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Abstract: The min-wait foremost, min-hop foremost and min-cost foremost paths and walks prob-
lems in interval temporal graphs are considered. We prove that finding min-wait foremost and
min-cost foremost walks and paths in interval temporal graphs is NP-hard. We develop a polyno-
mial time algorithm for the single-source all-destinations min-hop foremost paths problem and a
pseudopolynomial time algorithm for the single-source all-destinations min-wait foremost walks
problem in interval temporal graphs. We benchmark our algorithms against algorithms presented
by Bentert et al. for contact sequence graphs and show, experimentally, that our algorithms perform
up to 207.5 times faster for finding min-hop foremost paths and up to 23.3 times faster for finding
min-wait foremost walks.

Keywords: interval temporal graphs; contact sequence temporal graphs; foremost walks; min-hop
foremost walks; min-wait foremost walks; min-cost foremost walks; NP-hard

1. Introduction

Temporal graphs are graphs in which the edges connecting vertices or the character-
istics of these edges may change with time. The applications of temporal graphs include
the spread of viral diseases, information dissemination by means of physical/virtual con-
tact between people, understanding behavior in online social networks, modeling data
transmission in phone networks, modeling traffic flow in road networks, and studying
biological networks at the molecular level [1–7].

Two popular categories of temporal or dynamic graphs are contact-sequence (tem-
poral) graphs and interval-temporal graphs. In a contact-sequence graph, each directed
edge (u, v) has the label (departure_time, travel_duration), where departure_time is the
time at which one can leave vertex u along edge (u, v) and travel_duration is the time
it takes to traverse the edge. Therefore, vertex v is reached at time departure_time +
travel_time. Note that a contact-sequence graph may have many edges from vertex u
to vertex v; each edge has a different departure_time. In an interval-temporal graph,
each directed edge (u, v) has a label that is comprised of one or more tuples of the form
(start_time, end_time, travel_duration), where start_time ≤ end_time defines an interval of
times at which one can depart vertex u. If one departs u at time t, start_time ≤ t ≤ end_time,
one reaches v at time t + travel_duration. The intervals associated with the possibly many
tuples that comprise the label of an edge (u, v) must be disjoint. Figures 1 and 2 are exam-
ples of contact-sequence and interval-temporal graphs, respectively. A (time-respecting)
walk in a temporal graph is a sequence of edges with the property that the end vertex
of one edge is the start vertex of the next edge (if any) on the walk, each edge is labeled
by the departure time from the start vertex of the edge, and the departure time label
on each edge is a valid departure time for that edge and is greater than or equal to the
arrival time (if any) at the edge’s start vertex (A more formal definition is provided in
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Section 2). A (time-respecting) path is a walk in which no vertex is repeated (i.e., there is no
cycle). < S, 1, A, 2, B > and < S, 0, B, 5, C > are example walks in the temporal graphs of
Figures 1 and 2, respectively. Both walks are also paths.

Figure 1. Contact-sequence temporal graph.

Figure 2. Interval-temporal graph.

An application that can be modeled with a contact-sequence graph is a flight network.
Each flight has a departure time at which it leaves the originating airport and a certain
travel duration before it can reach the destination airport. On the other hand, if we consider
the example of a road network, there is no single instance of time when one needs to depart
on a given street. There may be different time windows (or time intervals) during which
a street may be open for travel. Further, we may define time windows based on travel
duration needed to reach from point A to point B on a given street due to different traffic
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conditions during different times of the day (such as office hours). Such networks cannot be
modeled using contact-sequence graphs, as a given time window represents infinitely many
possible departure times and, hence, infinitely many contact sequence edges. It is easy
to see that every contact-sequence graph can be modeled as an interval-temporal graph.
Further, when time can be discretized, every interval-temporal graph can be modeled as a
contact-sequence graph (with potentially an explosion in the number of edges).

The authors of [8–11] focus on finding optimal paths and walks. Optimization criteria
such as f oremost (arrive at the destination at the earliest possible time), minhop (use the
fewest number of hops when going from the source to the destination vertex), shortest (the
time taken to go from the source to the destination is minimized), and so on, are considered.
Gheibi et al. [12] present a new data structure for contact-sequence graphs that results in
faster algorithms for many of the path problems studied in [8]. While [9] focuses on interval-
temporal graphs, refs. [8,10] use the contact-sequence model. Ref. [10] presents an algorithm
for finding walks that optimize any linear combination of eight different optimization crite-
ria ( f oremost, reverse_ f oremost, f astest, shortest, cheapest, most_likely, min_hop, min_wait).
In our earlier paper [13], we developed algorithms to find optimal foremost and min-hop
paths in interval-temporal graphs. These algorithms were demonstrated experimentally to
run faster than earlier algorithms for these problems.

A temporal graph may have many walks/paths that optimize a criterion such as
foremost. In some applications, it is required to find a walk/path that optimizes a secondary
criterion from among all walks/paths that optimize a primary criterion. For example, we
may desire a min-wait foremost path (i.e., a foremost path in which the sum of the wait
times at intermediate vertices is minimized) or a min-hop foremost path (a foremost path
that goes through the fewest number of edges). For example, when selecting flights to
go from A to B one may wish to use a min-wait foremost path (a route that minimizes
the total wait time at intermediate airports while getting to the destination at the earliest
possible time) or a min-hop foremost path (a route that involves the fewest number of
connections while guaranteeing the earliest possible arrival time). In this paper, we examine
the min-wait, min-hop, and min-cost (each edge or edge interval has an additional attribute,
its cost), foremost walks/paths problems.

As discussed in Section 6, the algorithm by Bentert et al. can be tuned by carefully
choosing the coefficients for different optimization criteria to find min-hop foremost paths
and min-wait foremost walks in contact-sequence temporal graphs. We use this method to
benchmark our algorithms against the algorithm by Bentert et al. and show that we perform
about 207.5 times faster for finding min-hop foremost paths and up to 23.3 times faster
for finding min-wait foremost walks. Further, we solve these problems on the interval-
temporal graphs that can represent a wider problem space for temporal graphs, as opposed
to the contact-sequence temporal graphs.

Our main contributions in this paper are:

1. We show that the problems for finding min-cost foremost and min-wait foremost
paths and walks in interval temporal graphs are NP-hard.

2. We develop a polynomial time algorithm for the single-source all-destinations min-
hop foremost paths problem in interval-temporal graphs.

3. We develop a pseudopolynomial time algorithm for the single-source all-destinations
min-wait foremost walks problem in interval-temporal graphs.

4. We show that the problem of finding min-hop foremost paths and min-wait foremost
walks can be modeled using the linear combination formulation employed in Section 6
when the optimization criteria are discrete (e.g., time is discrete). Our modeling
methodology readily extends to other primary and secondary criteria as well as to
multiple levels of secondary criteria (e.g., shortest min-hop foremost path).

5. We benchmark our algorithms against the algorithm of Bentert et al. [10] using datasets
for which the preceding modeling can be used. On these datasets, our algorithm is
up to 207.5 times faster for finding min-hop foremost paths and up to 23.3 faster for
finding min-wait foremost walks.



Algorithms 2022, 15, 361 4 of 28

The roadmap of this paper is as follows. In Section 2, we describe the problems of
finding min-hop foremost paths (mh f paths), min-wait foremost walks (mw f walks), and
min-cost foremost paths (mc f paths). In Section 3, we show that the problems of finding
mw f paths and walks and the problem for finding mc f paths in interval temporal graphs are
NP-hard. In Section 4, we present theorems that describe the properties of min-hop foremost
paths in temporal graphs. We review the data structures used to represent interval-temporal
graphs along with some fundamental functions necessary for the algorithm for finding mh f
paths. Finally, we present the algorithm for finding mh f paths in interval-temporal graphs
along with the proof of its correctness and its computational complexity. In Section 5, we
present theorems that describe the properties of mw f walks in interval-temporal graphs.
We introduce additional data structures required by the algorithm we propose for finding
mw f walks in interval-temporal graphs. Finally, we present the algorithm for finding the
mw f walks in interval-temporal graphs along with proof of its correctness and complexity
analysis. In Section 6, we show how the problems for finding foremost paths and walks with
a secondary optimization criteria can be modeled as optimal walks with linear combination
of multiple optimization criteria. We use this modeling to find mh f paths and mw f walks in
contact sequence graphs using the algorithm of Bentert et al. [10], which optimizes a linear
combination of criteria. In Section 7, we compare our algorithms for finding mh f paths
and mw f walks with the algorithm by Bentert et al. [10] by transforming contact-sequence
graphs to interval-temporal graphs and vice versa. Finally, we conclude in Section 8.

