
Citation: Elmi, A.; Thiruvady, D.R.;

Ernst, A.T. Blocking Cyclic Job-Shop

Scheduling Problems. Algorithms

2022, 15, 375. https://doi.org/

10.3390/a15100375

Academic Editor: Maciej

Drozdowski

Received: 1 September 2022

Accepted: 10 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Blocking Cyclic Job-Shop Scheduling Problems
Atabak Elmi 1 , Dhananjay R. Thiruvady 1,* and Andreas T. Ernst 2

1 School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin University,
Geelong, VIC 3125, Australia

2 School of Mathematics, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
* Correspondence: dhananjay.thiruvady@deakin.edu.au

Abstract: Cyclic scheduling is of vital importance in a repetitive discrete manufacturing environment.
We investigate scheduling in the context of general cyclic job shops with blocking where there are no
intermediate buffers between the machines. We also consider sequence-dependent setups (anticipa-
tory and nonanticipatory), which commonly appear in different manufacturing environments. The
choice of blocking condition, that is whether the sequence-dependent setups are anticipatory or not,
significantly impacts the optimal schedules. We provide a novel mixed-integer programming (MIP)
model for the above problem, namely blocking cyclic job-shop scheduling. Furthermore, we study the
impact of sequence-dependent setups in this research. The problem is analysed in detail with respect
to anticipatory and nonanticipatory setups and the efficiency of the proposed model is investigated
via a computational study that is conducted on a set of randomly generated problem instances.
The proposed MIP models are capable of solving small-to-medium-sized problems. Moreover, the
analysis presented demonstrates that anticipatory setups directly affect blocking conditions, since
intermediate buffers between the machines are not present. Hence, in systems with anticipatory
setups, cycle times increase to a greater extent compared to systems with nonanticipatory setups.

Keywords: cyclic scheduling; job-shop scheduling; sequence-dependent setups; blocking
conditions; mixed-integer programming

1. Introduction

This study is concerned with a manufacturing system, namely cyclic job shop with
blocking conditions. The cyclic job-shop scheduling problem is an extension of the well-
known job-shop scheduling problem (JSSP) [1,2]. The original JSSP involves scheduling jobs,
each of which consist of a number of operations, and the objective is to minimise the length
of the schedule, or the makespan. Moreover, manufacturing systems often require schedules
that are cyclic in nature and leading to additional complexities [3,4]. Cyclic or periodic
scheduling produce schedules that are executed repeatedly in exactly the same manner on
one or more machines [5]. The objective functions mainly used in cyclic scheduling are
minimising cycle time, work-in-process, and mixes of them. The cycle time is the time period
between two successive occurrences of the same operations, and the work-in-process is the
number of jobs processed at the same time. The aim of cyclic scheduling in this research is
to find a schedule with the minimum cycle time (common in manufacturing systems) [6].
Within the system, a set of jobs, known as the minimal part set (MPS) (For example, if the
requirements are 1000 parts of type A, 3000 parts of type B and 2000 parts of type C, the
MPS can be chosen as (A, B, B, B, C, C) and we repeat the production of the same MPS
1000 times.) is executed cyclically, in order to meet production requirements [7,8]. Referring
to parts as jobs, for each MPS, the jobs go through the machines in exactly the same pattern,
and each machine thereby processes the operations in an identical way in each cycle. An
alternative view is that a single MPS is sent into a production line where exactly one MPS
is completed and unloaded from it. The primary performance measure is the cycle time, or
equivalently its reciprocal, the throughput rate, which measures how often the MPSs are

Algorithms 2022, 15, 375. https://doi.org/10.3390/a15100375 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100375
https://doi.org/10.3390/a15100375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3660-8408
https://orcid.org/0000-0002-8011-933X
https://orcid.org/0000-0002-1101-8359
https://doi.org/10.3390/a15100375
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100375?type=check_update&version=2

Algorithms 2022, 15, 375 2 of 23

produced in a fixed time interval. The JSSP itself is known to be among the most complex
combinatorial optimisation problems [9], and the cyclic variant considered in this study
incorporates further complexity.

Moreover, in several manufacturing systems, there exist production processes where
no intermediate buffers exist between machines due to technical requirements or process
characteristics. In the context of the JSSP, this implies that a job that completes processing
on a machine has to remain on the same machine until the next machine in sequence is
available for processing. Since the job cannot leave the machine that it is executing on,
it effectively blocks the machine by not allowing other parts to enter it. In the literature,
this is referred to as a blocking condition, which this study is also concerned with. Figure 1
presents an example of a blocking condition where job 1 (processing time of 30 units) needs
to be processed on machine 1 followed by machine 2. We see in Figure 1a, if machine 2 is
available to load and start executing job 1 when job 1 completes, then job 1 immediately
moves to machine 2. Machine 1 is now available for other incoming jobs. However, if
machine 2 is busy when job 1 is ready to move (Figure 1b), then job 1 stays on machine 1
thereby blocking it until machine 2 becomes free. Hence, machine 1 is also blocked for the
time period that job 1 stays on it.

Figure 1. Blocking conditions in job-shop scheduling.

There are several well-studied scheduling problems with blocking conditions, includ-
ing the manufacturing of concrete blocks [10], scheduling in the chemical industry [11],
scheduling in the iron and steel industry [12], industrial waste and the manufacturing of
metallic parts [13], and train scheduling [14].

A production line, structured as a job shop requires that: (i) the operations of each
job of the MPS are assigned to the machines in advance and (ii) the routing (order of
processing) of each job passing through the machines, not necessarily the same for each
job, is known and fixed. The aim of the cyclic JSSP is to find the processing order in which
the operations are repetitively processed on each machine a very large number of times. A
sequence of the jobs, together with the starting times of all the operations, is referred to
as a cyclic or periodical schedule. A regular time interval in which all the operations are
repeated is referred to as the period or cycle time.

There have been numerous studies on cyclic scheduling [15–20]. However, there are
far fewer studies on scheduling cyclic shops with blocking [21,22]. Hanen [2] developed a
branch-and-bound approach to deal with a generalised version of the cyclic job shop by
incorporating precedence constraints. This approach was used in the context of a computer
pipeline. Song and Lee [23] investigated a scheduling problem for cyclic job shops with
blocking where each machine had an input buffer of finite capacity. They developed Petri
net models for the cyclic job shops with blocking. Cavory et al. [24] presented a general
approach for solving the cyclic job-shop scheduling problem, based on the coupling of a
genetic algorithm and a scheduler. This scheduler utilised a Petri net model of the linear
precedence constraints between cyclic tasks. The goal of this genetic algorithm was to
define an order of priority for jobs on the machines, to be used by the scheduler for solving

Algorithms 2022, 15, 375 3 of 23

resource conflicts. Brucker and Kampmeyer [22] described a model for cyclic machine-
scheduling problems with blocking. In that study, a tabu search algorithm solved the
considered problem with different neighbourhood structures. Kechadi et al. [25] proposed
a recurrent neural network approach for the cyclic JSSP that attempted to find the optimum
solution by minimising the energy state of the network. They also extended the recurrent
neural network technique by coupling it with the Lagrangian relaxation method.

A more general cyclic JSSP with special restrictions has rarely been encountered
in the literature. Nonetheless, a few studies have indeed investigated variants of this
problem [26–30]. The studies by Kampmeyer [26] and Brucker and Kampmeyer [27] pre-
sented a mixed linear integer program for variants of the cyclic JSSP. Following this, Brucker
et al. [28] made use of the same model to solve a problem in transportation. Brucker et al.
[29] studied the cyclic JSSP with blocking and transportation and proposed a branch-and-
bound method to solve the problem.

