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Abstract: In this research, we present a hybrid algorithmic framework and its integration into the
precise production scheduling system of a Greek metal forming factory. The system was created
as a decision support tool to assist production planners in arranging weekly production orders to
work centers and other manufacturing cells. The functionality offered includes dispatching priority
rules, bottleneck identification for capacity planning, production order reallocation to alternate work
centers and planning periods, interchangeable scheduling scenarios, and work-in-process availability
checks based on bill of materials (BOM) precedence constraints. As a consequence, a solid short-
term production plan is created, capable of absorbing shop floor risks such as machine failures and
urgent orders. The primary design ideas are simplicity, ease of use, a flexible Gantt-chart-based
graphical user interface (GUI), controllable report creation, and a modest development budget. The
practical application takes place in a make-to-stock (MTS) environment with a complicated multi-level
production process, defined due dates, and parallel machines. A critical component is the integration
with legacy applications and the existing enterprise resource planning (ERP) system. The method
adopted here avoids both overburdening the existing information system architecture with software
pipeline spaghetti, as is common with point-to-point integration, and overshooting implementation
costs, as is often the case with service-oriented architectures.

Keywords: production scheduling; decision support; scheduling algorithms; hybrid metaheuristics;
dynamic job shops; practical application

1. Introduction

The majority of production planning frameworks are three-tiered hierarchical frame-
works that cover three fundamental time horizons: Long-, medium-, and short-term [1].
The upper two tiers are referred to as planning challenges, while the lowest level is referred
to as a scheduling challenge [2]. The degree to which a product requires disaggregation
increases with each level. On a long-term basis, the end item requirements are aggregated
by the product family. These requirements are then subdivided into specific goods, com-
ponents, and raw material requirements, and manufacturing orders are issued. Finally,
these instructions are sent to machines and work centers at the lowest planning level using
different scheduling algorithms to enable workload management.

Delving deeper into scheduling theory, in several process industries such as metal-
forming industries, the end items are produced via numerous sequential physical or chemical
transformation phases (also called tasks) applied to raw materials or intermediate components.
A task requires different production resources such as work centers, dedicated machines, and
workers with a limited capacity [3]. Detailed production scheduling is concerned with the
short-term (day or shift) allocation of tasks to resources in an efficient manner, validated by
their timely completion, without violating technological and capacity constraints [4].
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Herrmann [5] identified three distinct views in order to highlight the complexity of
scheduling. The theoretical view regards scheduling from a problem-solving perspective,
as a hard combinatorial optimization problem isolated from the manufacturing planning
and control system’s area of effect. A more realistic view focuses on the decision-making
aspect of the scheduling process; the production planner is burdened with allocating tasks to
resources while catering to bottlenecks, uncertainties, and dynamic events. The final view is
the systems-level organizational perspective, i.e., scheduling is a module of the production
planning and control (PPC) system, which supports a three-level manufacturing framework
that initiates from aggregate plans, proceeds to material requirement plans, and finally results
in detailed schedules. The authors focus on the first two views, and by doing so, attempt to
identify which theoretical mathematical techniques and algorithms are deemed appropriate
for inclusion in a scheduling decision support system (DSS) geared towards complex make-to-
stock environments that necessitate fast yet accurate schedule construction.

From an optimization standpoint, detailed production scheduling is an extraordinar-
ily complicated issue, with most situations being classified as being non-deterministic
polynomial-time (NP)-hard [6]. Furthermore, it is worth mentioning that it is rather unlike
conventional planning difficulties. Although production planning makes use of aggregate
data and the resulting plans are presented on either a long- or short-term time horizon,
scheduling makes use of precise shop floor data to generate schedules that are as short as
a day or even a single shift. Additionally, while planning optimization techniques focus
on the overall cost, the scheduling of computational methods focuses on minimizing time-
based performance parameters such as the makespan, lateness, and throughput times, most
of which are prone to multiple allocation limitations [7]. The unpredictability increases
with a shorter time horizon and optimum methods become insoluble.

Numerous techniques for estimation and optimization have already been proposed,
primarily for theoretical scheduling issues. The readers are referred to by Fuchigami and
Rangel (2018) [8] for a comprehensive examination of scheduling theories and practices.
Estimation techniques are regarded as being more suited for use on real shop floors owing
to their lower processing costs. Nevertheless, their deployment must not be performed
in isolation but rather in conjunction with a suite of decision-making support tools that
can assist in the industrial planning process in developing a preferred detailed schedule
without ceding all authority to the scheduling system. In this way, changing events may be
included in the calendar more quickly, variable demand can be managed promptly, and
deadlines can be met. Thus, the best approach for efficiently scheduling detailed production
is to integrate a DSS that incorporates simple yet prudent algorithms and offers features
that help the planner to adjust the algorithm-generated production plan order to the most
recent shop floor settings [9].

The use of DSSs for comprehensive production planning is a relatively new trend
that has emerged during the last two decades [10–12]. These solutions are considered
supplementary solutions to ERP or material requirements planning (MRP) software [13].
Their objective is to develop roadmaps for the shop floor or the whole distribution network
by combining advanced operational research techniques. While such approaches are
typically generally regarded as a realistic application of operational research ideas backed
by information technology, and as such, are capable shop floor control tools [14], their
applications are hardly ever effective. Considerable scientific research attempts have
been directed toward the creation of tailored DSSs for planning in order to address the
shortcomings and drawbacks of ERP systems [15,16].

A similar approach to the above was taken by the authors, who opted for the develop-
ment of a customized DSS system fully integrated with the current information technology
(IT) infrastructure of the case study’s small- and medium-sized enterprises (SMEs). The
rest of the paper is structured as follows. In Section 2, the production process and the
current IT-supported planning framework for the case study will be thoroughly presented.
Section 3 outlines the proposed DSS as a consequence of the specifications arising from
Section 2. Section 4 fully analyzes the modus operandi of the core algorithms of the
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systems, while Section 5 provides indicative results on the performance of a novel tabu
search (TS)/variable neighborhood search (VNS) metaheuristic embedded in the DSS. In
Section 6, discussions are drawn, and in Section 7, conclusions and further research efforts
are mapped out. Finally, Appendix A presents notations used throughout the paper, and
Appendix B shows the mathematical model used in the ATM algorithm.

2. Practical Problem Identification
2.1. The Case Company

A Greek medium-sized make-to-stock producer of door locks, keys, and aluminum
mechanisms for windowpanes goods serves as the case study for the extensive production
scheduling research analysis. The firm is an SME and the only industrial manufacturer in
Greece of safety door locks, keys, and aluminum windowpane systems. Apart from the
Greek market, a portion of the items is exported to various other nations around Europe,
most notably the Balkans. The manufacturing process that follows is rather complicated,
with certain end goods needing up to ten-level BOM trees. Additionally, several subcon-
tractors are used to complete specific production steps, which require complicated BOMs
to be coupled with similarly complex routings that cross shop-floor borders.

The shop floor is often functionally organized: Equipment and processes capable
of performing the same or comparable activities are grouped together and physically
positioned nearby. Within the layout, organizational units are dedicated to a particular
process, and components or products are routed through the layout from one process
area to the next. There are eight work center pools, including casting, nickel plating,
cylinder component assembly, intermediate phases, seizure and nailing, mill cutting, proton
assembly, and a lock and aluminum mechanism assembly. These pools’ work centers are
typically unrelated parallel computers, implying that their processing speed and hence
capacity differ. In rare instances, unconnected parallel machines may exist across machine
pools, for example, a work center engaged in mill cutting may be parallel to one engaged
in intermediate stages.

