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Abstract: The joints running trajectory of a robot directly affects it’s working efficiency, stationarity
and working quality. To solve the problems of slow convergence speed and weak global search ability
in the current commonly used joint trajectory optimization algorithms, a joint trajectory planning
method based on slime mould whale optimization algorithm (SMWOA) was researched, which could
obtain the joint trajectory within a short time and with low energy consumption. On the basis of
analyses of the whale optimization algorithm (WOA) and slime mould algorithm (SMA) in detail,
the SMWOA was proposed by combining the two methods. By adjusting dynamic parameters and
introducing dynamic weights, the proposed SMWOA increased the probability of obtaining the global
optimal solution. The optimized results of 15 benchmark functions verified that the optimization
accuracy of the SMWOA is clearly better than that of other classical algorithms. An experiment
was carried out in which this algorithm was applied to joint trajectory optimization. Taking 6-DOF
UR5 manipulator as an example, the results show that the optimized running time of the joints is
reduced by 37.674% compared with that before optimization. The efficiency of robot joint motion was
improved. This study provides a theoretical basis for the optimization of other engineering fields.

Keywords: slime mould algorithm; whale optimization algorithm; trajectory planning; meta-heuristic
algorithm; zero-defect manufacturing

1. Introduction

With the development of the age, manufacturing has gradually become leaner in order
to meet customer needs and ensure product quality. Zero-defect manufacturing (ZDM) [1]
has become a new standard for manufacturing. More environmental protection, higher
efficiency, and zero defects become the new requirements. In order to make product pro-
cessing closer to ZDM, it is especially important to achieve the correct machining motion
profile. Working accuracy and motion stationarity have become important indicators for
the measurement of machining performance and have become research hotspots in the man-
ufacturing industry. Legnani et al. [2] proposed a smooth interpolation method between
any given angle pose by combining rotations and simple polynomials, with the duration
of these different segments having the ability to be arbitrarily modified to optimize the
trajectory. This method allows for attitude transition from any direction, which allows for a
continuity of angular position, velocity and acceleration. The stationarity was improved in
the machining process. Aggogeri et al. [3] built a combined feedback–feedforward adaptive
regulator based on the concept of a harmonic steady-state. The vibration generated in
the machining process was suppressed. Experiments on a four-axis machine tool showed
that the proposed method could greatly reduce the vibration amplitude. Borboni et al. [4]
analysed the influence of discretization truncation and interpolation on the ideal motion
line. The numerical and experimental experiments demonstrated that linear interpolation
was an effective interpolation method. Multiple points were interpolated in the optimal
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range so that excessive interpolation was avoided and better dynamic results were obtained.
Incerti et al. [5] designed an operational approach to define a computational model that can
simulate the dynamic behaviour of servomechanisms. The model had the characteristics
of elasticity and backlash. Based on the typical control scheme of position feedback and
a PID regulator, the computational module in the software could optimize and evaluate
the dynamic performance of the servo mechanism in different experiments. The relevant
parameters were calibrated. For joint robots commonly used in industry, the machining
motion contour is presented in Cartesian space, and the accuracy of the machining motion
contour depends on the trajectory of each joint in the joint space. Therefore, the research of
joint trajectory planning is of great significance in obtaining a more accurate machining
motion contour.

1.1. Literature Review

Trajectory planning works to solve the displacement, velocity and acceleration of
each joint in real time according to the motion path and trajectory of the manipulator
based on its task requirements, so as to generate a motion trajectory. When trajectory
planning is carried out in joint space, a time function is generally used to describe joint
variables and plan their first-order and second-order time derivatives [6]. It is therefore
also called planning considering differential constraints. In general, the motion path
points are first transformed into joint path points using inverse kinematics equations, and
then smooth fitting is performed on each joint path point [7]. Commonly used trajectory
planning interpolation algorithms include cubic polynomial, quintic polynomial, cubic
B-spline, parabolic transition, mixed interpolation, etc. The cubic polynomial is simple to
calculate, but it cannot guarantee continuous acceleration. Due to vibration and impact
in the machining process it is a suitable algorithm for simple point-to-point motion. The
quintic polynomial increases the acceleration constraint, which reduces the impact and
increases the computation. It is suitable for high-speed and high-performance motion
from point to point. The multi-segment polynomial interpolation algorithm is suitable
for multi-point continuous motion, but the smoothness of the joints is not guaranteed.
Spline curves with geometric invariance, local support and other characteristics can make
multi-segment trajectory transitions smooth and reduce joint impact. In the Cartesian space,
the joint-angles need to be obtained by solving the inverse kinematics equation many times,
and angular velocities of the joints are obtained by solving the inverse of the Jacobian
matrix [8].

For the optimal trajectory planning of manipulator joints, the current research focuses
on optimization based on time, system energy and the presence of multiple objectives.
For the study of time-optimal trajectory planning, Choi et al. [9] fused kinematic methods
and evolutionary strategies for the trajectory planning of optimizers. This is effective
for specific articulated robots for which it is difficult to obtain exact dynamics equations.
Guo et al. [10] studied the planning of time-optimal trajectories of space robots under
dynamical constraints based on particle swarm algorithms. Yin et al. [11] interpolated
the position sequence of joints using cubic spline. An adaptive genetic algorithm that
introduced the penalty function was used to optimize the shortest time trajectory. Lian [12]
proposed a multi-variate time optimization method to optimize the trajectory of each joint
based on a smooth trajectory generator. Yu et al. [13] combined a second-order continu-
ous polynomial interpolation function with the optimization subject of a cosine reduced-
weight particle swarm constrained by kinematics and dynamics. A time-optimal (TO)
strategy was proposed and the motion time of the manipulator was successfully optimized.
Cheng et al. [14] transformed the trajectory of a manipulator into a position and time series
in the joint space by inverse kinematics. The quintic B-spline curve was used for interpola-
tion. The objective function was optimized by the non-dominated sorting genetic algorithm
(NSGA-II) and a time-optimal, safe, collision-free trajectory planning method was proposed.
Yu et al. [15] designed a time-optimal trajectory planning method for robotic arms, which
could search for optimal paths simultaneously. A uniform cubic b-spline interpolation
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algorithm was proposed to derive the motion curve expression of the manipulator joint
with unknown path points. The trajectory was optimized based on the genetic algorithm.
Zhao et al. [16] introduced chaos strategy and inertia weight to optimize the whale op-
timization algorithm and applied it to the trajectory planning of a robot arm. The Wolf
optimization algorithm and particle swarm optimization (PSO) algorithm were compared.
The improved algorithm is more accurate and is faster.

