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Abstract: A scheme for parallel computation of the two-dimensional Edwards—Anderson model
based on the transfer matrix approach is proposed. Free boundary conditions are considered. The
method may find application in calculations related to spin glasses and in quantum simulators.
Performance data are given. The scheme of parallelisation for various numbers of threads is tested.
Application to a quantum computer simulator is considered in detail. In particular, a parallelisation
scheme of work of quantum computer simulator.
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1. Introduction

The Edwards—Anderson model was proposed by Edwards and Anderson in 1975 to
describe the physics of spin glass [1,2]. The model represents a set of spins arranged at the
nodes of the lattice. Each spin can take on a value of +1 or −1 (or the direction up or down
in some one dimensional isotopic space). All adjacent spins interact with each other. The
interaction energy of one pair is calculated by the formula

E = ∑
<i,j>

Jijsisj, (1)

where the sum symbol with the index < i, j > denotes the summation over all adjacent
lattice nodes, Jij is a coupling constants between spins, taking values +1 or −1 with equal
probability for bimodal distribution and any values with probability

P(Jij) =
1√

2π J0
e−

Jij
2J0 (2)

for Gaussian distribution.
Spin glasses have a complex energy landscape and property of ultrametricity [3].

The spin glass model is used in taxonomy, classification problems, information theory,
biology, bioinformatics, protein folding and freezing [3], in neural networks, in assessments
performance evaluation of quantum computers and in optimisation problems. As neural
network theory has evolved, particularly since the creation of the Hopfield network [4–6],
Restricted Boltzmann machine [7] and deep Boltzmann machine [8] interest in spin glasses
has increased significantly. In the Hopfield network, finding an image from a distorted in-
put image is reduced to the problem of finding metastable states with maximum correlation
of the input image with the trained one. The set of local minima of states corresponds to the
set of memorized images. By constructing properly the coupling constants between spins it
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is possible to control the size of the barriers between states, the number of local minimums,
width of valleys, etc. [9] This explains the many publications devoted to the analysis of
metastable states and methods for counting their number [10–12]. Knowing the physics of
spin glasses allows us to control performance, error rate and data processing capacity of
the neural network. A development of the Hopfield network is the Boltzmann machine,
the operation of which has a probabilistic nature. The Boltzmann machine allows us to
overcome relatively small local minima and stay at deeper ones. This makes its operation
more stable and efficient in practical applications.

One important practical application of the ground state search methods is testing
quantum computers. Ground state search algorithms can serve as a benchmark for quan-
tum computers. For example, DWave computers are adapted to solve the problem of
finding the ground state of spin glasses [13,14]. Due to the imperfect technology, errors
occur in quantum computers that lead to incorrect results. Thus, the problem arises of
constructing an a priori known ground state for testing a quantum computer [15]. An inter-
esting approach to tackle this problem is given in [16]. It is based on reducing the problem
of solving a system of linear algebraic equations (with algebraic operations modulo two) to
the problem of searching for the ground state. It is worth noting that besides quantum com-
puters other analogue devices are under development to solve the optimisation problem of
Edwards—Anderson models [15–17].

The theory of spin glass is closely related to optimization problems, in particular
to the problem of the equality of P and NP classes. An exact polynomial-time method
for finding the ground state has not yet been found. But there are many probabilistic
approaches to solving this problem. We can mention here the Monte Carlo methods [18,19],
simulated annealing algorithms [20,21], parallel tempering and multicanonical Monte
Carlo sampling [22].

It is worth mentioning the exact method based on the Pfaffian calculation and modular
arithmetic methods [23]. It is also capable of working with lattices up to size 100 × 100.

Hartmann and others have developed many approaches for ground state computation
based on the genetic algorithms [24], the cluster algorithms [25], and the shortest path
finding algorithms linking frustrated clusters [26]. The latter computes in polynomial time
and is able to deal with lattices up to 1448 × 1448.

In [27] the method based on Pfaffian matrices is presented. It’s able to compute lattices
up to 3000 × 3000 with free boundary conditions in one direction. The method uses the
FKT theorem.

In the paper the exact method for obtaining the ground state of the Edwards—
Anderson model is presented using high-performance parallel computations. Although
the algorithm is exponential in time, it is nevertheless able to perform calculations on a
40 × 40 lattice computing cluster in time of the order of days when parallelised across 64
threads, using about 400 GB of RAM. The limit lattice size available to the algorithm is
smaller than in some of the works mentioned above. Nevertheless, the proposed approach
has several advantages.