2. Foremost Walks and Paths

A walk (equivalently, valid walk, temporal walk or time-respecting walk) in a temporal
graph is an alternating sequence of vertices and departure times ut0, t0, ut1, t1, . . . , utk where
(a) ti is a permissible departure time from uti to uti+1 and (b) for 0 ≤ i < k− 1, ti +λi) ≤ ti+1.
Here, λi is the travel duration when departing uti at ti using the edge (uti, uti+1) (i.e., ti + λi
is the arrival time at uti+1 ). For this walk, ut0 is the source vertex and utk the destination. Note
that every walk in which a vertex is repeated contains one or more cycles. A walk that has
no cycle (equivalently, no vertex repeats) is a path.

W1 = S, 0, B, 5, C is a walk from S to C in the temporal graph of Figure 2.
W2 = S, 0, A, 1, B, 3, C, 5, A is another walk in the temporal graph of Figure 2. W1 does not
contain any cycles as none of the vertices are repeated from source to destination. Hence,
W1 is also a path. However, W2 has vertex A that repeats. Therefore, it is not a path. We are
interested in f oremost paths and walks in a temporal graph that start at a vertex s at a time
≥ tstart and end at another vertex v. As defined in [8–10], a f oremost walk is a walk from
a source vertex s to a destination vertex v that starts at or after a given time tstart and has
the arrival time t f , which is the earliest possible arrival time at the destination v among all
possible walks from s to v.

2.1. Min-Hop Foremost

A min-Hop foremost (mh f ) walk is a foremost walk from a source vertex s to another
vertex v that goes through the fewest number of intermediate vertices. We observe that
every mh f walk is an mh f path, as cycles may be removed from any s to v walk to obtain a
path with a fewer number of hops and the same arrival time at v. For this reason, we refer
to mh f walks as mh f paths in the rest of this paper.

As an example, consider the interval-temporal graph of Figure 3. Every walk in this
graph is also a path. The paths P1 =< a, 0, b, 1, c, 7, d > and P2 =< a, 0, c, 7, d > arrive at d
at time 8 and are foremost paths from a to d. P2 is a 2-hop foremost path while P1 is a 3-hop
foremost path. P2 is the only min-hop foremost path or mh f path from a to d in Figure 3.
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Figure 3. Example of mh f paths from source vertex a.

2.2. Min-Wait Foremost

A min-wait foremost or mw f walk is a f oremost walk from a source vertex s to any
other vertex v that accumulates minimum total wait time at the vertices visited by the walk.
The wait time at each vertex u is departure_time(u)− arrival_time(u). The total wait time
accumulated by the walk is the sum of the wait times at each vertex u. Therefore, mw f walk
is a foremost walk from s to v that minimizes (∑uti

departure_time(uti)− arrival_time(uti))
where uti ∈ vertices(mw f (s, v)) and uti 6= s; uti 6= v, as there is no wait time accumulated
at the source vertex and the destination vertex.

mw f walks can have cycles, as is evident from the example of Figure 4. The mw f walk
from source vertex s to destination vertex b is mw f (s, b) = s, 0, a, 2, c, 4, d, 5, a, 7, b, arriving
at b at time 8 with total wait time of 1 accumulated at vertex a. Alternate f oremost paths
from s to b are P1 = s, 0, a, 4, b, arriving at time 8 with a wait time of 3, and P2 = s, 0, a, 7, b,
also arriving at 8 with a wait time of 6. Therefore, to reduce the total wait time along the
walk, we may need to go through cycles instead of waiting for a long time at a given vertex.

Figure 4. Example of mw f walks from source vertex s.



Algorithms 2022, 15, 361 6 of 28

2.3. Min-Cost Foremost

For this problem, we assume there is a non-negative cost associated with every edge
traveled along the walk from source vertex s to a destination vertex v. The cost of an edge
may depend on the departure time from the edge’s start vertex. The min-cost foremost
or mc f walk is a foremost walk from source vertex s to any other vertex v that incurs
minimum cost along the walk. The cost incurred on a time arc from a vertex uti to uti+1
departing at time ti is denoted by a function c(uti, uti+1). Therefore, the objective for the
min-cost foremost or mc f walk problem is to find a walk from a given source vertex s to
a destination vertex v with the arrival time t f , such that among all the walks from s to v
starting at or after tstart and arriving at t f , we choose a walk that accumulates minimum
cost along the way or minimizes (∑uti

c(uti, uti+1). If there are cycles in a walk from s to v,
we could eliminate those cycles and arrive at the destination at the same time, or sooner,
at a cost that is the same, or less. Therefore, every mc f path is also an mc f walk. For this
reason, we refer to mc f walks as mc f paths in the rest of this paper.

3. NP-Hard Foremost Path and Walk Problems in Interval Temporal Graphs

Several problems are known to be NP-hard for contact-sequence temporal graphs.
For example, Bhadra et al. [14] show that computing several types of strongly connected
components is NP-hard; Casteigts et al. [15] show that determining the existence of a no-
wait path (In a no-wait path, the arrival and departure times at each intermediate vertex are
the same.) between two vertices is NP-hard; and Zschoche et al. [16] show that computing
several types of separators is NP-hard. Additional complexity results for contact-sequence
temporal graphs appear in [15]. Since contact-sequence temporal graphs are a special case
of interval-temporal graph, as discussed in Section 1, every problem that is NP-hard for
the contact-sequence model remains NP-hard in the interval model. However, the reverse
may not be true, as the transformation from the interval model to the contact-sequence
model entails a possible explosion in the instance size. In this section, we demonstrate that
mw f and mc f path and walk problems are NP-hard in the interval model but polynomially
solvable in the contact-sequence model. In fact, in [13], we show that finding a no-wait
path from a given source vertex u to a destination vertex v in an interval-temporal graph
whose underlying static graph (defined below) is acyclic is NP-hard and that this problem
is polynomially solvable for contact-sequence graphs whose underlying static graph is
acyclic. We remark in [13] that our proof of this is easily extended to show that finding
foremost, fastest, min-hop, and shortest no-wait paths in interval-temporal graphs with
an acyclic underlying static graph is NP-hard while these problems are polynomial for
contact-sequence temporal graphs whose underlying static graph is acyclic.

The underlying static graph for any contact-sequence temporal graph is the graph
that results when each edge (u, v, t, λ) is replaced by the edge (u, v) and then multiple
occurrences of the same edge (u, v) are replaced by a single edge (u, v). For an interval
temporal graph, its underlying static graph is obtained by replacing each edge (u, v, intvls)
by the edge (u, v). Figure 5 shows the underlying static graphs for the temporal graphs
of Figures 1 and 2. We show below that finding mw f paths and walks and mc f paths is
NP-hard for the interval model but polynomially solvable for the contact-sequence model
(for acyclic graphs).

Theorem 1. The mw f path and walk problems are NP-hard for interval-temporal graphs.

Proof. For the NP-hard proof, we use the sum of subsets problem, which is known to be
NP-hard. In this problem, we are given n non-negative integers S = {s1, s2, . . ., sn} and
another non-negative integer M. We are to determine if there is a subset of S that sums to M.
For any instance of the sum of subsets problem, we can construct, in polynomial time, the
interval-temporal graph shown in Figure 6. For all edges other than (un, v), the permissible
departure times are from 0 through M (i.e., their associated interval is [0−M]) and the edge
(un, v) has the single permissible departure time M (equivalently, its associated interval is
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[M−M] or simply [M]). The travel time for edge (ui, ui+1) is si, that for (un, v) is 1, and
that for the remaining edges is 0. For every subset of S, there is a no-wait path from u0 to un
that arrives at un at a time equal to the sum of the sis in that subset. Further, every no-wait
path from u0 to v must get to un at time M. Hence, there is a no-wait path from u0 to v if
S has a subset whose sum is M. In addition, every time-respecting path from u0 to v in
the temporal graph of Figure 6 is a foremost path, as there is no path from u0 to v that can
arrive at v either before or after time M + 1. Hence, a min-wait foremost path from u0 to v
has a total wait of 0 if there is a subset of S that sums to M; this path gets to v at time M + 1.
Hence, the min-wait foremost path problem is NP-hard. The same construction shows that
the min-wait foremost walk problem is also NP-hard for interval temporal graphs as every
walk in the graph of Figure 6 is a path.

