
algorithms

Article

Time-Dependent Alternative Route Planning:
Theory and Practice †

Spyros Kontogiannis 1,2,* , Andreas Paraskevopoulos 2,3 and Christos Zaroliagis 2,3

����������
�������

Citation: Kontogiannis, S.;

Paraskevopoulos, A.; Zaroliagis, C.

Time-Dependent Alternative Route

Planning: Theory and Practice.

Algorithms 2021, 14, 220. https://

doi.org/10.3390/a14080220

Academic Editor: Qianping Gu

Received: 29 June 2021

Accepted: 17 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
2 Computer Technology Institute & Press “Diophantus”, 26504 Patra, Greece;

paraskevop@ceid.upatras.gr (A.P.); zaro@ceid.upatras.gr (C.Z.)
3 Department of Computer Engineering & Informatics, University of Patras, 26504 Patras, Greece
* Correspondence: kontog@uoi.gr
† This paper is an extended version of our paper published in the Symposium on Algorithmic Approaches for

Transportation Modelling, Optimization, and Systems (ATMOS), Pisa, Italy, 7–8 September 2020.

Abstract: We consider the problem of computing a set of meaningful alternative origin-to-destination
routes, in real-world road network instances whose arcs are accompanied by travel-time functions
rather than fixed costs. In this time-dependent alternative route scenario, we present a novel
query algorithm, called Time-Dependent Alternative Graph (TDAG), that exploits the outcome of a
time-consuming preprocessing phase to create a manageable amount of travel-time metadata, in
order to provide answers for arbitrary alternative-routes queries, in only a few milliseconds for
continental-size instances. The resulting set of alternative routes is aggregated in the form of a time-
dependent alternative graph, which is characterized by the minimum route overlap, small stretch
factor, small size, and low complexity. To our knowledge, this is the first work that deals with the
time-dependent setting in the framework of alternative routes. The preprocessed metadata prescribe
the minimum travel-time informations between a small set of “landmark” nodes and all other nodes
in the graph. The TDAG query algorithm carries out the work in two distinct phases: initially,
a collection phase constructs candidate alternative routes; consequently, a pruning phase cautiously
discards uninteresting or low-quality routes from the candidate set. Our experimental evaluation on
real-world, time-dependent road networks demonstrates that TDAG performed much better (by one
or two orders of magnitude) than the existing baseline approaches.

Keywords: time-dependent shortest path; alternative routes; travel-time oracle; plateau and penalty
methods

1. Introduction

Querying a route planning service is now a common daily-routine activity. The ma-
jority of such services, as well as of the underlying route planning algorithms, answer
queries by offering a route plan from an origin o to a destination d [1]. A typical road
network instance is described as a directed graph whose vertices represent junctions and
arcs represent one-way road segments. Each arc is accompanied with a positive scalar
(a.k.a. weight) representing its usage cost (e.g., distance or traversal-time), with respect to
the assumed cost-metric. There is also a given optimization criterion (e.g., the total distance
or earliest arrival time) for the selection of routes [1]. Possibly the most typical case for
daily commuters assumes that the arc-costs metric consists of traversal-times for the arcs,
and the optimization criterion is the earliest arrival time at the destination.

While a standard Dijkstra run on a continental-sized road network with several mil-
lions of nodes and static arc costs would require a few seconds, modern approaches, such as
oracles and speed-up schemes, have been developed that exploiting a preprocessing phase
to produce a manageable amount of cost metadata and achieve response times to arbitrary

Algorithms 2021, 14, 220. https://doi.org/10.3390/a14080220 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8559-6418
https://orcid.org/0000-0003-1425-5138
https://doi.org/10.3390/a14080220
https://doi.org/10.3390/a14080220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080220
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080220?type=check_update&version=2

Algorithms 2021, 14, 220 2 of 22

route-planning queries in a few milliseconds, or even microseconds. A comprehensive
survey of the subject is provided in [1].

1.1. The Curse of Alternatives

Single-route responses to route-planning queries may not always be desirable or
satisfactory. There is quite often a need for providing, not just the optimal route, but rather
a handful of meaningful (by ambiguous and different aspects or features) alternative routes,
e.g., for having some plan-B mobility scenarios in case of unforeseen incidents (against the
scenario of having just a single computed route, which may become obsolete) or simply
because the commuter is uncertain about their actual secondary preferences (e.g., quietness,
view, or safety) among “sufficiently good” routes. In particular, the commuters typically:

(i) prefer to have choices;
(ii) have some secondary optimization criteria, based on their own personal preferences,

that vary and depend on specialized knowledge or constraints (e.g., like/dislike
certain parts of a route), which are usually difficult to quantify, and certainly unknown
to the route planner;

(iii) occasionally prefer to follow a route different from the optimal one, according to their
primary optimization criterion, due to some unforeseen or emergent traffic condition
(accident, road works, etc.).

Consequently, a route planning service offering a set of meaningful alternative routes of
good quality, is more likely to satisfy the commuters’ needs; and vice versa, the commuters
can use alternative routes as back-up choices in case of emergent traffic conditions or other
unforeseen incidents. Since, most of the time, the commuters’ secondary optimization
criteria are unknown to the route planner, modern route planning systems, like Google
maps, typically recommend, apart from the optimal route, also a handful of alternative
routes for each route-planning query, hoping that at least one of them might positively
surprise the commuter. The present work focuses exactly on this aspect, the efficient
computation of a small set of meaningful alternatives to the optimal od-route. In other
words, the goal is the selection of a few, hopefully meaningful but also divergent, alternative
routes of good quality.