• The polynomial increase in computation time (without increasing the amount of RAM)
while fixing the size of one side and increasing the size of the other, which makes it
possible to compute 40 × 100, 40 × 1000, 40 × 10,000 lattices etc. This feature is not
available to the method presented in [23].

• The method is exact.
• The possibility to handle different distributions (not only bimodal). It is possible to

take into account impurities and heterogeneities.
• The ease of implementation.

The important issue of the computer simulations is the possibility to parallelise the
task because it gives an opportunity to use the power of modern high performance systems
and, consequently, to calculate more complex and larger lattices of spins. The main material
of the article will be devoted to parallelisation.
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The method allows us to find both the ground state energy and ground state spin
configurations. Free boundary conditions are used in the model. For periodic or toroidal
boundary conditions parallelisation will be trivial. In the latter case we would have just a
set of completely independent calculations of parts of the partition functions. In the end
we would sum up all parts taking into account the additivity of partition functions.

The article is organized as follows: the first section provides the description of the
method and the parallelisation scheme. The second section provides performance data for
bimodal distribution. Further we give the conclusions.

2. Algorithm

To find the minimum energy it is necessary to enumerate all possible states of the
lattice spins, calculate their energies and compare them with each other. In order not to
calculate it every time, one can calculate once the energies of states of a subsystem (part of
the initial system) with given boundaries, and then extend the subsystem by adding spins
to it. Knowing the boundary state makes it possible to calculate the change of energy of the
ground state when adding spins. So E → E + ∆E. Expanding the subsystem by adding
one spin at each step until the initial given system is achieved, we compute at each step a
new minimum energy. The calculated energy of the ground state at the last step will be the
final answer. This approach is quite widespread and is used, in particular, in the transfer
matrix method in the calculation of the Ising model [28] and quantum many-body problem
models [29,30]. Further, let’s describe the parallelisation scheme, preliminarily introducing
some notations and formalizing the task.

Let a lattice have size Ly × Lx. The above described energy calculation scheme for
filling the spins of one lattice row (let the system expand line by line) can be represented
as follows

E(s1 = −1, s2 = −1, . . . , sLx = −1)m−1,Lx

E(s1 = +1, s2 = −1, . . . , sLx = −1)m−1,Lx

. . . . . . . . . . . . . . . . . . . . .
E(s1 = +1, s2 = +1, . . . , sLx = +1)m−1,Lx

 add sm,1−−−−→


E(s1 = −1, s2 = −1, . . . , sLx = −1)m,1
E(s1 = +1, s2 = −1, . . . , sLx = −1)m,1

. . . . . . . . . . . . . . . . . . .
E(s1 = +1, s2 = +1, . . . , sLx = +1)m,1

 (3)

add sm,2−−−−→ . . .
add sm,Lx−−−−−→


E(s1 = −1, s2 = −1, . . . , sLx = −1)m,Lx
E(s1 = +1, s2 = −1, . . . , sLx = −1)m,Lx

. . . . . . . . . . . . . . . . . . . .
E(s1 = +1, s2 = +1, . . . , sLx = +1)m,Lx

.

From the scheme one can see that all values of the minimum energy of the subsystem
with a given boundary consisting of Lx spins are written in vector-columns. Each column
component corresponds to a given subsystem boundary. The state of the boundary is given
by the set (s1, s2, . . . , sLx ). The column has 2Lx components. Thus all states of the upper
boundary are covered. The bottom two indices y, x to the right after the bracket E(. . . )y,x
denote the subsystem consisting of y rows with x spins in the top y line. We extend it at
each step, adding one spin from left to right, so these indices allow us to understand which
subsystem we are dealing with at the current step. The notation system is given for the
lattice with Lx = 4 in Figure 1.

Figure 1. Notations for Lx = 4 for different lengths of the top row filled in from left to right. The
upper boundary is indicated by shaded squares.