Figure 5. Underlying static graph for temporal graphs of Figures 1 and 2.

Figure 6. Interval-temporal graph for NP-hard proofs.

We note that the construction used in the above proof is easily modified, so that every
edge has a travel time that is >0.

Theorem 2. The mc f path problem is NP-hard for interval-temporal graphs.

Proof. For this proof, we use the partition problem: Given S = {s1, . . . , sn} with {s1 + s2 +
. . . + sn = 2M}, we are to determine whether there is a subset whose sum is M; the sis and
M are non-negative integers. We use the same graph as in Figure 6. Each edge (ui, xi) has
the cost si; all other edges have a cost of 0. As in the proof of Theorem 1, every path from
u0 to v corresponds to a subset of S; this subset consists of the sis on the included edges of
the form (ui, ui+1). A path from u0 to v is feasible (time-respecting) if its length from u0
to un is P ≤ M. Every feasible path from u0 to v gets to v at M + 1 and is a formost path.
Feasible paths have the property that the sum, P, of the sis in the associated subset is ≤M.
Also, for every subset of S, there is a corresponding feasible path. The cost of such a path is
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2M− P ≥ M (as P ≤ M). This cost takes on the min value M if the sum of sis on it is also
M; i.e., if S has a partition (i.e., a subset whose sum P is M). Hence, the mc f path problem
is NP-hard for interval temporal graphs.

4. Min-Hop Foremost Paths

Before we develop the algorithm for finding mh f paths in interval-temporal graphs,
we present the following theorems about mh f paths in temporal graphs.

Theorem 3. There exist interval-temporal graphs in which every mh f path from a source vertex s
to a destination vertex v has a prefix-path ending at a prefix vertex u and the prefix-path from s to u
is not a min− hop path.

Proof. This can be seen from Figure 7. The only mh f path from a to d is < a, 0, b, 1, c, 2, d >.
However, the prefix path < a, 0, b, 1, c > is not a min-hop path from a to c. The min-hop
path from a to c is < a, 8, c > which is not a prefix path to the only mh f path from a to d,
even though this mh f path goes via c.

Theorem 4. There exist interval-temporal graphs in which every mh f path from a source vertex s
to a destination vertex v has a prefix path ending at a prefix vertex u and the prefix path from s to u
is not a foremost path.

Proof. This can also be seen from Figure 7. The only mh f path from a to f is< a, 0, b, 7, d, 8, f >.
However the prefix path < a, 0, b, 7, d > is not a foremost path from a to d. There
are two foremost paths from a to d in the interval-temporal graph of Figure 7, namely,
< a, 0, b, 1, c, 2, d > and < a, 0, b, 1, c, 2, e, 3, d >. Neither of these foremost paths from a to d
is a prefix path to the only mh f path from a to f , even though this mh f path goes via d.

Theorem 5. There exist interval-temporal graphs in which every mh f path from a source vertex s
to a destination vertex v has a prefix path ending at a prefix vertex u and the prefix path from s to u
is not an mh f path.

Proof. This can also be seen from Figure 7. The mh f path from a to f is < a, 0, b, 7, d, 8, f >.
However, the prefix path < a, 0, b, 7, d > is not an mh f path from a to d. Out of the two fore-
most paths from a to d in the interval-temporal graph of Figure 7, namely, < a, 0, b, 1, c, 2, d >
and < a, 0, b, 1, c, 2, e, 3, d >, the former has a fewer number of hops. Therefore, it is the the
mh f path from a to d. However, it is not a prefix path for the only mh f path from a to f ,
even though the only mh f path from a to f goes via d.

Theorem 6. Consider an interval graph G that has a path from s to v. G has an mh f path P from s
to v with the property that every prefix Q of P is an h hop foremost path to u, where h is the number
of hops in Q and u is the last vertex of Q.

Proof. Since G has a path from s to v, it has a min-hop foremost path R from s to v. Let
S be the longest prefix of R that is not an h-hop foremost path from s to u, where h is the
number of hops in S and u is the last vertex in S. If there is no such S then the theorem
is proved. Assume S exists. Replace S in R, by an h-hop foremost path from s to u, say
S′. The resulting path R′ is an mh f path from s to v with a prefix S′ from s to u with an
earlier arrival time at u, but the same number of hops. Repeating this replacement strategy
a finite number of times, we obtain a min-hop foremost path P from s to v that satisfies the
theorem.
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Figure 7. Example mh f paths from vertex a.

4.1. Algorithm to Find mh f Paths in Interval-Temporal Graphs

As noted in [13], some intervals of departure times on an edge may be redundant for
the purposes of finding optimal foremost, min-hop, shortest, and fastest paths, as these
are dominated by other intervals of the edge. These intervals are also redundant from the
perspective of mh f paths (Theorem 6) and we assume that these redundant intervals have
been removed in a preprocessing step.

Our algorithm employs the function f (u, v, t) [9,13], which determines the earliest
possible departure time ≥ t using the edge (u, v).

4.1.1. Data Structures Used by mh f Algorithm 1

1. We use the same data structure to represent the interval temporal graph as we used
in our earlier paper [13]. The data structure comprises a (say) C++ vector with one
slot for each vertex in the graph. The slot for any vertex u itself contains a vector of
vertices adjacent from u. Associated with each adjacent vertex v from u, there is a
vector of time-ordered tuples for the edge (u, v).

2. incSt is a structure that keeps track of vertices discovered in every hop. The fields in
this structure are as follows:

(a) curVtxId is the current vertex.
(b) arrTm is the time of arrival at the current vertex.
(c) re f PrvIncSt is reference to previous incSt that stores similar information about

previous vertex on this path.

3. allHopPaths—array of lists that stores a list of vertices discovered at every hop. This
array has, at most, H lists, where H is the maximum number of hops in min-hop
paths from source vertex, s, to any of the vertices v ∈ V. Every element of the list is
an instance of the structure incSt.

4. tEKA—array that stores for each vertex v tuples of:

(a) earliest known arrival time t f .
(b) number of hops in which earliest time found h f .
(c) index, indx, into allHopPaths to the structure incSt in the list at h.
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4.1.2. Algorithm Description

• INPUT:

1. Temporal graph represented by data structure described in Section 4.1.1, item 1
2. Source vertex s

• OUTPUT:

– Array tEKA as described in Section 4.1.1, item 4

As an example, consider the interval-temporal graph of Figure 8. Let the source vertex
be S and tstart = 0. In the first round (hopCnt = 1), the neighbors A, B, and C are identified
as one-hop neighbors of S with one-hop path arrival times of 1, 5, and 10, respectively.
Therefore, the earliest known arrival time to these neighbors are updated with tEKA, with a
hopCnt of 1. In the next round (hopCnt = 2), these one-hop paths are expanded to two-hop
paths to vertices B (S, A, B ) and C (S, B, C). The arrival times of these paths are 2 and 6,
which is earlier than their current arrival times. Therefore, their earliest known arrival times
( f oremost arrival times) are updated. In the third round (hopCnt = 3), the earlier arriving
2-hop paths to B and C are expanded. While the 2-hop path to C cannot be expanded
any further, the 2-hop path to B is expanded to obtsin a 3-hop path to C that gets to C at
4, which is earlier than its current arrival time. Therefore, tEKA is again updated for this
vertex. This path is expanded in the next round (hopCnt = 4) and the 4-hop path to D
(S, A, B, C, D) is discovered, which is also the f oremost arrival time at D. This path arrives
at D at 5. The algorithm now terminates as hopCnt = 4 = V − 1.