In terms of energy optimization, Hirakawa et al. [17] used B-spline curves and vari-
ational method to optimize the trajectory of redundant robots. Uarg et al. [18] combined
a genetic algorithm and an adaptive simulated annealing algorithm. The minimum mo-
ment was set as the optimization objective for trajectory optimization. Cheng et al. [19]
established a distributed dynamic physical model of a variable stiffness flexible robotic
arm based on Hamilton’s theory. The minimum vibration displacement, minimum energy
consumption, and minimum trajectory tracking deviation were taken as the performance
objectives. The motion trajectory planning of the variable stiffness flexible robotic arm was
carried out based on a cloud adaptive differential evolution (CADE) optimization algorithm.

For multi-objective optimization, Yang et al. [20] used the penalty function method
to improve the objective function in the optimization process for the constraint problem.
The improved objective function was solved by an improved genetic algorithm with elite
strategy, and the diversity of the solution set was maintained. Different penalty costs for
different levels of objective functions were significantly improved in terms of solution
speed and efficiency. Based on the quintic non-uniform rational B-spline (NURBS) curve
mathematician, taking the running time, energy consumption and trajectory pulsation as
the objectives, Shi et al. used the non-dominated sorting genetic algorithm with an elitist
strategy [21] (NSGA-II) and multi-objective particle swarm optimization algorithm [22]
(MOPSO) to optimize the trajectory of industrial robots, respectively. The Pareto optimal
solution set was obtained, and the normalized weight objective function was constructed
to obtain a high-order continuous optimal trajectory. Feng et al. [23] fitted the trajectory
of the robot joint space by the high-order polynomial interpolation method based on
the particle swarm optimization algorithm to ensure the stability of the joint motion
according to the kinematics characteristics of the robot. The algorithm structure is simple
and easy to implement. Choubey et al. [24] achieved a fast convergence of error-free smooth
continuous trajectories by the grey wolf optimization (GWO) method setting the tracking
error, acceleration, etc. as the optimization objective. In the case of the consideration
of multiple obstacles, taking time and energy consumption as optimization objectives,
Fu et al. [25] used fourth- and the fifth-order polynomials as interpolation curves to fit the
joint trajectory and an optimal trajectory under relevant constraints, based on a genetic
algorithm, was obtained. Zhao et al. [26] constructed the trajectory of the manipulator in the
joint space with the quintic B-spline interpolation method. An optimal objective function
based on the time and average acceleration was then built and a hybrid optimization
method of improved whale algorithm and particle swarm optimization (IWOA-PSO)
was proposed. An effective time pulsation path planning algorithm was established.
Vibration of the serial robot was reduced and working efficiency was improved. Setting
the minimizing trajectory error, flight time and space as optimal objects, Gamze et al. [27]
optimized the point-to-point motion planning in robot arm trajectory planning using
non-dominated sorting genetic algorithm (NSGA-II), genetic algorithm (GA), artificial bee
colony algorithm (ABC) and particle swarm optimization (PSO). The results were compared
about the distance and time.

Through the above analysis, it can be seen that the trajectory planning of the manipu-
lator is mainly in the form of a polynomial or spline curve. The commonly used trajectory
optimization algorithms mainly include particle swarm optimization (PSO) algorithms, ge-
netic algorithms (GA), whale optimization algorithms (WOA), etc. The forms used in joint
trajectory optimization are summarized in Table 1. The PSO is widely used with simple
structure and easily adjusted parameters. However, the convergence speed is slightly worse
than that of GA. The related variants improved the optimization performance but made
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the calculation more complicated. A GA with short optimization time and high efficiency
may improve the sudden change of angular acceleration, but the fixed parameters cannot
meet the requirements of dynamic changes in the iterative process. It is easy to fall into
local optimum. The WOA [28] has simple structure, few adjustment parameters and high
optimization efficiency. The space information continues to be searched in subsequent iter-
ations. The WOA has attracted the attention of many researchers with fewer operators, due
to its characteristics that include an inclination to search, self-adaptation and self-learning.
A series of improved algorithms have been proposed [29,30] and have been applied to
optimization problems in many fields such as wireless sensor networks [31], solar cell
design [32], DNA fragment assembly problem [33], etc. Based on this, this paper researched
the optimization of the joint trajectory based on the WOA. Whereas, the algorithm and
related variants still have problems, such as insufficient convergence and poor global search
ability. Therefore, this paper improved the algorithm by fusion.

Table 1. Commonly used trajectory optimization algorithms.

Based Algorithm Improved Algorithm Interpolation Method

Particle swarm
optimization (PSO)

PSO [10,23] Quintic non-uniform rational
B-spline curve (NURBS)

Cosine reduced-weight PSO [13] Cubic polynomial

Multi-objective PSO (MOPSO) [22] Quintic B-spline curve

Genetic algorithm (GA)

GA [15,25] Cubic B-spline curve
Fourth-fifth order polynomial

Adaptive Genetic Algorithm [11] Cubic spline interpolation

Ranking Adaptive Genetic
Algorithm (RAGA) [14] Quintic B-spline curve

Combining genetic algorithm and
adaptive simulated annealing

algorithm [18]
Cubic polynomial

SUMTNSUA-II [20] Quintic B-spline curve

Non-dominated sorting genetic
algorithm with elitist strategy

(NSGA-II) [21]
Quintic B-spline curve

Whale optimization
algorithm (WOA)

Improved WOA [16] Quintic polynomial

IWOA-PSO [26] Quintic B-spline curve

1.2. Contribution and Organization

The global search in the early stage and local search in the late stage of the WOA cannot
jump out of the local optimal operation. Although the performance is excellent on simple
problems, the optimization effect is unstable on complex problems. The slime mould
optimization algorithm (SMA) [34] was proposed based on the diffusion and foraging
behaviour of slime mould, which has the characteristics of fast convergence and strong
optimization ability. In this paper, the WOA and SMA are fused, and the respective
advantages of WOA and SMA algorithm are preserved. A hybrid whale slime mould
optimization algorithm (SMWOA) is proposed, and the proposed algorithm is applied to
the commonly used 6-DOF serial manipulator for joint trajectory optimization. The main
innovations are as follows:

Change the value of a in WOA. The value of parameter a is replaced by that of the
SMA, which can be dynamically adjusted with the advance of iteration times to adapt to
the complex nonlinear search process.

The fitness weight ω is introduced. The fitness weight in SMA can adaptively adjust
the distance between the current individual and the optimal individual. After its introduc-
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tion into WOA, searching range and speed can be adaptively adjusted to strengthen the
global search ability and accelerate the convergence speed.