The broad outsourcing of different manufacturing stages to several subcontractors is an
intriguing part of the overall production process. When subcontractors are integrated into
the shop floor, they are seen as distinct parallel work centers with specialized capabilities
and extended lead times (their processing time plus the transportation time). While
subcontractors may handle most of the component manufacturing steps, the final assembly
is closely controlled on the manufacturer’s shop floor.

While a custom-built application handles production planning and control, other activ-
ities such as finance, inventory control, and selling are handled by a commercialized ERP
software package. The following two subsections will cover each of these systems in depth.

2.2. Production Planning and Control System

Before embarking on the comprehensive scheduling project, the SME operated on
a hierarchical two-tier planning structure. At the most fundamental level, the aggregate
production planning (APP) module manages demand across a yearlong time horizon. This
purpose may be accomplished via the use of component families, rather than just end
products. At this level, only common items with the greatest wait times, such as metal
castings, may be purchased or ordered. The master production schedule (MPS) module
augments the highest level by constructing a plan with a three-month time horizon in mind.

Additionally, this module manages demand in the context of end-product families
rather than component families. In a nutshell, the inputs are demand predictions and
executed orders, while the output is the master manufacturing schedule. The schedule’s
applicability is determined by a first-level rough-cut capacity check, which is conducted
manually by the planner, who compares the schedule’s resource capacity requirements to
a rough estimate of available machine pool capacity. Monthly revisions are made to the
timetable to account for unforeseen occurrences that occurred during that time period.
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Mid-term planning is the second planning stage, which employs a hybrid MRP- peri-
odic batch control (PBC) technique. Although the PBC approach is geared toward cellular
manufacturing rather than functional layouts [17], the SME makes use of fundamental
concepts such as planning periods and backward planning to achieve a higher level of visi-
bility than myopic standalone MRP implementations provide. The MPS data are utilized to
determine component and material needs and generate the requisite manufacturing orders.
The final product requirements will be decomposed into component requirements and
allocated to certain times and machine pools through a BOM explosion. The period is seven
days long, and allocation starts with the lock assembly in the last period and progresses
backward until the first day of the first period, which often includes the casting process.
The ordering strategy is not lot-to-lot as it is with standard PBC, but economic production
quantity (EPQ) states that a specific number of extra components must be produced in
order to fully benefit from extended setup periods and build safety stocks. Weekly revisions
are made to the final plan based on comments from the detailed scheduling module, which
will be covered later. The procedure makes use of predetermined, set lead periods that are,
in essence, equal to the planning period.

Apart from the production plan, the MRP-PBC module produces an order backlog,
including fresh and delayed production orders. Typically, the backlog is accompanied by a
report detailing the capacity status of all work centers in the machine pools, allowing the
planner to undertake a rough-cut capacity check on a second level. Due to the fact that this is
not an automated process, the planner must release orders from the backlog to the shop floor
while taking into consideration overcrowded machines, the period duration, and late orders.

Production orders are issued based on the unification of the bill of materials and
routings [18]. This approach was created in order to minimize the computing effort required
to execute the MRP-PBC. Simultaneously, this technique resulted in the creation of stock-
keeping units (SKUs) and single-phase routings for each BOM component, a proliferation
that was somewhat mitigated by the introduction of phantom SKUs, or SKUs for which
inventory was not maintained. Due to inconsistencies between the production planning
and controlling (PPC) and ERP systems, phantom SKUs were subsequently abandoned,
resulting in the issue of production orders for all components and impeding inventory
control. From a planning standpoint, the primary disadvantage of this strategy is the
massive volume of orders that pass through the shop floor at any one time, severely
impairing the planner’s planning and monitoring capabilities.

Once production orders are published, production groups are treated as black boxes,
and dispatching is left to the foremen’s discretion. Due to the high volume of production
orders, capacity planning is insufficient, and as practice has demonstrated, the nervousness
of the mid-term plan increases significantly over time as a result of late orders, subcontractor
violation of due dates, machine breakdown, alternate routing, and wandering bottlenecks.

A synoptic view of the shop floor conditions is depicted in Table 1 to Table 2. The
total number of SKUs is 2970, of which some may not be active, and others may belong
to alternate product specifications. Hence, they are active during specific periods in a
year according to BOM effectivity dates. The extensive outsourcing is also apparent in
Table 1: 545 SKUs are outsourced rending optimization of the entire production process
intractable. Table 2 summarizes the number of SKUs and work centers per functional group
(raw materials and subcontractors included). Door lock assembly has the most significant
number of SKUs and work centers consisting mainly of workbenches where workers put
together the end items. The Cutting and Intermediate Phases groups are of particular
interest, where most bottlenecks are identified before the assembly phase.

2.3. ERP Software Package

The ERP software package was implemented after the creation of the PPC system.
The previously utilized phantom SKUs were eliminated to ease enterprise application
integration (EAI), resulting in the previously described comprehensive issue of production
orders. Open database connections (ODBCs) were selected as the integration technology
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because they directly connect certain fields in the PPC database to appropriate ones in the
ERP database. It is evident that the ERP system’s out-of-the-box MRP module is redundant,
thereby eliminating the whole system from the shop floor level. As a result, the ERP is
limited to inventory management, supply chain management, sales management, and
finance management. The basic process is as follows: Firstly, the PPC system executes MPS,
MRP, and production and procurement orders. The output data are subsequently sent to
the ERP system using ODBC. The monitoring module of the PPC handles the production
report, and the generated data are then forwarded to the ERP in order to update inventory
levels and cost estimates for production. The new stock levels are retrieved automatically
with each MRP run.

Table 1. Total number of SKUs.

SKU Description Number

Raw material 609

Components 1415

Subcontractor 545

End items 401

Total 2970

Table 2. Number of SKUs and work centers per functional group.

Functional Group SKU Number Number of Workcenters

Raw materials 609 -

Intermediate phases 222 23

Cylinder components 121 21

Seizure and nailing 102 10

Cutting 218 10

Nickel plating 210 4

PROTON assembly 67 7

Door lock assembly 604 53

Subcontractor 545 -

Casting 269 4

Total 2970 132

2.4. Detailed Production Scheduling Requirements

Due to the complexity of its manufacturing process and a deficient IT infrastructure,
the presented case study has encountered numerous issues over the last few years, including
missed deadlines, accumulated late orders, supernumerary production orders, excessive
component inventory, poor outsourcing management, lax releasing policies, non-systematic
dispatching methods, insufficient workload control, and low shop floor visibility. To avoid
these mishaps, the SME considered implementing a detailed production scheduling system
that would make production groups visible within a planning period, transfer dispatching
control from foremen to planners, and equip the latter with all the decision support tools
necessary for releasing, dispatching, workload control, and dynamic event management.
While this is by no means a panacea, it will assist the planner in better organizing and
controlling the whole manufacturing process by adding another level to the hierarchical
planning framework, one that goes beyond a day or shift to a single period (week).
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3. A Decision Support System for Detailed Scheduling
3.1. DSS Implementation Overview

The SME’s complicated manufacturing process, along with the limitations of the
underlying IT infrastructure, would be a considerable impediment to implementing a
commercial advanced planning and scheduling (APS) package to meet the comprehensive
production scheduling requirements stated in the preceding section. In light of this, the
chosen option was to construct a custom-built DSS that was tailored to the aforementioned
manufacturing process and was completely compatible with both the PPC system and the
ERP software package.

As of 2019, the SME has begun exploring the possibility of reengineering its basic man-
ufacturing process. The decision was made to include the detailed production scheduling
layer in the two-tier planning structure. In this regard, it was thought critical to sup-
port both the new planning process and the detailed scheduling layer with a low-cost
custom-built application that was completely compatible with the other IT infrastructure,
particularly the PPC and the ERP system. Reengineering was projected to take 18 months,
and during the last three months, a research subproject for application development was
begun. To conclude the original application, it was subjected to a testbed of trials and
varied use situations. As a consequence, the suggested Gantt-based DSS (G-DSS), was
created, including all of the aforementioned features and approaches.