Figure 8. mh f paths in interval-temporal graphs.
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Algorithm 1 Min-hop foremost path algorithm

1: Create startSt← (s, tstart, null) as an instance of incSt.
2: Initialize tEKA[s] ← tstart; ∀v ∈ V, v 6= s, tEKA[v] ← ∞; Initialize allHopPaths[0] ←
{startSt}

3: hopCnt = 0; newVsInHop = 1; totVsRchd = 1
4: while (hopCnt < V − 1) and (newVsInHop ≥ 0) do
5: hopCnt ++
6: newVsInHop← 0
7: for each (re f IncSt ∈ alHopPths[hopCnt− 1]) do
8: vert = re f IncSt.curVtxId
9: tvertArr = re f IncSt.arrTm

10: for each (nbr ∈ V[vert].nbrs) do
11: (depTm, intvl Id) = f ((vert, nbr), tvertArr)
12: if depTm ≥ ∞ then
13: continue . start next loop iteration
14: end if
15: newArrnbr = depTm + λintvl Id
16: if (newArrnbr < tEKA[nbr].t f ) then
17: if (hopCnt > tEKA[nbr].h f ) then
18: Create an instance of incStruct as nis
19: nis← (nbr, newArrnbr, re f IncSt)
20: tEKA[nbr].h f = hopCnt
21: alHopPths[hopCnt].append(nis)
22: tEKA[nbr].indx = newVsInHop ++
23: else . arrival with an earlier time in same hop from a diferent prev node
24: Update
25: alHopPths[hopCnt][tEKA[nbr].indx]
26: end if
27: if tEKA[nbr].t f ≥ ∞ then
28: totVsRchd ++
29: end if
30: tEKA[nbr].t f = newArrnbr
31: end if
32: end for
33: end for
34: end while

Theorem 7. Algorithm 1 finds mh f paths from the source vertex, s, to all reachable vertices v ∈ V
in the interval-temporal graph G = (V, E)

Proof. The proof follows from Theorem 6 and the observation that the algorithm constructs
mh f paths first with 1 hop, then with 2 hops, and so on. Form Theorem 6, it follows that,
on each round, it is sufficient to examine only 1-hop extensions of paths constructed in the
previous round.

The asymptotic complexity of Algorithm 1 is O(NMitg log δ), where N and Mitg are
the number of vertices and edges, respectively, in the interval temporal graph and δ is the
maximum number of departure intervals on an edge from the given Mitg edges. This is the
same as that of the min-hop algorithm in our earlier paper [13].

5. Min-Wait Foremost Walks in Interval Temporal Graphs
5.1. Properties of mwf Walks

In this section, we describe properties of mw f walks that are used later in the section
for developing single-source all-destinations mw f walks algorithm and the correctness
proof of our mw f algorithm. Some of the terminology we use is given below.
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1. For a walk X, tX denotes its arrival time at its terminating vertex v and wX denotes
the total wait time accumulated by X along its way from s to v.

2. Comparing any two walks X and X′ w.r.t mw f arrival at a vertex v, X is said to be the
same or better than X′ if tX ≤ tX′ and wX ≤ wX′ .

3. A walk from s to v via some vertex u is denoted as W(s, u, v).
4. A walk X from s to u that is extended further to obtain a walk W(s, u, v) is a prefix

walk denoted by X = Pre(W(s, u, v)).

Definition 1. Walk dominance—for any two walks A and A′ from s to u, A is said to dominate
over A′ if, for any walk W(s, u, v) where A′ = Pre(W(s, u, v)), A′ can always be replaced by A to
produce a same-or-better walk W ′(s, u, v) w.r.t mw f arrival at v

Theorem 8. If there are two walks, A(tA, wA) and A′(tA′ , wA′), that arrive at a vertex u, such
that tA ≤ tA′ , then if ((tA′ − tA + wA) ≤ wA′) then A dominates A′.

Proof. We have:
(tA′ − tA + wA) ≤ wA′ (1)

Let the departure time of A′ for any onward walk from u be tdep ≥ tA′ . Since tA ≤ tA′ ,
tdep ≥ tA, therefore, A can also depart vertex u at tdep. If A′ departs at tdep, the wait time
accumulated by the time of departure is w′ = wA′ + tdep − tA′ . If A departs at tdep, the
wait time accumulated by the time of departure is w = wA + tdep − tA. Due to Equation (1)
w′ ≥ w. Hence, if A′ is replaced by A, then any possible extension of A′ can still depart
at the same time and would have accumulated an equal or less wait time by the time it
departs from u. Therefore, A′ can always be replaced by A in any possible extension of A′

to obtain a same-or-better walk.

Theorem 9. For identifying non-dominated walks among all the walks arriving at a vertex u, all
walks may be arranged in an increasing order of arrival time at vertex u and only adjacent walks
need be compared for dominance.

Proof. If there are three walks (A, B, C) terminating at u with arrival times (tA ≤ tB ≤ tC),
we need to show that it is sufficient to compare only the adjacent walks to find and retain
the dominant walks terminating at u. This follows from the following two conditions:

1. If B survives A (is not dominated by A), then comparing C with B should have the
same result as comparing C with A. In other words

(a) If C survives B, it also survives A.
(b) If C is dominated by B, it is also dominated by A.

2. If A dominates B and B dominates C, then A also dominates C. Therefore, it does not
matter in which order the walks are compared. Both B and C will be eliminated.

1. We are given B is not dominated by A or survives A. Based on the dominance criteria
of Equation (1) we obtain Equation (2) for B surviving A

(tB − tA + wA) > wB (2)

(a) When C survives B, we have

(tC − tB + wB) > wC (3)

We are to prove that C also survives A

(tC − tA + wA) > wC (4)

Adding Equations (2) and (3) yields (4)
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(b) When C is dominated by B, Equation (1) gives

(tC − tB + wB) ≤ wC (5)

Replacing wB from Equation (2) in Equation (5), we obtain

(tC − tA + wA) ≤ wC (6)

Therefore, A also dominates C.

This proves that, when B is not dominated by A, then comparing C with B has the
same result as comparing C with A.

2. Here, we prove that if A dominates B and B dominates C, then A also dominates C.
Since A dominates B we have

(tB − tA + wA) ≤ wB (7)

For B dominates C we have Equation (5). The two Equations (5) and (7), can be added
together to obtain Equation (6), which states that A dominates C. Therefore, when A
dominates B and B dominates C, regardless of the order in which the adjacent walks
are compared, both B and C will be eliminated.

Hence, for any three walks A, B, and C with tA ≤ tB ≤ tC, only adjacent walks need to
be compared to remove dominated walks and retain non-dominated walks. When applied
transitively to all walks arriving at u, we see that if all the arriving walks are arranged in
non-decreasing order of their arrival times, only adjacent walks need to be compared to
eliminate the dominated walks and retain the non-dominated walks.

Theorem 10. For any two walks A and B arriving at a vertex u, where tB > tA, if B is not
dominated by A as per the dominance criteria (1), then for any departure time t available on an
outgoing edge (u, v) such that t ≥ tB, A need not be considered for expansion.

Proof. Let A′ be the walk obtained by extending A from u to a neighbor v at time t ≥ tB.
Similarly, B′ is obtained by extending B on (u, v) at t ≥ tB. Assuming λ as the travel time
when departing at t on the edge (u, v), we have the following:

tA′ = t + λ; wA′ = wA + (t− tA) (8)

tB′ = t + λ; wB′ = wB + (t− tB) (9)

Therefore, we have tA′ = tB′ . In addition, since B is not dominated by A, we have

tB − tA + wA > wB (10)

From Equations (8)–(10), we have wB′ < wA′ . This means that extending A at t ≥ tB is not
beneficial, as it will be dominated by B′.

Theorem 11. In order to find mw f walks, if walk A arriving at u is extended from u to v using an
edge (u, v) at time tdep ≥ tA in a departure interval I(s, e, λ), then there is no benefit to extending
A using the same edge (u, v) in the same interval I(s, e, λ) at a time t′ where t′ > tdep.

Proof. Let the extension of A from u to v by departing at tdep be A1. Let the extension to v
obtained by departing at t′ be A2. We have the following two equations for the arrival and
wait times of A1 and A2, respectively.

tA1 = tdep + λ; wA1 = wA + (tdep − tA) (11)

tA2 = t′ + λ; wA2 = wA + (t′ − tA) (12)
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Clearly, tA1 < tA2 as tdep < t′. Further, substituting tA2, tA1, wA1 from Equations (11)
and (12) in expression tA2 − tA1 + wA1, we obtain

tA2 − tA1 + wA1 = wA2 (13)

From the dominance criterion of Equation (1), we conclude that A1 dominates A2. This
means that if we extend A at tdep and at t′ > tdep in the departure interval I(s, e, λ) using the
edge (u, v) to obtain A1 and A2, respectively, A2 will be dominated at v by A1. Therefore,
there is no benefit of extending A at t′

Theorem 12. If the walk A arriving at u is extended from u to v using the edge (u, v) at time
tdep ≥ tA in a departure interval I1(s1, e1, λ1), then A may need to be extended again using the
edge (u, v) in a subsequent interval I2(s2, e2, λ2) where (s2 > e1) if one of the following is true

1. s2 + λ2 < tdep + λ1

2. λ2 > λ1

Proof. tA ≤ e1 as A can be extended in I1. Therefore, the earliest time at which A can be
extended in I2 is s2. It need not be extended at any other time in I2 due to Theorem 11. Let
the extension of A obtained by extending in I1 be A1 and that obtained by extending in I2
be A2.