The authors wish to point out that there have been a significant number of research
reports on the scheduling of blocking job shops and flow shops. Furthermore, there are
studies on these problems that take into account setup times and resources such as robotics
and servers. However, this study examines the cyclic aspects of the scheduling problem in
job shops. The literature review presents the previous studies in this area, indicating that
there are not enough studies on cyclic job-shop scheduling. The following are a few studies
on cyclic scheduling in order to clarify their differences from the problems investigated in
this paper. Gultekin et al. [31] considered cyclic scheduling, which involves processing a
single part type on machines arranged in a flow-line arrangement. Their study focused
on the cyclic scheduling of transportation operations. Then, Ghadiri Nejad et al. [32]
studied a real-life example of the same problem with intermediate buffers and proposed a
hybrid genetic algorithm for solving it. Furthermore, Foumani et al. [33] studied stochastic
optimisation of two machine robotic cells processing a single type of part. Specifically,
our study focuses on the cyclic job-shop scheduling problem, in which multiple jobs are
processed on a set of machines in a different order.

The aim of our study was to bridge a gap in the literature, i.e., to investigate the line
of research that concerns the cyclic JSSP with blocking and sequence-dependent setups. We
propose a novel mathematical modelling approach for the cyclic job-shop scheduling. To
the best of the authors’ knowledge, this is the first time in the literature that the proposed
model schedules all the operations in a single cycle by breaking the operations that pass
the cycle reference timeline. In addition, we conduct a detailed analysis of the effects
of blocking conditions and the influence of anticipatory and nonanticipatory setups on
the cycle times. The anticipatory setup can begin even if the job is not yet available to
be processed but the machine that it is going to be processed on is idle, whereas the
nonanticipatory setup can begin only if both job and machine are available.

The paper is organised as follows. Section 2 presents the cyclic JSSP together with an
illustrative example. The mathematical notation and a formulation for the base problem
without sequence-dependent setup times are introduced in Section 3. Section 4 discusses
the extension of the problem with setup times and also provides the relevant constraints for
anticipatory and nonanticipatory setups. In Section 5, we provide details of the experiments
conducted and the ensuing results. Section 6 concludes the paper and discusses possibilities
of future work.

2. Blocking Cyclic Job Shop Scheduling

In this section, we define the blocking cyclic job shop scheduling problem with
sequence-dependent setups. We first introduce the terminology and notation that will be
used throughout the remainder of this paper. We then discuss alternative ways of defining
blocking during setups. To illustrate the problem and the differences between the two
setup constraints, we provide a detailed example.

The problem can be defined as follows. Let N = {1, 2, 3, . . . , J}, where J is the to-
tal number of jobs in an MPS. Each job j ∈ N contains a set of Oj operations where

Algorithms 2022, 15, 375 4 of 23

Ij = {1, 2, 3, . . . , Oj}. For each job, the sequence of operations is given in advance.
Moreover, each operation is assigned to a machine M where the set of machines are
M = {1, 2, 3, . . . , K}. The sequence Fj = { f1, f2, f3, . . . , f(Oj)

} specifies the machines that
the operation i ∈ Ij of job j ∈ N will be processed on. Thereupon, fi = m denotes that the
ith operation would be processed on machine m ∈ M. Moreover, the processing time of
the ith operation of job j ∈ N is given by Pj,i. Each job has at most one operation on each
machine. Let Jm be the set of jobs that have an operation on machine m and o(j, m) = i if
fi = m for job j.

The assumptions are as follows:

• Each machine has a set of operations to execute and can execute only one operation at
a time.

• The operations of a job are linked by precedence constraints.
• Each job has its own unique path through the machines, independently of the other

jobs.
• Each operation is assigned to one particular dedicated machine and executed with no

interruption and without pre-emption for a fixed processing time.
• There are no buffers between machines, so jobs continue to occupy a machine after

the end of an operation until the next machine is available.

One job of each type has to be completed per cycle. The objective is to minimise the
cycle time. Until now, this has not considered the question of setup times.

2.1. Sequence-Dependent Setup Times

In the work by Panwalkar et al. [34] on task scheduling, it was found that 75% of
problems occurring in practice required at least one setup which was dependent on the
order of the execution of tasks. Moreover, in 15% of the problems, setup times between all
pairs of tasks were required. In many real-world situations, such as those in the chemical,
printing, pharmaceutical, and automobile industries, there may be several types of setup
operations. For instance, between jobs, there can be cleaning or the changing of tools, and
when considering a pair of jobs, there is a strong dependence on the preceding job. In the
context of job shops, this type of setup is usually modelled as a sequence-dependent setup
between jobs on the same machine.

In the literature, job-shop problems usually consist of two types of sequence-dependent
setup times [35,36]. These are anticipatory setup times (AS) and nonanticipatory setup
times (NS). For the case of AS, the setup can begin even if the job is not yet available to be
processed but the machine that it is going to be processed on is idle, whereas for NS, the
setup can begin only if both job and machine are available.

Due to blocking conditions often seen in limited or zero-buffered systems, we consider
both types of setups separately in this research. Thereupon, in the case of AS, the setup
must be done before loading the job when the corresponding machine is idle. Moreover,
in the case of NS, the setup must be done only if both job and machine are available,
and the job has been loaded on the machine. Figure 2 illustrates how anticipatory and
nonanticipatory setups work with a small example.

Figure 3 shows the affect of setups on the CJSS with blocking conditions. Since there
are no intermediate buffers between the machines, any job that completes an operation
on a machine has to remain on the machine if the subsequent machine in its processing
route is busy. However, if the subsequent machine is idle, the AS can commence on
this machine before the job completes its operation on the current machine. The job can
immediately move to the next machine after completing its operation. However, if the
subsequent machine is busy and the job has completed its operation, the current machine
gets blocked until the operation on that machine completes and also for AS. Figure 3 shows
the differences of AS and NS, where AS affect the schedule by causing blocking conditions
and NS occupy the machine before starting processing an operation.

Algorithms 2022, 15, 375 5 of 23

Figure 2. The anticipatory (a) and nonanticipatory (b) setups to process a job on a machine.

Figure 3. The effects of anticipatory (a) and nonanticipatory (b) setups on the schedule.

To the best of the authors’ knowledge, the cyclic job-shop scheduling problem consid-
ering blocking conditions and sequence-dependent setup times at the same time have not
been previously investigated in the literature.

2.2. The Cyclic JSSP—An Example

We now provide a detailed example of the cyclic JSSP and work through a solution
to the problem. We consider a test case, which consists of three machines and three jobs.
Table 1 provides a breakdown of the related data including the sequence of machines that
a job must be performed on and the associated processing times. Table 2 provides the
sequence-dependent setup times between the jobs on each machine. For the purposes of
comparing the AS and NS, we assume the ASj,j′ ,m and NSj,j′ ,m are equal.

Table 1. The machine and processing time of each operation of the jobs.

Jobs Machines Processing Times

1 1 3 2 63 95 28

2 1 2 3 45 41 69

3 2 3 1 39 22 44

Algorithms 2022, 15, 375 6 of 23

Table 2. The sequence-dependent setup times between the pair of jobs on each machine.

Machines

1 2 3

Jobs 1 2 3 1 2 3 1 2 3

1 1 6 5 7 7 9 7 4 3

2 4 7 7 3 8 3 8 1 6

3 5 9 4 5 5 3 1 7 6

Figure 4 provides an illustration of the optimal solution found for the example above
without considering setups. The start time and departure time of all operations are detailed
in the figure. In addition, Figure 5 demonstrates the three consecutive cycles of the problem
instance within which the cyclic job-shop production is presented. A single MPS enters the
production line in each cycle and the arrows indicate the processing route of the jobs from
the same MPS. It also presents the route for each job through the cyclic schedule, which is a
mapping to the classic blocking job-shop scheduling problem.

In similar fashion to the previous example, Figures 6 and 7 show an optimal solution
and three consecutive cycles, respectively, for the blocking CJSS problem with sequence-
dependent anticipatory setups. The start time and departure time of all operations and
sequence-dependent anticipatory setups are marked in black and are mentioned in the
figure. We see three cycles associated with the optimal solution in Figure 7.