After filling one line, one should repeat the process for the next line until the original
system is obtained.
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Let us consider in details the calculation of E. Knowing the boundary and all possible
states of the added spin sm,n (the indices m and n denote the vertical and horizontal
coordinates, respectively) one can calculate the minimum value of E of two subsystems
with boundaries differing in the state of only one spin, by the formula

E(s1, s2, . . . , sn = −1, . . . , sLx )m,n =

= min
(

E(s1, s2, . . . , sn = −1, . . . , sLx )m,n−1 + ∆E((s1, s2, . . . , sn = −1, . . . , sLx )m,n−1, sm,n = −1),

E(s1, s2, . . . , sn = +1, . . . , sLx )m,n−1 + ∆E((s1, s2, . . . , sn = +1, . . . , sLx )m,n−1, sm,n = −1)
)

(4)

and

E(s1, s2, . . . , sn = +1, . . . , sLx )m,n =

= min
(

E(s1, s2, . . . , sn = −1, . . . , sLx )m,n−1 + ∆E((s1, s2, . . . , sn = −1, . . . , sLx )m,n−1, sm,n = +1),

E(s1, s2, . . . , sn = +1, . . . , sLx )m,n−1 + ∆E((s1, s2, . . . , sn = +1, . . . , sLx )m,n−1, sm,n = +1)
)

. (5)

Here ∆E is the energy change after spin addition, the first argument ∆E in brack-
ets denotes the boundary state, the second one is the state of the added spin. Let us
explain for better understanding that in the expressions (4) and (5) the values of spins
s1, s2, s3, . . . , sn, . . . , sLx (excepting sn) have the same values for a given boundary to the left
and to the right of the equality sign. In the process of calculations we run over all states the
boundaries. Thus, Formula (4) will be applied 2N/2 times (as well as (5)) to calculate 2N

new E when adding spin at position of the column number n. The minimum energy of the
subsystem of the new set for one boundary state is calculated using only two values of E of
the previous set, distinguished by a single spin state with the column number n (to a given
column with the number n a spin is added):

E(s1, s2, . . . , sn = −1, . . . , sLx )m,n−1 E(s1, s2, . . . , sn = +1, . . . , sLx )m,n−1

E(s1, s2, . . . , sn = −1, . . . , sLx )m,n E(s1, s2, . . . , sn = +1, . . . , sLx )m,n

?

HHH
HHH

HHH
HHH

HHj ?

���
���

���
���

���

Thus, to calculate a new set of minimal energies, all states must be grouped into pairs
differing by the spin state at position n. After adding the next spin already at the n+1
column position, the configurations of the spin boundaries of each pair will differ only by
the state of n + 1 spin. An example of the pairing of a set of boundary spins for a lattice
with Lx = 5 for all five steps of row filling is given in Figure 2. Two-headed arrows signify
data exchange (swap). One part takes up the place of the other part which occupies in turn
the place of the first part.

The pair energies of this set E are determined by the energies of only one pair of the
previous set. The number of boundary spin states is 25, so the number of pairs will be 24.
Listing 1 gives an example of pseudocode for splitting the states of the boundary into pairs.

According to the diagram in Figure 2, two nested loops are needed to split the elements
into pairs. In the listing, these loops are executed with the use of variables index_out and
index_in. The variables state1 and state2 store the state numbers of the boundary of the
respective paired states. The energies of the states are stored in the array E[. . . ]. It can be
seen that as the column number increases, the distance between the spin numbers increases
as well. Due to the fact that the links change when a spin is added, it is clear that in
the parallelisation scheme one will need to do transitions of data between threads in a
non-trivial way. To understand how this should be done, let’s rewrite the parallelisation



Algorithms 2022, 15, 13 5 of 13

scheme in a different way. Namely we can write the spin state numbers of the pair together
(one under the other), as done in Figure 3.

Listing 1. Pseudocode of enumeration rows and columns, splitting states into pairs, calculating new
energy minima.

for ( i n t row=0; row < Ly ; row++)
{
i n t max_step_out =(2^Lx ) /2 , max_step_in =1;
i n t s t a t e 1 =0 , s t a t e 2 =max_step_in ;

for ( i n t c o l =0; c o l < Lx ; c o l ++)
{

for ( i n t index_out =0; index_out < max_step_out ; index_out ++)
{
for ( i n t index_in =0; index_in < max_step_in ; index_in ++)
{
s t a t e 1 =index_out * max_step_in *2+ index_in ;
s t a t e 2 = s t a t e 1 +max_step_in ;
. . . . .
ca lc_E ( . . . )
/ / ( E [ s t a t e 1 ] , E [ s t a t e 2 ] ) => ( E [ s t a t e 1 ] , E [ s t a t e 2 ] )
. . . . .
}
}