When thinking about the computation of alternative routes, a first line of attack that
comes to mind is to consider several criteria. In that case, one might be tempted to try to
compute the set of all pareto-optimal solutions. Yet, as stated in [2], for a network of 18Mio
nodes “it turns out this input is too big for finding all Pareto routes”. Hence they had to
restrict their experimentation to a graph with 77K nodes and two metrics only, reporting
running times around 200 ms; as stated in the paper explicitly, more than two metrics may
only be considered for very strongly correlated travel time metrics.

Other approaches were based on responding to the so-called skyline-queries in the
multicriteria setting; however, they also turned out to be feasible only for small graph
sizes, e.g., in [3] a query time of 40 s on a graph with only 6K nodes and three metrics was
reported. Apart from the obvious tractability issues, another challenge is that, as previously
mentioned, the route planning service may not be aware of the commuters’ secondary
criteria of optimization, either because they do not want to reveal them, or because they
cannot even quantify them.

Another approach that would come to mind, is the computation of the k-shortest
paths from o to d. Unfortunately, this problem is also quite complex and computationally
demanding [4], especially for large-scale real-world instances. Moreover, the resulting
routes are typically almost identical to the optimal route, differing only in a few arcs,
which constitute small “detours”, rendering them rather uninteresting alternatives to the
optimal route. The works [5,6] study the efficient computation of k-loopless-shortest paths,
in order to both speed-up the computation and provide more meaningful alternative routes.
Still, each newly constructed route is only meant to avoid the creation of cycles with the
previously selected routes but otherwise can be quite similar to them. Moreover, these
algorithms work efficiently only for small-to-moderate network instances.

Algorithms 2021, 14, 220 3 of 22

To tackle the issue of extensive overlapping in the proposed alternative routes, some
more successful, mostly heuristic attempts have been considered. Some of them were based
on the penalty approach, where one starts with the optimal route but then penalizes its arcs
before recomputing the next route in the network with the penalized arc costs [7]. This
approach suffers from the need of careful tuning of the penalization parameters to obtain
meaningful results.

Another approach is based on the so-called via nodes. This idea, initiated in [8]
and further extended in [9,10], is based on the computation of a set of routes that are
concatenations of shortest paths from the origin o to some intermediate node v and then to
the destination d. The careful selection of intermediate nodes, called via-nodes, may assure
meaningful alternatives of acceptable quality. Criteria to measure the quality of a set of
alternative routes were proposed in [8], with some improvements in [9,10]. The query-
response is described as this set of alternative routes.

An interesting idea for representing a set of alternative routes via the induced sub-
graph from the involved arcs, which is called the alternative graph (AG), was proposed in [7].
The same work also proposed some quality measures for assessing alternative graphs. Two
quite interesting aspects of the notion of an alternative graph, compared to the selection of
a set of alternative routes, are the following:

(i) The AG may also contain some additional routes, apart from the chosen ones, by com-
bining parts of the chosen routes in arbitrary ways, and these could also be very
good candidates.

(ii) The small size of the AG allows for a more thorough (but possibly more compu-
tationally demanding) search for the best possible set of alternative routes, whose
quality and meaningfulness is already guaranteed by the selection of the alternative
graph itself.

Consequently, [11], which was also based on the penalty method and the alternative
graph, improved on the work of [7].

The Alternative Graph (AG) turned out to be more suitable than the Via-Nodes (VN)
for high-demanding navigation systems [12]. This is because the VN approach is restricted
on fixed optimization criteria and may create (higher than required) overlapping among
the alternative routes. The VN approach may not even be successful in finding a sufficient
number of alternatives, for certain scenarios. The present work adopts the rationale of an
alternative graph, along with the generic quality characteristics that were proposed in [7],
quantified by the following quality-assessment criteria:

• the totalDistance criterion, measures the total-overlappingness of the best subset of
routes within AG;

• the averageDistance criterion, measures the stretch of these routes; and
• the number of decision edges, i.e., the sum of alternatives per intermediate node visited

other than the outgoing arc belonging to the optimal remaining path towards the
destination, which measures the complexity of the entire AG subgraph.

As it is shown in [7], each of these quality-assessment criteria is important on its own,
in order to produce a high-quality AG containing meaningful alternative routes. However,
optimizing a single objective function for choosing the AG that combines just any two of
them, is an NP-hard problem [7]. Hence, one has to concentrate on heuristics. Four heuristic
approaches were investigated in [7], based on the Plateau [13] and Penalty [14] methods.
Experimental evaluations in [7,13] demonstrated that a combination of these two heuristics
appeared to be the best choice. A new set of heuristics, including improved extensions of
both the Plateau and Penalty methods, was proposed in [11]. As a result, computing an
AG subgraph of much better quality than the ones in [7] became possible, and this was
verified on several static (i.e., time-independent) road networks of Western Europe.

Algorithms 2021, 14, 220 4 of 22

1.2. The Curse of Time-Dependence

Most of the shortest-path algorithms traditionally consider static arc-costs. Never-
theless, a crucial aspect, at least when having to deal with real-world instances, is the
temporality of the network characteristics, which is often depicted by some kind of prede-
termined dependence of the arc-cost metric on the actual time that each arc is used. E.g.,
the traversal-time of particular road segments in a city, the packet-loss rate of a connecting
line in IT infrastructure, and the validity of particular relationships among pairs of individ-
uals in a social network, depend on exactly when one considers the corresponding arc in
the underlying graph model.