Figure 4. The optimal solution for the problem instance in Table 1; blocking CJSS problem.

Figure 5. The Gantt chart of three consecutive cycles for the problem instance in Table 1; blocking
CJSS problem.

Algorithms 2022, 15, 375 7 of 23

Figure 6. The detailed Gantt chart of the optimal solution found for the instance problem; blocking
CJSS problem with sequence-dependent anticipatory setups (AS).

Figure 7. The Gantt chart of three consecutive cycles for the considered instance problem; blocking
CJSS problem with sequence-dependent anticipatory setups (AS).

Again, Figures 8 and 9 show examples of the optimal solution and three consecutive cy-
cles, respectively, for the blocking CJSS problem with sequence-dependent nonanticipatory
setups. The start time and departure time of all operations and required nonanticipatory
sequence-dependent setup times are marked in black and are mentioned in the figure. We
see three cycles associated with the optimal solution in Figure 9.

Figure 8. The detailed Gantt chart of the optimal solution found for the instance problem; blocking
CJSS problem with sequence-dependent nonanticipatory setups (NS).

Algorithms 2022, 15, 375 8 of 23

Figure 9. The Gantt chart of three consecutive cycles for the considered instance problem; blocking
CJSS problem with sequence-dependent nonanticipatory setups (NS).

3. Mathematical Formulation of a Basic Model

In the following, we provide details of the mixed-integer linear programming (MILP)
model for the basic cyclic job-shop scheduling (CJSS) problem without sequence-dependent
setups. Due to the blocking conditions, the scheduling approach we used was based on the
departure times of jobs from machines. The decision variables used in the proposed MILP
model were:

Xj,j′ ,m 1 if job j immediately precedes job j′ on machine m; 0 otherwise;
Rj,m 1 if machine m is occupied by job j at the beginning of a cycle; 0 otherwise;
Bj,m 1 if job j is the first job to depart from machine m after the beginning of the cycle;
Dj,i The departure time of job j from its ith operation;
T The cycle time;
Uj,m An integer variable used to eliminate jobs’ sequence subtours on each machine m;
W A sufficiently large value, typically known as “Big M” in integer programming.

Note that the variable X determines the cyclic sequence of jobs on each machine.
However, to do the scheduling of departure times, we need variables B to determine the
first job on each machine. Similarly, R is used to capture the possibility that this first job
has started processing before the start of the cycle so that the interval from the arrival of
the part on the machine to the departure overlaps the cycle start time.

3.1. Occupied Machines Constraints

Scheduling all parts on all machines in a conceptual single cycle requires determining
the occupied machines at the start of the cycle. Furthermore, based on the previously
mentioned assumptions, each machine can process only one part at a time. The following
constraint set (1) guarantees that each machine can be occupied by at most one part at the
start time of the cycle.

∑
j∈N

Rj,m ≤ 1 ∀ m ∈ M (1)

We note that the occupied machines are determined in terms of the pressure of the pro-
cessing constraints of parts and the operational constraints of machines that are presented
in the following sections.

3.2. Processing Constraints of Each Part

In classic job-shop production systems, performing any operation on a part only starts
after completing its previous operation. The CJSS problem can be considered to be a
specific version of the classic problem. Consider that the ith operation of part j is performed

Algorithms 2022, 15, 375 9 of 23

on machine m (fi = m for part j), and if it is free at the beginning of the cycle, then the
processing constraints are as follows:

Dj,i−1 + Pj,i ≤ Dj,i (2)

This states that the ith operation of part j requires Pj,i units of time to be elapsed.
On the other hand, if machine m performing the ith operation of part j is occupied at the
beginning of the cycle by part j, then the related processing constraint would be as follows,
due to the cyclic conditions:

Dj,i−1 + Pj,i ≤ Dj,i + T (3)

The binary variable Rj,m is used to determine if the related machine m is occupied by
part j at the start of the cycle. Hence, these processing restrictions can be formulated as
constraints sets (4) and (5):

Dj,o(j,m)−1 + Pj,o(j,m) −W Rj,m ≤ Dj,o(j,m) ∀ m ∈ M, j ∈ Jm, 1 < o(j, m) (4)

Dj,o(j,m)−1 + Pj,o(j,m) ≤ Dj,o(j,m) + T ∀ m ∈ M, j ∈ Jm, 1 < o(j, m) (5)

3.3. Parts’ Sequence Determination on Machines

In addition, due to the cyclic scheduling, the relations between the cycles are estab-
lished by the occupied machines at the start of the cycle. Actually, there is a cyclic sequence
between the parts on each machine. To schedule the operations of all the parts in one cycle
for each machine, the sequence of parts on each machine is considered to be determined
based on the preceding and successor parts. The binary variable X determines the preced-
ing and successor of all the parts on each machine. Thereupon, as illustrated in Figure 10,
the first part in the next cycle is the successor of the last part in the present cycle.

To ensure the cyclic sequence of the parts, the following constraints sets (6)–(8) are
used as follows:

∑
j′∈Jm

Xj,j′ ,m = 1 ∀m ∈ M, j ∈ Jm (6)

∑
j∈Jm

Xj,j′ ,m = 1 ∀ m ∈ M, j′ ∈ Jm (7)

Uj,m −Uj′ ,m + 1 ≤ J (1− Xj,j′ ,m) ∀ m ∈ M, j 6= j′ ∈ Jm (8)

The last of these constraints, (8), serves to eliminate the possibility of subtours in the
sequence of parts [37].

Figure 10. The cyclic sequence of parts on any machine.

Algorithms 2022, 15, 375 10 of 23

3.4. Operational Constraints of Each Machine

The operational sequence constraints prevent the formation of conflicts in the usage
of machines. Each machine should be unloaded before loading the next part on it and
starting its processing operation. Figure 11 illustrates the operational sequence of parts on
machines in the case where machine m is occupied or free at the start of the cycle.

Figure 11. The operational sequencing restrictions of any machine m; (a,b) presents the restriction
when m is occupied and free at the start of the cycle, respectively.

To state the relation between the last and first parts of consecutive operations, the
variable B is used. Variable B determines the first part that leaves each machine during
the cycle time and the following constraints set (9) guarantees that each machine will have
just one.

∑
j∈Jm

Bj,m = 1 ∀ m ∈ M (9)

It is clear that if a machine is occupied by some part at the start of the cycle, then this
part will be the first to depart, resulting in the following constraint set:

Rj,m ≤ Bj,m ∀ m ∈ M, j ∈ Jm (10)

Due to the operational sequence of parts on machines when the part j′ is the successor
of part j on machine m then either

Dj,i + Pj′ ,i′ ≤ Dj′ ,i′ or Dj,i + Pj′ ,i′ ≤ Dj′ ,i′ + T. (11)

The second inequality only holds for the case where j is the last part to depart from
machine m before the end of the cycle and j′ departs at the start of the next cycle. The
following constraints sets (12) and (13) are proposed based on these inequalities:

Dj,o(j,m) + Pj′ ,o(j′ ,m) − M̂ (1− Xj,j′ ,m + Bj′ ,m) ≤ Dj′ ,o(j′ ,m) ∀ m ∈ M, j 6= j′ ∈ Jm (12)

Dj,o(j,m) + Pj′ ,o(j′ ,m) ≤ Dj′ ,o(j′ ,m) + T ∀ m ∈ M, j 6= j′ ∈ Jm (13)

Algorithms 2022, 15, 375 11 of 23

It should be also noted that in the case of a zero buffer between the machines, the
completed parts have to remain on the machines until the machine for performing its next
operation becomes available. If part j′ is the successor of part j on machine m then

Dj,o(j,m) ≤
{

Dj′ ,o(j′ ,m)−1 + T if machine m is idle at the start of the cycle with first job j′

Dj′ ,o(j,m)−1 otherwise
(14)

Note that the first case only arises if j departs m at the end of a cycle but part j′ does
not arrive until the start of the next cycle. The constraints set (15) is formulated based on
this inequality as follows:

Dj,o(j,m) −M(1− Xj,j′ ,m + Bj′m − Rj′m) ≤ Dj′ ,o(j′ ,m)−1 ∀ m ∈ M, j 6= j′ ∈ Jm, 1 < o(j′, m) (15)

This inequality holds if (a) j′ is after j on machine m so Xj,j′ ,m = 1 and (b) we do not
have Bj′ ,m − Rj′ ,m = 1 which would indicate that job j′ arrived after the start of the cycle.