max_step_out=max_step_out /2; max_step_in=max_step_in * 2 ;
/ /
}

}

If we wanted variables with paired states storing energy to be in adjacent positions
of memory, then we would move the data each time (while adding spin) as shown by the
arrows in Figure 3. E.g., in Figure 2 in the second row the configuration 1 must interact
with the configuration 3, 2 with 4 and etc. Exchanging the locations of data in memory
according the arrows in the first row on the scheme of Figure 3 we get pairs 1 and 3, 2 and
4 on the adjacent cells of the memory.

From the diagram in Figure 3 one can understand how to move data between threads
when doing parallelisation. As the column number increases, the difference of the pairing
state numbers increases. So, starting from a certain nexch column number at the position
of which spin must be added, it is necessary to move data between threads according
to the Figure 3. One can see that in the blocks with data circled by a dotted line in the
figure, the state numbers are ordered. This makes it possible to construct the following
data exchange scheme. When dealing with subsystems with the number of top row spins
n < nexch, no data is moved within the thread. The splitting of elements into pairs and
energy calculation is done in Listing 1. Then, when the column number n is such that
n ≥ nexch, we do a data exchange between streams so that the paired elements are arranged
as in Figure 3. The scheme of data exchange between threads will look as shown in Figure 4.
It should be emphasized that the scheme in Figure 4 literally the same as one as in Figure 3.
Pulling numbers with their arrows and lining them up in one row we get the scheme in
Figure 4. Also each 2 areas (pair of E) of the memory are joined into one thread (they are
enumerated).

This circuit is made for 16 threads. For 16 streams 4 exchange operations will be
performed to sequentially form four new subsystems. If data with a pair of E is located
within one thread after data, the energy will be calculated according to the scheme of
Figure 2. The code for calculating the energy minima within each thread is given in
Listing 2. The paired elements do not change their occupying locations when adding a
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spin with number n horizontally such that n ≥ nexch. The listing demonstrates this process
by calculating the variables state1 and state2.

Listing 2. Pseudocode of splitting states into pairs, calculating new energy minima for subsystems
with column number n ≥ nexch. Nthr is the number of thread. startstate1 and startstate2 are the
numbers of start states stored inside the memory blocks and transferred by threads.

i n t max_step_in =(2^Lx ) /Nthr /2;
i n t s t a t e 1 =0 , s t a t e 2 =max_step_in ;

for ( i n t index_in =0; index_in < max_step_in ; index_in ++)
{
s t a t e 1 = s t a r t s t a t e 1 +max_step_in ;
s t a t e 2 = s t a r t s t a t e 2 +max_step_in ;
. . . . .
ca lc_E ( . . . )
/ / ( E [ s t a t e 1 ] , E [ s t a t e 2 ] ) => ( E [ s t a t e 1 ] , E [ s t a t e 2 ] )
. . . . .
}

Figure 2. Partitioning of the states of the lattice spin boundary with Lx = 5 into pairs when extending
the row number m + 1. To complete the row, 5 spins must be added. Starting from the second row,
pairing no longer takes place between adjacent memory cells. Thus, the arrows can intersect many
times. The numbers under the arrows signify the locations of the memory. In turn, the each location
corresponds to the given state of a spin boundary. The arrows show the transmission of the values of
the energy to calculate the next energy minima according to (4) and (5).
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Figure 3. Splitting states of the lattice boundary spins with Lx = 5 into pairs while expanding line
m + 1. In this scheme, the spins of each pair are written together: one below the other. The numbers
correspond to the values of E with the fixed boundaries. Position of the number corresponds to
location in the memory. A pair of the cells with paired E (one below the other) are located next door
to each other in the memory. Obviously all pairs of variables with E of must be in adjacent cells of
the memory. sponds to a subsystem with a given number of spins of the uppermost row (a view of
all 5 subsystems is shown in Figure 2). For Lx = 5 we have 5 possible subsystems of different forms
with spins filled from left to right (with one top spin, two, etc.). The bidirectional arrows here mean
data exchange. One part takes the place of the another part, which in turn takes up the place of the
first part.