G-DSS was developed using visual basic (VB).NET as the programming language and
Microsoft Access 2019 as the database management. The latter was necessitated given the
existing PPC database structure, which also makes use of Microsoft Access. The primary de-
sign concepts were ease of use, scalability, interoperability, simplicity, a flexible graphical user
interface, manageable report creation, and a minimal development budget. The installation
focused just on the shop floor, rather than the full supply chain, as most commercial APS pack-
ages do. This technique was chosen to save development costs and maintain the simplicity of
the final DSS, since supply chain optimization is primarily aimed at make-to-order scenarios.
Despite the absence of an upstream (suppliers) or downstream (customers) chain, significant
attention is placed on pre-subcontractor orders and dispatch outsourcing.

The new hierarchical planning framework follows the following procedure: The MPS
forecasts long-term end item requirements and feeds the PPC system, which generates the
backlog of manufacturing orders. The G-DSS system eliminates backlog orders, assigns
them to work centers, and generates comprehensive schedules. Usually, the planner will
run the G-DSS at the start of each planning period (which is typically a week), extracting the
most recent production order data. Schedules will be prepared for each product group and
sent to the foremen prior to the start of production. If dynamic events occur, for example, a
rush order is received, a machine fails, or a subcontractor misses a deadline, the planner
reschedules to meet them. The whole procedure is repeated weekly.

Due to the planner’s need for manual control over release/dispatch and quick reschedul-
ing, as well as the frequent occurrence of dynamic events as a result of substantial outsourcing,
the construction of a myopic independent optimization suite was judged unnecessary. Ad-
ditionally, owing to the massive number of production orders, subcontractors, and parallel
work centers that classify the scheduling issue in question as NP-hard, the development of
an efficient approximation method was regarded as unrealistic in terms of processing time
and schedule quality. Rather than that, the study team chose simple but effective priority
dispatching rules and a suite of supplementary decision support tools that enable rapid
production schedule development, what-if analysis, and rapid rescheduling to meet dynamic
occurrences. The following section will discuss the proposed system’s functionality, associated
procedures, and interactions with other systems.
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3.2. System Interfaces

EAI between the G-DSS and the rest of the IT infrastructure is eased by the PPC
application having a common database schema and the ERP system using ODBC. In
summary, the selected strategy results in a fully connected, adaptable, and scalable IT
infrastructure that does not need costly custom-coded point-to-point integration solutions.
Direct connections are used solely for frequently used database fields in the ERP’s inventory
management, sales, and procurement modules. The shared schema between the G-DSS
and the PPC offers an extendable IT backbone capable of readily integrating updates or
adding functionality across systems.

Additionally, costly service-oriented architecture (SOA) solutions were omitted be-
cause, aside from implementation costs exceeding budget, their Business-to-Business (B2B)
integration applicability in this case study is limited. This is due to the small number
of subcontractors classified as borderline SMEs with some vestige IT infrastructure. The
remainder is tiny job shops with limited IT assistance, few work centers, and even fewer
foremen, making the acquisition of integration brokers unnecessary.

3.3. DSS Functionality for the Scheduling Process

Due to the complexity of its production planning process and a deficient IT infras-
tructure, the studied company has encountered a slew of issues over the last few years,
including missed deadlines, accumulated late orders, supernumerary production orders,
excessive component inventory, poor outsourcing management, lax releasing policies, non-
systematic dispatching methods, insufficient workload control, and low shop floor visibility.
The detailed production scheduling system visualizes production groups over a planning
period (week), transfers dispatching control from foremen to planners, and equips the latter
with all the decision-support tools necessary for releasing, dispatching, workload control,
and dynamic event management. While this is by no means a panacea, it does assist the
planner in better organizing and controlling the whole manufacturing process by adding
another level to the hierarchical planning framework, one that goes beyond a day or shift
to a single period (week).

One of the main changes in the production process was the shift of order release from
the PPC to the new application by creating the production order backlog. From then on, full
control is relinquished to the DSS and the planner. Through manual selection, the planner
releases orders of a single functional group from the backlog while concurrently checking
the current shop floor workload. The released orders are fed to the two-level dispatching
modules that perform raw (first level) and fine-tuned (second level) dispatching. As will
be later demonstrated, these modules utilize priority dispatching rules (PDRs), and as
such, are myopic in their approach and do not by any means optimize the end schedule.
However, due to their striking speed (scheduling takes a maximum of 6 s even for the
assembly group), they were preferred. The schedule created is depicted in a Gantt chart
and is the GUI; the planner will be used to perform the remaining functions.

Once dispatching is performed, the planner proceeds to alleviate bottlenecks through
the manual transferring of orders (e.g., to later planning periods or alternate work centers).
At the same time, the planner receives feedback from the G-DSS regarding the load of
the bottleneck and the alternate centers and the impact his decision may have. Order
preemption may also be performed to conclude a specific order quantity within the current
planning period and the remaining whenever the planner (or the preemption algorithm)
sees fit.

All precedence constraints between production orders are not considered to that point
of the production process due to the extremely complex BOM structures. Therefore, the
following technique is employed: The G-DSS focuses on a single functional group at a time
and identifies one-level child-father pairings within the same planning period while regarding
their proper orientation as a soft constraint. When the BOM precedence constraint satisfaction
module is triggered, a hybrid TS/VNS algorithm runs according to the pseudocode presented
later in the paper. The algorithm’s output is the proper orientation of as many child–father
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pairings as possible. Due to the make-to-stock policies, the SME employs the remaining
pairs, which, although wrongly oriented, may still belong to a feasible schedule. Child stock
may be utilized to commence production of a father whose potential starting time is earlier
than that of his child. To fully evaluate the feasibility of the disoriented pairs, the run of
the TS/VNS algorithm is followed by the available-to-manufacture (ATM) algorithm that
mimics the available-to-promise (ATP) module of APS systems by regarding the father as the
customer who wishes to procure parts from a supplier that is the child. More details on ATM
and its relevant pseudocode will be given later.

The final stages of the detailed scheduling process include a what-if-analysis conducted
by the planner by trying out different scheduling scenarios among different functional
groups and the validation of the final schedule by updating the PPC and ERP databases
via ODBC. The planner performs the entire process at the beginning of each week using
the production order data updated at the end of the previous week. Rescheduling takes
place when necessary, during the planning period. Figure 1 summarizes the above process
through an activity-based view. The scheduling process is presented as a series of activities,
where specific DSS functions support each activity.
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Figure 1. Scheduling process and functionality of the decision support system.

The complete functionality of the G-DSS is presented in Table 3. Every function is
categorized according to its decision support contribution as “core” or “supplementary”.
For example, order releasing and dispatching are core decision support functions that assist
the planner in performing detailed production scheduling. At the same time, schedule
representation and reports are supplementary since they aim to present and validate the
decision-making process’s outcome. Furthermore, the various methods and algorithms
incorporated by every function are presented in Table 3.

Figure 2 provides a method/algorithmic-oriented view where the sequence of algo-
rithms is provided for each system function of Figure 1. For example, the second-level
dispatching function utilizes the prioritized orders of the previous step using an assortment
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of different priority rules in order to create the dispatched orders. Additionally, from a
decision support view, during the second-level dispatching, the planner reaches a node and
is called to choose a specific priority dispatching rule while taking into account the area of
effect of these heuristics, which in that case, is a single work center. It should be noted that
for the final step, i.e., BOM precedence constraint satisfaction, the compound TS/VNS-ATM
algorithm has a functional group breadth, whereas the impact analysis heuristic considers
the entire shop floor (all the functional groups). The next section thoroughly describes
these heuristics and algorithms for the core functionality of the DSS.