The hybrid whale slime mould optimization algorithm (SMWOA) is proposed. The
time optimal trajectory optimization of the six-joint manipulator is carried out with the
cubic uniform B-spline interpolation method.

The rest of this article is organized as follows: Section 2 introduces the basic principles
of WOA and SMA. The SMWOA is proposed and introduced in detail in Section 3. The
process of joint trajectory optimization based on the SMWOA is introduced in Section 4
where the optimization results are analysed. Section 5 summarizes the content of this paper.

2. WOA and SMA
2.1. WOA

Mirjalili et al. [28] studied the bubble net predation method of humpback whales. A
whale optimization algorithm (WOA) was proposed based on this spiral bubble net attack
mechanism. Individual whales constantly update their positions to approach prey with
different mechanisms, including encirclement, spiral bubble-net feeding manoeuvre and a
global exploration phase. The mathematical model of the three parts is as follows.

(1) Encircling prey

Suppose that the number of whale populations participating in the predation is N, and
the dimension of the explored space is d. The position of the ith whale in the d-dimensional
space at the tth iteration is expressed as:

Xnt = (Xn1, Xn2, . . . , Xnd), n = 1, 2, . . . , N (1)

The optimal position to date is denoted as the prey position, which is defined as:

X∆ = (X∆
1 , X∆

2 , . . . , X∆
d ) (2)

As the number of iterations increases, the optimal position is gradually updated and
replaced. Because the initial population has no prior experience, whales initially choose
random individual locations as their search targets. The process of searching and encircling
prey can be expressed as:

Xn(t+1) = X∆
t −A ·D (3)

where A is the coefficient vector. D is the distance between the current individual and the
current optimal individual, that is, the bounding step size, which is expressed as follows:{

A = 2a · rrand − a
D =

∣∣2rrand ·X∆
t −Xt

∣∣ (4)

where a is the convergence factor, whose element a = 2 − 2t/tmax, which decreases linearly
from 2 to 0 as the number of iterations increases. rrand is a random vector of [0, 1].

(2) Spiral bubble-net feeding manoeuvre

When the humpback whales are swimming around the prey, they are also perform-
ing spiral motion predation. This behaviour is called spiral bubble-net predation. The
mathematical model of this process can be expressed as:{

Xn(t+1) = X∆
t + D′ · ebl · cos(2πl)

D′ =
∣∣X∆

t −Xt
∣∣ (5)

where D’ is the distance between the current individual and the optimal individual in the
tth iteration. b is the constant defining the logarithmic spiral shape. l is the random number
between [−1,1].

Both mechanisms above belong to the development phase in the meta-heuristic opti-
mization algorithm, in which the humpback whale keeps narrowing its range of movement
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and does spiral hunting at the same time. Assuming that the probability P of individual
whales of two mechanisms is the same, that is, 50% for each, the mathematical model of
these two approaches can be written as follows:{

Xn(t+1) = X∆
t −A ·D, P < 0.5

Xn(t+1) = X∆
t + D′ · ebl · cos(2πl), P ≥ 0.5

(6)

(3) Global exploration phase

This stage simulates the process that whale individuals search for food randomly
according to mutual position. The mathematical model of this process can be expressed as
Equation (7). {

Xn(t+1) = Xr
t −A ·D′′

D′′ = |2rrand ·Xr
t −Xnt|

(7)

where Xt
r is the whale individual position randomly selected. D” are the distances between

the current individual Xit and the random individual Xt
r in the tth iteration. The parameter

vector A is consistent with the previous setting.
The choice of the above three predation mechanisms depends on the parameters P

and A. If P ≥ 0.5, it directly enters the spiral bubble net predation mode. If P < 0.5, the
whale individual is far away from the random individual and chooses to surround the
prey when |A| < 1. The whale individual deviates from the prey and chooses the global
random exploration mechanism to search for a better solution when |A| ≥ 1.

2.2. SMA

Slime mould can approach food according to the concentration of food odour in the
air through slime mould veins. The stronger the food odour is, the stronger the biological
oscillation wave is, the wider the slime mould veins are, and the more slime mould will
gather in this area. On the contrary, when the food odour is weak, slime mould turns to
explore other areas. The SMA algorithm is optimized by simulating the behavioural and
morphological changes of mucilaginous vesicles during foraging. The algorithm calculates
the weight of each position based on the merit of the fitness function of the current position
and simulates the correlation between the morphological changes and contraction patterns
of mucilaginous vesicles through the weight index.

The function expression is used to simulate the approximation behaviour. The search
for the individual position X of the slime mould can be updated according to the best
position of the XB obtained so far. The updated equation of position is written as follows:

X(t+1) =


r1 · (UB− LB) + LB, r1 < z
X∆ + vb · (ω ·XAt −XBt), r1 ≥ z ∪ r2 < p
vc ·Xt, r1 ≥ z ∪ r2 ≥ p

(8)

where r1 and r2 are random numbers from 0 to 1. UB and LB are the boundaries of the
search range. X∆ is the optimal position so far, that is, the highest position of food odour
concentration. z is the probability factor of global search when surrounding food. XAt and
XBt are two randomly selected slime mould locations. t represents the current number of
iterations. vc is the feedback factor, which describes the feedback relationship between
food concentration and the quality of slime mould. This decreases linearly from 1 to 0. p is
the control parameter, which is expressed as Equation (9):

p = tanh
∣∣∣Fi − F∆

∣∣∣ (9)

where Fi is the fitness of the i-th individual in the current iteration, and F∆ is the best fitness
in all current iterations.
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vb is the vector parameter for [−a, a], and a is expressed as follows:

a = arctanh
(
− t

tmax
+ 1
)

(10)

ω represents the weight of slime mould, which can be written as follows:

ω(sort(Fi)) =

{
1 + r · log( bF−Fi

bF−wF + 1), Firsthal f
1− r · log( bF−Fi

bF−wF + 1), others
(11)

where Firsthalf represents the species with Fi in the top half. bF represents the optimal
fitness obtained in the current iteration process. wF is the worst fitness value obtained in
the current iteration process. sort(Fi) represents the fitness sequence.

3. Slime Mould Whale Optimization Algorithm (SMWOA)
3.1. Principle of the SMWOA

This section describes the structure of the proposed SMWOA. In this algorithm, the
mechanisms of SMA and WOA are combined to enhance the global optimization ability.
The main fusion measures are as follows.

(1) In WOA, parameter a decreases linearly from 2 to 0, and cannot accurately reflect and
adapt to the complex nonlinear search process. Therefore, the expression of parameter
a in SMA is used to replace parameter a in original WOA.