Figure 4. The data exchange scheme between 16 threads. In each thread the memory is divided into
two parts. One stays, the other is transmitted to the other thread. Meanwhile the half of the memory
of the other thread is written in its place. The numbers indicate the thread number, and the shaded
squares indicate the memory block. This scheme corresponds to one in Figure 3. The positions of the
coloured squares correspond exactly to the memory locations. The transmitted data are the energy
values for the fixed boundaries.

Recall that Figure 4 corresponds to only 2 E per thread. Since according to the Figure 3
scheme the data within blocks (they are surrounded by a dashed line) are arranged in
order, to facilitate the calculation of state numbers, the initial state numbers in the blocks
can also be transmitted in the array of energy values. It can be seen that in the diagram
of Figure 4 data exchange between threads can be done using two nested loops, as was
done in Listing 1. Based on the diagram in Figure 4, namely by observing how groups
of threads vary in size, we can construct the whole system of data exchange between all
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threads. Thus, the pseudocode calculating the energy minima for different subsystems is
given in Listing 3.

Listing 3. Pseudocode for rows and columns enumeration, memory exchange between threads,
energy calculation for cases col < nexch and col ≥ nexch. After completion of building each row, the
memory locations are moved in the opposite direction. The code does not consider the calculation
of the subsystem consisting of the lowest row only, because in this case there is no data exchange
between threads. In the latter case, its calculation is trivial. The data exchange between threads is
performed using two nested cycles on variables thrd_num_out and thrd_num_in. When calculating
the energy by the subprogram calc_E(...), it is necessary to dispatch as arguments the array of energy
values, the number of the column, the length of the side Lx.

for ( i n t row=1; row < Ly ; row++)
{

for ( i n t c o l =0; c o l < n_exch ; c o l ++)
{
for ( i n t thrd_num =0; thrd_num < thrd_amount ; thrd_num++)
{ ca lc_E ( min_E_array , col , Lx ) ; }
}

i n t interval_amount_of_thrds =2 , interval_amount_of_thrds_div_2 =1 ,
amount_of_bunchs_of_connected_thrds=N_thrd /2;

for ( i n t c o l =n_exch ; c o l < Lx ; c o l ++)
{

/ / mem swap ====== v
for ( i n t thrd_num_out =0; thrd_num_out < amount_of_bunchs_of_connected_thrds ;

thrd_num_out++)
{
for ( i n t thrd_num_in =0; thrd_num_in < interval_amount_of_thrds_div_2 ;

thrd_num_in ++)
{
i n t thrd_num_1=thrd_num_out * interval_amount_of_thrds+thrd_num_in , thrd_num_2=

thrd_num_1+interval_amount_of_thrds_div_2 ;
swap_mem( min_E_array , thrd_num_1 , thrd_num_2 ) ; / / ! ! ! ! ! !
}
}
/ / mem swap ====== ^

for ( i n t thrd_num =0; thrd_num < N_thrd ; thrd_num++)
{ ca lc_E ( min_E_array , col , Lx ) ; }

}

. . .
mem_restore ( . . . ) ;
. . .
}

Knowing the minimum energy for the given system and the energies for each state
of boundary spins of the row with number Ly, one can obtain configurations of spins
with the minimum energy by carrying out Ly · Lx − 1 runs of the program, decreasing
the number of spins by one each time and setting the upper boundary of the subsystem
corresponding to the minimum energy or the current reduced lattice. This follows from
the Formulas (4) and (5), where for E(s1, s2, . . . , sn = −1, . . . , sLx )m,n and E(s1, s2, . . . , sn =
+1, . . . , sLx )m,n we assume the known values, and E(s1, s2, . . . , sn = −1, . . . , sLx )m,n−1 and
E(s1, s2, . . . , sn = +1, . . . , sLx )m,n−1 are unknown. In calculating the energy minimum, we
increase the subsystem each time, starting with the subsystem consisting of the lowest row.
But when calculating the spin configuration corresponding to the energy minimum, we
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move “in the opposite direction”, decreasing the subsystem at each step and starting from
the subsystem equal to the initial system.

3. Performance

In Table 1 the performance parameters of the parallel algorithm of ground state search
for 20 × 20, 25 × 25, 30 × 30, 35 × 35 lattices are given.

Table 1. Performance of the parallel algorithm for fbc spin lattice calculation for 20 × 20, 25 × 25,
30 × 30, 35 × 35 lattices on 64 threads.