Perhaps the most typical application scenario also motivating our work is that of
route planning in road networks, where the time to traverse an arc a = uv (modeling
a road segment) depends on the temporal traffic conditions while doing that and, thus,
on the departure time from its tail u. This gives rise to time-varying network models and
to computing time-varying solutions (i.e., collections of shortest paths) in such networks.
Several variants of this model attempt to capture the time-variation of the underlying graph
structure and/or the arc-cost metric, e.g., dynamic shortest paths, parametric shortest paths,
stochastic shortest paths, and temporal networks; see [15] for a discussion on these variants
and their comparison.

In this work, we consider the case in which the traversal-time variation of each arc a
is determined by a function D[a], which is considered to be a continuous, piecewise linear
(pwl), and periodic function of the time at which the resource is actually being used [16–19].
To see why this is more suitable, consider, for example, the live traffic services of major car
navigator vendors (e.g., TomTom) that provide real-time estimations of average travel-time
values, collected by periodically sampling the average speed of each road segment in a city,
using the cars connected to the service as sampling devices. A customary, comprehensive,
and computationally-lighter way to represent this historic traffic data is to consider the
continuous pwl linear interpolants of the sample points as the traversal-time functions for
the arcs in the underlying graph.

When providing route plans in these types of road networks, usually called time-
dependent road networks, the arc costs are determined by evaluating these traversal-time
functions for the arcs for certain departure time values, while the time-dependent shortest
paths are construed as minimum-travel-time paths.

The goal is then to determine the cost (total travel-time) of an optimal path from an
origin vertex o to a destination vertex d as a function of the departure-time to from o. Due
to the time-dependence of the arc-cost metric, the actual traversal-time of an arc a = uv is
unknown until the exact time tu ≥ to at which uv starts being traversed from u towards v.

For the single-route case, there have been quite interesting and efficient oracles and
speedup techniques to handle instances with time-dependent arc-costs. In particular, there
exist approaches that compute either an optimal or an approximately optimal od-route,
using heuristic methods (see e.g., [20]), or oracles (see e.g., [15,21,22]). The latter case, of an
oracle, consists of a (subquadratic in size) carefully designed data structure, created during
a preprocessing phase, along with a query algorithm that exploits this data structure in
order to respond to arbitrary earliest-arrival-time queries in sublinear time, with a provably
small approximation guarantee for the quality of the solution.

For the alternative-routes case, at least to our knowledge, the literature has been
confined to instances with static arc-costs.

1.3. Our Contribution

In this work, we investigate the problem of efficiently determining meaningful alter-
native routes, succinctly represented by the AG subgraph, on the more realistic setting
of a time-dependent road network. The meaningfulness is quantified by certain criteria
(minimum overlap, small stretch, small size, and low complexity), which are formally
defined in Section 2.

Algorithms 2021, 14, 220 5 of 22

We propose a new heuristic algorithm, called TDAG, which computes an alternative
graph containing routes of guaranteed quality, for a time-dependent road network. In
particular, based on precomputed minimum-travel-time metadata between a small set
of (landmark) nodes and all other nodes in the graph, TDAG selects, first, an initial
alternative graph (AG), which is induced by a carefully selected candidate set of od routes.
Consequently, TDAG improves the constructed AG during an iterative pruning phase,
which discards uninteresting or low-quality routes until the resulting AG meets all the
quality criteria.

Our experimental evaluation of TDAG on real-world benchmark time-dependent
road networks shows that the entire AG can be computed fast, even for continental-size
networks, outperforming typical baseline approaches by one to two orders of magnitude.
In particular, the entire AG can be computed in less than 0.384 s for the road network of
Germany, and in less than 1.24 s for that of Europe. TDAG also provides “quick-and-dirty”
initial results of decent quality, in about 1/300 of the above mentioned query times.

To our knowledge, this is the first work achieving efficient computation of alternative
routes in the more realistic setting of time-dependent road networks.

2. Preliminaries

A time-dependent road network can be modeled as a directed graph G = (V, E), where
each node v ∈ V represents either an intersection point along a road, or vehicle depar-
ture/arrival event with zero waiting-time, and each edge e ∈ E represents uninterrupted
road segments between nodes. Let |V| = n, |E| = m. Given a time period T and any edge
e = uv ∈ E, if we consider any departure-time tu ∈ [0, T) from the tail u, then D[uv](tu) is the
corresponding traversal-time for the arc uv, determined by the evaluation of a continuous,
piecewise-linear (pwl) function D[uv] : [0, T) 7→ R≥0.

Analogously, tv = Arr[uv](tu) = tu + D[uv](tu) is the corresponding function provid-
ing the arrival-time to the head v or uv for different departure times from the tail u. We
additionally make the (typical for road networks) strict FIFO property assumption: each
arc-traversal-time function D[uv] has a minimum slope greater than −1. Equivalently,
we assert that the arc-arrival-time functions Arr[uv] are strictly increasing. This property
implies that there is no reason to wait at the tail u of uv before traversing it towards the
head v, provided that we are interested in the earliest-arrival-times.