3.5. Proposed Mathematical Programming Model

The proposed mathematical programming model is as follows:

[MIP]



minimise T
subject to

Constraints sets : (1)− (15)
T ≥ Dj,o(j,m) ∀ m ∈ M, j ∈ Jm

X, R, B ∈ {0, 1}
T, D ∈ R+

U ∈ R

In scheduling problems with buffers, safety times for the schedule need to be created
and this increases the probability of a timely completion of the tasks. On the other hand,
the problem described in this study assumes there is no buffer. In this respect, the number
of feasible solutions decreases considerably, which increases the difficulty of the problem.

4. Blocking CJSS Problem with Sequence-Dependent Setup Times

We now extend the basic MIP formulation to incorporate the different types of setup
times. Let ASj,j′ ,m and NSj,j′ ,m, respectively, denote the anticipatory and nonanticipatory
sequence-dependent setup times (In the following sections AS refers to the anticipatory
sequence-dependent setups, and NS refers to nonanticipatory sequence-dependent setups.)
required on machine m where j′ is the successor job of j. The inequality Equation (11) was
modified to Equation (16) for AS and Equation (17) for NS.

Dj,i + ASj,j′ ,m + Pj′ ,i′ ≤ Dj′ ,i′ or Dj,i + ASj,j′ ,m + Pj′ ,i′ ≤ Dj′ ,i′ + T (16)

Dj,i + NSj,j′ ,m + Pj′ ,i′ ≤ Dj′ ,i′ or Dj,i + NSj,j′ ,m + Pj′ ,i′ ≤ Dj′ ,i′ + T (17)

Algorithms 2022, 15, 375 12 of 23

4.1. Blocking CJSS with Anticipatory Sequence-Dependent Setups (AS)

The MIP model was extended to consider AS. The constraints sets (12) and (13) were
modified to (18) and (19) to ensure the operational sequence restrictions of jobs on machines
based on the inequalities in Equation (16).

Dj,o(j,m) + ASj,j′ ,m + Pj′ ,o(j′ ,m) − M̂ (1− Xj,j′ ,m + Bj′ ,m) ≤ Dj′ ,o(j′ ,m)

∀ m ∈ M, j 6= j′ ∈ Jm (18)

Dj,o(j,m) + ASj,j′ ,m + Pj′ ,o(j′ ,m) ≤ Dj′ ,o(j′ ,m) + T

∀ m ∈ M, j 6= j′ ∈ Jm (19)

Additionally, a job cannot be loaded on the next machine before doing AS, even if
both job and next machine are available. Therefore, as pointed in Figure 3, AS can cause
blocking conditions. To ensure these restrictions, the inequalities in Equation (14) were
modified as Equation (20).

Dj,o(j,m) + ASj,j′ ,m ≤
{

Dj′ ,o(j′ ,m)−1 + T if machine m idle at start of cycle with first job j′

Dj′ ,o(j,m)−1 otherwise
(20)

Due to the inequalities in Equation (20), the constraints set (15) was also modified as
follows.

Dj,o(j,m) + ASj,j′ ,m −M(1− Xj,j′ ,m + Bj′m − Rj′m) ≤ Dj′ ,o(j′ ,m)−1

∀ m ∈ M, j 6= j′ ∈ Jm, 1 < o(j, m) (21)

The proposed mathematical programming model for the CJSS problem with sequence-
dependent AS was extended as follows:

[MIP− AS]



minimise T
subject to

Constraints sets : (1)− (10), (18)− (21)
T ≥ Dj,o(j,m) ∀ m ∈ M, j ∈ Jm

X, R, B ∈ {0, 1}
T, D ∈ R+

U ∈ R

4.2. Blocking CJSS Problem with Nonanticipatory Sequence-Dependent Setups (NS)

As mentioned previously, NS need both the job and machine to be available. The
constraints sets (12) and (13) were modified as follows to ensure that the operational
sequence restrictions of jobs on machines according to the inequalities in Equation (17) in
the nonanticipatory case.

Dj,o(j,m) + NSj,j′ ,m + Pj′ ,o(j′ ,m) − M̂ (1− Xj,j′ ,m + Bj′ ,m) ≤ Dj′ ,o(j′ ,m)

∀ m ∈ M, j 6= j′ ∈ Jm (22)

Dj,o(j,m) + NSj,j′ ,m + Pj′ ,o(j′ ,m) ≤ Dj′ ,o(j′ ,m) + T

∀ m ∈ M, j 6= j′ ∈ Jm (23)

Moreover, nonanticipatory setups directly affect the processing constraints as pre-
sented in Figure 2 for job j′. The relationship between two consecutive operations of a job
is stabilized considering the NS and processing time. NS need both the job and machine to
be available, and hence, between two consecutive operations of a job there will be a time
period to perform the NS. As a result, the NS directly affect the processing constraints. The
inequalities in Equations (2) and (3) were presented for the case without any sequence-

Algorithms 2022, 15, 375 13 of 23

dependent setup times. To ensure these restrictions applied between two consecutive
operations of a job in CJSS with NS, the inequalities in Equations (2) and (3) were extended
to Equations (24) and (25).

Dj,i−1 + NSj′ ,j,m + Pj,i ≤ Dj,i (24)

Dj,i−1 + NSj′ ,j,m + Pj,i ≤ Dj,i + T (25)

where job j′ operates on machine m before job j, and NSj′ ,j,m is the sequence-dependent
NS. The variable R determined the occupying conditions, and hence, the processing
constraints sets (4) and (5) were modified as constraints sets (26) and (27) based on
Equations (24) and (25).

Dj,o(j,m)−1 + Xj′ ,j,m × NSj′ ,j,m + Pj,o(j,m) −W Rj,m ≤ Dj,o(j,m)

∀ m ∈ M, j 6= j′ ∈ Jm, 1 < o(j, m) (26)

Dj,o(j,m)−1 + Xj′ ,j,m × NSj′ ,j,m + Pj,o(j,m) ≤ Dj,o(j,m) + T

∀ m ∈ M, j 6= j′ ∈ Jm, 1 < o(j, m) (27)

Thus, the proposed MILP model for the CJSS problem with sequence-dependent
nonanticipatory setups was extended as follows:

[MIP− NS]



minimise T
subject to

Constraints sets : (1), (6)− (10), (15), (22)− (27)
T ≥ Dj,o(j,m) ∀ m ∈ M, j ∈ Jm

X, R, B ∈ {0, 1}
T, D ∈ R+

U ∈ R

The size of the basic formulation, as a function of an instance size with J jobs and K
machines, is O(J2K) variables and O(J2K) constraints. The size is dominated by the Xj,j′ ,m
variables with corresponding separation constraints (12)–(15) for each such X variable. The
anticipatory and nonanticipatory variants simply modify the separation constraints but
add neither new variables nor additional constraints.

5. Experimental Settings and Results

In the literature, there is no benchmark dataset specifically designed for the cyclic JSS
problem. Cyclic production systems have minimal part sets, which makes the problem
significantly different to classic JSS. This leads to two major differences. First, the objective
of the classic JSS is minimising the makespan, compared to cycle time in cyclic JSS. While
both objectives have similarities, the resulting (optimal) schedules can be substantially
different. Second, in the cyclic problem, there is less variety among the products but higher
volumes relative to classic job shops. This leads to the size of the minimal part sets in
cyclic JSS being smaller than the number of jobs in classic JSS. Due to the above reasons,
for this study, we designed a number of benchmark problem instances (see Appendix A,
which provides details of the algorithm for generating the instances) motivated by practical
requirements and using typical characteristics seen in JSS.