(2) To improve the flexibility and diversity of the search domain, the fitness weight
representing each slime mould individual is introduced into the position updating
strategy of WOA, which is helpful in reaching the optimal value quickly.

The position iterative updating equations of encircling prey, spiral bubble-net feeding
manoeuvre and global exploration phases after fusion are as follows:

Xn(t+1) = X∆
t −A ·D (12)

Xn(t+1) = X∆
t + vb · ebl · cos(2πl) ·D′ (13)

Xn(t+1) = Xr
t −A ·D′′ (14)

The expressions of the parameters are as follows:
A = 2arctanh

(
− t

tmax
+ 1
)
· rrand − arctanh

(
− t

tmax
+ 1
)

D =
∣∣2rrand ·X∆

t −Xt
∣∣

D′ =
∣∣ω ·X∆

t −Xt
∣∣

D′′ = |ω ·Xr
t −Xnt|

(15)

The flow chart of the SMWOA is shown in Figure 1. Firstly, define the parameters of
population and variables of the two algorithms, and create the initial population. Then,
calculate and evaluate the fitness values of all individuals in the population. Compare and
determine the optimal individual and the worst individual. The parameters are updated
according to the corresponding equations. The Equation (13) is used to update the position
when P ≥ 0.5. The Equation (12) is used to update the position when P < 0.5 and |A| < 1.
The Equation (14) is used to update the position when P < 0.5 and |A| ≥ 1.
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3.2. Computational Complexity

The computational complexity of the SMWOA mainly depends on the number of
search agents, iterations and the location update mechanism. The SMWOA consists of
initialization, fitness calculation ranking, weight update and position update. Suppose the
number of search agents is N, the function dimension is d, and the maximum number of
iterations is T. The computational complexity of initialization is o(d). The computational
complexity of fitness calculation and sorting is o(N + N log N). The computational complexity
of weight update is o(N × d). The computational complexity of position update is o(N × d).
Therefore, the computational complexity of SMWOA is o(d + T ∗ N ∗ (1 + log N + d)).

3.3. Performance Experiments of the SMWOA

Fifteen benchmark functions were selected as optimization objects in this paper to
test the optimization effect of SMWOA, which are shown in Table 2. F1–F5 are unimodal
functions. F6–F10 are multimodal functions. F11–F15 are fixed dimensional functions.

The experiments were carried out on an Intel(R) Core (TM) I5-6300HQ CPU @ 2.30 GHz
Processor, 8 G RAM, MATL AB (2019b). The population size was set as 30, and the
maximum number of iterations was 500. SMWOA was compared with algorithms WOA,
SMA, PSO, DE and GSA. For each test function, all algorithms in the same dimension were
independently run 30 times, and the average values and standard deviations were recorded.
The Avg was used to test the convergence accuracy of the algorithm. The Std was used to
test the stability. Wilcoxon rank sum test was carried out to verify the significant difference
between the proposed algorithm and other algorithms. Comparison of optimization results
is shown in Table 3. In the tests of F1–F5 of the unimodal function method, all of them
ranked first except F4. The unimodal function has only one global optimal value. The
tests indicate that the SMWOA has strong mining ability. The multimodal functions F7,
F8 and F10 rank first, while F6 and F9 rank second. The tests of multimodal functions
show that the SMWOA has strong exploration ability. In the optimization of dimensional
functions, although only F13 and F15 ranked first, other F11, F12 and F14 ranked second.
These results verify that the algorithm has the ability to jump out of local optimum. At
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the same time, it can be seen that the results of some test functions are not ideal, and the
algorithm can be modified in the parameter adjustment. Overall, the proposed SMWOA
has the best optimization performance among the algorithms.

Table 2. Tested benchmark functions.

Functions Expression Dimension Search
Space

Optimal
Value

Sphere F1(x) =
D
∑

k=1
x2

k
30 [−100, 100] 0

Schwefel 2.22 F2(x) =
D
∑

k=1
|xk|+

D
∏

k=1
|xk| 30 [−10, 10] 0

Schwefel 1.12 F3(x) =
D
∑

k=1

(
k
∑

l=1
xl

)2
30 [−100, 100] 0

Schwefel 2.21 F4(x) = max
k

[|xk|, 1 ≤ k ≤ D] 30 [−100, 100] 0

Rosenbrock F5(x) =
D−1
∑

k=1

[
100((xk+1 − x2

k))
2
+ (xk − 1)2

]
30 [−30, 30] 0

Rastrigin F6(x) =
D
∑

k=1

[
x2

k − 10 cos(2πx) + 10
] 30 [−5.12,

5.12] 0

Ackley F7(x) = −20 exp(−0.2

√
1
D

D
∑

k=1
x2

k − exp( 1
D

D
∑

k=1
cos 2πxk))

+20 + e

30 [−32, 32] 0

Alpine F8(x) =
D
∑

k=1
|xk sin(xk) + 0.1xk| [−10, 10] 0

Penalized 1.1

F9(x) = π
D ·
(
10 sin(πy1) + (yk − 1)2)+

π
D ·

D−1
∑

k=1
(yk − 1)2[1 + 10 sin2(πyk+1)]

+
D
∑

k=1
µ(xk, 10, 100, 4)

yk = 1 + xk+1
4 , µ(xk, p, a, m) =


p(xk − a)m, xk > a
0,−a < xk < a
p(−xk − a)m, xk < −a

30 [−50, 50] 0

Penalized 1.2

F10(x) = 0.1
{

sin2(3πx1) +
D
∑

k=1
(xk − 1)2[1 + sin2(3πxk + 1)]+

(xk − 1)2[1 + sin2(2πxk)] +
D
∑

k=1
µ(xk, 5, 100, 4)

}
µ(xk, p, a, m) =


p(xk − a)m, xk > a
0,−a < xk < a
p(−xk − a)m, xk < −a

30 [−50, 50] 0

Michalewicz F11(x) = ( 1
500 +

25
∑

k=1

1
l+∑D

k=1 (xk−akl)
)
−1

2 [−65.536,
65.536] 1

Branin F12(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5] 0.398
Goldstein-

Price
F13(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2] 3

Hartmann-
3D F14(x) = −

4
∑

k=1
ck exp(−

3
∑

l=1
akl(xl − pkl)

2) 3 [0, 1] −3.86

Shekel 5 F15(x) = −
5
∑

k=1
[(X− ak)(X− ak)

Tck]
−1 4 [0, 10] −10.1532
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Table 3. Comparison of optimization results.