Given a departure time t ∈ [0, T), and a path π = 〈x0x1, x1x2, . . . , xk−1xk〉 (as a
sequence of arcs),

Arr[π](t) = Arr[xk−1xk](Arr[xk−2xk−1](· · · (Arr[x1x2](Arr[x0x1](t))) · · ·))

is the path-arrival-time function, defined by applying function composition on the arc-
arrival-time functions of π’s constituent arcs. In addition, D[π](t) = Arr[π](t)− t is the
corresponding path-travel-time function.

Let Pu,v be the set of all uv-paths in G, i.e., originating at u and ending at v. Then,
∀t ∈ [0, T), Arr[u, v](t) = minπ∈Pu,v{Arr[π](t)} is the earliest-arrival-time function, from u
to v. Analogously, D[u, v](t) = Arr[u, v](t)− t is the corresponding minimum-travel-time (or
shortest-path-length) function, and P[u, v](t) is the corresponding time-dependent-shortest-
path function, providing the minimum-travel-time paths w.r.t. the departure time t from
u. For ε > 0, a function D[u, v] such that ∀t ∈ [0, T), D[u, v](t) ≤ D[u, v](t) ≤ (1 +
ε)·D[u, v](t) is called a (1 + ε) upper-approximation for D[u, v].

Our main goal is to obtain fundamentally different (but not necessarily disjoint)
alternative-paths with optimal or near-optimal travel-times, from an origin-node o to a
destination-node d in G and departure time to from o. The aggregation of the computed
alternative od-paths is materialized by the concept of the Alternative Graph (AG), a notion
first introduced in [7]. We shall now proceed with the adaptation of the AG concept to the
time-dependent context.

Formally, an alternative graph H = (V′, E′) is the induced subgraph by the arcs of
several od-paths in G. Let DG[u, v](t) ≡ D[u, v](t) and DH [u, v](t) denote the minimum-

Algorithms 2021, 14, 220 6 of 22

travel-time functions, whereas ArrG[u, v](t) ≡ Arr[u, v](t) and ArrH [u, v](t) denote the
earliest-arrival-time functions w.r.t. G and H, respectively.

Succinctly representing the produced alternative paths with AG is reasonable because
the alternative paths may share common nodes (including o and d) and arcs. Furthermore,
their subpaths may be combined to form even more alternative paths, possibly better
than the ones that determined the AG. In general, there can be too many alternative
od-paths, and the problem is to find a way to select only a meaningful subset of them.
Hence, there is a need for filtering and ranking the alternative od-paths, based on certain
quality-assessment criteria.

The main idea of the AG approach is to rank candidate subgraphs w.r.t. their quality
scores and discard the ones that have poor scores. We adapt the quality-assessment
indicators proposed in [7] for static instances to the time-dependent case. These indicators
are defined on the single-arc level and then they are extended to the arc-set level. We
provide, at this point, the definition of these quality-assessment criteria, adapted to time-
dependent networks. Let H = (V′, E′) be any subgraph of G, in which we are interested
for route plans for the query (o, d, to) ∈ V ×V × [0, T). For any arc uv ∈ E′:

W[uv](to) := D[uv](ArrH [o, u](to)) /∗ approximate traversal-time for uv ∗/

share[uv](to) := W[uv](to)
DH [o,u](to)+W[uv](to)+DH [v,d](ArrH [o,v](t0))

totalDistance(to) := ∑
uv∈E′

share[uv](to) /∗ path non-overlappingness ∗/

stretch[uv](to) := W[uv](to)
DG [o,d](to)·totalDistance(to)

averageDistance(to) := ∑
uv∈E′

stretch[uv](to) /∗ path stretch ∗/

decisionEdges := ∑
v∈V′\{d}

(outdegree(v)− 1) /∗ AG size ∗/

The criterion decisionEdges quantifies the size-complexity of H, as the number of the
alternative paths within H is directly dependent on the number of the “decision” arcs
offering some branch towards a new path in H. For this reason, the higher the value of
decisionEdges, the more confusion is created to a typical commuter, when having to choose
a route among the alternatives provided within H. Therefore, it should be limited.

Observe now that the share of a given arc uv has to do with its contribution (as a
proportion) to some via-uv shortest od-route in H. The criterion totalDistance captures,
then, the extent to which the paths in H are non-overlapping, by summing all the shares
of arcs in H. Its maximum value is decisionEdges+1, and it can be as large as the number
of all od-paths in AG, e.g., when all of them are arc-disjoint. Its minimum value is 1,
corresponding to the case where H has only one od-path. Our goal is to achieve as large a
value as possible for the totalDistance criterion.

Finally, the criterion averageDistance measures the average path-travel-time stretch for
all the alternative paths in H, compared to the shortest od-path in G. Its minimum value is
also 1, e.g., when every od-path in H is an optimal od-path in G.