The MIPs developed in this study were programmed in Python 3.6 and all experiments
were conducted on MonARCH, the campus cluster at Monash University. Each run was
given four cores and a limit of 10 GB memory. The MIP models were solved using Gurobi
9.0.1 (http://www.gurobi.com/ (accessed on 30 August 2022)). Each run was given one
hour of execution time.

http://www.gurobi.com/

Algorithms 2022, 15, 375 14 of 23

Table 3 shows the results of the MIP models for the blocking CJSS problem without
setups, with sequence-dependent anticipatory and nonanticipatory setups. There were 16
problem instances with different combinations of machines (K) and jobs (J), which were
generated by the method described above. The results were split in three jobs: (1) cyclic job
shop without sequence-dependent setups, (2) cyclic job shop with anticipatory sequence-
dependent setups, and (3) cyclic job shop with nonanticipatory sequence-dependent setups.
For each MIP, the details provided include the number of constraints (#Cons), number of
variables (#Vars), the objective value of the best feasible solution (BF), the lower bound
(LB), the gap between the upper and lower bounds

(
Gap = (BF−LB)

LB

)
, and the total time

taken. If no feasible solution was found, the corresponding BF and Gap columns have a
dash (-).

Table 3. The performance of proposed MIP approaches on the test problem instances (#Cons: number
of constraints; #Var: number of variables; BF: best found; LB: lower bound).

K J #Cons #Var
Cyclic JSS: Zero Setups Anticipatory Setups Nonanticipatory Setups

BF LB Gap Time BF LB Gap Time BF LB Gap Time

9

3 733 190 257 257 0 7.35 390 390 0 18.6 337 337 0 17.3
4 1313 289 270 270 0 5.09 441 441 0 6.92 335 335 0 7.77
5 2157 406 535 164 69.27 3600 701 207 70.42 3600 660 166 74.80 3600
6 3319 541 566 391 30.92 3600 - 444 - 3600 - 437 - 3600

12

3 988 253 258 258 0 14.94 373 373 0 14.53 354 354 0 22.83
4 1769 385 335 335 0 308.59 468 468 0 684.56 431 431 0 386.49
5 2904 541 529 189 64.21 3600 695 258 62.88 3600 741 214 71.08 3600
6 4465 721 - 190 - 3600 - 223 - 3600 - 206 - 3600

15

3 1243 316 313 313 0 11.07 449 449 0 9.15 411 411 0 18.75
4 2225 481 344 213 38.08 3600 457 251 44.99 3600 462 242 47.62 3600
5 3651 676 568 330 41.90 3600 761 385 49.41 3600 - 285 - 3600
6 5611 901 - 171 - 3600 - 200 - 3600 - 195 - 3600

18

3 1498 379 275 275 0 17.42 365 365 0 26.56 360 360 0 26.95
4 2681 577 364 201 44.78 3600 519 315 39.36 3600 484 180 62.76 3600
5 4398 811 600 171 71.55 3600 - 210 - 3600 721 175 75.79 3600
6 6757 1081 - 184 - 3600 - 198 - 3600 - 193 - 3600

First, we considered cyclic JSS on its own. We see that for problems with a small
number of jobs (three) the optimal solution was always found, and the time required was
often quite small (under 30 s) relative to the time limit. Additionally, for a small number
of machines (9, 12) and four jobs, the optimal solutions could also be found. For a larger
number of jobs (five), feasible solutions were found but often with large gaps. For problems
with six jobs, no feasible solutions were found irrespective of the number of machines.
Nonetheless, the MIP always found lower bounds (the quality of which could not be
guaranteed).

Considering cyclic JSS with anticipatory setups, we see a similar pattern. However, in
this case, the problems proved more difficult to solve with one more problem not being
solved (18 machines and 5 jobs) compared to Cyclic JSS. Additionally, when solutions were
found, if they were not optimal, the gaps were larger. This is not surprising, since the
overhead of the anticipatory setup times makes the problem more complex.

Finally, considering cyclic JSS with nonanticipatory setups, we see that it became
even harder (compared to cyclic JSS and cyclic JSS with AS) to find solutions within the
allowed time limits. The nonanticipatory setup required a job moving between machines to
immediately leave the machine that it was currently on, and this meant that the MIP model
struggled more when attempting to find a feasible solution.

Algorithms 2022, 15, 375 15 of 23

In order to further understand the impact of sequence-dependent setup times, we con-
sidered a constant setup time with the following two options: (a) MIN: use the minimum
set up time in a problem instance as the standard setup time between all jobs and (b) MAX:
use the maximum set up time in a problem instance as the standard setup time between all
jobs. Furthermore, to account for random effects in the data, four different datasets were
generated with the same problem sizes. Table 4 shows the results of the comparisons with
these changes for five different datasets for each problem size. The first three columns show
replication (Rep), machines (K), and jobs (J), and the following columns are split by the
best feasible solution, lower bounds, and gaps. Within each, the results are split by the type
of setup, i.e., no setups (ZS), anticipatory, and nonanticipatory. For the case with setups,
the results are further split by sequence-dependent setups (SD), standard maximum setups
(MAX), and standard minimum setups (MIN).

The results showed, as expected, that cycle times increased with increasing amounts of
setup time. Furthermore, the MIP models for which setups were used led to more instances
where solutions could not be found. For example, MAX compared to ZS clearly showed
two instances where solutions were not found. Interestingly, MIN was able to find two
solutions where no solution was found in the case of ZS.

The differences in cycle times in the systems with sequence-dependent and standard
setups demonstrated the importance of considering the sequence-dependent setups in
blocking cyclic job-shop systems. Moreover, the cycle times of problems with no setups and
minimum nonanticipatory setups were very similar, whereas the minimum anticipatory
setups were rather different. In previous sections, we discussed that anticipatory setups
could cause blocking conditions on the machines. Table 4 demonstrates that the cycle times
were smaller in the systems with nonanticipatory setups comparing to the systems with
anticipatory setups. These points present the importance of anticipatory setups in blocking
job-shop systems.

Figure 12 presents the performance of the proposed MIP modelling approach for CJSS
and demonstrates the Gap for different size of test instances. The plots demonstrate that
the proposed approach was able to solve all the instances with a small number of jobs
(solved optimally or close to optimality) and show that it was an efficient approach for
cyclic production systems with fewer product varieties. Moreover, the MIP approach could
find solutions for the medium-size test instances with four jobs (considering all machine)
and five jobs (with 9 and 12 machines) but struggled to prove optimality. For instances with
a large number of jobs and machines, the MIP approach rarely found solutions (plots on the
right of the figure). The plots for the instances with five jobs indicate that the complexity of
CJSS problem with maximum anticipatory setup (Amax) was higher compared to that of
the CJSS problem with maximum nonanticipatory setup (Nmax). Overall, Figure 12 shows
that the MIP approach could be used efficiently in production systems with a lower range
of product varieties.

Algorithms 2022, 15, 375 16 of 23

Table 4. A comparison of cycle times of different anticipatory and nonanticipatory setups for five repetitions of all MIP models. ZS: zero setups, SD: sequence-dependent,
Max: standard maximum setup, Min: standard minimum setup.

