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Abstract: The quantum alternating operator ansatz (QAOA) and constrained quantum annealing
(CQA) restrict the evolution of a quantum system to remain in a constrained space, often with a
dimension much smaller than the whole Hilbert space. A natural question when using quantum
annealing or a QAOA protocol to solve an optimization problem is to select an initial state for
the wavefunction and what operators to use to evolve it into a solution state. In this work, we
construct several ansatzes tailored to solve the combinational circuit fault diagnostic (CCFD) problem
in different subspaces related to the structure of the problem, including superpolynomially smaller
subspaces than the whole Hilbert space. We introduce a family of dense and highly connected circuits
that include small instances but can be scaled to larger sizes as a useful collection of circuits for
comparing different quantum algorithms. We compare the different ansätzes on instances randomly
generated from this family under different parameter selection methods. The results support that
ansätzes more closely tailored to exploiting the structure of the underlying optimization problems
can have better performance than more generic ansätzes.

Keywords: quantum algorithms; quantum computation; combinatorial optimization; circuit fault
diagnostics

1. Introduction

We introduce and characterize several different quantum alternating operator ansatz
(QAOA) [1] approaches to solving the combinational circuit fault diagnostic (CCFD) prob-
lem, a combinatorial optimization problem of importance for diagnosing faults in circuits. In
particular, we identify different constrained spaces of interest and explore various construc-
tions of mixing and cost operators that allow us to evolve within each constrained subspace,
allowing the protocol to focus on bringing the support of the system’s wavefunction to
an optimal or approximately optimal state within this subspace that can be significantly
smaller than the space of the physical qubits needed to run the system. There are many
such relevant subspaces, and through a different selection of mixing and phase separation
operators, even the same subspaces can be explored in very different ways.

After describing QAOAs for optimization problems, we delineate the stuck-at-fault
model of CCFD problems considered in this paper and how they can be cast as optimization
problems. We then develop several different ansätzes for solving this optimization problem,
beginning with the least constrained (measured as the resulting size of the constrained
space maintained) and ending with the most constrained. The most constrained ansatz
has a superpolynomially smaller constrained space. For circuits with a logarithmic or
lower minimum fault explanation, it can be modified to have a constrained space that
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grows subexponentially in the number of wires while the most generic approach grows
exponentially.

The methods used for constructing ansätzes in this domain can be useful for construct-
ing more tailored approaches for other domains, which is an interesting avenue for future
quantum algorithms. The results from running each ansatz under several parameter selec-
tions indicate that ansätzes more closely tailored to a problem can have better performance
than more generic ansätzes. The relative success of the simple parameter selection methods
used in this manuscript are of interest to researchers focusing on QAOAs for other domains.

For many classes of combinatorial optimization problems that are NP-hard, the fea-
tures of specific instances can make them, in practice, more or less accessible to different
algorithms. The features of typical CCFD instances, such as a planar-like topology that is
often amendable to embedding on local two-dimensional lattice quantum architectures,
make them a strong candidate for quantum algorithms utilized on NISQ devices. Given
the real-life applications of CCFD problems, they have become problems of interest for
leveraging the potential quantum advantage for industrial purposes [2]. Our results in this
manuscript support that tailored ansätzes should be explored on NISQ quantum computers
to solve CCFD problems. The family of scalable, dense, and highly connected circuits we
introduce is a useful testbed for such devices.

Even between different QAOA algorithms, the features of particular instances can
affect which approaches are more or less promising. For example, we consider an ansatz
that is similar to a recently studied CQA approach [3] that shows promise in the regime
where an instance has higher degeneracy in the solution space and higher minimum fault
explanations, while another approach maintains a subexponential constrained space when
there is an upper bound on the minimum fault explanation. This suggests that the scaling
of the minimum fault explanation for the instances of interest is important for determining
the best ansatz to utilize.

However, there are still more considerations for implementing these approaches on
quantum systems, including the preparation of the initial state and considering the best
implementation of the required unitaries through a specific gate set. Certainly, more than
the size of the constraint is important for determining the best ansatz for a problem, and it
remains an open challenge to identify what specific features of the mixing operators and
phase-separating operators would lead to the best performance.

In Section 2, we introduce a QAOA for combinatorial optimization problems and
develop the principles around constrained quantum evolution within this context. In
Section 3, we describe the single-pair input/output circuit fault diagnostic problem over
the stuck-at fault (SAF) model, where circuit wires are either healthy or permanently
stuck at one or zero. In Section 4, we delineate different QAOA protocols, with different
resulting constrained spaces. In Section 5, we introduce a family of circuit instances to
explore the suitability of our QAOA approaches for solving this problem for small sizes. In
Section 6, we benchmark the approaches on the distribution of small-sized circuit instances
introduced in Section 5. Our results support that tailored ansätzes can be beneficial for
obtaining better performance in optimization problems such as CCFD problems, where
there is structure in the underlying problem that can be exploited.

2. Constrained Evolution in Quantum Alternating Operator Ansätzes

For combinatorial optimization problems, there have been recent advances in the
research of applying quantum algorithms to solve such problems that are centered around
the quantum approximate optimization algorithm (QAOA1) [4], which is a very general
protocol to approximately (or exactly) solve combinatorial optimization problems, such
as the Max Cut problem [4–7]. However, further generalizations of this concept, such
as the RQAOA [8] and quantum alternating operator ansatz (QAOA) [1,5,9], have been
developed in the hope to better tailor protocols to particular problems and thereby exploit
their specific structures. For the purpose of this paper, we focus on using QAOA protocols
to find optimal solutions to a combinatorial optimization problem. For example, the au-
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thors of [5] demonstrated a near-optimal quantum unstructured search algorithm based
on using coherent phase-separation operators in the QAOA setting. Under reasonable
complexity-theoretic assumptions, the QAOA cannot be efficiently simulated by any classi-
cal computer [10]. For a small number of qubits, this has been realized on an NISQ [11]
device [12].

