11. Xu, Z.; Wang, Y.; Long, M.; Wang, J.; Kliss, M. PredCNN: Predictive Learning with Cascade Convolutions. In Proceedings of the
IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 2940–2947.

12. Yu, R.; Li, Y.; Shahabi, C.; Demiryurek, U.; Liu, Y. Deep learning: A generic approach for extreme condition traffic forecasting. In
Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, TX, USA, 27–29 April 2017; pp. 777–785.

13. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha,
Qatar, 2014; pp. 1724–1734.

https://github.com/UNIMIBInside/Smart-Mobility-Prediction/tree/master/data
http://doi.org/10.1145/2629592
http://dx.doi.org/10.1109/ITSC48978.2021.9564809
http://dx.doi.org/10.1016/j.amar.2022.100217
http://dx.doi.org/10.1016/j.artint.2018.03.002
http://dx.doi.org/10.1109/TITS.2019.2948790

Algorithms 2022, 15, 376 21 of 22

14. Moayedi, H.Z.; Masnadi-Shirazi, M. Arima model for network traffic prediction and anomaly detection. In Proceedings of the
2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008; Volume 4, pp. 1–6.

15. Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and
uncertainty quantification. Transp. Res. Part C Emerg. Technol. 2014, 43, 50–64. [CrossRef]

16. Sun, S.; Zhang, C.; Yu, G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7, 124–132.
[CrossRef]

17. Qi, Y.; Ishak, S. A Hidden Markov Model for short term prediction of traffic conditions on freeways. Transp. Res. Part C Emerg.
Technol. 2014, 43, 95–111. [CrossRef]

18. Wu, C.H.; Ho, J.M.; Lee, D.T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 2004,
5, 276–281. [CrossRef]

19. Asif, M.T.; Dauwels, J.; Goh, C.Y.; Oran, A.; Fathi, E.; Xu, M.; Dhanya, M.M.; Mitrovic, N.; Jaillet, P. Spatiotemporal patterns in
large-scale traffic speed prediction. IEEE Trans. Intell. Transp. Syst. 2013, 15, 794–804. [CrossRef]

20. Tong, Y.; Chen, Y.; Zhou, Z.; Chen, L.; Wang, J.; Yang, Q.; Ye, J.; Lv, W. The Simpler the Better: A Unified Approach to
Predicting Original Taxi Demands Based on Large-Scale Online Platforms. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17), Halifax, NS, Canada, 13–17 August 2017; Association for
Computing Machinery: New York, NY, USA, 2017; pp. 1653–1662.

21. Qian, X.; Ukkusuri, S.V. Spatial variation of the urban taxi ridership using GPS data. Appl. Geogr. 2015, 59, 31–42. [CrossRef]
22. Azzouni, A.; Pujolle, G. A long short-term memory recurrent neural network framework for network traffic matrix prediction.

arXiv 2017, arXiv:1705.05690
23. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale

transportation network speed prediction. Sensors 2017, 17, 818. [CrossRef] [PubMed]
24. Guo, S.; Lin, Y.; Li, S.; Chen, Z.; Wan, H. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting.

IEEE Trans. Intell. Transp. Syst. 2019, 20, 3913–3926. [CrossRef]
25. Liu, L.; Zhang, R.; Peng, J.; Li, G.; Du, B.; Lin, L. Attentive crowd flow machines. In Proceedings of the 26th ACM International

Conference on Multimedia, Lisbon, Portugal, 22–26 October 2018; pp. 1553–1561.
26. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907
27. Jiang, W.; Luo, J. Graph Neural Network for Traffic Forecasting: A Survey. arXiv 2021, arXiv:2101.11174.
28. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017,

arXiv:1707.01926.
29. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for traffic

prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [CrossRef]
30. Peng, H.; Du, B.; Liu, M.; Liu, M.; Ji, S.; Wang, S.; Zhang, X.; He, L. Dynamic graph convolutional network for long-term traffic

flow prediction with reinforcement learning. Inf. Sci. 2021, 578, 401–416. [CrossRef]
31. Li, Y.; Zhao, W.; Fan, H. A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction. Mathematics 2022,

10, 1754. [CrossRef]
32. Lee, K.; Eo, M.; Jung, E.; Yoon, Y.; Rhee, W. Short-Term Traffic Prediction With Deep Neural Networks: A Survey. IEEE Access