Figure 1 provides an example of a given subgraph H, whose quality indicators as an
alternative graph are computed for a given departure time to = 2 from o. In the example,
the computations of the quality quantifications of H are based on the aforementioned
functions and specifically for the totalDistance criterion they are grouped by a common
denominator with respect to the contained four distinct shortest o-d paths: 〈oa, ae, ec, cd〉,
〈oa, ab, bc, cd〉, 〈oa, a f , f g, gd〉, and 〈oa, a f , f h, hg, gd〉. By considering the arcs of the first
path, the travel time, the earliest arrival time, and the “share” contribution are determined
as follows:

• Arc oa:
W[oa](2) = D[oa](ArrH [o, o](2)) = D[oa](2) = 2
ArrH [o, a](2) = ArrH [o, o](2) + D[oa](ArrH [o, o](2)) = 2 + 2 = 4
share[oa](2) = W[oa](2)

DH [o,o](2)+W[oa](2)+DH [a,d](ArrH [o,a](2)) =
(2)

(0)+(2)+(3+5+2) = 0.17

Algorithms 2021, 14, 220 7 of 22

• Arc ae:
W[ae](2) = D[ae](ArrH [o, a](2)) = D[ae](4) = 4
ArrH [o, e](2) = ArrH [o, a](2) + D[ae](ArrH [o, a](2)) = 4 + 4 = 8
share[ae](2) = W[ae](2)

DH [o,a](2)+W[ae](2)+DH [e,d](ArrH [o,e](2)) =
(4)

(2)+(4)+(5+2) = 0.31

• Arc ec:
W[ec](2) = D[ec](ArrH [o, e](2)) = D[ec](8) = 5
ArrH [o, c](2) = 2 +min{DH [〈oa, ae, ec〉](2), DH [〈oa, ab, bc〉](2)} = 2 +min{11, 10} = 12
share[ec](2) = W[ec](2)

DH [o,e](2)+W[ec](2)+DH [c,d](ArrH [o,c](2)) =
(5)

(2+4)+(5)+(2) = 0.38

• Arc cd:
W[cd](2) = D[cd](ArrH [o, c](2)) = D[cd](12) = 5
ArrH [o, d](2) = ArrH [o, c](2) + D[cd](ArrH [o, c](2)) = 12 + 2 = 14
share[cd](2) = W[cd](2)

DH [o,c](2)+W[cd](2)+DH [d,d](ArrH [o,d](2)) =
(2)

(2+3+5)+(2)+(0) = 0.17

The overall quality of H in terms of the path non-overlappingness, stretch, and size-
complexity are computed as follows:

totalDistance(2) = (share[oa](2) + share[ab](2) + share[bc](2) + share[cd](2))

+ (share[a f](2) + share[f h](2) + share[hg](2) + share[gd](2))

+ (share[ae](2) + share[ec](2)) + (share[f g](2))

=
(2)

(2) + 3 + 5 + 2
+

(3)
2 + (3) + 5 + 2

+
(5)

2 + 3 + (5) + 2
+

(2)
2 + 3 + 5 + (2)

+
(2)

2 + (2) + 2 + 4 + 3
+

(2)
2 + 2 + (2) + 4 + 3

+
(4)

2 + 2 + 2 + (4) + 3
+

(3)
2 + 2 + 2 + 4 + (3)

+
(4)

2 + (4) + 5 + 2
+

(5)
2 + 4 + (5) + 2

+
(7)

2 + 2 + (7) + 3

=
(2 + 3 + 5 + 2)
(2 + 3 + 5 + 2)

+
(2 + 2 + 4 + 3)

2 + (2 + 2 + 4 + 3)
+

(4 + 5)
2 + (4 + 5) + 2

+
(7)

4 + (7) + 3

= 1 + 0.85 + 0.69 + 0.5 = 3.04

averageDistance(2) = ∑
e∈E′

W[e](2)
DG [o, d](2) · totalDistance(to)

= ∑
e∈E′

W[e](2)
12 · 3.04

=
2 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 7

12 · 3.04
= 1.07

decisionEdges = |E′| − (|V′| − 1) = 11− 8 = 3

𝑜 𝑏𝑎 𝑐 𝑑

𝑒

𝑓 𝑔

ℎ

𝐷[𝑎𝑏](4)=3 𝐷[𝑏𝑐](7)=5 D[𝑐𝑑](12)=2𝐷[𝑜𝑎](2)=2

𝐷[𝑓𝑔](6)=7

to = 2 ta = 4

tc = 12tb = 7

te = 8

td = 14
tf = 6

th = 8

tg = 12

Figure 1. Evaluation of the quality-assessment criteria for a given alternative graph. For each node
x, tx = Arr[o, x](2) is the earliest arrival time at x, for departure time to = 2. We assume that
DH [o, d](2) = DG[o, d](2). The minimum travel time is DH [o, d](2) = 12 via 〈oa, ab, bc, cd〉.

In order to assess the quality of an alternative graph, one should attempt to maximize
the value of some target function, which is increasing in the totalDistance and decreasing in

Algorithms 2021, 14, 220 8 of 22

the averageDistance, under the constraint that the decisionEdges variable remains bounded.
Unfortunately, achieving a lower value for averageDistance may take away the ability of
collecting high-degree disjoint (non-overlapping) paths, which would lead to a high value
for totalDistance, since these criteria can be contradicting with each other. In this work,
we choose to maximize a target function—the linear combination of the totalDistance and
averageDistance variables. In particular, following [7,11], we aimed to maximize the value
of the function

targetFunction(H, o, d, to) = totalDistance + 1− averageDistance (1)

under the constraint that the DecisionEdges parameter is, at most, 10.

2.1. Computing Time-Dependent Shortest Paths

In this section, we review some fundamental techniques for computing a single time-
dependent shortest od-path as a response to an arbitrary query (o, d, to), which are used as
subroutines throughout the paper.