Given a general binary optimization problem with N bits, the quantum computer
works with N qubits over a spaceC2N

. The wavefunction of the system |ψ 〉 is a normalized,
complex-valued vector in this space, and potential actions on this state (i.e., algorithmic
steps) are represented by unitary operators.

The QAOA works by starting the quantum system in a prepared state and then
applying a series of angle-parameterized unitaries to evolve the system into a state that is
then measured over a predetermined basis. The result can then be interpreted as a bit-string
solution to the optimization problem. The QAOA divides the task of evolving the system
into P rounds, each involving the application of two sets of operators. The first is a set
of mixing operators, which are discussed in greater detail later. The second is a diagonal
unitary operator associated with a classical cost function that acts to essentially evaluate
the quality of different configurations.

Given a classical cost function C(x), in both the QAOA and QAOA1, Hamiltonian
form phase separation operators are used such that Uc(α) = ∑x∈{0,1}N eiα C(x)| x 〉〈 x |, where

| x 〉 are the orthonormal computational basis states in C2N
. Any such state | x 〉 (a ket-state)

can be written as an outerproduct state of individual qubit states | x 〉 = | x1, . . . , xN 〉 =
| x1 〉 . . . | xN 〉 with x ∈ {0, 1}N , | xi 〉 ∈ C2 and xi ∈ {0, 1}. As such, the classical cost
function is interpreted as a classical Hamiltonian Hc = ∑x∈{0,1}n C(x)| x 〉〈 x | (a real-valued

diagonal matrix in C2N
). The complex exponentiation of a Hermitian operator is a unitary

operator, and so Uc(α) is a diagonal unitary operator.
For example, a marked state cost function associated with a single solution state

x∗ = (1, . . . , 1) could be C(x) = −∏n
i=1 xi. Then, Uc(α) = 1− (1− e−i α)| x∗ 〉〈 x∗ |. The

wave function associated with the quantum system |ψ 〉 = ∑x∈{0,1}n ax| x 〉 will therefore
evolve to |ψ 〉 = ax∗ e−i α| x∗ 〉 + ∑x∈{0,1}n/{x∗} ax| x 〉, and so the behavior of Uc(α) is to
add the same phases to computational basis states that have the same energy evaluations
according to the cost function C(x).

QAOA1 is a type of QAOA approach with a specific mixing operator and a fixed
starting state. Both of these conditions are replaced with a more general condition in the
QAOA. In QAOA1, we begin in the uniform superposition state |+ 〉⊗n = 1√

2n ∑x∈{0,1}n | x 〉
so that every computational basis state | x 〉 has the same amplitude. The mixing operators
are single local Pauli X operators:

Ud(β) =
n

∏
j=1

e−i β σx
j .

The action of σx
j on qubit j is to flip the bit, mapping | 1 〉 to | 0 〉 and vice versa. Any

QAOA approach that utilizes Ud as mentioned above is considered a QAOA1 approach for
the purpose of our descriptions. As such, QAOA1 proposes a very specific type of ansatz,
in which the mixing operator takes this form for any problem. The QAOA will generalize
this to allow for more structured ansaẗzes.

Then, for a single round ti of a QAOA (including QAOA1), we pick two degrees αi and
βi and evolve the wave function as |ψ(ti) 〉 = Ud(βi)Uc(αi)|ψ(ti−1) 〉. Uc changes the phase
of states based on their evaluation from the classical cost function in the computational basis,
while Ud acts as a mixer, leading to interference between the states in the superposition and
potentially leading to concentration on low-lying energy states based on the cost function
C(x) after several rounds. Indeed, as the number of rounds P goes to infinity, one can select
αi and βi such that |ψ(tP) 〉 is guaranteed to minimize the cost function C(x) [4].
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For a given finite value P, there are 2P angles to select for running the algorithm
which can therefore be cast as an optimization task where one wishes to find the angles
that lead to a minimization of the cost function C(x). QAOA1, as well as the QAOA,
is a type of variational quantum algorithm (VQA) [13] for which finding the optimum
parameters is typically an NP-hard problem [14]. The landscape of the final cost given by the
quantum algorithm is known to suffer from a barren plateau [13,15–17], and optimization
with random starts can lead to convergence to the local minima [6,13]. Nonetheless, the
optimum or near-optimum solutions can follow similar patterns across instances [6,18].
For a more detailed discussion, we refer the reader to [13]. The techniques utilized in this
paper will be discussed Section 6. Once the algorithm has run for P rounds, the wave
function of the system is measured in the computational basis {| x 〉| x ∈ {0, 1}n} such that
the wave function collapses to a single state in that basis according to the Born rule, where
Pr(x) = |〈 x |ψ(tP)〉|2.

For many classes of problems, including certain class of linear and quadratic constraint
problems, it is possible to find alternative mixing operators that allow us to limit the evolu-
tion of the wave function to a feasible subspace of a collection of those constraints [1,19–22].
The general problem is NP-hard, but there is a simple polynomial algorithm for bounded
operators [22]. In QAOA1, the mixing operator utilized can be associated with there be-
ing no constraint placed on the evolution, since every state is reachable under its action
(although it is clearly not the only such mixing operator). The two essential requirements
for the mixing operators are that they must take actions moving states in the constrained
space to potentially any other state in that constrained space, but they cannot move such
states outside of the constrained space.