Table 3. G-DSS’s functionality and methods.

Functionality Functionality Type Methods/Algorithms

Production order and work center data
extraction from PPC system Supplementary The common database schema, ODBC

Order releasing Core Manual selection by planner, automatic
inclusion or exclusion of late orders

1st level dispatching Core Weighted earliest due date heuristic (WEDD)

2nd level dispatching Core

Weighted priority dispatching rules: shortest
processing time (SPT), longest processing
time (LPT), slack, presubcontractor first

(PSF), setup, combo)

Schedule representation (supervision of
order information, workload and bottleneck

work centers)
Supplementary Gantt chart

Bottleneck identification Core Capacity calculation algorithm, Processing
time estimation

Order transferring (either to alternative
production planning periods or alternative

work centers)
and Order preemption

Core Manual input, preemption algorithm

Order transferring in “freeze” mode Core Manual input

BOM precedence constraints satisfaction
(supervision and control of BOM precedence
constraint violation, component availability

check and impact estimation of order
transferring according to BOM tree)

Core
TS/VNS, BOM tree impact heuristic,

ATM algorithm,
BOM relationship representation method

What-if analysis Supplementary Alternative scenarios management

Construction of final production schedule Supplementary Report generation

PPC and ERP database update Supplementary Common database schema, ODBC

Finally, Figure 3 presents a framework for the G-DSS system that is based on all the
operations that were analyzed in Sections 2 and 3. More specifically, the figure presents the
interactions of the three enterprise systems. The production scheduling process starts at the
PPC planning module with the MPS calculations that are fed to the MRP. These calculations
are based on forecasting and sales data. The ERP provides inventory information (used in
MRP) and then receives production and purchase orders (as output from the MRP). It can
also provide cost estimates for the orders. The MRP sends orders and order backlog (from
the PPC production order issuing module) to the G-DSS for use in detailed scheduling. The
G-DSS generates detailed schedules based on the aforementioned data and commands from
the planner. The PPC production order releasing/dispatching module helps by releasing
and dispatching production orders to the shop floor. This detailed schedule is handed to
the shop floor to start production. The PPC shop floor control module aids the process
by receiving necessary data from the production and sending them to the planner for
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analysis. Finally, the process concludes with the PPC shop floor control module sending
the production control data to the ERP system.
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4. Algorithms for Core System Functionality
4.1. Dispatching Level Heuristics

The heuristics chosen for the dispatching level are PDRs. Due to their approximate
nature, they seldom find the optimum solution. However, this has not posed a significant
disincentive regarding their practical implementation. Ever since their initial conception
through the Giffler–Thompson algorithm [19], PDRs have been used extensively in actual
manufacturing environments due in large to the alignment of their mathematical formu-
lation with the shop floor [20]. For example, a worker is capable of easily understanding
the concepts of SPT, earliest due date (EDD), and first in first out (FIFO), while those of ant
colony optimization and artificial immune system are harder to grasp. Another reason for
their wide practical use is their speed in producing schedules: Where a branch and bound
technique or a mixed-integer linear programming (MILP) model would have to run for
a very large amount of time, PDRs produce schedules in a matter of seconds. This is of
huge importance in real industrial situations such as the one highlighted in this paper since
unexpected events, such as machine breakdown and rush orders, may, and more often
than not, do happen. A new schedule must be constructed on the fly so time-consuming
algorithms are avoided.

From a problem-solving perspective and for the efficient application of PDRs, it was
deemed preferable to break down the original n × m problem, where n represents the
production orders and m represents the machines, into a series of single-machine n× 1
instances with a common due date, solve them one by one, and then aggregate the partial
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sequences to construct a full schedule. Precedence constraints between orders are ignored
at this stage. The reason for such a decomposition strategy was twofold: Firstly, the
order backlog created by the MRP function discretely assigns SKUs to work centers and
BOM effectivity dates, and secondly, the large number of orders traversing the shop floor
significantly increases problem complexity when concurrently catering for the BOM tree
structure. Empirical analysis showed that schedule quality does not considerably improve
by solving the constrained n×m problem, while the computational overhead can be up to
150 times as much. For example, when scheduling the cutting group whose typical problem
size can be 201 × 10, aggregation of the n× 1 partial schedules takes, on average, 6s on
a low-end 3.10 GHz dual-core system with only 4096 MBs of RAM. In contrast, using a
genetic algorithm approach, the/problem took a minimum of 15 min on the same hardware
platform. The approach taken was further validated by the production staff that preferred
rapid scheduling and rescheduling over close to optimal schedules.

Table 4 shows how the 201 × 10 instance is broken down into 10 n× 1 problems. It
should be noted that in the relevant table, the two production planning periods (PPPs) are
chosen randomly. For these two, the active SKUs (according to BOM effectivity dates) are
presented, along with the total SKU number (all BOM trees). Columns 4 and 5 depict the
production order number without and with late order inclusion. As can be seen, late orders
are numerous and significantly overburden scheduling. The main reason for such a large
number is the poor performance of the PPC tool, the extensive outsourcing (subcontractors
violate due dates), and a sizeable amount of orders with small quantities (two to three
components) that accumulate over the year. Another point of interest is the fluctuating
number of active SKUs. For the selected PPPs, none of the active SKUs were bound to
work centers A654 and A653. If late orders are included, seven new production orders
are allocated to those centers, which evince that BOM effectivity dates may overlap, thus
further contributing to problem complexity.

Table 4. Cutting group n× 1 problem instances.

Work Center Code
Active SKUs

Spanning
Two PPS

Total No. of SKUs
No. of Active

Orders Spanning
Two PPPs

Total No. of
Orders

(Including Late)

Maximal Problem
Instance

A511 24 62 34 70 70 × 1

A112 20 38 13 33 33 × 1

A111 16 35 16 27 27 × 1

A121 14 31 8 17 17 × 1

A122 13 30 7 31 31 × 1

A131 2 3 2 3 3 × 1

A125 2 2 3 5 5 × 1

A652 1 8 4 8 8 × 1

A654 Not used 3 Not used 5 5 × 1

A653 Not used 6 Not used 2 2 × 1

Total 92 218 87 201 201 × 1

The PDRs chosen by the authors to solve the n× 1 problems are shown in Table 5. The
choice was propagated by interviews with the SME’s production unit staff. The interviews
highlighted the objectives most important to the planner and the foremen and are given
in column 5 of Table 5, along with their mathematical descriptions. Once the required
objectives to be satisfied were established, a thorough literature search was conducted to
pinpoint the PDRs best suited to them. These PDRs were EDD, SPT, LPT, SST, minimum
Slack, and PSF.
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Table 5. PDRs embedded in the G-DSS.

Rule Order Priority Type Rank and Priority Index Best Objective Function Performance

SPT Shortest processing time min τimi Total flowtime

wEDD Weighted earliest due date min wi× di Max weighted
tardiness wTmax = max

i−1≤i≤n
wiTi

SST Shortest setup time min simi Setup times ST = ∑i−1≤i≤n simi

LPT Longest processing time max τimi Total earliness

Slack Minimum slack remaining min di− rimi Total lateness

PSF Pre-subcontractor order first min diPS
Max tardiness of

PS orders TmaxPS = max
(i−1)PS≤iPS≤nPS

TiPS

Combo Combination of SPT, PSF,
Slack, LPT, SST

min/
max S(i) Multi-objective All the above

In the first-level dispatching, all the n × 1 problems are solved according to the
weighted EDD rule. The due date is common for all on-time orders (end of the current
PPP) and negative for the late ones (end of their previous PPP). As such, late orders are
ranked first according to their significance level—the weights in the EDD—and the same is
performed for the remaining ones. No machine idle time is allowed, since, for the n× 1
case, the optimal schedule utilizes the machine fully.