2.1.1. Time-Dependent Dijkstra

The time-dependent variant of Dijkstra’s algorithm (TDD) [23] is a straightforward
extension of the classical algorithm that computes the earliest-arrival-times “on the fly”
when scanning (relaxing) the outgoing edges from a node. TDD grows a shortest-paths
tree rooted at an origin o, for a given departure time to from it. Analogously to the static
case, TDD performs a breadth-first search (BFS) exploration of the graph, settling the nodes
in increasing order of their tentative labels (representing the earliest-arrival-times from o,
given the departure time to from it), until the priority queue of labels becomes empty, or a
given destination d is settled.

When settling a newly popped node u from the priority queue, all the outgoing edges
are relaxed, implying new evaluations of the corresponding arc-traversal-time functions,
given its label (i.e., the earliest-arrival-time at u) tu = Arr[o, u](to) at that time. The
resulting shortest-paths tree may vary for different departure time choices to ∈ [0, T).

2.1.2. Reversed Time-Dependent Dijkstra

The reversed version of TDD (RTDD) grows a full shortest path tree rooted at a node
d for a given arrival time td at d. The differences from the original (forward) TDD are
the following:

(a) The arc relaxations are performed for the incoming arcs of the currently settled node.
(b) The algorithm computes latest departure times from the arc tails “on the fly” during

an arc-relaxation, by evaluating the inverse of the arc-arrival-time function (which is
strictly increasing due to the strict FIFO property).

2.1.3. The CFLAT Oracle

The time-dependent oracle CFLAT [21] precomputes approximations D[`, v] (called
travel-time summaries) of minimum-travel-time functions D[`, v] from each element ` of a
small set of carefully selected nodes (called landmarks), towards each reachable destination
v. These travel-time summaries are succinctly represented as a collection of time-stamped
minimum-travel-time trees. The appropriate construction of these summaries ensures both
(1 + ε) approximation guarantees (for any given ε > 0) for the landmark-to-destination
travel-time functions D and efficient (subquadratic) space requirements.

2.2. Computing Alternative Graphs in Static Road Networks

In this section, we briefly review some typical approaches used for computing alterna-
tive graphs in time-independent (static) graphs.

Algorithms 2021, 14, 220 9 of 22

2.2.1. Computing Alternative Routes within the Pareto Set

The Pareto algorithm [2,24,25] computes an alternative graph H by iteratively finding
Pareto-optimal paths on a suitably defined objective cost vector. The idea is to use, as the first
edge-cost vector, one of the single-criterion problems, while the second edge-cost is defined
as follows: Initially, H only contains the shortest od-path. Then, all edges already belonging
to H set their second cost function to their initial edge cost. All edges not belonging to H
set their second cost function to zero.

A similar line of attack, for finding alternative routes via the multicriteria setting, is
related to the so-called skyline-queries [3]. This approach was found to be feasible only for
small graphs with a few thousands of nodes and three metrics for the arc costs, in which
several-seconds query-response time is typically required.

The only multicriteria-based approach for alternative-routes, at least that we are aware
of, that manages to efficiently compute alternative routes in million-node instances, is [26].
Based on the idea of personalized route planning, the paper discovers extreme solutions
from the convex-pareto solution set that are sufficiently dissimilar with each other. In this
direction, the idea is to use different weight vectors for the arc-cost metrics that provide
significantly distinguishable routes for the commuter.

The deficit of this approach, nevertheless, is that it assumes that the route planner
is aware of each commuter’s personalized secondary optimization criteria (which would
render some of the alternative routes more attractive than others). Of course, this is not a
typical situation, mostly because it is hard for a commuter to quantify secondary criteria,
such as the scenic-ness or quietness of the routes. Moreover, this approach definitely
excludes dominated paths (exactly due to their domination by some other path), even if it
is not much worse than other paths but is also significantly distinct from other alternative
routes. It also excludes pareto-optimal solutions that do not belong to the convex-pareto
solution subset, irrespectively of their significance as alternative routes.

To recap, all these multicriteria-optimization based approaches for discovering alter-
native routes suffer from at least one of the following severe deficiencies:

(i) They produce too many alternatives, causing severe computability issues even for
moderate-size instances. Moreover, the produced solutions have only small deviations
with each other, rendering them rather uninteresting, unless one really looks among
them for actually distinguishable alternatives.

(ii) Relaxing the domination criteria and fine-tuning the bounds to speed-up the compu-
tational requirements is non-trivial and time consuming.

(iii) The secondary optimization criteria, which are rather personalized, are private infor-
mation of the commuter, typically invisible to the route planner, and they are often
difficult to quantify as concrete cost metrics, even for the commuters themselves.

2.2.2. Computing Alternative Routes from k-Shortest Path Solutions

The k-shortest path routing algorithm [4–6] finds the k-shortest paths in order of
increasing cost. The disadvantage of this approach is that the computed alternative paths
typically share too many edges, making it difficult for a human to actually distinguish
them and make their own selection of a route. In order for really meaningful alternatives
to be revealed, one should compute the k-shortest paths for very large values of k, at the
expense of a rather prohibitive computational cost.

A more recent approach [27] was also based on the k-shortest path idea, essentially enu-
merating the shortest paths in increasing costs and then discarding paths that are already
too similar with some of the previously selected paths. In this case as well, the proposed
method appeared to be viable only for small-to-moderate network sizes.

2.2.3. The Plateau Method

The Plateau method [13] provides alternative od-paths by constructing “plateaus”
that connect shortest subpaths. For a shortest-path tree Tf from o and a reverse shortest-
path tree Tb from d, a uv-plateau is a uv-path that is a shortest subpath both in Tf and Tb.