Functions Evaluation
Indexes SMWOA WOA PSO GSA DE SMA

F1
Avg 0.00 × 100 7.91 × 10−74 3.72 × 100 1.23 × 10−18 1.78 × 10−92 2.74 × 10−108

Std 0.00 × 100 4.32 × 10−74 2.65 × 10−15 5.62 × 10−22 0.69 × 10−91 3.11 × 10−112

F2
Avg 3.57 × 10−67 1.86 × 10−49 2.05 × 10−1 6.46 × 10−10 3.09 × 10−1 3.75 × 10−24

Std 2.51 × 10−64 2.39 × 10−48 1.52 × 10−1 0.00 × 100 2.78 × 10−1 2.89 × 10−26

F3
Avg 3.72 × 10−82 4.31 × 10−6 3.89 × 10−3 1.13 × 10−3 3.74 × 10−5 2.25 × 10−45

Std 6.59 × 10−79 2.93 × 10−5 2.67 × 10−3 2.56 × 10−25 2.78 × 10−4 5.68 × 10−49

F4
Avg 2.58 × 10−16 7.25 × 10−12 4.56 × 10−8 7.86 × 10−10 3.72 × 10−14 2.74 × 10−23

Std 3.67 × 10−15 3.97 × 10−12 3.28 × 10−9 3.57 × 10−9 2.88 × 10−13 3.11 × 10−26

F5
Avg 2.75 × 10−33 2.79 × 101 4.52 × 102 2.36 × 101 3.74 × 100 3.75 × 10−24

Std 3.69 × 10−31 7.63 × 10−1 1.64 × 102 1.04 × 10−1 2.52 × 100 2.89 × 10−26

F6
Avg 5.04 × 10−29 1.06 × 10−21 1.29 × 102 2.32 × 101 5.27 × 10−3 0.00 × 100

Std 6.52 × 10−30 2.39 × 10−21 3.64 × 101 7.85 × 10−18 6.43 × 10−6 0.00 × 100

F7
Avg 6.54 × 10−28 5.39 × 10−15 3.77 × 10−3 6.32 × 10−8 4.47 × 10−4 2.74 × 10−26

Std 6.17 × 10−27 2.93 × 10−6 2.58 × 10−4 2.24 × 10−7 3.23 × 10−4 3.11 × 10−24

F8
Avg 6.24 × 10−39 1.26 × 10−2 5.79 × 10−1 3.58 × 100 3.78 × 10−2 3.75 × 10−24

Std 2.63 × 10−39 3.97 × 10−1 2.35 × 10−3 2.79 × 10−1 9.01 × 10−1 2.89 × 10−26

F9
Avg 4.37 × 10−15 3.05 × 10−3 5.69 × 100 1.32 × 100 7.63 × 10−1 2.25 × 10−15

Std 3.62 × 10−15 7.60 × 10−2 2.29 × 100 1.59 × 10−1 5.22 × 10−2 5.61 × 10−17

F10
Avg 2.47 × 10−10 8.97 × 100 3.74 × 100 5.22 × 10−1 3.24 × 10−1 2.74 × 10−8

Std 3.64 × 10−11 6.69 × 100 2.28 × 100 5.32 × 10−1 2.56 × 100 3.11 × 10−9

F11
Avg 1.80 × 100 3.76 × 100 1.89 × 100 4.59 × 100 2.58 × 100 1.75 × 100

Std 1.08 × 100 2.59 × 100 1.37 × 100 3.26 × 100 3.97 × 100 2.89 × 10−1

F12
Avg 0.42034 0.42718 0.41581 0.40278 0.39997 0.43669
Std 2.55 × 10−3 3.97 × 10−1 2.25 × 10−2 4.14 × 10−3 6.32 × 10−5 5.12 × 100

F13
Avg 3.00007 3.001 3.0019 3.0007 3.0022 3.00011
Std 1.36 × 10−4 7.62 × 10−1 1.39 × 100 2.67 × 10−2 2.63 × 101 1.05 × 10−3

F14
Avg −3.8563 −3.8349 −3.8498 −3.8462 −3.8547 −3.8529
Std 3.23 × 10−7 5.92 × 10−2 7.68 × 10−6 3.29 × 10−5 6.12 × 10−8 2.86 × 10−6

F15
Avg −10.1337 −8.2895 −8.1933 −8.0774 −8.1324 −10.1024
Std 3.24 × 10−3 2.73 × 100 4.63 × 100 4.89 × 100 5.79 × 101 1.41 × 10−2

p/h 8.24 × 10−6/+ 4.37 × 10−7/+ 2.16 × 10−7/+ 3.12 × 10−6/+ 1.38 × 10−5/+
Average ranking 1.4000 3.9333 5.1333 4.6000 3.8000 2.1333

Total rank 1 4 6 5 3 2

4. Trajectory Optimization of Joints Based on SMWOA
4.1. Path Interpolation of Joints

Path planning of joints is the process of generating the motion curves of each joint after
giving the position, velocity, acceleration and other constraints of the starting point, end
point and intermediate points. The process can be divided into point-to-point planning,
continuous planning and multi-node planning between the two kinds of planning. Of
these, multi-node planning is widely used. The common node interpolation methods
include cubic polynomial, quintic polynomial, spline interpolation, etc. The use of low
order polynomial spline interpolation can achieve smaller interpolation errors and avoid
Runge phenomenon caused by higher order polynomial, so spline interpolation is used
widely. The B spline curve has good qualities, such as geometrical invariability, convex
hull and reduction of variation. The curve can be locally controlled and generated by the B
spline curve. Therefore, this paper conducts interpolation based on cubic uniform B-spline
curves [35], and its mathematical expression can be written as follows:

θi(u) =
3

∑
j=0

Bj,3(u)Vi+j−1 (16)
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where θi(u) is the number of vectors at the ith point corresponding to the parameter u
of spline curve, u ∈ [0, 1]. V i+j−1 is the controlled point of the spline curve. Bj,3(u) is
polynomial, that is, 

B0,3(u) = −u3+3u2−3u+1
6

B1,3(u) = 3u3−6u2+4
6

B2,3(u) = −3u3+3u2+3u+1
6

B3,3(u) = u3

6

(17)

The Equation (16) can be rewritten in matrix form as:

θi(u) =
1
6
[
u3 u2 u 1

]
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




Vi−1
Vi

Vi+1
Vi+2

 (18)

To ensure the continuity of B-spline trajectories, the end vector of the former trajectory
is equal to the first vector of the latter trajectory, that is,

θi−1(1) = θi(0) =
1
6
(Vi−1 + 4Vi + Vi+1) = Pi(i = 1, . . . , n) (19)

where Pi is the type of value point on a trajectory.
N equations can be determined by n type value points. Two boundary conditions are

added as follows: {
V0 = V1
Vn = Vn+1

(20)