1. If s2 + λ2 < tdep + λ1, it means tA2 < tA1; therefore, A will need to be extended at s2
so we do not miss any opportunities of further expansion in intervals of departure
available at v at a time t, such that s2 + λ2 ≤ t < tdep + λ1.

2. We have the following two equations for the arrival and wait times of A1 and A2,
respectively

tA1 = tdep + λ1; wA1 = wA + (tdep − tA) (14)

tA2 = s2 + λ2; wA2 = wA + (s2 − tA) (15)

Comparing A1 and A2 at v, we see that s2 + λ2 ≥ tdep + λ1 as otherwise, condition 1
would be true. Therefore, we have:

tA2 − tA1 = s2 + λ2 − tdep − λ1 (16)

Let e = tA2 − tA1 + wA1. Evaluating e using Equation (16) and substituting for wA1
from Equation (14), we obtain

e = wA + s2 − tA + (λ2 − λ1) (17)

Substituting wA2 from Equation (15) into Equation (17), we obtain:

e = wA2 + (λ2 − λ1) (18)

We know that for A2 to survive being dominated by A1, we need Equation (19) to
be true

e > wA2 =⇒ wA2 + (λ2 − λ1) > wA2 (19)

Therefore, for Equation (19) to be true, λ2 > λ1, otherwise A2 will be dominated
by A1.

Therefore, unless 1 or 2 is true, there is no benefit of extending in interval I2.
This can also be seen from the example of Figure 9. There are two intervals on the

edge (u, v) with I1(2, 6, 12) and I2(10, 20, 5). A departs at 2 and then does not need to
depart in I2(10, 20, 5), as none of the conditions of Theorem 12 is satisfied. A′ departs at 4
in I1(2, 6, 12) but needs to depart in I2(10, 20, 5) again as condition 1 is satisfied.
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Figure 9. Example of departure in next intervals.

Theorem 13. If walk A arriving at u is extended from u to v using the edge (u, v), it should
always be extended at (tdep, intvl Id) = f (u, v, tA), where f (u, v, t) is the next function referred to
in Section 4.1 and described in [9,13].

Proof. From Theorem 11, a given walk departing in a departure interval I on an edge
(u, v) should always depart at the earliest possible departure time in I. Further, as per the
conditions stated in Theorem 12, it is evident that, for any two available departure intervals
I1(s1, e1, λ1) and I2(s2, e2, λ2) where e1 ≤ s2 on an edge (u, v), a walk A terminating at
u such that tA ≤ e1 should always depart in I1 and whether or not it departs in I2 is
determined by the conditions specified in the theorem.

5.2. Departure from Source Vertex s

All walks that start from a source vertex s have a wait time of 0, as there is no wait
accumulated at the source vertex. Therefore, for any available departure interval on an
edge (s, x), we should be extending at every possible instance of time in this departure
interval. Theorems 11 and 12 do not apply to walks departing from the source vertex s, as
these theorems assume that there is an extra wait accumulated if a walk A is extended at a
later time from the departing vertex u. However, this is not true when u = s as the wait
time at s is always 0. This implies, we may assume that mw f walks do not have a cycle that
involves s as such cycles can be removed from the walk without increasing either the total
wait time or the arrival time at the destination. From the source vertex s, walks may depart
at every departure instance available to find mw f walks. To account for this, we introduce
the concept of a walk class.

Definition 2. A walk class (ws, we, u) is a set of walks that arrives at the vertex u with a wait
time of 0. The first walk in this set arrives at ws and the last one arrives at we, where we > ws.
There is a walk in the walk class at every instance of time in the range [ws, we] and each of these
walks has the same total wait time, which is 0. This can be seen in Figure 10.

Figure 10. Example of a walk class.

For every departure interval denoted by I(start, end, λ) where end > start on an edge
(s, x), we need to generate a walk class, ranging from the start to end, with travel time as λ
and a wait time of 0. Once the walks in the walk class arrive at the neighbor x, Theorems 11
and 12 apply to each walk in the class.

Theorem 14. Each walk in a walk class survives the walk, if any, that arrives before it.
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Proof. This is easy to see from Equation (1), as these walks have the same wait time but
different arrival times.

Theorem 15. If two walk classes WC1 and WC2 arrive at a vertex u, there is no dominance to be
considered.

Proof. This follows from Equation (1), as the wait times of all walks is 0. When they overlap,
one of them may be discarded. When they do not overlap, both can be retained.

When a walk class, WC(ws, we), terminates at a vertex u, if some portion of it overlaps
with a departure interval I(s, e, λ) from u to a neighbor v, the set of walk instances x in the
walk class WC such that s ≤ tx ≤ e can be immediately extended to the neighbor v without
any additional wait at u into a new walk class arriving at v as WC′(ws′, we′). Therefore,
each walk in WC′(ws′, we′) also has a wait time of 0. If there is no overlap with a departure
interval from u to v, then only the walk instance at we needs to be extended to v due to
Theorems 10 and 14.

For the mw f problem, redundant intervals as described in [13] for the foremost, min-
hop, fastest problems are not redundant and need to be retained. Such intervals, however,
are redundant for mh f problems, as noted in Section 4.1

This is illustrated with the example of Figure 11. The min-wait foremost mw f walk
from s to c would benefit by departing from the vertex s at 0, instead of waiting for the next
faster interval that becomes available for departure at 2 and reaches a at 4. Departing at 0
from s reaches a at 5. In this case, the mw f walk would be Wmw f = (s, 0, a, 7, b, 1, c) arriving
at vertex c at time 9 with a wait time of 0.

Figure 11. Interval temporal graph with some slow intervals.

5.3. Additional Data Structures

For finding mw f walks, we introduce an additional data structure which is a sorted
list of all departure intervals in the interval temporal graph, sorted by the arrival time when
departure is at the start of the interval. Each interval in this list is represented as I(s, e, λ)
and the sort key for the list is s + λ. This is demonstrated in Figure 12 for the interval
temporal graph of Figure 11.

Figure 12. Interval list in non-decreasing order of arrival.
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5.4. Algorithm to Find mw f Walks
5.4.1. Data Structures Used by mw f Algorithm 2

1. Input graph G as in our earlier paper [13] and briefly described in Section 4.1.
2. intvlsIn f o is a structure that describes a departure interval.

(a) u is the start vertex.
(b) v is the end vertex.
(c) st—start time of the interval
(d) end—end time of the interval.
(e) λ is the travel time on this intvl.
(f) intvl Id is the Id of this intvl on connection (u, v) in the input graph

3. intvlList—array of intvl In f o that contains all the departure intervals from the input
graph, as described in Section 5.3

4. PQ of ad-hoc intervals—Priority queue of items of type intvlsIn f o. The priority key
is (intvlStrt + λ).

5. mw f WClass is a structure that describes a walk class

(a) strtTm—arrival time of first walk instance in this class
(b) endTm—arrival time of last walk instance
(c) wtTm—total wait time accumulated on the walk.
(d) lastExpAt—This is an array of λs of the departure interval in which this walk

was last expanded to each of the nbr of its terminating vertex. The number
of items in this array is the number of nbrs of the vertex at which this walk
terminates.

6. listWClasses—This is an array of lists of walk classes. The size of the array is the
number of vertices in the graph. Each list in the array is the list of walk classes
terminating at the vertex corresponding to the array index. This list is always sorted
in the increasing order of arrvTmStrt of the walk classes.

7. mw f Walks—An array of walk classes. Array has an item for each vertex in the graph.
For each vertex, it has the mw f walk to that vertex.