Rep K J

Best Found Lower Bound Gap

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max

1

9

3 257 314 390 464 262 337 417 257 314 390 464 262 337 417 0 0 0 0 0 0 0
4 270 365 441 526 275 335 447 270 365 441 526 275 335 447 0 0 0 0 0 0 0
5 535 524 701 954 546 660 813 164 195 207 238 175 166 232 69.27 62.73 70.42 75.09 67.89 74.80 71.43
6 566 - - - - - - 391 397 444 583 397 437 583 30.92 - - - - - -

12

3 258 316 373 446 264 354 433 258 316 373 446 264 354 433 0 0 0 0 0 0 0
4 335 393 468 559 340 431 523 335 393 468 559 340 431 523 0 0 0 0 0 0 0
5 529 527 695 - 508 741 990 189 206 258 166 189 214 244 64.21 60.92 62.88 - 62.73 71.08 75.34
6 - - - - - - - 190 205 223 211 182 206 245 - - - - - - -

15

3 313 385 449 458 319 411 462 313 385 449 458 319 411 462 0 0 0 0 0 0 0
4 344 375 457 584 354 462 540 213 217 251 341 217 242 341 38.08 42.13 44.99 41.61 38.70 47.62 36.85
5 568 522 761 - 648 - - 330 335 385 490 297 285 375 41.90 35.82 49.41 - 54.13 - -
6 - - - - - - - 171 194 200 206 182 195 233 - - - - - - -

18

3 275 296 365 447 279 360 423 275 296 365 447 279 360 423 0 0 0 0 0 0 0
4 364 407 519 663 399 484 654 201 264 315 384 189 180 283 44.78 35.25 39.36 42.13 52.63 62.76 56.73
5 600 - - - - 721 871 171 165 210 207 155 175 272 71.55 - - - - 75.79 68.80
6 - - - - - - - 184 195 198 267 177 193 177 - - - - - - -

2

9

3 258 260 344 428 262 329 406 258 260 344 428 262 329 406 0 0 0 0 0 0 0
4 334 366 455 543 339 430 501 334 366 455 543 339 430 501 0 0 0 0 0 0 0
5 412 421 552 743 419 553 653 412 421 552 563 419 553 594 0 0 0 24.23 0 0 8.96
6 586 - - - - - - 180 191 166 161 168 174 226 69.26 - - - - - -

12

3 289 291 358 386 293 339 423 289 291 358 386 293 339 423 0 0 0 0 0 0 0
4 325 368 442 542 332 428 500 325 368 442 542 332 428 500 0 0 0 0 0 0 0
5 500 613 553 - 421 662 776 295 301 396 459 300 369 455 41 50.85 28.39 - 28.74 44.26 41.37
6 776 - - - - - - 387 432 475 618 335 393 490 50.13 - - - - - -

Algorithms 2022, 15, 375 17 of 23

Table 4. Cont.

Rep K J

Best Found Lower Bound Gap

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max

15

3 292 372 392 462 297 383 452 292 372 392 462 297 383 452 0 0 0 0 0 0 0
4 367 411 539 671 373 571 599 314 280 339 404 373 339 404 14.44 31.87 37.11 39.79 0 40.63 32.55
5 614 - - - - - - 175 184 227 249 160 189 422 71.49 - - - - - -
6 - - - - - - - 231 329 426 571 174 197 232 - - - - - - -

18

3 244 312 354 417 249 330 404 244 312 354 417 249 330 404 0 0 0 0 0 0 0
4 340 421 507 635 363 559 600 340 303 344 427 303 335 354 0 28.03 32.15 32.76 16.53 40.07 41
5 573 - - - - - - 221 201 209 326 170 365 301 61.43 - - - - - -
6 - - - - - - - 199 211 212 266 189 202 242 - - - - - - -

3

9

3 207 302 345 398 213 297 361 207 302 345 398 213 297 361 0 0 0 0 0 0 0
4 376 394 475 569 382 470 554 376 394 475 569 382 470 554 0 0 0 0 0 0 0
5 433 552 718 863 439 554 679 166 191 209 230 161 190 230 61.66 65.35 70.87 73.36 63.33 65.78 66.15
6 - - - - - - - 349 364 401 550 353 401 550 - - - - - - -

12

3 265 269 338 415 269 324 402 265 269 338 415 269 324 402 0 0 0 0 0 0 0
4 362 460 524 583 368 487 566 362 275 524 583 368 356 566 0 40.22 0 0 0 26.90 0
5 555 615 699 930 629 669 908 177 192 210 227 173 193 284 68.06 68.81 69.97 75.64 72.47 71.18 68.72
6 714 - - - - - - 203 203 216 340 194 240 297 71.56 - - - - - -

15

3 229 239 300 390 235 295 363 229 239 300 390 235 295 363 0 0 0 0 0 0 0
4 410 451 580 638 384 556 631 209 238 252 362 211 210 335 48.96 47.23 56.55 43.26 45.12 62.30 46.91
5 729 - - - - - - 187 196 193 201 174 191 170 74.31 - - - - - -
6 - - - - - - - 179 195 207 202 168 184 215 - - - - - - -

18

3 286 323 402 459 290 355 429 286 323 402 459 290 355 429 0 0 0 0 0 0 0
4 382 439 519 674 420 516 688 153 153 217 299 152 217 205 59.94 65.11 58.19 55.64 63.93 57.95 70.19
5 630 - - - - - - 204 354 393 509 176 303 383 67.62 - - - - - -
6 792 - - - - - - 187 186 178 186 169 184 213 76.39 - - - - - -

Algorithms 2022, 15, 375 18 of 23

Table 4. Cont.

Rep K J

Best Found Lower Bound Gap

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max

4

9

3 268 333 384 463 273 341 422 268 333 384 463 273 341 422 0 0 0 0 0 0 0
4 270 377 431 538 274 363 455 270 377 431 538 274 363 455 0 0 0 0 0 0 0
5 447 465 594 747 455 590 690 447 465 594 575 455 493 573 0 0 0 23.03 0 16.44 16.96
6 633 - - - - - - 196 184 199 216 179 197 233 69.03 - - - - - -

12

3 250 253 313 392 253 307 373 250 253 313 392 253 307 373 0 0 0 0 0 0 0
4 358 440 495 644 390 481 599 144 166 197 284 141 197 177 59.78 62.37 60.20 55.90 63.72 59.04 70.48
5 494 588 677 - - - - 242 296 279 469 173 209 469 51.05 49.63 58.79 - - - -
6 - - - - - - - 400 406 440 592 406 440 592 - - - - - - -

15

3 244 307 350 426 249 327 392 244 307 350 426 249 327 392 0 0 0 0 0 0 0
4 304 363 512 598 309 411 529 304 236 274 350 248 273 350 0 34.99 46.48 41.47 19.87 33.58 33.84
5 620 - - 922 - 787 991 244 332 367 487 179 313 413 60.59 - - 47.18 - 60.23 58.32
6 - - - - - - - 205 210 221 263 185 201 245 - - - - - - -

18

3 263 265 345 411 268 329 405 263 265 345 411 268 329 405 0 0 0 0 0 0 0
4 382 450 518 687 390 484 680 168 168 193 295 170 185 294 56.08 62.67 62.74 57.06 56.41 61.80 56.76
5 673 632 - - - - - 168 201 233 263 163 177 195 75.07 68.18 - - - - -
6 - - - - - - - 247 226 339 417 196 203 333 - - - - - - -

5

9

3 267 389 433 451 271 344 411 267 389 433 451 271 344 411 0 0 0 0 0 0 0
4 342 350 451 548 348 434 517 342 350 451 548 348 434 517 0 0 0 0 0 0 0
5 449 515 631 768 457 595 713 449 359 425 510 457 400 510 0 30.29 32.65 33.59 0 32.77 28.47
6 - - - - - 761 - 185 205 216 227 185 193 222 - - - - - 74.64 -

12

3 292 408 438 479 298 375 455 292 408 438 479 298 375 455 0 0 0 0 0 0 0
4 371 432 518 645 377 481 582 371 261 315 375 251 313 375 0 39.58 39.19 41.86 33.42 34.93 35.57
5 525 687 752 835 481 791 906 394 399 466 554 399 466 554 24.95 41.92 38.03 33.65 17.05 41.09 38.85
6 609 - - - - - - 171 194 201 222 163 180 220 71.98 - - - - - -

Algorithms 2022, 15, 375 19 of 23

Table 4. Cont.