As such, the QAOA describes a more general approach than QAOA1, in which the
mixing operator and phase-separating operators can be much more general. In particular,
they are usually tailored to the specific type of symmetries of the underlying problem (such
as the ansatz to the algorithm). Notice that the QAOA shares the same acronym as QAOA1
in the literature. For example, ref. [1] lists a compendium of mixing and phase-separating
operators that can be utilized for different combinatorial optimization problems. Specific
types of mixers have been studied more extensively. For example, XY mixers are associated
with a very simple kind of equality constraint that makes them useful for many types of
combinatorial optimization problems [23] as well as quantum chemistry [24].

3. Circuit Fault Diagnostics

Diagnosing errors and faults for gate-based digital circuits is an area of intense research,
as large-scale integrated circuits and specialized circuit designs have become abundant in
many scientific and engineering disciplines. Increasingly sophisticated automation tech-
niques used to check and correct errors in the circuit design and fabrication are increasingly
relied upon in practice. Because of the underlying combinatorial nature of this problem
as well as the local design of many modern circuits, this is a class of problems that is well
suited to typical NISQ [2,11] architectures.

We employ a simple stuck-at-fault model for analyzing circuits with a given string
of inputs and empirically found string of outputs [25]. Let n be the number of wires in
the circuit and no be the number of output wires. Each wire in the circuit is either healthy
or stuck at either zero (SA0) or one (SA1). Under the assumption that faults are equally
likely to occur on every wire, the task of circuit fault diagnostics (CFD) is an optimization
problem for finding the minimum number of faults needed to explain the input-output
pair [2].

For the purpose of our discussion in this paper, we consider gates that are one-
input/one-output, two-input/one-output, or one-input/two-output. One-input/one-
output gates are an identity gate ID or an inverter gate INV. Two-input/one-output gates
are OR, AND, XOR, NOR, NAND, or XNR. One-input/two-output gates are a fan-out gate
FAN, a fan-out gate with an inverter on the first output F10, a fan-out gate with an inverter
on the second output F01, or a fan-out gate with an inverter on both F11.
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A configuration for the problem is a 2n-bit string, where over bits 1, . . . , n are the wire
bits and over bits n+ 1, . . . , 2n are the fault bits. A valid configuration (w1, . . . , wn, f1, . . . , fn)
has an erroneous value of a wire wi if the corresponding fi is nonzero.

The inputs to a circuit are considered to also be potentially faulty such that the input
wires themselves could be SA0 or SA1, but the output wires have to correspond to the
empirical value they have (otherwise, this diagnosis would be invalid), but that value may
come from error propagation in the circuit or from the output value itself being SA0 or SA1.

For whatever faults are present in the circuit, the output values can always be made to
match the empirical value by taking the nonconforming output values and flipping their
values (as well as their associated fault bit). As such, the size of the valid configuration
space is 2n−no [3], since we have precisely n− no wire locations where the fault flag can be
0 or 1. (The fault flag on the no output wires is then forced to be such that the configuration
is indeed valid.) Figure 1 shows all possible valid fault explanations for a small circuit.
Note that there are 3 non-output wires and 23 valid fault configurations.
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Figure 1. All possible valid fault configurations for a small circuit with one FAN gate and one
NAND gate that has a faulty output. The diagrams on the top left and right show minimum fault
explanations for this instance.

3.1. Valid and Invalid Configurations Around Gates

Enforcing the logic of the circuit on our configurations is essentially enforcing the
logic of each individual gate on the part of the configuration that corresponds to that gate’s
inputs and outputs.

Valid configurations around gates follow the same logical delineation as valid configu-
rations for the entire circuit. For any circuit or subcircuit, including a single gate, we can
list the potential valid configurations by considering the different input/output pairs. If a
configuration is valid for a particular input/output pair, it cannot be valid for any other,
and so the valid configurations always make disjointed sets. For that circuit or subcircuit,
as discussed before, the inputs can potentially be faulty, but the outputs must match their
empirical values. However, the size of the different valid configuration sets is always
the same.

As such, the valid configurations around a gate are split by what the inputs before
considering the fault status are (If they differ from this value, there must be an associated
fault on this input.) and what the output after considering the fault status is (i.e., the
same situation as for the circuit at large). Table 1 gives a full description of all the valid
subconfiguration spaces for an NAND gate, where the first element in each entry is the
trivial valid configuration that exists for every subcircuit (or the whole circuit) by applying
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the faults on the outputs only (i.e., all wires are healthy, except the outputs that disagree
with the logical value they should have).

If a configuration is valid and maintains a state status as described by an entry in
Table 1, then swapping this subconfiguration with a state status in the same entry will also
be valid, since we did not change the values that came from previous gates or were set as
global inputs to the circuit, nor did we change the value of the output (which is then used
as an input to a gate or is a global output for the circuit).

For a circuit with a collection of gates G, we consider the input and output wires (Ig
and Og) for that gate. The collection of valid configuration sets around this gate

Vg = {V
(SIg ;SOg )
g |SIg ∈ {0, 1}|Ig |, SOg ∈ {0, 1}|Og |},

is indexed by what the potential values the wire inputs SIg are set to without faults and
what the potential wire outputs SOg are set to. For example, SIg for an NAND gate in the
fault model is a collection of the possible inputs {(0, 0), (0, 1), (1, 0), (1, 1)}, and SOg is a
collection of the possible outputs {(0), (1)}.

Table 1. Each kind of input/output pair for a faulty NAND is described. Each entry has different
valid configurations, and configurations in the same entry form a subspace such that the action of the
driver terms we construct connects the configurations of this subspace.