All the unknowns can be solved. The B spline curve determined by Vi−1, Vi, Vi+1,
Vi+2 can be expressed as:

θi(u) = 1
6 (−u3 + 3u2 − 3u + 1)Vi−1 +

1
6 (3u3 − 6u2 + 4)Vi+

1
6 (−3u3 + 3u2 + 3u + 1)Vi+1 +

1
6 u3Vi+2(0 ≤ u ≤ 1)

(21)

The control point on the curve is defined as V i (ti, qi). The joint angle change q(u) and
time change t(u) of the ith segment trajectory on the curve are as follows respectively:

t(u) = 1
6
[
u3 u2 u 1

]
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




ti−1
ti

ti+1
ti+2


q(u) = 1

6
[
u3 u2 u 1

]
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




qi−1
qi

qi+1
qi+2


(22)

4.2. Objective Function and Constraint Function

The paper takes the time optimal, that is, the shortest movement time of the manipula-
tor, as the objective function to optimize path. The mathematical model can be expressed
as follows:

T = min
n−1

∑
i=1

hi = min
n−1

∑
i=1

(ti+1 − ti) (23)

where hi is the running time of each trajectory, and T is total time of the entire trajectory.
The velocity and acceleration of joints are constrained as follows:
(1) Constraint of velocity
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Velocity expression of the manipulator joints can be obtained by taking the derivative
of Equation (21).

.
θi(u) = d

du θi(u) = 1
2 (−u2 + 2u− 1)Vi−1 +

1
2 (3u2 − 4u)Vi

+ 1
2 (−3u2 + 2u + 1)Vi+1 +

1
2 u2Vi+2(0 ≤ u ≤ 1)

(24)

This can be written with another form as Equation (25).

.
θi(u) =

d
du

θi(u) =
[

dt(u)
du

,
dq(u)

du

]
=
[
t′, q′

]
=

q′

t′
(25)

(2) Constraint of acceleration
Acceleration expression

..
θi(u) can be obtained by taking the derivative of Equation (24).

..
θi(u) = d

du

.
θi(u) = 1

2 (−u2 + 2u− 1)Vi−1 +
1
2 (3u2 − 4u)Vi

+ 1
2 (−3u2 + 2u + 1)Vi+1 +

1
2 u2Vi+2

(26)

This can be written with another form as Equation (27).

..
θi(u) =

d
du

.
θi(u) =

[
dt′(u)

du
,

dq′(u)
du

]
= [t′′ , q′′ ] =

d
.
θi(u)
dt

=
d

.
θi(u)
du

du
dt

=
q′′ t′ − q′t′′

t′3
(27)

The constraint functions of velocity and acceleration can be written as follows:{ .
θi(u) ≤

.
θmax..

θi(u) ≤
..
θmax

(28)

4.3. Optimal Experiment of Path Planning

The paper took a flexible and lightweight six-joint UR5 industrial robot developed by
Universal Robots as the experimental platform, which is shown in Figure 2. The robot was
equipped with a software system, control box, and visual programming control interface
except manipulator. Users can program and adjust according to requirements.
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To verify the optimal performance of the SMWOA on joints path planning, trajec-
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object. The position sequence of each joint is shown in Table 4. θ1 is the angle of the base 
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θ1 θ2 θ3 θ4 θ5 θ6 
1 10 15 20 5 10 6 
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Figure 2. UR5 experimental platform.

To verify the optimal performance of the SMWOA on joints path planning, trajectory
optimization of the UR5 manipulator was carried out taking the time as the optimal object.
The position sequence of each joint is shown in Table 4. θ1 is the angle of the base joint.
θ2 is the angle of the shoulder joint. θ3 is the angle of the elbow joint. θ4, θ5 and θ6 are all
wrist joints.
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Table 4. Sequence of joint’s positions.

Nodes
Joints’ Positions

θ1 θ2 θ3 θ4 θ5 θ6

1 10 15 20 5 10 6
2 −110 −115 60 50 −30 50
3 40 95 −35 180 75 80
4 150 120 80 100 −50 30
5 120 −45 -80 20 80 −80
6 −30 20 60 −60 50 100

The constraint values of each joint are shown in Table 5.

Table 5. Constraints of joints.

Parameters
Constraints

θ1 θ2 θ3 θ4 θ5 θ6

θmax (◦) 320 250 270 280 200 300
.
θmax ((◦)/s) 100 95 122 150 140 120
..
θmax ((◦)/s2) 245 245 475 475 500 500

Population size was set as 100. The number of iterations was set as 100. The path of
joints was optimized, and the comparison of time before and after optimization of base joint
is shown in Figure 3. The abscissa is the running time of the joint path (s), and the ordinate
is the angle-value of the base joint (◦). The cyan thin solid line represents the trajectory
curve of base joint before optimization, which is represented by q1b. The cyan dotted line
represents the trajectory curve of base joint after optimization, which is represented by
q1a. It can be seen in Figure 3 that the consumed time before optimization is 39.526 s. The
optimized time is 24.635 s. The consumed time was reduced by 37.674%, and the operation
efficiency of the manipulator was improved.
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Figure 3. Comparison before and after optimization.

Angle, angular velocity, angular acceleration and angular jerk of joints after optimiza-
tion are shown in Figure 4. Figure 4a represents the movement of base joint θ1. Figure 4b
represents the movement of shoulder joint θ2. Figure 4c represents the movement of elbow
joint θ3. Figure 4d represents the movement of wrist joint θ4. Figure 4e represents the
movement of wrist joint θ5. Figure 4f represents the movement of wrist joint θ6. The
horizontal coordinate refers to time, and the longitudinal coordinate refers to angle (◦),
angular velocity (◦/s), angular acceleration (◦/s2) and angular jerk (◦/s3). The cyan thin
solid line shows the change of the corresponding joint-angle, which is denoted by qi
(i = 1, 2, 3, 4, 5, 6). The red dot line represents the change of the corresponding joint- angular
velocity, which is denoted by vi. The green dash dot line represents the change of the
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corresponding joint-angular acceleration, which is denoted by ai. The blue imaginary line
shows the change of the corresponding joint-angular jerk, which is denoted by ji. It can be
seen that the optimized angular velocity and angular acceleration are in a gentle and stable
state, and the angular jerk of joints θ1, θ2, θ4 and θ6 only appear as a cusp in the whole time
range, with the remaining parts in a basically smooth state.
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Figure 4. Movements of joints after optimization based on the SMWOA. (a) Movement of base 
joint θ1; (b) Movement of shoulder joint θ2; (c) Movement of elbow joint θ3; (d) Movement of wrist 
joint θ4; (e) Movement of wrist joint θ5; (f) Movement of wrist joint θ6. 