Calc. Number i Lattice Time ti Ratio of ti to ti−1 Memory Size

1 20 × 20 81 ms 384 kb
2 25 × 25 4 s 282 ms 52.86 12 Mb
3 30 × 30 3 min 15 s 48.75 384 Mb
4 35 × 35 2 h 20 min 43.07 12 Gb

Parallelisation was performed for 64 threads (threads). The time relations are also
given in the table. It can be seen that the times grow exponentially with the increasing
linear size of the square lattice. Knowing the time ratios for the 35 × 35 and 40 × 40 lattices,
equal to 43.07, we can estimate the computation time of the 40 × 40 lattice. It will be
approximately 5 h.

Further Table 2 shows the performance data of the lattice calculation algorithm with
the fixed side length Lx = 35 and different side lengths Ly.

Table 2. Performance of the parallel algorithm of fbc spin lattice calculation for 35 × 35, 50 × 35,
100 × 35, 250 × 35, 500 × 35 lattices on 64 threads.

Calc. Number i Ly Ratio of Lyi to Lyi−1 Time ti Ratio of ti to ti−1

1 35 2.33 h
2 50 1.4 3.46 h 1.49
3 100 2.0 6.89 h 1.99
4 250 2.5 17.17 h 2.49
5 500 2.0 35.00 h 2.03

Parallelisation was performed on 64 threads. The table shows that the time grows
linearly with the increasing length of one side of the lattice.

To estimate the effectiveness of the parallelisation scheme, a series of calculations were
carried out for 1, 2, 4, 8, 16, 32 and 64 threads. 25 × 25 and 28 × 28 lattices were considered.
The data are given in Table 3.

Table 3. Performance of the parallel algorithm of 25 × 25 and 28 × 28 lattices calculation for 1, 2, 4, 8,
16, 32 and 64 threads.

25 × 25 25 × 25 28 × 28 28 × 28
Calc. Number i Amount of Threads ti Ratio of ti to ti−1 Time ti Ratio of ti to ti−1

1 1 2 min 3 s 20 min 58 s
2 2 1 min 55 s 1.07 19 min 37 s 1.07
3 4 59 s 1.94 9 min 39 s 2.03
4 8 29 s 2.00 4 min 50 s 1.99
5 16 17 s 1.96 2 min 47 s 1.73
6 32 9 s 2.0 1 min 34 s 1.78
7 64 5 s 1.7 51 s 1.84

One can roughly accept that the running time depends on the size Lx as t ∼ 2Lx/Nthrd
for Nthrd threads. In this case we neglect the data transfer time. Thus, if Nthrd increased by
2, the computation time will be reduced by 2. We can see from Table 3 that this ratio is more
or less satisfied. Therefore, in our case the computational complexity is 2Lx (NP-hard).
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4. Use in a Quantum Computer Simulator

Further, we will show how to use the proposed scheme in a quantum simulator.
Unitary operators in quantum computers can be represented as a product of 1-qubit and
2-qubit operators [31]. Therefore, to understand the principle of operation, it is sufficient to
consider a 2-qubit quantum gate.

To reproduce an action of a quantum gate on n qubits in the common case we have to
apply a 2n × 2n matrix operator Â on the 2n components of a vector in a 2n-dimensional
Hilbert space (see [31]). Each component of a new vector-state is computed using 4 other
components as input for a 2-qubit operator Â. Let us a 2-qubit operator acts on qubits
number p and number q. So in the result qubit and in 4 input ones all qubit states are the
same except for the states with the numbers numbers p and q as it’s shown here

Ψ
′
kn ,...,0,...,0,...,k2,k1

Ψ
′
kn ,...,0,...,1,...,k2,k1

Ψ
′
kn ,...,1,...,0,...,k2,k1

Ψ
′
kn ,...,1,...,1,...,k2,k1

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




Ψkn ,...,0,...,0,...,k2,k1
Ψkn ,...,0,...,1,...,k2,k1
Ψkn ,...,1,...,0,...,k2,k1
Ψkn ,...,1,...,1,...,k2,k1

. (6)

So the problem is to find and match all groups of 5 components (1 output and 4 inputs)
from the 2n Hilbert space.