Entry IO Pair Valid Configurations

1 (0,0;0) (0,0,0;0,0,1), (1,1,0;1,1,0),
(1,0,0;1,0,1), (0,1,0;0,1,1)

2 (1,0;0) (1,0,0;0,0,1), (1,1,0;0,1,0),
(0,0,0;1,0,1), (0,1,0;1,1,1)

3 (0,1;0) (0,1,0;0,0,1), (1,1,0;1,0,0),
(0,0,0;0,1,1), (1,0,0;1,1,1)

4 (1,1;0) (1,1,0;0,0,0), (0,0,0;1,1,1),
(1,0,0;0,1,1), (0,1,0;1,0,1)

5 (0,0;1) (0,0,1;0,0,0), (1,1,1;1,1,1),
(1,0,1;1,0,0), (0,1,1;0,1,0)

6 (1,0;1) (1,0,1;0,0,0), (1,1,1;0,1,1),
(0,0,1;1,0,0), (0,1,1;1,1,0)

7 (0,1;1) (0,1,1;0,0,0), (1,1,1;1,0,1),
(0,0,1;0,1,0), (1,0,1;1,1,0)

8 (1,1;1) (1,1,1;0,0,1), (0,0,1;1,1,0),
(1,0,1;0,1,0), (0,1,1;1,0,0)

4. QAOA Approaches to CFD

In this section, we give details on the construction for several QAOA approaches to
solving the CFD problem, with each constraining the evolution of the wave function to
a specific subspace and using mixing terms which connect all feasible states within this
space to one another in different ways. We map each bit in the 2n-bit string to a qubit such
that the wave function of our system |ψ 〉 is a normalized vector in C22n

. At the end of
the QAOA algorithm, we measure |ψ 〉 in the computational basis to extract a solution to
our problem.

4.1. Approach 1: Transverse Field with a QUBO

This approach is closely related to a Hamiltonian description of this problem, which
is similar to, for example, the approach described in [2] for using a transverse field and
an Ising Hamiltonian with explicit fault mappings to represent this problem. As such, our
approach is in the spirit of QAOA1 for Ising spin problems.
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The mixing operators are the Pauli X operators:

Ud(βt) =
n−no

∏
i=1

e−iβtσ
x
i .

Since the output values of the circuit have to match the given empirical values, they
are not allowed to change during the problem. As such, these qubits can be integrated out
of the problem. The phase-separating operators are associated with an Ising Hamiltonian:

Uc(αt) = eiαt H f ,

where the Hamiltonian counts the number of faults and enforces the logic of the gates:

H f =

(
2 n−no

∑
i=n−no+1

(1− σz
i )/2

)
+ κ

(
∑
g∈G

Hg

)
,

where Hg = ∑Vr
g∈Vg

(
1−∑v∈Vr

g
| v 〉〈 v |

)
associates a cost to the state being in an invalid

set for that particular gate. If a configuration x fails to be a valid configuration in the fault
around a gate g, then Hg will associate a cost to the state x.

To ensure consistency with the model, we can set κ = no + 1, the number of outputs,
so that it is never advantageous to break a gate over placing the faults at the very end of
the circuit. The number of output bits is an upper bound on the number of faults of the
minimal fault diagnosis. For individual instances, we can set κ to any value greater than
the number of faulty output bits, which is less than or equal to no.

As in QAOA1, our initial state is the uniform superposition over 2 n − no qubits:
|ψ 〉 = |+ 〉⊗2n−no = 1√

2n−no ∑x∈{0,1}2 n−no | x 〉.

4.2. Approach 2: Transverse and XY Mixer with a QUBO

Any solution to the single input/output CFD problem has at most no faults. To exploit
this bound, we can employ the XY mixer such that over the fault bits ( f1, . . . , fn), we
impose the constraint ∑n

i=1 fi ≤ no. This can be achieved in different ways, for example, by
introducing no ancilla qubits and employing the standard ring XY mixer over the n fault
bits and no ancilla bits.

Note that the XY mixer operating on a computational basis state of N qubits keeps
the number of ones fixed, so if the initial wave function only has support for the compu-
tational basis states with k ones (|ψ 〉 = ∑x∈{0,1}N s.t. |x|=k ax| x 〉), then the wave function
after applying any collection of XY mixers will still have support only for computational
basis states with k ones.

To achieve states with a number of ones between 0 and k, we can add k ancillas and
then apply the XY mixer on N + k qubits such that when those mixers are applied to a wave
function

∣∣∣ψN+k
〉

= ∑x∈{0,1}N s.t. |x|≤k ∑y∈{0,1}k s.t. |y|=k−|x| ax+y| x 〉| y 〉, the constraint on
the number of ones in the wave function is maintained. Then, at the time of measurement,
we simply discard the ancilla qubits and consider the resulting state over N qubits.

Since the outputs, as in the previous approach, can be integrated out, and so the wire
bits correspond to the qubits between 1 and n − no, the fault bits correspond to qubits
between n− no and 2 n− no, and the ancillas correspond to qubits between 2 n− no + 1
and 2 n. Utilizing the XY mixer over qubits between 2 n− no + 1 and 2 n and the transverse
field applied on the wire bits leads to

Hd =

(
n−no

∑
i=1

σx
i

)
+
(

σx
n σx

n−no+1 + σ
y
nσ

y
n−no+1

)
+

2 n−1

∑
i=n−no+1

(
σx

i σx
i+1 + σ

y
i σ

y
i+1

)
,
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which can be split into two noncommuting Hamiltonians:

H1 =

(
n−no

∑
i=1

σx
i

)
+
(

σx
n σx

n−no+1 + σ
y
nσ

y
n−no+1

)
+
b(n+no)/2c

∑
i=1

(
σx

n+2 iσ
x
n+2 i+1 + σ

y
n+2 iσ

y
n+2 i+1

)
,

and

H2 =
b(n+no)/2c

∑
i=1

(
σx

n+2 i−1σx
n+2 i + σ

y
n+2 i−1σ

y
n+2 i

)
.