The proposed algorithm was compared with the SMA and WOA in the optimizing 
joint trajectory to verify the effectiveness of the SMWOA. The total time and spent time 
for each segment were recorded and compared, and the results are shown in Table 6. 
The segment of trajectory from the ith node to the i+1th node is represented as hi. The 
experimental results show that the optimization performance of the proposed SMWOA 
algorithm is superior to the SMA and WOA in joint trajectory planning. 
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Figure 4. Movements of joints after optimization based on the SMWOA. (a) Movement of base joint
θ1; (b) Movement of shoulder joint θ2; (c) Movement of elbow joint θ3; (d) Movement of wrist joint
θ4; (e) Movement of wrist joint θ5; (f) Movement of wrist joint θ6.

The proposed algorithm was compared with the SMA and WOA in the optimizing
joint trajectory to verify the effectiveness of the SMWOA. The total time and spent time
for each segment were recorded and compared, and the results are shown in Table 6.
The segment of trajectory from the ith node to the i+1th node is represented as hi. The
experimental results show that the optimization performance of the proposed SMWOA
algorithm is superior to the SMA and WOA in joint trajectory planning.
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Table 6. Comparison of trajectory running time.

Algorithms
Time (s)

Total Time (s)
h1 h2 h3 h4 h5

SMA 4.429 6.276 4.332 5.098 5.602 25.737
WOA 4.681 6.349 4.237 5.162 5.384 25.813

SMWOA 4.227 6.103 4.319 4.937 5.049 24.635

5. Conclusions

To obtain the correct machining motion profile faster and make the machining quality
closer to zero-defect manufacturing, this paper systematically investigated and researched
the common optimized method of joints’ trajectories for the common series manipulator. To
solve the problems of the current optimization algorithm, such as convergence insufficiency
and poor global search ability, this paper proposed the slime mould whale optimization
algorithm (SMWOA). The optimized characteristics of the commonly used WOA and SMA
were analysed in detail. The advantages of the two methods were combined. The dynamic
parameter a and dynamic weight ω of SMA were introduced into WOA and the SMWOA
proposed. The optimized experiments of 15 benchmark functions were carried out, and
the experiments verified that the optimization performance of the proposed algorithm
was clearly better than that of other classical optimization algorithms. Taking the shortest
running time as the optimized goal, the SMWOA algorithm was applied to the optimization
of the joint trajectories of a serial manipulator. The experimental results also verified the
effectiveness of the algorithm. Although the optimization performance of the proposed
algorithm is better than other classical algorithms in the experimental tests in this paper, the
optimization ability for high-dimensional functions and complex problems is still unclear.
It can still be further improved in terms of parameter adjustment and search strategy.

Author Contributions: Conceptualization, X.L., Q.Y. and X.Y.; methodology, X.Y., X.L. and H.W.;
software, X.L., Q.Y. and Q.H.; validation, Q.Y., Q.H. and N.W.; formal analysis, H.W. and S.T.;
investigation, Q.Y. and S.T.; resources, X.L. and Q.H.; data curation, X.L. and Q.H.; writing—original
draft preparation, X.L. and N.W.; writing—review and editing, Q.H. and N.W.; visualization, H.W.;
supervision, X.Y. and H.W.; project administration, Q.Y.; funding acquisition, X.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52075306.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available within
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Psarommatis, F.; May, G.; Dreyfus, P.A.; Kiritsis, D. Zero defect manufacturing: State-of-the-art review, shortcomings and future

directions in research. Int. J. Prod. Res. 2020, 58, 1–17. [CrossRef]
2. Legnani, G.; Fassi, I.; Tasora, A.; Fusai, D. A practical algorithm for smooth interpolation between different angular positions.

Mech. Mach. Theory 2021, 162, 104341. [CrossRef]
3. Aggogeri, F.; Merlo, A.; Pellegrini, N. Active Vibration Control Development in Ultra-Precision Machining. J. Vib. Control 2021,

27, 790–801. [CrossRef]
4. Borboni, A.; Aggogeri, F.; Elamvazuthi, I.; Incerti, G.; Magnani, P.L. Effects of profile interpolation in cam mechanisms. Mech.

Mach. Theory 2020, 144, 103652. [CrossRef]
5. Incerti, G. Modeling and simulation of a position-controlled servo-axis with elasticity and backlash in the transmission. Arch.

Appl. Mech. 2017, 87, 633–645. [CrossRef]
6. Liu, Z. Research and Simulation of Six-axis Industrial Robot Trajectory Planning Based on Robotics Toolbox. Mech. Eng. Autom.

2017, 3, 59–61.

http://doi.org/10.1080/00207543.2019.1605228
http://doi.org/10.1016/j.mechmachtheory.2021.104341
http://doi.org/10.1177/1077546320933477
http://doi.org/10.1016/j.mechmachtheory.2019.103652
http://doi.org/10.1007/s00419-016-1213-x


Algorithms 2022, 15, 363 17 of 17

7. Rossi, C.; Savino, S. Robot trajectory planning by assigning positions and tangential velocities. Robot. Comput.-Integr. Manuf. 2013,
29, 139–156. [CrossRef]

8. Wang, N.; Zhang, X. Trajectory planning and simulation of six-DOF robot based on MATLAB. Manuf. Autom. 2014, 15, 95–97.
9. Choi, T.; Park, C.; Do, H.; Park, D.; Kyung, J.; Chung, G. Trajectory correction based on shape peculiarity in direct teaching

manipulator. Int. J. Control Autom. Syst. 2013, 11, 1009–1017. [CrossRef]
10. Guo, T.Y.; Li, F.; Huang, K.; Zhang, F.Z.; Feng, Q. Application of Optimal Algorithm on Trajectory Planning of Mechanical Arm

Based on B Spline Curve. In Applied Mechanic and Materials; Trans Tech Publications Ltd.: Zurich, Switzerland, 2013; Volume 376,
pp. 253–256.

11. Yin, F.; Liang, Q.; Cheng, X.; Tao, Z. Research on Mechanical Arm Joint Space Trajectory Planning Algorithm Based on Optimal
Time. Mach. Des. Res. 2017, 33, 12–15.

12. Lian, L. Robot Joint Trajectory Planning Method Based on the Optimal Execution Time. Modul. Mach. Tool Autom. Manuf. Tech.
2018, 9, 57–60.