Algorithms 2021, 14, 220 10 of 22

The candidate paths via plateaus are constructed as follows: Dijkstra’s algorithm is used
from o, and its reverse version from d, in order to produce, respectively, the trees Tf and
Tb. Consequently, for each uv-plateau in Tf and Tb, the shortest ou-path in Tf and the
shortest vd-path in Tb are connected at the endpoints of the uv-plateau, in order to form an
alternative od-route. All these alternative od-routes are usually of high quality; however,
there are too many for the commuter to digest, requiring a size decreasing filtration.

2.2.4. The Penalty Method

The Penalty method [14] provides alternative routes by iteratively running shortest-
path queries and adjusting the weight of the arcs along the resulting path. Initially,
a shortest-path query is performed. The resulting shortest path πo,d is chosen as the
firest route, and it is then penalized by increasing the weight of all its constituent arcs.

Consequently, the method enters a loop in which, in each repetition, a new shortest-
path query is executed in the graph with the modified weights. The resulting shortest path
π′o,d is again penalized, and, if it is substantially different from the previously selected
od-routes and also not too long in the original graph, then it is appended to the solution set;
otherwise, it is simply ignored. This repetitive process ends when a sufficient number of al-
ternative routes, with the desired characteristics, are discovered, or the weight adjustments
of od-paths bring no better results anymore. For a suitable penalty scheme, the resulting
set of alternative od-routes can be of high quality.

3. The TDAG Algorithm

In this section, we present our new algorithm, TDAG, which, given a time-dependent
road network G = (V, E) with a small set L ⊂ V of landmark-nodes accompanied with
preprocessed landmark-to-node travel-time metadata and an arbitrary query (o, d, to) of
an origin-node o ∈ V, a destination-node d ∈ V, and a departure time to ∈ [0, T) from o,
computes a collection of meaningful (short and significantly non-overlapping) alternative
od-routes. The solution set is succinctly represented by an alternative graph H, i.e., the
subgraph of G induced by the arcs of the chosen od-routes. Of course, within H, there
may exist even better combinations of od-routes for the query (o, d, to), which are also
considered as part of the solution.

TDAG is based on the rationale of the CFLAT oracle [21]. In a nutshell, it first grows
two small-size TDD-balls, an origin-ball emanating from the origin and a destination-
ball leading to the destination. It then connects the two balls by reconstructing (not
necessarily the shortest, but short enough) paths ending in nodes of the destination-ball
and starting from nodes within the origin-ball. This path construction is landmark-directed:
the preprocessed information for the N landmarks of the origin-ball is exploited to direct
these paths. A pruning step then takes over the responsibility of “cleaning” the resulting
subgraph of uninteresting arcs. Eventually, the penalty method is applied to the final
alternative graph, in order to conclude with a small set of meaningful alternative od-routes.
TDAG also takes into account the following input parameters:

(i) the number N ∈ O(1) of nearby landmarks that will be settled by TDD in the origin’s
neighborhood;

(ii) the upper bounds maxAverageDistance for the averageDistance criterion, maxStretch
for the maximum stretch of each od-path that is accepted as an alternative route
of H, compared to the minimum-travel-time DH [od](to) in the alternative graph H
(Since TDAG essentially mimics the preprocessing of the CFLAT oracle [21], one
can easily deduce that DH [o, d](to) is a very good approximation of DG[o, d](to),
for all possible departure times from the origin.), and maxDecisionEdges for the
decisionEdges criterion.

All these input parameters directly affect the size, the quality, and the computation
time for constructing H.

TDAG consists of two building blocks, the preprocessing phase and the query algo-
rithm, which will be presented in the rest of this section.

Algorithms 2021, 14, 220 11 of 22

3.1. Preprocessing Phase of TDAG

Initially, TDAG selects a small subset L ⊆ V(G) of landmark-nodes. There are various
methods for the selection of L: either randomly, or according to some properties of the
underlying graph, e.g., selection from boundary nodes of some balanced partition of
the graph, or the selection of the most significant nodes in a node-ranking of the graph
according to a centrality measure, such as betweenness-centrality [21].

In this work, we adopt one of the most successful methods for landmark selection,
called Sparse-Random (SR), according to which, the landmarks are selected randomly and
sequentially, so as to avoid having landmarks that are too close to each other. In partic-
ular, each new landmark ` is chosen uniformly at random from the subset of currently
eligible non-landmark nodes. Right after the selection of the new element ` ∈ L, a small
neighborhood of non-landmark nodes around ` is excluded from all the subsequent land-
mark selections.

TDAG proceeds with the computation and succinct storage of timestamped shortest-
path trees, from each landmark ` ∈ L towards all reachable destinations v ∈ V. The
timestamp t of a given shortest-path tree SPT`(t) emanating from ` ∈ L, denotes the
assumed departure time from `, for which SPT`(t) is indeed a shortest-path tree. For each
landmark ` ∈ L, the collection of SPTs

SPT` :=
{

SPT`(t) | t ∈ T` :=
{

t1
` , t2

` , . . . , tλ`
`

} }
,

for carefully selected distinct (monotonically increasing) departure times, constitutes the
travel-time summary stored for landmark ` during the preprocessing phase. The computa-
tion of SPTs from each landmarks is exactly the one conducted during the preprocessing
phase of CFLAT [21]. Therefore, the preprocessing-time requirements can be fine-tuned so
that they are subquadratic in the graph size. As for the required space (also subquadratic in the
graph size [21]), in order to be able to efficiently handle continental-size time-dependent in-
stances, we had to significantly improve the succinct representation of CFLAT’s travel-time
summaries—in particular, how they are stored in the main memory.