When n + no is odd, H1 also has a noncommuting term associated with qubits n−
no + 1, n− no + 2, and 2 n. As for the XY mixing operators [23], we can apply commuting
mixing operators associated with H1 and then H2 as follows:

Ud(βt) =

(
n−no

∏
i=1

e−i βtσ
x
i

)(b(n+no)/2c

∏
i=1

e−i βt (σx
n+2 iσ

x
n+2 i+1+σ

y
n+2 iσ

y
n+2 i+1)

)
(

e−iβt(σ
x
n σx

n−no+1+σ
y
n σ

y
n−no+1)

)(b(n+no)/2c

∏
i=1

e−i βt(σx
n+2 i−1σx

n+2 i+σ
y
n+2 i−1σ

y
n+2 i)

)
.

The phase-separating operators are then the same as in the previous section. The
initial state is an outer product (concatenation) of the uniform superposition over the
wire bits and a state with a uniform superposition over n + no states with precisely no
bits set to one, where |ψ 〉 = |ψ1 〉|ψ2 〉 with |ψ1 〉 = 1√

2n−no ∑x∈{0,1}n−no | x 〉 and |ψ2 〉 =

(n+no
no

)
−1/2

∑x∈{0,1}n s.t. |x|1=no | x 〉. We discuss the preparation of the well-known entangled
state |ψ2 〉, studied in several contexts with relation to the XY mixer, in Section 4.6.

4.3. Approach 3: Graph Diffusors with a Linear Field on the Fault Bits

In this approach, we tailor the mixing operators to maintain the valid fault config-
uration space. Around each gate, a mixing operator is associated with swapping valid
fault configurations around that gate, utilizing the descriptions given in Section 3.1 such
that, given a valid configuration, the mixing operators populate states that are also valid
configurations.

Given a set of logical gates G = {g1, . . . , gm} in the fault model over w1, . . . , wn wires
and f1, . . . , fn fault bits, define V(SI ;SO)

g as detailed in Section 3.1. We wish to construct the

collection of unitaries U = {U(1)
g1 , . . . , U(r)

g1 , . . . , U(r)
gm } associated with the mixing operator

of each gate and the respective tuple of input/output pairs for each gate. (Note that the
index (r) runs over a set of input/output pairs to the gate, so it is typically an n-tuple and
not a single integer.) For example, as in the circuit considered in Section 3 and illustrated
in Figure 1, if g2 is an NAND gate, then {U(1)

g2 , . . . , U(8)
g2 } are associated with the eight

input/output pairs for an NAND gate. We define the uniform superposition over the
collections V(j)

gi as
∣∣∣V(j)

gi

〉
= 1√

|V(j)
gi |

∑
v∈V(j)

gi
| v 〉. (See Table 1 for such a description for an

NAND gate) Then, we define each mixing operator associated with a specific input/output
pair for a specific gate:

U(j)
gi (βt) = 1−

(
1− e−iβt

)∣∣∣V(j)
gi

〉〈
V(j)

gi

∣∣∣
= 1−

(
1− e−iβt

)
/|V(j)

gi | ∑
v,u∈V(j)

gi

| v 〉〈 u |.
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Then, we define the mixing operator associated with each gate:

Ugi (βt) =
(r)

∏
j=(1)

U(j)
gi (βt).

Here, Ugi (βt) are unitary because U(j)
gi (βt) are mutually commutative over the in-

put/output pair index j. U(j)
gi , which has an eigenvalue eia for an eigenvector

∣∣∣V(j)
gi

〉
and

an eigenvalue of one for any vector in the range of the projector 1−
∣∣∣V(j)

gi

〉〈
V(j)

gi

∣∣∣. Then,
we define

Ud(βt) =
m

∏
i=1

Ugi (βt),

as the mixing operator for this ansatz, where we apply each gate one after another. However,
for circuits with a highly regular structure (such as those introduced in Section 3), we can
group many commutating unitaries together and apply all Ui(βt) with in two steps.

The cost function (also one-local) simply counts the number of faults of the configura-
tions:

Uc(αt) =
2 n

∏
i=n

(
eiαt(1−σz

i )/2
)

.

The feasibility space and how it is connected through the action of Ud is more compli-
cated for this approach than previous approaches such that it cannot be as easily described
by a uniform superposition over the states. We begin with a known feasible configuration
and apply Ud(βt) to explore the feasible configuration from there. A simple starting state
used for this purpose is the state with only faults placed on the faulty output states.

We also consider a modified protocol which includes a second cost function that has
this state as its minimum, in clear inspiration from a similar CQA [3] approach. A sufficient
(and one-local) cost function puts a penalty on every bit that does not conform with the
initial state chosen. As such, the cost associated with any state in the space is given by
its Hamming distance from the initial state. Let x0 = {x0

1, . . . , x0
2n} be the computational

basis string associated with the initial state |ψ 〉 =
∣∣ x0 〉. Then, the initial state cost function

operator can be implemented as

Us(γt) =
2n

∏
i=1

eiγt(1−(1−2x0
i )σ

z
i )/2.

For this modified protocol, we have three sets of operators: the initial state cost
function operator, the mixing operators, and the phase-separating operator. As such,
we generalize the QAOA protocol to have three angles to select for every round such
that the state evolves under (α1, β1, γ1, α2, β2, γ2, . . . , αp, βp, γp). For step ti, |ψ(ti) 〉 =
Us(γi)Ud(βi)Uc(αi)|ψ(ti−1) 〉. In Section 6, we consider the performance of both ap-
proaches for small circuit instances and different parameter selection methods. Since
Us and Uc are both one-local operators, it is also straightforward to apply them together in
a device.

4.4. Approach 4: Transverse Field on Faults with an Oracle Circuit Simulator

Rather than representing the wire and fault bits explicitly, in our next approach, we
focus on the space of valid fault configurations (of dimensions 2n−no ). Notice that for any
invalid fault configuration, it can be made a valid configuration by simply flipping the fault
bit for the output bits which are incorrect.