13. Yang, Y.; Xu, H.; Li, S.; Zhang, L.; Yao, X. Time-optimal trajectory optimization of serial robotic manipulator with kinematic and
dynamic limits based on improved particle swarm optimization. Int. J. Adv. Manuf. Technol. 2022, 120, 1253–1264. [CrossRef]

14. Cheng, Q.; Hao, X.; Wang, Y.; Xu, W.; Li, S. Trajectory planning of transcranial magnetic stimulation manipulator based on
time-safety collision optimization. Robot. Auton. Syst. 2022, 152, 104039. [CrossRef]

15. Yu, X.; Dong, M.; Yin, W. Time-optimal trajectory planning of manipulator with simultaneously searching the optimal path.
Comput. Commun. 2022, 181, 446–453. [CrossRef]

16. Jing, Z.; Xijing, Z.; Xiaoling, M.; Xiao, W. Application of Improved Whale Optimization Algorithm in Time-Optimal Trajectory
Planning of Manipulator. 2021. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13433/j.cnki.1003-8728.
20200596 (accessed on 21 October 2021). [CrossRef]

17. Hirakawa, A.R.; Kawamura, A. Trajectory generation for redundant manipulators under optimization of consumed electrical
energy. In Proceedings of the Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), San Diego, CA, USA,
6–10 October 1996; Volume 3, pp. 1626–1632.

18. Uarg, D.P.; Kumar, M. Camera calibration and sensor fusion in an automated flexible manufacturing multi robot work cell. Proc.
Am. Control Conf. 2002, 6, 4934–4939.

19. Cheng, Q.; Xu, W.; Liu, Z.; Hao, X.; Wang, Y. Optimal Trajectory Planning of the Variable-Stiffness Flexible Manipulator Based on
CADE Algorithm for Vibration Reduction Control. Front. Bioeng. Biotechnol. 2021, 9, 766495. [CrossRef]

20. Yang, Y.; Zhou, C.; Wang, W.; Peng, B. Multi-objective trajectory planning based on SUMTNSGA-II. Comput. Eng. Des. 2015,
36, 3076–3081.

21. Shi, X.; Fang, H.; Guo, W. Time-Energy-Jerk Optimal Trajectory Planning of Manipulators Based on Quintic NURBS. Mach. Des.
Res. 2017, 33, 12–16.

22. Shi, X.; Fang, H. Time-Energy-Jerk Optimal Planning of Industrial Robot Trajectories. Mach. Des. Manuf. 2018, 6, 254–257.
23. Feng, B.; Liu, F.; Zheng, L. Optimal Motion Trajectory Planning of Robot Joint Space Based on Particle Swarm Optimization.

Modul. Mach. Tool Autom. Manuf. Tech. 2018, 5, 1–4.
24. Choubey, C.; Ohri, J. Optimal Trajectory Generation for a 6-DOF Parallel Manipulator Using Grey Wolf Optimization Algorithm.

Robotica 2021, 39, 411–427. [CrossRef]
25. Fu, Q.; Song, Y.; Wei, S.; Guo, L. Design of a kind of trajectory optimization algorithm for a manipulator based on genetic

algorithm. Lect. Notes Electr. Eng. 2019, 529, 683–692.
26. Zhao, J.; Zhu, X.; Song, T. Serial Manipulator Time-Jerk Optimal Trajectory Planning Based on Hybrid IWOA-PSO Algorithm.

IEEE Access 2022, 10, 6592–6604. [CrossRef]
27. Demir, G.; Vural, R.A. Heuristic Trajectory Planning of Robot Manipulator. In Proceedings of the 2021 IEEE Jordan Interna-

tional Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 16–18 November 2021;
pp. 222–226.

28. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
29. AbdelAziz, A.M.; Soliman, T.H.A.; Ghany, K.K.A.; Sewisy, A.A.E.M. A Pareto-Based Hybrid Whale Optimization Algorithm with

Tabu Search for Multi-Objective Optimization. Algorithms 2019, 12, 261. [CrossRef]
30. Ghoniem, R.M.; Alhelwa, N.; Shaalan, K. A Novel Hybrid Genetic-Whale Optimization Model for Ontology Learning from

Arabic Text. Algorithms 2019, 12, 182. [CrossRef]
31. Kotary, D.K.; Nanda, S.J.; Gupta, R. A many-objective whale optimization algorithm to perform robust distributed clustering in

wireless sensor network. Appl. Soft Comput. 2021, 110, 107650. [CrossRef]
32. Elaziza, M.A.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization

algorithm. Energy Convers. Manag. 2018, 17, 1843–1859. [CrossRef]
33. Mohamed, A.B.; Reda, M.; Karam, M.S.; Ripon, K.C.; Michael, J.R. An Efficient-Assembler Whale Optimization Algorithm for

DNA Fragment Assembly Problem: Analysis and Validations. IEEE Access 2020, 8, 222144–222167. [CrossRef]
34. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
35. Sun, Y.; Yang, X.; Dai, R.; Chen, X.; Tan, S.; Xue, P. Kinematics Analysis and Palletizing Trajectory Planning of 6-DOF Robot. Mach.

Tool Hydraul. 2021, 49, 33–37.

http://doi.org/10.1016/j.rcim.2012.04.003
http://doi.org/10.1007/s12555-012-0091-4
http://doi.org/10.1007/s00170-022-08796-y
http://doi.org/10.1016/j.robot.2022.104039
http://doi.org/10.1016/j.comcom.2021.10.005
https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13433/j.cnki.1003-8728.20200596
https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13433/j.cnki.1003-8728.20200596
http://doi.org/10.13433/j.cnki.1003-8728.20200596
http://doi.org/10.3389/fbioe.2021.766495
http://doi.org/10.1017/S0263574720000442
http://doi.org/10.1109/ACCESS.2022.3141448
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.3390/a12120261
http://doi.org/10.3390/a12090182
http://doi.org/10.1016/j.asoc.2021.107650
http://doi.org/10.1016/j.enconman.2018.05.062
http://doi.org/10.1109/ACCESS.2020.3044857
http://doi.org/10.1016/j.future.2020.03.055

	Introduction 
	Literature Review 
	Contribution and Organization 

	WOA and SMA 
	WOA 
	SMA 

	Slime Mould Whale Optimization Algorithm (SMWOA) 
	Principle of the SMWOA 
	Computational Complexity 
	Performance Experiments of the SMWOA 

	Trajectory Optimization of Joints Based on SMWOA 
	Path Interpolation of Joints 
	Objective Function and Constraint Function 
	Optimal Experiment of Path Planning 

	Conclusions 
	References