Second-level dispatching is performed in a similar way, but with the rest of the PDRs
in Table 5. Orders are classified and sent in ascending or descending order by SPT and
LPT, respectively, based on their processing time. SST tries to group together similar SKUs
(late and on time) in order to save setup time and can be strengthened further by selecting
whether to schedule orders ascending or decreasing in setup length. There are no settings
that are sequence-dependent, and the SME uses an average configuration for each work
center. Slack prioritizes orders based on their processing time and due dates in order
to avoid late orders. If late orders are not included since all the remaining ones have a
common due date, slack is relegated to the LPT rule. Slack may seem redundant at this
point, but the SME is planning to break the common due date rule by assigning smaller
due dates to pre-subcontractor orders and that was the key driver behind the inclusion.
Until the final definition of subcontractor due dates, PSF was included to give priority
to the relevant orders by positioning them at the start of the PPP so as to outsource the
post-processed components as early as possible.

Thenarasu et al. (2022) [21] noted that combinations of PDRs will almost certainly out-
perform any simple PDR implementation; a conclusion derived from the high dependency
of PDRs on problem-specific knowledge. With that in mind, the authors implemented a
template through which the planner can create a combination (combo) of rules by assigning
weights to each one. This enables the formulation of a production order sequence Sm that
can be easily tweaked to suit a given problem better. The template is given in Equation (1)
along with the constraints and possible values of the various parameters.

Sm =
mi=m

∑
mi=1

Smi (1)

where
mi = (w1× SPTmi + δ1×WEDDmi) + (w2× LPTmi + δ2×WEDDmi)
+(w3× PSFmi + δ3×WEDDmi) + (w4(k× aSSTmi + (1− k)dSSTmi)

+δ4×WEDDmi)
(2)

Subject to:
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w1 + w2 + w3 + w4 = 1 and
δ1, δ2, δ3, δ4 = 1 for late order prioritization, else

δ1, δ2, δ3, δ4 = 0
k = 0 for descending SST sequence (dSST)
k = 1 for ascending SST sequence (aSST)

4.2. Bottleneck Identification and Order Transferring Methods

The practical application of the G-DSS showed that second-level dispatching is usually
followed by alleviation of the resulting bottlenecks. Due to the accumulation of late orders
and violated due dates by the subcontractors, the planned orders by the PPC system may
still surpass the capacity of a work center for a full PPP. Bottlenecks are pinpointed using
the bottleneck identification method. Using data regarding capacity, order quantities, shifts
per day, hours per shift, and efficiency, the G-DSS calculates the workload of a work center
via the following function: WLmi = ∑i=n

i=1 τimi, where τimi = Ni/(ami × pCapimi), with ami
representing the efficiency of the work center mi and pCapimi representing the capacity of
machine mi required to produce a unit of SKU i (ami and pCapimi are taken from the PPC
database). If WLmi > PPPLmi, where PPPLmi = daysppp× no_shi f tsmi × hrs_shi f t, then
mi is flagged as overloaded and the planner is prompted for action. There are two types of
action the planner may take: Either transfer orders to earlier or later PPPs or alternate work
centers. In the case of alternate centers, the G-DSS functions in the following manner:

1. Calculate the capacity margin of alternate work centers mk, i.e., CMmk = PPPLmk −WLmk.
2. If CMmk > 0 do:

a. Calculate τimk = Ni/(a× pCapimk).
b. Add τimk to WLmk.
c. Repeat until CMmk = 0.

Instead of making the above moves automatically, the G-DSS informs the planner
through a form of possible production orders that may be moved to alternate work centers
and leaves the end decision up to them.

Except for the typical manual transferring function, the planner may also utilize the
“freeze mode”. In “freeze mode”, the planner may transfer production order i to any
given point in the sequences Smi ∨ Sml ∨ . . . ∨ Smk, with [ml, . . . , mk] representing the set
of alternate machines, by concurrently inserting machine idle time, which is prohibited
during the first and second dispatching levels. This function was employed in the G-DSS
mainly to cater for dynamic shop floor events such as machine breakdowns, maintenance,
rush orders, etc. For example, if mi breaks down, then the planner would activate “freeze
mode” to insert the necessary idle time in Smi to accommodate the repair time.

4.3. Order Preemption Algorithm

As embedded in the G-DSS, order preemption is applicable to orders that have a
delayed status, and a portion of their initial quantity may have already been produced
in a previous PPP. If Niinitial is the initial order quantity of order i and Niremaining is the
remaining quantity to be produced, then the following steps are performed:

1. Create set P =
{

i : Niinitial − Niremaining > 0, ∀i ∈ P
}
∀i ∈ P do:

a. Deem Niremaining as the quantity of new production order iremaining.

i. Set PPPiremaining = PPPcurrent if CMmi > 0, else.
ii. PPPiremaining = PPPcurrent + 1.

b. Assign new production order id for iremaining.
c. Set Niinitial − Niremaining as the quantity of production order i.
d. Set PPPi = PPPinitial.
e. Keep production order id of i for new i.
f. Set order status of i as closed.
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2. Terminate.

In addition to the above algorithm, the planner can also perform manual preemption
by selecting the orders they wish from the P set and setting the desired Niremaining quantities.
The scope of preemption is twofold: To alleviate bottlenecks and overloaded work centers
by preempting orders for centers with CMmi < 0 and compare the PPC-planned production
quantities with the quantities actually produced at certain PPPs.

4.4. BOM Precedence Constraint Satisfaction Metaheuristics

The first- and second-level dispatching methodologies outlined in Section 3.1 ignore,
in favor of speed, precedence constraints that may exist among components scheduled to
be produced within the same PPP. Except for scheduling speed, the main reason for this
decomposition strategy was the make-to-stock policies the SME employs for raw materials,
components, and end items. If there is sufficient stock of a child (the preceding component)
to initiate production of the father (the succeeding component), then this type of precedence
relationship can be regarded as a soft constraint with the penalty being the child’s stock
reduction. Due to the nature of the PPC system, it is an extreme rarity to come across more
than a single-level child–father occurrence in a PPP, e.g., i− 1→ i→ j where i− 1 and i
denote the child and father/child, respectively, and j represents the father. Therefore, in the
remainder of the paper, the focus will be solely on p(i, j) pairings.

The authors, in order to explore the feasibility of a schedule with precedence constraint
violations, formulated a hybrid TS/VNS algorithm coupled with the ATM module already
mentioned in the paper. For more information regarding TS and VNS, the reader is
referred to Qiu et al. (2018) [22] and Rezgui et al. (2019) [23], respectively. In this unique
implementation, random weights are assigned to SPT, LPT, and PSF, and a typical TS
algorithm with backtracking is executed. The neighborhood consists of ±0.02 of the
previous iteration’s w1, w2, w3 values. Two tabu lists are kept to store the values of w1, w2,
with w3 = 1− w1− w2. If a neighbor is found in which either w1 or w2 belong in the
respective tabu lists, then that neighbor is rejected. Solution quality is determined by the
number of properly oriented p(i, j) pairings, i.e., Ci ≤ rj.