Consider a fault configuration f = ( f1, . . . , fn−no ) over non-output wires. The energy
of the state is dependent on the number of nonzero fault bits P( f ) = ∑n−no

i=1 fi as well as
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the number of implied faults needed on the outputs to make this a valid configuration
Q( f ) = ∑n

i=n−no
(wi − S( f , i))2, where S( f , i) is the value placed on the output wire wi

when simulating the circuit with the given inputs and the fault configuration f over the
non-output wires.

Then, R( f ) = P( f ) + Q( f ) counts the total number of faults implied by the fault
configuration f in this constrained space. By constructing an oracle that simulates the
circuit and then uses this information to find the proper fault count, we have a phase
separation operator with the same cost function as in Section 4.3:

Uc(αt) = ∑
x∈{0,1}n−no

eiαtR(x)| x 〉〈 x |.

As in QAOA1, our starting state will be |ψ 〉 = |+ 〉⊗n−no = 1√
2n−no ∑ f∈{0,1}n−no | f 〉.

and we use the one-local Pauli X mixing operators:

Ud(βt) =
n

∏
i=1

e−iβt(σx
i ).

To see how Uc(t) can be implemented in practice, we consider a protocol where
ancilla qubits are used for the computation of the faults needed on the outputs. Let
|ψ(ri−1) 〉 ∈ C2n−no be the wave function at the beginning of round ri, with the initial wave
function defined as shown above. We show how |ψ(ri) 〉 is then generated over the current
round. For ri ∈ [r1, rt], we have

| ν(ri) 〉 = Ucirc| 0 〉n|ψ(ri−1) 〉| 0 〉no

=
n

∑
x∈{0,1}n−no

〈 x |ψ 〉| f (x) 〉n| x 〉n−no
| g(x) 〉no

(Simulate Circuit)

| µ(ri) 〉 = Uc(αi)| ν(ri) 〉 (Apply Phases)

=
2 n

∏
j=n+1

ei αi(1−σz
j )/2 ∑

x∈{0,1}n
| f (x) 〉n| x 〉n−no

| g(x) 〉no

= ∑
x∈{0,1}n−no

(
2 n

∑
j=n+1

ei αi xj

)
| f (x) 〉n| x 〉n−no

| g(x) 〉no

| 0 〉n| φ(ri) 〉| 0 〉no
= U†

circ| µ(ri) 〉 (Undo Simulation)

|ψ(ri) 〉 =
n−no

∏
j=1

e−i βiσ
x
j | φ(ri) 〉 (Apply Mixing)

Here, Ucirc implements the simulation of the faulty circuit such that f (x) is the valid
configuration over the wire bits that | x 〉 specifies from the non-output fault bits, while g(x)
are the required faults on the output bits such that x⊕ g(x)⊕ f (x) is a valid configuration
over the 2n bits.

4.5. Approach 5: Bounded Fault Count with Oracle Circuit Simulator

In this section, rather than restricting ourselves to the subspace of all fault configura-
tions, we wish to restrict ourselves to the fault configurations up to a maximum number
of faults. To accomplish this task, we can use the XY mixer also discussed in Section 4.2
by utilizing ancilla qubits in a complimentary way. Here, we have n− no non-output fault
flag bits (the same as in Section 4.4) and no ancilla qubits to allow for representation of all
state configurations with faults less than or equal to no.

The cost function remains the same as that used in Section 4.4, and the same procedure
with the simulation of the circuit to find the faults on the end bits can be used, except for
the aforementioned replacement of the mixing operator.
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The initial state is then |ψ 〉 = ( n
no
)
−1/2 ∑x∈{0,1}n−no s.t. |x|1≤no ∑y∈{0,1}no s.t. |y|1=no−|x|1

| x 〉| y 〉, similar to the state mentioned in Section 4.2. Note that since we also have implied
faults, the maximum number of faults that can be expressed is between no and 2 no. The
initialization of this state is discussed in more detail in Section 4.6.

4.6. Size of the Relevant Constrained Space and Summaries for the Approaches

In each of the approaches delineated in Section 3, the size of the constrained space
of interest which the evolution of the wave function is limited to differs. In Table 2 and
Figure 2, each approach is summarized by the type of mixing operator, the type of cost
function, the size of the constrained space, and the complexity of each round.

Table 2. Depending on our selection of mixing and phase-separating operators, we can constrain the
evolution of the wave function to constrained spaces of differing sizes.

Approach Mixing Operator Cost Function Size of Constrained Space Round Complexity

1 Pauli X Ising O(22 n) O(1)
2 XY mixer and X Ising O(2n−no (n + no)no ) O(1)

3 Gate-based
diffusors Pauli Z O(2n−no ) O(1)

4 Pauli X Circuit Oracle O(2n−no ) O(Cp)
5 XY mixer Circuit Oracle O(nno ) O(Cp)

Unconstrained Space ~  

Valid Faults ~  

Valid Bounded Faults ~  

Bounded Faults ~  

Figure 2. A visual representation of the subspaces that the wave function is kept within during
evolution through each QAOA approach.

While the approaches in Sections 4.3 and 4.4 differ greatly in the type of mixing and
phase separation operators used, they constrain the system to the same subspace. Consider
the exploration of this space under these two different approaches. The latter begins with a
uniform superposition over all valid fault configurations, and the neighborhood of each
computational basis state under the action of each Pauli X operator in the mixer is a state
that is a bit flip away, similar to a high-dimensional hypercube. The former begins with
a single feasible state, and the neighborhood of each state under the action of the mixing
operator is dependent on the available transformations around each gate to move it to a
new fault configuration.