5.4.2. Algorithm Description

• INPUT:

1. Temporal graph represented by data structure described in Section 5.4.1, item 1
2. Source vertex s

• OUTPUT:

– Array mw f Walks as described in Section 5.4.1, item 7

For simplicity, we assume that all the edge travel times are >0. Our algorithm for
solving the mw f problem (Algorithm 2) can easily be extended to the case when some
travel times are≥0. Later, we show how to carry out this extension. Algorithm 2 looks at all
possible departure intervals in non-decreasing order of their arrival times when departing
at the start of the interval (intvl.strtTm + intvl.λ). In Step 8, it saves the arrival time of
the latest interval being considered in the variable curTm. In the subsequent while loop, it
keeps fetching new intervals as long as they have the same arrival time as curTm, when
departing at the start of the interval. For each fetched interval newIntvl, at the originating
vertex u of newIntvl, it finds a walk class prevW with latest arrival time of the start of the
walk class prevW.strtTm such that prevW.strtTm ≤ newIntvl.st. No other walk arriving
at u needs to be considered for expansion on this interval due to Theorem 10. Using this
previous walk at the originating vertex u, a new walk is created from u to v at the start
of the newIntvl using the function createNewW. This function creates a new walk from
the previous walk departing at start of newIntvl only if the second part of Theorem 12 is
satisfied. The first part of Theorem 12 is already taken care of because the intervals are
examined only in non-decreasing order of intvl.st + intvl.λ.
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Algorithm 2 Min-wait foremost walks algorithm

1: Create a new newWClass← (tstart, ∞, 0, nbrs_s[0]) as an instance of mw f WClass. Val-
ues are assigned to fields arrivTmStrt, arrivTmEnd, wtTm, lastExpAt, respectively. Last
field is an array of size out degree of vertex s.

2: Initialize mw f Walks[s] ← newWClass; initialize
listWClasses[s].pushback(newWClass); ∀v ∈ V, v 6= s, mw f Walks[v]← null

3: nodesRchd← 1; staticIntvls← intvlList.size; indxStaticIntvls← 0
4: setupNewWClass(s, newWClass.arrivTmStrt)
5: reachableNodes← getReachableNodes(G, s)
6: newIntvl ← removeMinIntvl()
7: while ((indxStaticIntvls < staticIntvls) or !PQ.empty()) and (nodesRchd <

reachableNodes) do
8: curTm← newIntvl.st + newIntvl.λ
9: u = newIntvl.u; v = newIntvl.v

10: newVs← 0
11: while (curTm == newIntvl.st + newIntvl.λ) do
12: if (newIntvl.v 6= s) then
13: prevWIndx ← getPrveW(newIntvl)
14: if prevWIndx 6= −1 then
15: newW ← createNewW(listWClasses[u][prevWIndx], newIntvl)
16: if newW then
17: ins← insNewW(newW, v) . Inserts newW in list of walks at v. If

newW is best mw f walk it is recorded in mw f Walks[v]
18: if ins == NEW then
19: newVs ++
20: end if
21: if ins 6= 0 then
22: setupNewWClass(v, newW.strtTm)
23: end if
24: end if
25: end if
26: end if
27: newIntvl ← removeMinIntvl()
28: end while
29: nodesRchd+ = newVs
30: end while

After the new walk is created on an edge (u, v), it is appended to the list of walks
at v. To qualify as a valid walk to be appended to the list of walks at v, it needs to be
compared for dominance with only the last walk in the list at v due to Theorem 9. This walk
is appended to the list at v only if it is not dominated. The insert function also checks if this
is the first walk arriving at v. If so, it updates the mw f Walks for vertex v and increments
the count of newVs. If this is not the first walk to arrive at v, but if it is better w.r.t mw f
arrival than the best known walk at v, mw f Walks is updated for vertex v. Note that the
new walk cannot have an earlier arrival time than the best known walk at v as the intervals
are examined in non-decreasing order of arrival times, but it may have a lesser wait time.

After a walk has been appended to the list of walks at v, the function setupNewWClass
examines all the neighbors of v. If the start time of the last arriving walk class is in the
middle of an available departure interval, intvl given, in the input graph G on an edge
(v, w), a new departure sub-interval of intvl, say subIntvl, is created. The start time of
subIntvl is the arrival time of the walk and travel time same as that of the intvl (intvl.λ).
This way, every walk originates at the start of an interval given in graph G or at start of
a subIntvl that is a sub-interval of one of the intervals given in the input graph G. This
new subIntvl is inserted into the priority queue PQ. In the removeMinIntvl function, the
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interval with minimum arrival time (when departing at the start of the interval) from
intvlList and the top of PQ is returned.

Theorem 16. Algorithm 2 finds mw f walks from s to all other vertices in an interval temporal
graph when all edge travel times are >0.

Proof. The algorithm examines all the departure intervals in non-decreasing order of
arrival time, when departing at the start of the interval. For every interval, newIntvl in that
order, it considers the best walk eligible for extension in this interval, as per Theorem 10,
by obtaining the index for the previous walk (prevWIndex) in the list of walks at the
departure vertex u, in Step 13. It extends the prevWalk with departure in newIntvl only
if this extension is beneficial as per Theorem 12. Once the walk is extended, it updates
the lastExpAt for prevWalk for the edge (u, v), so that subsequent departure intervals on
(u, v) are used for expanding prevWalk only if the resultant walks may be beneficial, as per
Theorem 12.

The extended walk is appended to the list of walks at v only if it is not dominated as
per the dominance criterion of Equation (1). In addition, mw f walks at v are updated if the
arriving walk is better than the previous mw f walk, w.r.t mw f arrival at v or if it is the first
walk to arrive at v.

Finally, the arriving walk at v, newW, is examined w.r.t all outgoing edges (v, w). If
for a departure interval I(s, e, λ) to any neighbor w we have Is < newW.strtTm ≤ Ie, a new
sub-interval, subIntvl, is created that has a start time of newW.strtTm and inserted into
PQ. When such a subIntvl is the minimum interval among all the intervals from the input
graph G and the subIntvls created during the course of Algorithm 2, the newW gets the
opportunity to expand at the start time of subIntvl.

Therefore, this algorithm starts at the start vertex and generates walks at all feasible
departure instances w.r.t mw f walks criteria. Feasible departure intervals are examined in
non-decreasing order of arrival times; therefore, every new walk generated has an arrival
time ≥ arrival time of any previously generated walk. No feasible non-dominated walk is
missed due to Theorems 8–13.

Every non-dominated walk generated is preserved and expanded as per
Theorems 11–13. When a walk terminating at a vertex v is discovered that is the best
among the walks arriving at v w.r.t mw f arrival, it is recorded as the mw f walk at v. The
algorithm terminates only when one of the following is true

1. All intervals including the sub− intervals created during the course of Algorithm 2
have been examined.

2. mw f walks to all reachable vertices have been found and the arrival time when
departing at the start of next interval being examined is bigger than the max arrival
time of the mw f walks found. Therefore, examining any more intervals cannot give a
better mw f walk.

Therefore, when the algorithm terminates, mw f walks to all reachable vertices have
been found.

For handling the case when some travel times are 0, in the while loop of line 11, we
need to first obtain all the edges with 0 travel times arriving at currTm and form their
transitive closure. Then, we can process every edge arriving at the same currTm over this
transitive closure.

Theorem 17. When time is an integer, Algorithm 2 has pesudopolynomial complexity.

Proof. Let T be the maximum possible arrival time at any vertex. Since curTm is an integer
that increases in each iteration of the outer while loop, this outer loop is iterated O(T)
times. For each value of curTm, the while loop of line 11 is iterated O(MitgT) times, where
Mitg is number of edges in the input interval temporal graph, as the number of walks that
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can arrive at a vertex v at time curTm is O(indegree(v) ∗ T). The components of the time
required for each iteration of the while loop of line 11 are

1. log(walks(v)) in step 13 to find the previous walk that can be extended at the current
departure instance(tarr). walks(v), which is the number of walks at v at time tarr, can
be at most tarr as each preserved walk at a given vertex v has a unique arrival time.
Therefore, time taken by this step is log(tarr) or at most log(T).

2. Constant time for creating a new walk newW in step 15.
3. Constant time for inserting newW, in the list of walks l at v in step 17. l at every vertex

v maintains a list of walks that has arrived at v in non-decreasing order of their arrival
times. newW only needs to be compared with the last walk in l.