Two additional counters are initiated: vns_counter = 0 and cycle_counter = 0. These
counters count the number of iterations for which the current solution quality has not improved.
Once the vns_counter reaches a certain number of iterations, the VNS concept of shaking is
applied to launch w1 and w2 into other neighborhoods and diversify the search. If shaking
fails to improve the quality and the cycle_counter fill-up search up to that point stops, an
elite solution is chosen from the elite set, the tabu lists are wiped, and the search is reinitiated
from this solution. The elite set holds a number of promising solutions found during search
and ranks them in last in first out (LIFO) fashion, thus serving a number of good points for
re-intensification when the search stagnates. The search terminates when all possible pairings
have been properly oriented, all possible elite solutions have been used, or the maximum
number of iterations has been exhausted. The pseudocode of the algorithm is the following:

1. Initialize parameters of the TS/VNS algorithm.
2. Assign random weights w1, w2, w3 to SPT, LPT, PSF and set iters = 0, tabu_list1 = 0,

tabu_list2 = 0.
3. If late orders are prioritized then δ = 1,

Elseδ = 0.
4. Create elite set E = {u(w1, w2, n(n+))} with n(E) = 8 and set vns_counter = 0,

cycle_counter = 0.

a. Create a sequence for which the following holds true: S = w1× SPT + w2×
LPT + w3× PSF + δ×WEDD ∧ w1 + w2 + w3 = 1.

b. Calculate n+ =
{

p(i, j) ∈ nmax : S−1(i) < S−1(j)
}

.
c. Add current {u(w1, w2, n(n+))} to E.
d. Locate non-tabu neighbor of S, S* by randomly perturbing w1, w2 within a

±0.02 interval (neighborhood), set w3 = 1− w1− w2.
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e. Calculate n+ =
{

p(i, j) ∈ nmax : S−1(i) < S−1(j)
}

.
f. If n

(
n+

S∗
)
> n(n+) set S = S* and add w1, w2 to tabu_list 1 and tabulist2 and set

iters = iters + 1.
g. If n

(
n+

S∗
)
> n

(
n+

min
)
, n

(
n+

min
)
= minn(n+), ∀u ∈ E then replace umin with uS∗

and set vns_counter = 0, cycle_counter = 0.
h. If n

(
n+

S∗
)
≤ n

(
n+

min
)
, n

(
n+

min
)
= minn(n+), ∀u ∈ E then set vns_counter =

vns_counter + 1, cycle_counter = cycle_counter + 1.
i. If vns_counter = 60 perform shaking by randomly setting w1∗ = w1± 0.1 ∧

w2∗ = w2± 0.1.
j. If cyclecounter = 75 then recover uli f o(w1, w2, n(n+)) and set w1 = w1li f o,

w2 = w2li f o and go to a.

5. Terminate if n(nmax) = n(n+) ∨ n(E) = ∅∨ iters = maxiters.

Empirical analysis showed that in the vast majority of the cases, the TS/VNS algorithm
did not properly orientate all the p(i, j). This outcome was of no surprise since no problem-
specific knowledge is incorporated into the algorithm. Furthermore, such a result does not
necessarily create an infeasible schedule, as was previously mentioned. To test schedule
feasibility, the ATM algorithm is employed. Once its parameters are initialized, ATM
identifies a set of p(i, j) pairings that maintain improper orientations and then proceeds
to create three discreet subsets: Subset C contains pairings in which children have 1 to 1
relationships with the fathers, subset F contains pairings of n to 1 type relationships, and
finally, subset K, in which those same relationships are 1 to n. The next step is the calculation
per subset of the earliest possible starting times minrjmj of the fathers while taking into
account current stock levels, desired child quantities, and children’s completion times.
Comparisons of these starting times with the ones provided by the TS/VNS algorithm
reveal if feasibility has been broken. The steps of ATM are given below:

1. Initialize ATM parameters.
2. Identify set n− = {p(i, j) ∈ nmax\n+}.
3. Dim C = {p(i, j) ∈ n− : i 6= k, j 6= l, ∀p(i, j,), p(k, l) ∈ C ⊆ n−}.

a. If mj = mi then δmjmi = 0, else δmjmi = 1.

b. ∀p(i, j) ∈ C calculate minrjmj = rimi + δmimj × τimi ×
(

1− STi
Ni

)
+(

1− δmimj
)
× τimi.

c. If rjmj < minrjmj then the orientation of p(i, j) ∈ C is wrong.

4. Dim F = {p(i, j) ∈ n−\C : j 6= l, ∀p(i, j,), p(k, l) ∈ F ⊆ n−}.
a. ∀j ∈ F.

i. ∀i ∈ F calculate minrjmj = rimi + δmimj × τimi ×
(

1− STi
Ni

)
+(

1− δmimj
)
× τimi.

b. Find max
(
minrjmj

)
.

c. If rjmj < max
(
minrjmj

)
then the orientation of p(i, j) ∈ F is wrong.

5. Dim K = {p(i, j) ∈ n−\C : i 6= k, ∀p(i, j,), p(k, l) ∈ K ⊆ n−}.
a. ∀i ∈ K.

i. ∀j ∈ K calculate ∆ = rjmj − (rimi + τimi).

1. For mi = mj if ∆ < 0 then the orientation of p(i, j) ∈ K is wrong.
2. For mi 6= mj then

a. ∀p(i, j) ∈ K ∧ ∆ < 0 if STi ≤ ∑J
j=1 Nij then at least one of

p(i, j) ∈ K the orientations are wrong.
b. ∀p(i, j) ∈ K ∧ ∆ > 0 then p(i, j) ∈ K is correctly oriented.

6. Collect all wrongly oriented p(i, j) ∈ n− and terminate.

ATM’s termination is accompanied by the feasibility status of the schedule. Empirical
data showed that infeasibility is highly probable, especially for functional groups with
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a very large number of p(i, j) pairings (as many as 60 spanning two PPPs), such as door
lock assembly. If that is the case, the next step is supporting the planner in his decision to
properly orientate the wrong pairs through the repair method outlined below:

1. ∀ p(i, j) ∈ C− do:

a. Prompt user to transfer either i or j earlier or later until rjmj = minrjmj.

2. ∀ p(i, j) ∈ F− do:

a. Prompt user to transfer either i or j earlier or later until rjmj = max
(
minrjmj

)
.

3. ∀ p(i, j) ∈ K− do:

a. Calculate all
τ jmj
Nij

.

b. Find j with min
τ jmj
Nij

.

c. Prompt user to transfer j.
d. If STi ≥ ∑J

j=1 Nij terminate, else go to b to find next j.

Of final note in this section is the impact analysis heuristic. This heuristic extends the
logic behind BOM precedence constraint satisfaction to all the functional groups. Execution
normally comes after the termination of the TS/VNS-ATM algorithm for all functional
groups. The first step is the identification of p(i, j) pairings for which i and j belong to
different functional groups. For all such pairs, if transferring or any type of dispatching
has led to PPPi = PPPj, hence i has been delayed, then the planner is prompted to transfer
j to PPPj = PPPi + 1.

Additionally, if i has been moved significantly earlier (a rare occurrence), for example,
PPPi = PPPj− 3, then the planner is prompted to transfer j to PPPj = PPPj− 2. The
main goal is to have a single PPP difference for all pairs belonging to different functional
groups, thus conforming to the lead times. The exhortations are presented to the planner
via a report indicating the child–father production order codes, the work centers producing
them, their respective functional groups, the start and finish times, and finally, the PPPs.

Table 6 provides a synopsis of the algorithmic framework presented in Section 4. All the
algorithms are presented along with their inputs and outputs. The inputs are directly drawn
by the G-DSS from the PPC database since both systems share a common database schema.
The only exception is the ATM algorithm where the children’s stock quantities are taken from
the ERP system, which functions as the inventory monitoring system of the case study.

Table 6. Synopsis of core functionality algorithms.