Moreover, while the cost functions associated with these two approaches are equivalent,
the resulting phase separation operators for implementing these cost functions are very
different. For example, while each call to the cost function runs in O(1) for the fault
counting in the former, each call to the cost function in the latter will require simulating the
corresponding circuit, which has a particular depth Cp. For example, for the distribution
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of the circuits introduced in Section 5, the depth of the classical circuit grows as O(
√

n)
if we choose the diameter and depth to be equal. (This relationship holds for the family
considered for the experiments in this paper.)

Approaches 2 and 5 require the preparation of a particle number-conserving state
studied in many areas of quantum computation and quantum chemistry [26–29]. We refer
the reader to the appendix of [23] for a discussion of this state in the context of a QAOA
with the XY mixer. In general, for a uniform superposition over n qubits preserving a
number k, the state can be constructed with (n

k) = O
(

nk
)

CNOT gates [29], which can
be prohibitive for a circuit with a large bound on the number of faults. However, the
authors of [26] provided a projective measurement method that grows polynomially with
n and independent of k for large n values. Alternatively, one can use an approach similar
to Approach 3, where the initial state is a computational basis state in the feasible space.
The initial state selection for an QAOA remains an important area of current research [23],
including warm starts [30,31]. Moreover, the number of minimum faults for many circuits
of interest can be much less than no, and one could adapt the approaches to utilize this
smaller space.

5. Random CFD Instances with Balanced Width and Depth

To demonstrate how these different approaches practically perform in the CFD prob-
lem, we introduce a family of random instances that scale with a single size parameter and
allow for detailed analysis at small sizes. Figure 3 shows the first few such circuits with
increasing sizes. The central feature is that both the depth of the circuit and the number of
inputs or outputs (width) scale together with the size and number of wires of the circuit.
We randomly select the inputs for the whole circuit and apply faults to the outputs such
that every output is faulty. We randomly select the inputs and gates at each spot from the
relevant gate set for every size to generate the instances used in Section 6.

The valid fault configurations for an instance of the smallest circuit in the family are
in Figure 1. Unlike all the other circuits, this has only one output, and so we modified the
model for this small circuit for our experiments such that placing a fault on the output wire
required two faults, whereas every other location required one.

Figure 3. Diagrams for circuit instances of the CFD problem considered in Section 6, depending on
the number of qubits, from these small, local, and dense circuits. Every box is a two intput/one
output gate, every dot is a one input/two output gate, and every diamond is a one intput/one output
gate. If a top wire has a > and a bottom wire has a ⊥ at the same depth, they refer to the same wire
(which has been wrapped around).

While at large scales we expected the performance of any specific ansatz strategy to
decrease with the problem size, at the small sizes used for our simulations, the performance
could vary by problem size in a more complicated fashion. For all instances, the maximum
number of faults needed was two, since there were two outputs. We generated 100 instances
that were filtered such that the minimum fault explanation required a single fault.

Approach 3, unlike all the other approaches, would be initialized in a solution state
without this filtering. For larger-sized circuits of this family, the chance of a randomly
selected instance having a minimum fault explanation that saturates this bound is increas-
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ingly diminished, but this filtering is an important step for the small-sized circuits of
this family.

For the filtered data sets of different sizes, the specific topology of the circuits can still
lead to important differences in fault configurations. For example, the circuit depicted at
the bottom middle of Figure 3 has much more diversity in the typical size (or degeneracy)
of the solution space compared with the smaller sizes. Solution degeneracy has been seen
to have a beneficial impact on a variety of optimization problems for QAOAs.

6. Performance with Different Parameter Optimizations

Using the family of CFD instances from the previous section, we consider the per-
formance of QAOA strategies with different methods of parameter optimization: BRUTE,
INTERP, LINANGOPT, and LINCOEFOPT. Each of the first three requires the expected cost
of the final wave function to update the angle parameters. For implementation on a quan-
tum computer, the expected cost of the final wave function has to be sampled with repeated
measurements, and there will be a trade-off between repeated runs to accurately compute
this value and run the protocol with updated parameters based on the approximation [6].
The angles were selected from the interval [−π, π].

For BRUTE, we chose 100 random seeds and ran the Nelder–Mead algorithm with
100 iterations to optimize each choice, using the final Hamiltonian as the cost function and
selecting the choice that minimized the cost function the most. For INTERP, we used the
interpolation function called INTERP in [6], which showed good performance from this
method in their results. We used the Nelder–Mead algorithm (with 100 random seeds and
100 iterations each) on p = 2 and then for p > 2, beginning with the linear interpolation
from p− 1 and optimizing with 100 iterations for this result. For LINANGOPT, we started
the protocol with a linear ramp for each angle (i.e., for round k ∈ [1, p], αk = k π/p and
βk = π − k π/p) and then optimized the angles (with 200 iterations). For LINCOEFOPT,
we used a coefficient Γ ∈ {9/10, 1/2, 1/4, 1/8, 1/16} and used the same linear ramp but
replaced αk, βk with αkΓ, βkΓ and then optimized Γ over 20 iterations before selecting the
best performing Γ.

In each situation described, Approach 3 (with an initial state cost function) is different
from the other approaches, since it has three angles to select for a single round k. As
the initial starting point for LINANGOPT and LINCOEFOPT (with Γ), it begins with
γk = π − k π/p, αk = Θ(k ≤ p)(2 k π/p) + Θ(k > p)(π − 2 k π/p) (reaching a maximum
around p/2 and minimums at 0 and p), and βk = k π/p. Note that Approach 3 was also
considered without an initial state cost function, and the results support that this seemed
to benefit its performance.

The results from [6] suggest that the Nelder–Mead algorithm can perform as well
as other optimization algorithms, such as the Broyden–Fletcher–Goldfarb–Shanno algo-
rithm. Utilizing other optimizers for these tailored ansätzes is an interesting area of future
study [21,32,33]. We report the results with p set to 2 and 3 for BRUTE, 5 for INTERP, 5 and
10 for LINANGOPT, and 50 for LINCOEFOPT.