4. At most d log(δ) in step 22, d is the out-degree of the vertex v at which newW ter-
minates and δ is the number of departure intervals on an outgoing edge (v, w) that
has maximum departure intervals among all the outgoing edges from v. Each of the
departure intervals on outgoing edges from v may need to be added to PQ.
Size of PQ can be, at most, the maximum number of departure instances in the graph G,
which is MitgT. Therefore, the maximum time taken in this step is d log(δ) log(MitgT).

5. Finally, in step 27, departure instance with minimum arrival time is retrieved. Max-
imum size of PQ can be MitgT. Therefore, maximum time taken by this step is
log(MitgT)

Therefore, the complexity of the algorithm is O(T(MitgT(log(T) + d log(δ)
log(MitgT) + log(MitgT)))), which is O(MitgT2 log(T)). Hence, the time complexity of
Algorithm 2 is pseudopolynomial.

6. Linear Combination of Optimization Criteria

Bentert et al. [10] present a polynomial time algorithm that optimizes any linear
combination of the eight optimization criteria f oremost, reverse_ f oremost, f astest, shortest,
min_hop, cheapest, most_likely, and min_wait in a contact-sequence temporal graph. In this
section, we show that, when time is discrete, we can use the algorithm of Bentert et al. [10]
to solve the mh f , mw f and mc f problems in polynomial time for contact-sequence graphs.
This algorithm may also be used to find mh f , mw f , and mc f paths in interval temporal
graphs by first transforming the interval-temporal graph into an equivalent contact se-
quence graph as described in Section 1. Since this transformation may increase the number
of edges by an exponential amount, this approach does npt result in a polynomial time
algorithm for interval-temporal graphs. However, it does result in a pseudopolynomial
time algorithm as shown in Theorem 17.

To solve mh f , for example, for contact-sequence graphs, we perform the following:

1. Set the coefficient for every criterion other than min_hop and f oremost to 0.
2. The coefficient for the foremost criterion may be set to any integer that is greater than

or equal to the number of vertices, n, in the contact-sequence graph.
3. Set the coefficient for the min-hop criterion to 1.

With these settings, Bentert et al. [10] will find walks that minimize h(s, v) = c f ∗
ta(v) + hops(v), where c f is the coefficient for the foremost criterion, ta(v) is the time at
which the walk from s arrives at v, and hops(v) is the number of hops in the walk. Since
a min-hop walk is necessarily a min-hop path, it has no more than n − 1 hops. If we
examine the digits of mh f (s, v), which is a non-negative integer, using the radix c f , the least
significant digit is the number of hops and the remaining digits give ta. Hence, mh f (s, v) is
minimized by min-hop foremost paths to v and not by any other path or walk.

The strategy for mw f and mc f is similar. In the case of mw f , the function to optimize
is mw f (s, v) = c f ∗ ta(v) + wait(s, v) and for wc f , the optimization function is wc f (s, v) =
c f ∗ ta(v) + cost(s, v), where wait(s, v) is the total wait time on the walk from s to v and
cost(s, v) is its cost. For mw f (s, v), c f must be larger than the maximum total wait time
on an optimal foremost walk from s (a simple bound is the maximum arrival time of a
foremost path to reachable vertices), and for mc f (s, v), c f must be larger than the maximum
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cost of an optimal foremost path (a simple bound to use is the sum of the maximum cost of
each edge). For simplicity, we use c f = 232 in our experiments, as this is large enough for
our data sets.

It is easy to see how the above modeling strategy may be used to find, say, min-cost
foremost paths with the fewest number of hops.

7. Experimental Results

In this section, we compare the performance of our mh f path and mw f walk algorithms
to the algorithm of Bentert et al. [10]. Since the latter algorithm works only on contact-
sequence graphs, we first transform our interval-temporal graphs into equivalent contact-
sequence graphs (as noted in Section 1, this can be performed when time is discrete) and
then we use the strategy discussed in Section 6 to formulate an appropriate optimization
function for the algorithm of Bentert et al. [10]. Since the optimization function constructed
in Section 6 has values larger than what can be handled by the datatype int, we modified
the code of Bentert et al. [10] using the datatype long for relevant variables.

Our experimental platform was an IntelCore, i9 − 7900XCPU@3.30GHz processor
with 64 GB RAM. The C++ codes for finding the optimal linear combination of multiple
optimization criteria for contact-sequence temporal graph algorithms was obtained from
the authors of [10]. All other algorithms were coded by us in C++. The codes were compiled
using the g ++ver.7.5.0 compiler with option O2. For test data, we used the datasets used
in [8,10], for the contact-sequence graphs. We transformed these contact-sequence graphs
to interval-temporal graphs to run on our algorithms. We also generated some synthetic
datasets as interval-temporal graphs that we transformed to contact-sequence models so
the programs of Bentert et al. [10] could be run on them.

7.1. Datasets

We used 13 of the 14 real-world contact-sequence graphs that were used in [8,10,12,13].
The 14th dataset, dblp, was not used as it had a few negative timestamps. The statistics for
the remaining 13 real-world datasets are given in Table 1. In this table, |V| is the number
of vertices, |Es| is the number of edges in the underlying static graph and cs− edges is the
number of edges in the contact-sequence temporal graph. The ratio (cs− edges)/|Es| is the
temporal activity of the graph. Note that the number of edges in the interval-temporal graph
is also |Es|. The datasets have a wide range of sizes in terms of the number of vertices
and edges. Consistent with [8,10,12,13], the travel time, λ, on all edges was set to 1. The
temporal activity on these datasets is low, ranging from 1 to 3.67.

Table 1. Koblenz collection graph statistics.

Dataset |V | |Es| cs− edges Activity

epin 131.8 K 840.8 K 841.3 K 1
elec 7119 K 103.6 K 103.6 K 1
fb 63.7 K 817 K 817 K 1

flickr 2302.9 K 33,140 K 33,140 K 1
growth 1870.7 K 39,953 K 39,953 K 1
youtube 3223 K 9375 K 9375 K 1

digg 30.3 K 85.2 K 87.6 K 1.02
slash 51 K 130.3 K 140.7 K 1.07

conflict 118 K 2027.8 K 2917.7 K 1.43
arxiv 28 K 3148 K 4596 K 1.45

wiki-en-edit 42,640 K 255,709 K 572,591 K 2.23
enron 87,274 320.1 K 1148 K 3.58

delicious 4512 K 81,988 K 301,186 K 3.67

In [13], we generated five synthetic datasets with higher activity and variable λs by
starting with the social network graphs of youtube, flickr, livejournal shared by the authors
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of [17] at http://socialnetworks.mpi-sws.org/data-imc2007.html (accessed on 16 August
2022). These graphs represent user-to-user interactions.

Table 2 shows the statistics for the five synthetic temporal graphs generated by us.

Table 2. Synthetic graphs statistics.

Graphs with µI = 4, µD = 5, µT = 3

Dataset |V| |Es| cs-edges Edge Activity

youtube 1157.8 K 4945 K 105,039 K 21.2
flickr 1861 K 22,613.9 K 480,172 K 21.24

livejournal 5284 K 77,402.6 K 1,643,438 K 21.3

Graphs with µI = 4, µD = 8, µT = 3

youtube 1157.8 K 4945 K 159,103.7 K 32.1
flickr 1861 K 22,613.9 K 727,405.9 K 32.1

Table 3 gives the time (in seconds) required to read each dataset from the disk as well
as the disk memory required by each dataset. The columns labeled [10] are for the case
when the dataset is stored in the input format used by the algorithm of Bentert et al. [10] and
those labeled Ours are for the input format required by our algorithm. As can be seen, the
disk reading time and disk space required by the interval-temporal graph representation
are less than that required by the Bentert et al. [10]. Further, this difference increases as the
temporal activity increases. In fact, for four of the instances, input creation code of [10]
failed to create the required input format for lack of sufficient memory (out-of-mem).

Table 3. Reading times and sizes.