Rep K J

Best Found Lower Bound Gap

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

ZS
Anticipatory Nonanticipatory

Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max Min SD Max

15

3 313 369 419 480 317 381 459 313 369 419 480 317 381 459 0 0 0 0 0 0 0
4 386 414 469 597 393 485 590 269 273 374 397 273 331 397 30.31 34.06 20.26 33.50 30.53 31.75 32.71
5 586 - - - - - - 186 208 173 337 174 191 237 68.26 - - - - - -
6 - - - - - - - 186 196 201 203 177 184 245 - - - - - - -

18

3 282 306 382 441 286 358 439 282 306 382 441 286 358 439 0 0 0 0 0 0 0
4 446 486 565 684 460 518 729 158 167 205 317 154 205 289 64.67 65.71 63.72 53.66 66.60 60.46 60.36
5 562 - - - - - - 192 188 230 264 177 205 261 65.76 - - - - - -
6 - - - - - - - 203 208 224 283 187 211 252 - - - - - - -

Algorithms 2022, 15, 375 20 of 23

Figure 12. Box plots of the gaps in Table 4 (with J = 3, . . . , 6 for the four columns and K = 9, 12, 15, 18
for the rows of graphs).

6. Conclusions

The cyclic job-shop scheduling problem was investigated in this paper. A novel mixed-
integer programming model was proposed for the problem based on the characteristics
of cyclic scheduling. Thereupon, the operations were scheduled within a single cycle.
The occupying machines at the start time of the cycle had an important effect on solution
quality due to the characteristics of the job-shop problem. Technological manufacturing
cells, such as robotic cells, were attempted in order to eliminate or decrease the number
of buffers. Thereupon, manufacturing systems without buffers were encountered in real
situations. This study investigated the problem where the machines had no buffers that
caused the blocking conditions, which rapidly decreased the number of feasible solutions
and, therefore, made it a lot harder to find those feasible solutions.

Moreover, the sequence-dependent setups were considered in this research. There
were two types of setups, anticipatory and nonanticipatory, which were included before
and after loading the jobs on the machines, respectively. Thereupon, the anticipatory and

Algorithms 2022, 15, 375 21 of 23

nonanticipatory sequence-dependent setups were investigated in this research separately.
The advantages of this study and the achievements can be outlined as follows:

• Previous studies on modelling the cyclic job-shop scheduling problem were based on
performing operations in iterative cycles, whereas the proposed model in this research
scheduled all the operations within a single cycle.

• Due to the scheduling within a single cycle, the proposed model could be simply
extended to different resource constrained variants.

• Two kinds of sequence-dependent setups were considered based on anticipatory and
nonanticipatory concepts.

• The nonanticipatory setups did not affect the blocking condition as the related job did
not have to wait for the previous machine because of the related setup.

• The anticipatory setups directly affected the blocking conditions, as any part might
need to wait on the previous machine until the related setup was completed.

As future research, the proposed model could be applied to cyclic job-shop robotic
cells. Moreover, this research could be extended to manufacturing systems with servers
performing the setups.

The difficulty of solving these problems with MIP solvers observed in this paper
indicate that further research on exact methods is required, perhaps based on decomposition
methods, in order to solve large-scale cyclic job-shop scheduling problems. Moreover, the
proposed model could be applied to cyclic job-shop scheduling problems in resource-
constrained systems where robotic cells and servers perform the setups.

Author Contributions: Conceptualization, A.E.; Data curation, A.E.; Investigation, A.E., D.R.T. and
A.T.E.; Methodology, A.E., D.R.T. and A.T.E.; Software, A.E.; Validation, A.E. and D.R.T.; Visualization,
A.E.; Writing—original draft, A.E. and D.R.T.; Writing—review & editing, A.E., D.R.T. and A.T.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Generating Problem Instances

Algorithm A1 was used to generate the test problems for each benchmark with a
specific number of jobs and machines based on the benchmark generation method reported
by Taillard [38]. The procedure starts by taking as input the number of jobs, number of
machines, the ranges for processing times, and sequence-dependent setup times. Lines
2–5 set lists for recording the processing route of each job. The processing time of each
operation of each job is randomly generated within lines 6–7. Lines 8–9 generate the
required sequence-dependent setup times between each pair of jobs. This is followed by
generating the processing route for each job in lines 10–15, where the list Ψ has the set of
machines that each job should be processed on. For each operation (line 12), a machine
is selected from the set of machines and then Ψ is updated by eliminating the selected
machine. Finally, a machine from the set of remaining machines is selected for the next
operation in the queue.

• The operation times of jobs on the machines are generated from the uniform distribu-
tion [a, b] = [1, 99].

• The sequence-dependent setup times are generated from the uniform distribution
[a, c] = [1, 33].

• The standard maximum and minimum setup times are equal to the maximum and
minimum of sequence-dependent setup times, respectively.

Algorithms 2022, 15, 375 22 of 23

Algorithm A1 Generate Problems.

1: procedure FUNCTION(J, K, a, b, c)
2: for j ∈ {1, . . . , J} do
3: Oj ← K
4: Ij ← {1, . . . , Oj}
5: Fj = {}
6: for (j, i) : j ∈ {1, . . . , J}, i ∈ Ij do
7: Pj,i ← U[a, b]

8: for (j, j′, m) : j, j′ ∈ {1, . . . , J}, j 6= j′, m ∈ {1, . . . , K} do
9: ASj,j′ ,m = NSj,j′ ,m ← U[a, c]

10: for j : j ∈ {1, . . . , J} do
11: Ψ = {1, . . . , K}
12: for i : i ∈ Ij do
13: fi ← randomly select from Ψ
14: Ψ← Ψ− fi
15: Fj ← Fj ∪ fi

16: return (P, AS, NS, Ij, Fj)

References
1. Brucker, P.; Kampmeyer, T. Tabu search algorithms for cyclic machine scheduling problems. J. Sched. 2005, 8, 303–322. [CrossRef]
2. Hanen, C. Study of a NP-hard cyclic scheduling problem: The recurrent job-shop. Eur. J. Oper. Res. 1994, 72, 82–101. [CrossRef]
3. Brucker, P. Multiprocessor tasks. In Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2001; pp. 313–341.
4. Wójcik, R.; Pempera, J. Designing cyclic schedules for streaming repetitive job-shop manufacturing systems with blocking and

no-wait constraints. IFAC-PapersOnLine 2019, 52, 73–78. [CrossRef]
5. Levner, E.; Kats, V.; De Pablo, D.A.L.; Cheng, T.E. Complexity of cyclic scheduling problems: A state-of-the-art survey. Comput.

Ind. Eng. 2010, 59, 352–361.
6. Šůcha, P.; Hanzálek, Z. A cyclic scheduling problem with an undetermined number of parallel identical processors. Comput.

Optim. Appl. 2011, 48, 71–90. [CrossRef]
7. Brauner, N.; Finke, G.; Kubiak, W. Complexity of one-cycle robotic flow-shops. J. Sched. 2003, 6, 355–372. [CrossRef]
8. Lee, T.E.; Seo, J. Stochastic cyclic flow lines: Non-blocking, Markovian models. J. Oper. Res. Soc. 1998, 49, 537–548. [CrossRef]
9. Xing, L.N.; Chen, Y.W.; Yang, K.W. Multi-population interactive coevolutionary algorithm for flexible job shop scheduling

problems. Comput. Optim. Appl. 2011, 48, 139–155. [CrossRef]
10. Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125, 535–550. [CrossRef]
11. Ronconi, D.P. A note on constructive heuristics for the flowshop problem with blocking. Int. J. Prod. Econ. 2004, 87, 39–48.