2021, 9, 54739–54756. [CrossRef]
33. Yin, X.; Wu, G.; Wei, J.; Shen, Y.; Qi, H.; Yin, B. Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 4927–4943. [CrossRef]
34. Wang, J.; Jiang, J.; Jiang, W.; Li, C.; Zhao, W.X. LibCity: An Open Library for Traffic Prediction. In Proceedings of the 29th

International Conference on Advances in Geographic Information Systems, Beijing, China, 2–5 November 2021; Association for
Computing Machinery: New York, NY, USA, 2021; pp. 145–148. [CrossRef]

35. Kemp, K.; Sean, C.A.; Ola, A.; Jochen, A.; Carl, A.; Brandon, B.; David, A.B.; Barry, B.; Scott, B.; Daniel, G.B.; et al. Encyclopedia of
Geographic Information Science; Sage: Thousand Oaks, CA, USA, 2008.

36. Ungerleider, S.K.; Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 2000, 23, 315–341.
[CrossRef] [PubMed]

37. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014,
arXiv:1409.0473.

38. Zheng, H.; Fu, J.; Mei, T.; Luo, J. Learning multi-attention convolutional neural network for fine-grained image recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Waikoloa, HI, USA, 9–13 December 2017; pp. 5209–5217.

39. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July
2015; pp. 2048–2057.

40. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; Wierstra, D. Draw: A recurrent neural network for image generation. In
Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1462–1471.

41. Liu, Y.; Liu, Z.; Lyu, C.; Ye, J. Attention-Based Deep Ensemble Net for Large-Scale Online Taxi-Hailing Demand Prediction. IEEE
Trans. Intell. Transp. Syst. 2020, 21, 4798–4807. [CrossRef]

42. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

http://dx.doi.org/10.1016/j.trc.2014.02.006
http://dx.doi.org/10.1109/TITS.2006.869623
http://dx.doi.org/10.1016/j.trc.2014.02.007
http://dx.doi.org/10.1109/TITS.2004.837813
http://dx.doi.org/10.1109/TITS.2013.2290285
http://dx.doi.org/10.1016/j.apgeog.2015.02.011
http://dx.doi.org/10.3390/s17040818
http://www.ncbi.nlm.nih.gov/pubmed/28394270
http://dx.doi.org/10.1109/TITS.2019.2906365
http://dx.doi.org/10.1109/TITS.2019.2935152
http://dx.doi.org/10.1016/j.ins.2021.07.007
http://dx.doi.org/10.3390/math10101754
http://dx.doi.org/10.1109/ACCESS.2021.3071174
http://dx.doi.org/10.1109/TITS.2021.3054840
http://dx.doi.org/10.1145/3474717.3483923
http://dx.doi.org/10.1146/annurev.neuro.23.1.315
http://www.ncbi.nlm.nih.gov/pubmed/10845067
http://dx.doi.org/10.1109/TITS.2019.2947145

Algorithms 2022, 15, 376 22 of 22

43. Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How Does Batch Normalization Help Optimization? In Advances in Neural
Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran
Associates, Inc.: New York, NY, USA, 2018; Volume 31, pp. 2483–2493.

44. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press Cambridge: Cambrisge, MA, USA, 2016; Volume 1.
45. Ranjan, N.; Bhandari, S.; Zhao, H.; Kim, H.; Khan, P. City-Wide Traffic Congestion Prediction based on CNN, LSTM and Transpose

CNN. IEEE Access 2020, 8, 81606–81620. [CrossRef]
46. Kalchbrenner, N.; Oord, A.; Simonyan, K.; Danihelka, I.; Vinyals, O.; Graves, A.; Kavukcuoglu, K. Video pixel networks. In

Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1771–1779.
47. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
48. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17), San Francisco, CA, USA, 4–9
February 2017; AAAI Press: Palo Alto, CA, USA, 2017; pp. 4278–4284.

49. Woo, S.; Park, J.; Lee, J.Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

50. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

51. Komodakis, N.; Zagoruyko, S. Paying more attention to attention: Improving the performance of convolutional neural networks
via attention transfer. In Proceedings of the ICLR, Toulon, France, 24–26 April 2017.

52. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015.

53. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2991462
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ACCESS.2018.2877890

	Introduction
	Related Work
	Problem Statement
	STREED-Net
	Encoder
	Cascading Hierarchical Block
	External Factors
	Decoder

	Experimental Analysis
	Reference Methods
	Case Studies
	Analysis of Results
	BikeNYC
	TaxiBJ
	TaxiNYC

	Ablation Study
	Number of Trainable Parameters and FLOPs

	Conclusions
	References