Koblenz Collection

Dataset
Reading Time (in s) Sizes in MBs

[10] Ours [10] Graph Ours

epin 0.46 0.34 31.1 19.3
elec 0.13 0.07 4.5 3.3
fb 0.58 0.34 32.9 21.5

flickr 19.3 14.2 1492.3 911
growth 27 19.9 2188.3 1485.4
youtube 6.1 4.2 456.1 300.8

digg 0.11 0.06 3.6 2.5
slash 0.14 0.07 7 5

conflict 1.44 0.82 98.8 43.2
arxiv 2.5 1.4 193 104

wiki-en-edit – 227 out-of-mem 20,115
enron 0.74 0.36 55.9 29.3

delicious 209 78 16,249 7552

Synthetic Datasets with µI = 4, µD = 5, µT = 3

youtube 67 4 4400 272.2
flickr – 17.8787 out-of-mem 1248

livejournal – 56.1638 out-of-mem 4411

Synthetic Datasets with µI = 4, µD = 8, µT = 3

youtube 102 3 6775 272
flickr – 18 out-of-mem 1249

As an example, for the large synthetic youtube graph with (µI = 4, µD = 8, µT = 3)
which has an activity factor of 32.1, the reading time of the interval-temporal graph is 3.53

http://socialnetworks.mpi-sws.org/data-imc2007.html
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s while the program by Bentert et al. [10] takes about 102.5 s to read the corresponding
graph in Bentert’s transformed format. The size of the interval temporal graph for the same
dataset on disk is 272.3 MB as compared to 6.7 GB for the Bentert’s transformed graph from
the corresponding contact-sequence graph.

7.2. Run Times

As in [8,10,12,13], we assume that the the graph is resident in memory (i.e., the read
time from disk is not accounted for). This is a valid assumption in applications where the
graph is input once and queried many times. To use the algorithm of Bentert et al. [10], we
use the following steps:

1. Transform the interval temporal graph to an equivalent contact sequence graph (csg)
as described in Section 1.

2. Use Bentert’s graph transformation program [10] to convert the csg to the input format
used by Bentert’s linear combination algorithm.

3. Run Bentert’s linear combination program on the transformed graph from Step 2
using the coefficients given in Section 6.

The step 2 transformation was unsuccessful on the Koblenz dataset wiki− en− edit
as well as on all our synthetic datasets other than youtube graph with (µI = 4, µD = 5, 8,
µT = 3), as indicated in Table 3. The failure of this step resulted from the unavailability
of sufficient memory to run the step 2 transformation code of [10] on these instances. We
measured the average of the runtimes for 100 randomly selected source vertices for each
dataset except the delicious from the Koblenz collection and the synthetic datasets, where
we used only five randomly selected source vertices. This reduction in the number of
source vertices was necessary because of the excessive runtime taken by the algorithm
of [10] on these datasets. The average run-times (in seconds) for the Koblenz and synthetic
datasets are given in Table 4. This time does not include the time required by steps 1 and 2.
The speedups (time taken by the algorithm of [10]/time taken by our algorithm) are also
shown visually in Figures 13–16.

The speedups obtained by our mh f algorithm over [10] range from 3 to 207.5 for the
Koblenz datasets and from 451.3 to 679.56 for the synthetic datasets. Our mh f algorithm
outperforms that of [10] on all datasets. The speedups obtained by our mw f algorithm
over [10] range from a low of 0.045 to a high of 23.3. The algorithm of [10] outperforms our
mw f algorithm when the graph has very low connectivity. Their algorithm is able to quickly
discover that no more vertices are reachable from the source vertex and, so, terminates
sooner than our mw f algorithm. However, when there are many reachable vertices, our
algorithm outperforms that of Bentert et al. [10]. We also note that our algorithm works on
interval-temporal graphs where time intervals may be continuous or have large durations,
while the algorithm of Bentert et al. [10] is only for contact-sequence graphs, which are
a subset of interval temporal graphs. As noted earlier, the algorithm of [10] could not be
run on some datasets because of the failure of step 2 as it ran out of memory. On the four
datasets where the algorithm of [10] could not be run, the average runtime of our mh f
algorithm was 1, 1.1, 1.3, and 22.2 s, respectively; the runtime for our mw f algorithm was
39.1, 368.4, 449 and 1317.6 s, respectively.
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Table 4. Runtimes in seconds.

Koblenz Datasets

Dataset
mh f mwf

mh f -[10] mh f -Ours mh f -[10]/Ours mw f -[10] mw f -Ours mw f -[10]/Ours

epin 0.04 6.6 × 10−3 6.106 0.04 0.02 2
elec 1.3 × 10−2 3.6 × 10−4 36 0.01 0.003 3.33
fb 1.8 × 10−2 1.1 × 10−3 15.9 0.017 0.03 0.56

flickr 5.57 0.45 12.34 5.65 1.37 4.12
growth 9.56 1.67 5.72 9.95 4.2 2.36
youtube 0.32 1.2 × 10−2 25.8 0.33 0.18 1.83

digg 2.1 × 10−3 9.1 × 10−5 23.66 0.002 0.002 1
slash 0.01 1.3 × 10−3 11.17 0.01 0.005 2

conflict 9 × 10−5 3 × 10−5 3 0.0009 0.02 0.045
arxiv 5 × 10−2 9.3 × 10−3 6.25 0.06 0.15 0.4
enron 0.18 2.8 × 10−3 64.11 0.7 0.03 23.3

delicious 222 1.07 207.5 763 41 18.6

Synthetic datasets µI = 4, µD = 5, µT = 3

youtube 120.8 0.17 679.5 186.8 71.3 2.6

Synthetic runtimes µI = 4, µD = 8, µT = 3

youtube 132.7 0.29 451.3 275 95.5 2.8

Figure 13. mh f speedups on Koblenz datasets.
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Figure 14. mh f speedups on synthetic datasets.

Figure 15. mw f speedups on Koblenz datasets.
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Figure 16. mw f speedups on synthetic datasets.

8. Conclusions

We have shown that finding mw f paths and walks as well as mc f paths in interval-
temporal graphs is NP-hard. For the mh f single-source all-destinations problem, a polyno-
mial time algorithm was developed and for the mw f single-source all-destinations problem,
a pseudopolynomial time algorithm was developed. We show also that the mh f and mw f
problems for interval graphs can be solved using the linear combination algorithm of
Bentert et al. [10] for those interval graphs that can be modeled as contact-sequence graphs.
While the algorithm of [10] is polynomial in the size of the contact-sequence graph, the
modeling of an interval-temporal graph by a contact-sequence graph, when possible, may
increase the graph size by an exponential amount and, so, this approach does not result
in a polynomial time algorithm for interval-temporal graphs. In fact, even though all of
our datasets could be modeled as contact-sequence graphs, we were unable to use the
algorithm of [10] on one of our Koblenz datasets and three of our synthetic datasets as the
code of [10] that transform the contact-sequence graph into the required input format failed
due to insufficient memory. Our mh f paths algorithm outperformed the linear combination
algorithm of [10] on all datasets on which the algorithm of [10] could be run. A speedup of
up to 69.9 was obtained on the Koblenz datasets and up to 679 on synthetic datasets. For
the mw f single-source all-destinations problem, which is NP-hard, the linear combination
algorithm of [10] outperformed our algorithm on three of the Koblenz data sets and tied
on a fourth. On all remaining datasets, our algorithm outperformed that of [10]. The
datasets on which the algorithm of [10] did well had the property that few vertices were
reachable from the source vertex. This enabled the algorithm of [10] to terminate early.
In these cases, the speedup obtained by our algorithm ranged from 0.045 to 0.56. On the
remaining Koblenz datasets, our mw f algorithm obtained a speedup of up to 23.3. For both
the synthetic datasets where it was possible to run the algorithm of [10], our algorithm was
faster and delivered a speedup of up to 2.8. On the four datasets that the transformation to
the input format required by the algorithm of [10] failed due to lack of memory, our mh f
algorithm ran in 1, 1.1, 1.3, and 22.2 s, respectively and the runtime for our mw f algorithm
was 39.1, 368.4, 449 and 1317.6 s, respectively.
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Abbreviations
The following abbreviations are used in this manuscript:

NAPP No-wait acyclic path problem
V Number of vertices in a graph
N Used interchangeably with V
Es Number of edges in underlying static graph
mw f Min-wait foremost
mh f Mih-hop foremost
mc f Min-cost foremost
Mitg Number of edges in interval-temporal graph (same as Es)
Mcsg Number of contact-sequence edges
λ Travel duration on an edge at a given departure time
δ Maximum number of departure intervals on an edge
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