Algorithm Inputs Outputs

Weighted earliest due date heuristic (WEDD) Quantities, processing times, due date, priority level Sequence of orders

Priority rule “SPT” Quantities, processing times, due date Sequence of orders

Priority rule “LPT” Quantities, processing times, due date Sequence of orders

Priority rule “PSF” Quantities, processing times, due date Sequence of orders

Priority rule “SST” Quantities, processing times, due date, setup times
per workcenter Sequence of orders

Priority rule “Combo” Quantities, processing times, due date, setup time,
priority level Sequence of orders

Capacity calculation algorithm Work center capacity, quantities of sequenced orders Work centers load, bottleneck identification

Processing time estimation algorithm Alternative work centers, capacities, quantities of
sequenced orders Processing time for alternate work centers

Preemption algorithm Planned quantities, remaining quantities, due date New production orders for the remaining quantities

ATM BOM tree, quantity of “father items”, inventory of
“children items”, starting time of “children items”

Production orders of “father items” capable
to manufacture

TS/VNS Weighted priority indexes of priority rules,
quantities, processing times, due date, priority level Improved sequence of orders

BOM tree impact analysis heuristic BOM tree, due dates, production groups of “father
items” and “children items” List of proposed orders transfers
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5. Computational Results for the TS/VNS-ATM Algorithms

Tables 7 and 8 present the best results over 20 runs of the hybrid TS/VNS and the
complementary ATM module. The algorithms were coded in VB.NET and were run on
a low-end 3.10 GHz dual-core system with 4096 MBs of RAM. The parameter settings
of the TS/VNS algorithms were maxiters = 10,000, n(E) = 8, tabu_list1 = 6, tabu_list2 = 6,
vns_counter = 60, cycle_counter = 75. The same two random sequential PPPs were chosen for
all functional groups, and two sets of experiments were conducted. In the first (Table 7),
the late orders accumulated over the course of the previous PPPs were included, whereas
in the other (Table 8), they were not released for dispatch. This approach highlighted one
interesting aspect regarding the shop floor mentality of the case study leading up to the
G-DSS implementation: Functional groups such as seizure and nailing and intermediate
phases may have as little as 0 late orders, while casting, assembly, and cutting have as many
as 38. Additional computational results showed that for the former groups, 0 late orders
are neither a rarity nor the norm, ergo it just so happened that for the two PPPs chosen, no
late orders had accumulated. For statistical reasons, the end results are presented solely for
those two periods.

Table 7. Results of TS/VNS-ATM with late orders released.

Functional
Group Late Orders Released

Two PPPs Total
Orders

Father Child
Pairings TS/VNS δ = 1 TS/VNS δ = 0 SPT LPT PSF ATM Result

Intermediate
Phases 63 18 8/18 (34 s) 12/18 (32 s) 3 23 96 74 1 3 6/10 3/6

Cylinder
Components 65 33 20/33 (37 s) 23/33 (36 s) 33 51 9 34 58 15 9/13 7/10

Seizure and
Nailing 48 18 9/18 (29 s) 11/18 (27 s) 29 14 30 31 41 55 5/9 4/7

Cutting 145 24 7/24 (75 s) 12/24 (72 s) 14 32 45 34 41 34 10/17 7/12

PROTON
Assembly 10 2 2/2 2/2 (8 s) 19 24 57 62 24 14 —— ——

Door Lock
Assembly 138 48 17/48 (94 s) 35/48 (89 s) 50 53 8 15 42 32 23/31 10/13

Casting 119 24 9/24 (85 s) 17/24 (82 s) 5 14 74 60 21 26 6/15 3/7

Table 8. Results of TS/VNS-ATM with late orders not released.

Functional
Group Late Orders Not Released

Two PPPs Total
Orders Two PPPs Total

Orders Two PPPs Total
Orders Two PPPs Total

Orders Two PPPs

Intermediate
Phases 63 18 8/18 (34 s) 13/18 (32 s) 3 23 96 74 1 3 6/10 3/6

Cylinder
Components 63 33 21/33 (35 s) 24/33 (34 s) 27 51 15 34 58 15 10/12 8/9

Seizure and
Nailing 48 18 9/18 (29 s) 11/18 (27 s) 29 14 30 31 41 55 5/9 4/7

Cutting 78 12 4/12 (61 s) 7/12 (55 s) 47 34 41 45 12 21 5/8 3/5

PROTON
Assembly 10 2 2/2 2/2 (8 s) 19 24 57 62 24 14 —— ——

Door Lock
Assembly 100 39 11/39 (54 s) 28/39 (50 s) 50 26 5 19 45 64 24/28 9/11

Casting 106 13 12/13 (76 s) 13/13 (72 s) 9 21 69 55 22 24 1/1 —–
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The tables show the functional group, the total number of orders and p(i, j) pairings,
and the number of correct orientations achieved by TS/VNS with the running time given
in the brackets. Two executions of TS/VNS are performed: In the first, parameter δ is set to
1, i.e., late orders due to the first- or second-level dispatching are prioritized, and in the
second, δ = 0. The next three columns show the percentages (weights) with which each
PDR participates in the best synthesis of rules for each execution. The final column depicts
the ATM results. No ATM runs were performed if TS/VNS reached the optimum number
of proper p(i, j) orientations. The maximum running time of ATM was 9 s, and due to this
very small value, running times are not included.

At first glance of the results, what becomes apparent is the strong effect δ has on the
solution quality. If late orders stemming from initial dispatching, even if previous PPP
late orders are not released, are prioritized, then fewer pairs will be properly oriented.
Since no machine idle time is allowed during schedule construction, a late order would be
scheduled first in a work center compared to a child, whose father may be constrainedly
first on its relative work center if no other orders are present. Therefore, this p(i, j) pair
could become wrongly oriented. The same applies if there are additional orders in the
father’s work center, but their cumulative processing time is insufficient to surpass both the
late orders and the child’s time. This was particularly evident in the cutting group where
the capacity of work center A511 (see Table 4) is sizeable, leading to a very large number of
short production orders.

In general, if late orders are not released (Table 8), TS/VNS performs slightly better,
see for example, the assembly group, but the overall average performance is similar. This
leads to another interesting conclusion: The majority of late orders from previous PPPs
constitute a child whose father or fathers are on the current PPP. When released immediately,
an additional p(i, j) is identified. If late orders had no correlation whatsoever with the
remaining ones, then the performance of TS/VNS would degrade, especially for δ = 1, since
late orders occupy additional potential slots that could be used for proper orientation.

The computational overhead of the TS/VNS module is correlated with the number
of production orders released and not the total number of p(i, j) pairs. Overall running
times are shallow and can be considered substantial only for the door lock assembly group
and the casting phase. No clear conclusions can be drawn regarding the superiority of any
single PDR in any group. Apparently, a general pattern can be identified for all functional
groups. For example, in the casting phase, δ = 1 LPT appears to perform remarkably well,
whereas PSF comes in second, and SPT notes the worst performance of the 3. If δ = 0,
the values of w1, w2, w3 do not change significantly, but the contribution of SPT increases.
Indexes appear to be genuinely stochastic only in the cutting group, while w1, w2, w3
appear to be entirely differentiated between Tables 7 and 8.

The performance of the ATM module validates the approach taken by the authors in
tackling this scheduling problem. In most cases of p(i, j) pairs, there is enough stock of i to
commence production of j with the starting time rjmj defined by the TS/VNS algorithm.
The maximal number of wrongly oriented p(i, j) is 8 and is found in the assembly group if
late orders are released. The vast amount of orders traversing this group makes additional
order transferring by the planner inevitable in order to fully satisfy the BOM precedence
constraints. In the other groups, minor adjustments need to be made in the TS/VNS
schedule since, in most cases, an average number of 4 p(i, j) orientations necessitate fixing.
The parameter δ has a substantial impact on the ATM output, and this can be seen in both
tables. If δ = 1, more children are scheduled later than their relative fathers’ minimum
starting time. Empirical analysis showed that the number of wrong p(i, j) orientations is
equal to the respective number if δ = 0, plus the additional disoriented pairs that resulted
when prioritization was given to late orders ensued by first and second-level dispatching.