The relative simulation range capable on a workstation grows depending on the size
of the relevant constrained space for the problem and so the more constrained approaches
have an increased simulation range, as such we report results on larger instances for these
approaches for each parameter selection. Figure 4 details the performance of each ansatz
with each parameter selection strategy.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Performance of ansätzes with different parameter selections. The solid lines indicate the
performance on the median of the instances, while the ribbons correspond to the lower and upper
quantiles. Markers correspond to the success probabilities of individual instances.

The results support that ansätzes which exploit a more constrained space by tailoring
the operators used to the problem structure generally perform better in the CFD problem
and therefore are important methods for improving the practical applicability of QAOAs
and other variational quantum algorithms. Indeed, Approaches 4 and 5 consistently per-
formed the best, and Approach 3 performed comparably with some parameter selections for
certain sizes. Surprisingly though, Approach 1 performed quite strongly for LINCOEFOPT
with p = 50. The performance across these different metrics generally supports that while
a linear tramp function might be well suited for certain approaches, such as Approaches 1
and 4, it is interesting to consider different functions to parameterize the angles for other
approaches. Utilizing an initial state cost function showed advantages for Approach 3
in each parameter selection method except for LINANGOPT, where the benefit was not
as clear.

The performance showed high variance under BRUTE and INTERP for most ap-
proaches. Approach 3 in particular seemed to struggle more at very low p values, perhaps
because the initial state had full support for a particular solution and had to use mixing
operators to explore the space, while the other approaches began with a uniform super-
position over all states in the particular subspace. Since INTERP utilizes the results from
BRUTE at p = 2, this difficulty can translate to this approach as well. While INTERP can
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alleviate the high cost associated with brute force evaluation to find good parameters with
stepwise optimization as p is scaled higher, the parameters found at low p values can
potentially be associated with a local minimum that may be the best cost minimization
the algorithm can accomplish at this depth, and then the algorithm is subsequently stuck
around this choice at higher p values.

Approach 3 also showed striking performance differences between instance sizes,
especially for LINANGOPT with p = 5 and LINCOEFOPT with p = 50. Approach 3 is
initialized to a computational basis state with faults on the outputs, and so the distance, in
terms of the number of mixing operators, to find a minimum state as well as the degeneracy
of the solution space may play a more acute role compared with other approaches. For
example, as noted in Section 5, the instances with 13 wires had instances with higher
degeneracy than that at lower sizes. This typical degeneracy growth with the problem size
for the circuits of interest is one reason leveraging quantum algorithms may be beneficial.

Note that the results were based on the number of rounds p, but the actual depth of a
quantum circuit to implement each of the different approaches will differ, especially for
larger circuit instances. Moreover, Approaches 2 and 5 used a starting state that required
more involved preparation before the procedure could begin.

7. Conclusions

One of the most compelling areas for utilizing variational quantum algorithms on
NISQ devices arises from solving optimization problems, including those with hard con-
straints. The quantum alternating operator ansatz (QAOA) and constrained quantum
annealing (CQA) are methods that can enforce those constraints naturally throughout
the protocol or anneal. Designing approaches that can usefully use the structures of dif-
ferent optimization problems remains an important task for developing state-of-the-art
quantum algorithms.

Designing mixing operators and phasing operators for a constrained space can be more
general than satisfying a global hard constraint, such as satisfying many local constraints
(such as the valid configurations around a faulty gate [3], as in Section 4.3), a practical
bound on the maximum value a counting problem can yield (Sections 4.2 and 4.5), or
simply finding a way to represent a Hamiltonian that is difficult to implement without
ancillas (Sections 4.4 and 4.5).

In this paper, we constructed several general approaches to exploit constrained quan-
tum evolution to solve the CFD problem, some of which had superpolynomially smaller
constraint subspaces. While some of these approaches may be related to protocols that
could be implemented on a quantum annealer, others are more challenging and therefore
better suited for QAOAs or digital adiabatic simulations. We introduced a family of random
circuits that are parameterized by a single size parameter, which can be useful for bench-
marking future NISQ devices. Simulations of QAOA protocols with optimized parameters,
interpolated and optimized parameters, and linear interpolation suggest that more ad-
vanced ansätzes can give better performance by utilizing the underlining structure of an
optimization problem. As such, designing and experimenting with more novel operators
for solving optimization problems remains an important area for future research. Nonethe-
less, the initial states of several approaches are more involved to prepare, and the unitaries
necessitated for each ansatz require further analysis under specific quantum architectures.

There are many interesting areas of future work that arise from the constructions
considered in this paper. It would be interesting to explore approaches such as Approach
5 with an initial state in the computational basis to relieve the cost of preparing a highly
entangled initial state. Since the number of minimum faults needed for a circuit can be
much smaller than the upper bound given, it would be of interest to explore several of the
approaches where this is utilized to form a more constrained ansatz, especially in Approach
5. For example, if the minimum number of faults needed is known to scale logarithmically,
the constrained space can then scale subexponentially for Approach 5. Given the rich
and growing literature of approaches to find suitable parameters for QAOAs, it would be
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interesting to utilize such approaches for the ansätzes introduced here, especially those that
are less cost prohibitive for intermediate p values, where the advantage of more tailored
ansätzes could be more pronounced compared with more generic ansätzes using the same
parameter selection approach. Given that near-term quantum devices are likely to be noisy
and have inaccuracies in the application of gates, it would be interesting to compare these
ansätzes in this regime and consider modifications. The performance of each ansatz varied
over the instances, and it would be interesting to analyze what kind of features of an
instance can be predictive of the performance of an ansatz. Finally, it would be of interest
to consider other optimization problems in which similar structures can be exploited to
tailor ansätzes.
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