[CrossRef]
12. Gong, H.; Tang, L.; Duin, C. A two-stage flow shop scheduling problem on a batching machine and a discrete machine with

blocking and shared setup times. Comput. Oper. Res. 2010, 37, 960–969. [CrossRef]
13. Martinez, S.; Dauzère-Pérès, S.; Gueret, C.; Mati, Y.; Sauer, N. Complexity of flowshop scheduling problems with a new blocking

constraint. Eur. J. Oper. Res. 2006, 169, 855–864. [CrossRef]
14. Lange, J.; Werner, F. Approaches to modeling train scheduling problems as job-shop problems with blocking constraints. J. Sched.

2018, 21, 191–207. [CrossRef]
15. Kats, V.; Levner, E. Cyclic scheduling in a robotic production line. J. Sched. 2002, 5, 23–41. [CrossRef]
16. Dawande, M.W.; Geismar, H.N.; Sethi, S.P.; Sriskandarajah, C. Throughput Optimization in Robotic Cells; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2007; Volume 101.
17. Ayala, M.; Benabid, A.; Artigues, C.; Hanen, C. The resource-constrained modulo scheduling problem: An experimental study.

Comput. Optim. Appl. 2013, 54, 645–673. [CrossRef]
18. Pempera, J.; Smutnicki, C. Open shop cyclic scheduling. Eur. J. Oper. Res. 2018, 269, 773–781. [CrossRef]
19. Wang, J.; Pan, C.; Hu, H.; Li, L.; Zhou, Y. A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and

residency time constraints. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1373–1386. [CrossRef]
20. Elmi, A.; Nazari, A.; Thiruvady, D.; Durmusoglu, A. Cyclic Flow Shop Robotic Cell Scheduling Problem With Multiple Part

Types. IEEE Trans. Eng. Manag. 2020. [CrossRef]
21. Bożejko, W.; Uchroński, M.; Wodecki, M. Block approach to the cyclic flow shop scheduling. Comput. Ind. Eng. 2015, 81, 158–166.

[CrossRef]
22. Brucker, P.; Kampmeyer, T. Cyclic job shop scheduling problems with blocking. Ann. Oper. Res. 2008, 159, 161–181. [CrossRef]

http://doi.org/10.1007/s10951-005-1639-4
http://dx.doi.org/10.1016/0377-2217(94)90332-8
http://dx.doi.org/10.1016/j.ifacol.2019.10.029
http://dx.doi.org/10.1007/s10589-009-9239-4
http://dx.doi.org/10.1023/A:1024008726557
http://dx.doi.org/10.1057/palgrave.jors.2600535
http://dx.doi.org/10.1007/s10589-009-9244-7
http://dx.doi.org/10.1016/S0377-2217(99)00224-6
http://dx.doi.org/10.1016/S0925-5273(03)00065-3
http://dx.doi.org/10.1016/j.cor.2009.08.001
http://dx.doi.org/10.1016/j.ejor.2004.08.046
http://dx.doi.org/10.1007/s10951-017-0526-0
http://dx.doi.org/10.1002/jos.92
http://dx.doi.org/10.1007/s10589-012-9499-2
http://dx.doi.org/10.1016/j.ejor.2018.02.021
http://dx.doi.org/10.1109/TASE.2018.2878063
http://dx.doi.org/10.1109/TEM.2020.3037371
http://dx.doi.org/10.1016/j.cie.2015.01.004
http://dx.doi.org/10.1007/s10479-007-0276-z

Algorithms 2022, 15, 375 23 of 23

23. Song, J.S.; Lee, T.E. Petri net modeling and scheduling for cyclic job shops with blocking. Comput. Ind. Eng. 1998, 34, 281–295.
[CrossRef]

24. Cavory, G.; Dupas, R.; Goncalves, G. A genetic approach to solving the problem of cyclic job shop scheduling with linear
constraints. Eur. J. Oper. Res. 2005, 161, 73–85. [CrossRef]

25. Kechadi, M.T.; Low, K.S.; Goncalves, G. Recurrent neural network approach for cyclic job shop scheduling problem. J. Manuf.
Syst. 2013, 32, 689–699. [CrossRef]

26. Kampmeyer, T. Cyclic Scheduling Problems. Ph.D. Thesis, Universität Osnabrück, Osnabrück, Germany, 2006.
27. Brucker, P.; Kampmeyer, T. A general model for cyclic machine scheduling problems. Discret. Appl. Math. 2008, 156, 2561–2572.

[CrossRef]
28. Brucker, P.; Burke, E.K.; Groenemeyer, S. A mixed integer programming model for the cyclic job-shop problem with transportation.

Discret. Appl. Math. 2012, 160, 1924–1935. [CrossRef]
29. Brucker, P.; Burke, E.K.; Groenemeyer, S. A branch and bound algorithm for the cyclic job-shop problem with transportation.

Comput. Oper. Res. 2012, 39, 3200–3214. [CrossRef]
30. Quinton, F.; Hamaz, I.; Houssin, L. A mixed integer linear programming modelling for the flexible cyclic jobshop problem. Ann.

Oper. Res. 2020, 285, 335–352. [CrossRef]
31. Gultekin, H.; Dalgıç, Ö.O.; Akturk, M.S. Pure cycles in two-machine dual-gripper robotic cells. Robot. Comput.-Integr. Manuf.

2017, 48, 121–131. [CrossRef]
32. Ghadiri Nejad, M.; Shavarani, S.M.; Güden, H.; Barenji, R.V. Process sequencing for a pick-and-place robot in a real-life flexible

robotic cell. Int. J. Adv. Manuf. Technol. 2019, 103, 3613–3627. [CrossRef]
33. Foumani, M.; Razeghi, A.; Smith-Miles, K. Stochastic optimization of two-machine flow shop robotic cells with controllable

inspection times: From theory toward practice. Robot. Comput.-Integr. Manuf. 2020, 61, 101822. [CrossRef]
34. Panwalkar, S.; Dudek, R.; Smith, M. Sequencing research and the industrial scheduling problem. In Proceedings of the Symposium

on the Theory of Scheduling and Its Applications; Springer: Berlin/Heidelberg, Germany, 1973; pp. 29–38.
35. Defersha, F.M.; Chen, M. A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups.

Int. J. Adv. Manuf. Technol. 2010, 49, 263–279. [CrossRef]
36. Framinan, J.M.; Leisten, R.; García, R.R. Manufacturing scheduling systems. In An integrated view on Models, Methods and Tools;

Springer: Berlin/Heidelberg, Germany, 2014; pp. 51–63.
37. Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM (JACM) 1960,

7, 326–329. [CrossRef]
38. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]

http://dx.doi.org/10.1016/S0360-8352(97)00325-2
http://dx.doi.org/10.1016/j.ejor.2003.03.001
http://dx.doi.org/10.1016/j.jmsy.2013.02.001
http://dx.doi.org/10.1016/j.dam.2008.03.029
http://dx.doi.org/10.1016/j.dam.2012.04.001
http://dx.doi.org/10.1016/j.cor.2012.04.008
http://dx.doi.org/10.1007/s10479-019-03387-9
http://dx.doi.org/10.1016/j.rcim.2017.03.004
http://dx.doi.org/10.1007/s00170-019-03739-6
http://dx.doi.org/10.1016/j.rcim.2019.101822
http://dx.doi.org/10.1007/s00170-009-2388-x
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.1016/0377-2217(93)90182-M

	Introduction
	Blocking Cyclic Job Shop Scheduling
	Sequence-Dependent Setup Times
	The Cyclic JSSP—An Example

	Mathematical Formulation of a Basic Model
	Occupied Machines Constraints
	Processing Constraints of Each Part
	Parts' Sequence Determination on Machines
	Operational Constraints of Each Machine
	Proposed Mathematical Programming Model

	Blocking CJSS Problem with Sequence-Dependent Setup Times
	Blocking CJSS with Anticipatory Sequence-Dependent Setups (AS)
	Blocking CJSS Problem with Nonanticipatory Sequence-Dependent Setups (NS)

	Experimental Settings and Results
	Conclusions
	Appendix A
	References