6. Discussion

Consumer desire for variety, shorter product life cycles, changing markets due to
global competition, and fast development of new goods, services, and processes have all
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boosted interest in comprehensive production scheduling among academics and industry.
The aforementioned economic and social market constraints highlight the need for a pro-
duction planning system that requires little inventory, reduces waste output, and maintains
customer satisfaction by delivering the right product to the right consumer at the right
time. As a result, manufacturing processes such as make-to-order, cellular manufacturing,
group technology, demand management, and engineering-to-order have emerged during
the previous three decades. Except for process reengineering, different plant layouts, and
a reinvented business culture, all of these processes need the facilitation and control of
efficient, effective, and precise scheduling. Due to the complexity of scheduling in all but
the smallest production facilities, it remained jolted until the mid-1990s, when the first
APS systems were launched. These systems integrate operational research algorithms
and decision support tools to optimize the whole supply chain, not just the shop floor.
Although once hailed as the preferable method for resolving scheduling challenges, their
high purchase prices, many installation hurdles, and limited connection with ERP systems
rendered them too expensive for the majority of SMEs.

Following that, customized, comprehensive production scheduling DSS systems
emerged as a trend. These systems are capable of effectively depicting the unique charac-
teristics of a manufacturing process and are not encumbered by the functionality of typical
APS systems. That was also the objective of the research effort described in the paper: To
create and implement a customized scheduling DSS in a repetitive make-to-stock SME.
While the case study does not use customer-oriented manufacturing processes such as
make-to-order, the significant use of subcontractors, the existence of dynamic events, and
the piling of late orders highlight the need for shop floor visibility and control.

The requirements were satisfied by the G-DSS releaser/dispatcher, which incorporates
all of the essential features and techniques for swiftly producing schedules and makes
them accessible through a user-friendly, aesthetically attractive Gantt chart-based GUI.
The decision-support part of the system was emphasized through manual selection in
order releasing, transferring, preemption, report creation, what-if analysis, and alternative
scenario management. The system’s interoperability with the surrounding IT infrastruc-
ture, specifically the PPC system and the ERP package, is fully supported, allowing for
unhindered information flow through a three-tier planning framework that begins with the
calculation of end item requirements over the long term, progresses to disaggregation of
those requirements over the medium term, and finally collapses to component and material
requirements for a single day or shift via the G-DSS.

The algorithmic framework embedded in the G-DSS enhances decision support func-
tionality by containing all the necessary heuristics, metaheuristics, and methods necessary
to facilitate efficient scheduling and full workload control in a complex make-to-stock
manufacturing environment with a high order-to-machine ratio, parallel work centers,
integrated BOMs and routings, and extensive outsourcing. Dispatching is performed on
a single machine level via fast and effective PDRs, and workload control uses manual
input supported by proposed preemptions and the utilization of parallel machines. Finally,
BOM tree constraints are handled by the hybrid TS/VNS-ATM metaheuristics. Due to this
assortment of tools and algorithms, the scheduling process is initiated in a single functional
group by selecting the appropriate orders from the backlog and releasing them to the shop
floor. First- and second-level dispatching solves the numerous single-machine problems
present in the group and feed the remaining steps in order for the schedule to be further
improved. Once the work center load has been regulated to below 100%, the child–father
pairings are partially satisfied, and the end schedule is validated by updating the PPC and
ERP databases.

7. Conclusions

This research provided a procedural sequence for a hierarchical planning framework
and included a case study in which the MPS estimated long-term end-item requirements
and passed those requirements to the PPC system, which generated the production order
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backlog. Orders were freed from the backlog and dispatched to work centers, and detailed
schedules were prepared using the G-DSS. Generally, a planner will run the G-DSS at
the start of each planning period (which is typically a week), extracting the most recent
production order data. Schedules may be prepared for each product category and sent
to foremen to start production. If dynamic events occur, such as a rush order, a machine
breakdown, or a subcontractor fails to meet a deadline, the planner may rearrange to
accommodate. The whole procedure is repeated weekly.

As demonstrated in the case study, the SME benefited by gaining visibility into its
manufacturing process, reducing lead times, avoiding stock-outs, increasing flexibility
and responsiveness to demand fluctuations, and collaboratively organizing its production,
maintenance, sales, and procurement departments.

The aforementioned framework is scalable and applicable to similar production make-
to-stock environments with few modifications required. Additionally, due to the effec-
tiveness of the TS/VNS-ATM metaheuristic, these environments can benefit significantly
from the G-DSS in terms of stock management and utilization. For example, the SME
presented in the paper had accumulated component stock by the end of 2021 in the vicinity
of 2,000,000 euros. Projected estimates for this year decrease that amount to 1,200,000
thanks to the implementation of the new system.

Applicability of the new production scheduling system is also feasible in make-to-
order environments where scheduling speed is of even greater importance. The method of
working would be precisely the same, i.e., solving single-machine problems with PDRs and
managing constraints with a similar template to the TS/VNS-ATM metaheuristic; however,
with alternate stock functions employed. Instead, for such types of shop floors, ATM can be
converted into a fully functioning ATP providing the customer with a quick and immediate
reply regarding the potential satisfaction of his order. In this light, to gain the full benefit of
the G-DSS as a whole, a three-tier planning architecture initiated from aggregate plans and
resulting in detailed schedules is best suited.
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Appendix A Notations Used throughout the Paper

Table A1. Notations.

Name Description Name Description

τimi Processing time of order i machine mi Fi
Flow time

Fi = Ci− ri

di due date of i Ti Tardiness

simi Setup time of order i machine mi Ei Earliness

rimi Release time of order i machine mi Li Lateness

diPS Due date of pre-subcontractor order i S−1(i) Position of i in permutation S

Ni Order quantity of i required by j n+ Subset of properly oriented
child-father pairs
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Table A1. Cont.

Name Description Name Description

STi Stock quantity of i nmax Set of all child-father pairs

Ci = ri + τi Completion time of order i n− Subset of wrongly oriented
child-father pairs

Sm Scheduling sequence for all machines Smi Partial sequence of machine mi

w Weight index PPPPLmi Length of PPP for machine mi

Appendix B Mathematical Model Used in ATM Algorithm

If τimi = Timi × Ni is the total processing time and rimi is the starting time of order i
on machine mi while (Timi)

−1 × t is the production rate of i as a function of time t, then
the units of i are equal to:

Ui(t) = STi + (Timi)
−1 × t (A1)

If tcrit is the time when the quantity of i is sufficient for production of j to commence,
i.e., ni(tcrit) = Ni, then Equation (A1) is formulated as:

Ni = STi + (Timi)
−1 × tcrit⇔

tcrit = (Ni− STi)× Timi
(A2)

Since Timi = τimi/Ni, then Equation (A2) can be transformed as:

tcrit = τimi −
(

STi× τimi
Ni

)
= τimi

(
1− STi

Ni

)
(A3)

Due to (A3), the minimum starting time of father j becomes:

minrjmj = rimi + τimi ×
(

1− STi
Ni

)
(A4)

Equation (A4) holds true only if mj 6= mi. For that reason, we insert in (A4) the integer
parameter δmimj such that if mj = mi then δmimj = 0, else δmimj = 1. Given the above,
we have Equation (A5):

minrjmj = rimi + δmimj × τimi ×
(

1− STi
Ni

)
+

(
1− δmimj

)
× τimi (A5)

When viewed from the makespan perspective of the classic job shop scheduling
problem, i.e., min(maxrzmz + τzmz), the traditional precedence constraint can be replaced
by (A5), and the following additional constraints must also be satisfied:

rjmj, rimi, τimi, STi, Ni ≥ 0 (A6)

rimi − rkmi ≥ τkmi ∨ rkmi − rimi ≥ τimi, ∀(i, k) mi sequentially processed on (A7)

rjmj − rlmj ≥ τlmj ∨ rlmj − rjmj ≥ τ jmj, ∀(j, l) sequentially processed on mj (A8)
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