Applying the proposed approach of pairing elements we can find all groups of 5 ele-
ments to apply a 2-qubit operator to them. In the scheme in Figure 3 we can notice that
after each addition of a spin in the resulting pairs the 2 spin states differ by only 1 number
(0 or 1) in the binary representation. We can use it in quantum simulators.

The operation scheme of the algorithm can be clearly understood using the example of
a quantum circuit of 4 qubits. Let us an operator Â act on the qubits number 2 and number
4. It’s shown in Figure 5.

Figure 5. A 4-qubit quantum scheme with one 2-qubit operator Â. To reproduce it on a quantum
simulator we have to operate in the 16-dimensional Hilbert space (with 16-component vectors
correspondingly). Here Â acts on the qubits 2 and 4 and ~Ψ′ = Â~Ψ.

Next, we are going to reproduce the sequence of operations in Figure 3. Our goal is
to calculate all components of ~Ψ′ which are linear combinations of components ~Ψ. Every
component of ~Ψ contains amplitudes and phases of the appropriate wave function. The
whole scheme for 4-qubit is given in Figure 6 with the components of ~Ψ′ which are written
in the binary representation.

Here we collect 4 input variables-components ~Ψ in one place in the memory and match
them with the components of ~Ψ′ . In Figure 6 we get in each step pairs of states differing
only by one qubit state. We must catch the components of ~Ψ with different states of qubit 2
and qubit 4. As it’s seen in Figure 6 on steps 2 and 4 these qubit states are diferrent in every
pair. Keeping this in mind, we can try to copy the pair as done in the diagram. Beforehand
we allocate memory to store the additional data after copying. Thus, in step 3 we transmit
already the pairs, not just one component (with only the state of the second qubit being
different). In step 4, by copying pairs, we get exactly states with all 4 combinations of states
of the qubits 2 and 4, but with the same states of the qubits 1 and 3. The big numbers
denote memory locations.
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Next, we transmit the data backwards in the same way. So eventually we have
~Ψ-components in the right memory locations as it’s shown in Figure 7.

Figure 6. Using the parallelisation scheme of computation of Edwards-Anderson model to simulate
the 2-qubit quantum operator Â acting on the 4-qubit quantum scheme. We have 4 steps with 3-fold
data exchange and 2-fold data copying. The arrows denote the directions in which the components of
~Ψ move. The large numbers indicate the memory locations. In steps 2 and 4 we copy pairs of states
to transmit them further. Eventually we have all 4 input components of ~Ψ to apply Â to them. Â
is given so that it acts only on qubit 2 and 4. We can make sure that by copying the pairs in steps 2
and 4 we get exactly necessary 4 components with the different states of the qubits 2 and 4 and the
same states of the qubit 1 and 3 in each of the 4 components. To copy the data, we allocate the extra
memory to store the 4 variables for each component. Some of the memory cells are unoccupied at the
beginning. Therefore we see the empty cells at the beginning.

Applying Â to every one of the four components of ~Ψ we get the result wave func-
tion. One can notice that the result component of ~Ψ′ corresponds to one of the 4 input
components.

Using the given scheme, we can parallelise computations in quantum computer
simulators.
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Figure 7. The computing result wave function by applying the operator Â. One can note that some of
the new components of ~Ψ′ are redundant. Therefore, we leave only unique components in the result.

5. Conclusions

In the paper the algorithm for parallel computation of two-dimensional the Edwards—
Anderson model with nearest-neighbor interaction and performance data are presented.
The algorithm can do a data exchange between threads so that the data of one thread
can be redirected to any other thread. This follows from the diagram in Figure 4. From
any thread, starting from the top line, correctly selecting the arrows and moving along
them, we will definitely get to any thread we want. This allows us to use the algorithm
in creating a quantum simulator. Using 64 threads it is possible to create a simulator for
about 40 qubits. The computation time would roughly correspond to the data in Table 1
and Table 2, where Lx would equal the number of qubits and Ly would be the number
of 1-qubit and 2-qubit operators. We showed that computational aspects of quantum
computer simulators and Edwards-Anderson model have a lot in common. The algorithm
can be used in neural networks (including the Boltzmann machine) and as a benchmark to
evaluate the performance of quantum computers. Polynomial growth time of the operation
time when only one side increases in size is an advantage of the method. In common
case the scheme has the complexity class NP. The C++ code of the calculation program
is available for downloading at [32]. It implements both minimum energy search and
minimum energy configuration search.
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