The main intervention of this work, w.r.t. the preprocessing space requirements
of CFLAT, is a lossless sparse matrix compression methodology for the succinct and
space-efficient representation of all the timestamped SPTs from the landmarks, avoiding
a considerable increase in the access time of the preprocessed information. In particular,
the preprocessed data structure still conceptually contains, for each ` ∈ L, the collection
SPT` of timestamped shortest-path trees rooted at `, which are optimal for the set of distinct,
carefully selected departure times from `, T` ⊂ [0, T). The selection of the set T` of distinct
departure times from ` is such that, for all possible departure times t ∈ [0, T), the collection
T` contains at least one tree SPT`(i) providing, in worst case, a (1 + ε)-approximation for
DG[`, v](t):

∀v ∈ V, DSPT`(i)[`, v](t) ≤ (1 + ε) · DG[`, v](t)

3.1.1. Data Structure for Timestamped Predecessors

The novelty of our succinct representation is the following: Rather than keeping a
collection of trees per landmark, we maintain, for each pair (`, v) ∈ L×V, two sequences
of the same length:

(i) ∆`,v is the sequence of sampled departure times from ` to v (in increasing order), and
(ii) Π`,v is the sequence of predecessors of v in the corresponding (`, v)-paths.

All the departure times for ∆`,v are assumed to be integers from {0, 1, . . . , 86399},
considering an accuracy of seconds and a period of T = 86,400 s. Rather than using 3 bytes
per cell, we exploit the fact that most departure times are smaller than 216 = 65,536 s.
In particular, we keep an index h`,v of the latest departure time in ∆`,v, which is smaller
than 216. The first h`,v cells in ∆`,v store the absolute departure time values, but the
remaining cells only store the offset of the actual departure times from the value 216. In
this way, all the cells in ∆`,v require exactly 2 bytes. As for Π`,v, every cell is the relative

Algorithms 2021, 14, 220 12 of 22

position of the predecessor of v, in its in-neighborhood list. One byte per cell is sufficient
for real-world instances whose maximum in-degree is a small constant.

A first observation of an initial implementation of this data structure was that a great
deal of space was consumed for storing duplicates of exactly the same pairs of sequences for
different landmark–destination pairs. For example, in the the continental-size EU instance
with 18,010,173 nodes, for 16,000 landmarks, one would need to store 576,325,536,000
sequences. Nevertheless, we observed that there were only 1,632,168,375 distinct sequences
(1,623,701,331 departure time sequences and 8,467,044 predecessor sequences). To avoid
this waste of space, we chose to store only pairs of (4-byte) pointers to sequences, among all
landmark–destination pairs.

After implementing this variant as well, we also observed that, in many cases, the same
destination v∗ had many repetitions of the same pairs of (4-byte) pointers to sequences,
over all the landmarks. Indeed, this is quite reasonable for landmarks located towards
the same direction and roughly at the same distance from v∗. In order to avoid these
repetitions of pairs of long pointers (8 bytes in total), we proceeded as follows (cf. Figure 2):
We maintained a landmark-indexed dictionary Ldictv∗ per destination v∗, whose value for
a key `∗ ∈ L is a pointer s∗ to the cell of an array Sv∗ containing a unique pair (p∗, d∗) of
pointers to the sequences ∆`∗ ,v∗ and Π`∗ ,v∗ .

Figure 2. Data structure for the succinct representation of preprocessed information of TDAG.

The size |Sv∗ | is exactly the number of distinct pairs of pointers (to sequences) involving
v∗, among all landmarks and, on average, is significantly smaller than |L|. Each cell of
Sv∗ requires 8 bytes. On the other hand, for Ldictv∗ , we used bit-level representation of
the stored values, with each cell consuming only log2(|Sv∗ |+ indeg(v∗)) bits. Even for
16,000 landmarks, this was, at most, 14 bits per cell.

Finally, we observed from real-world instances that, more often than not, a node
v∗ might always have the same predecessor, independently of landmarks and departure
times. In those cases, rather than storing Ldictv∗ and Sv∗ , we simply stored this unique
predecessor for v∗.

3.1.2. Lookup Procedure for Timestamped Predecessors

The lookup operation of preprocessed information, in order to obtain a time-dependent
predecessor per landmark-to-vertex pair, is a procedure that is repeatedly used in the path-
collection phase of the TDAG query algorithm (cf. PHASE-2 in Section 3.2). Briefly,
the lookup operation takes, as input, a triple (`, v, t`) of a landmark ` ∈ L, a current node
v ∈ V and a departure time t` ∈ [0, T) from `. The lookup procedure starts by locating
∆`,v, and then conducts a binary search in it, to locate the closest sampled departure times
depi ≤ t` < depi+1, in time O(log(|∆`,v|)). For a constant number of sampled departure
times from ` towards v, this is also the O(1) time.

Then, the corresponding predecessors of v are located at positions i and i + 1 of Π`,v,
and, thus, are retrieved also in O(1) time. Since the number of sampled departure times

Algorithms 2021, 14, 220 13 of 22

only partitions the period [0, T) in small time intervals, it is independent of the network size
(e.g., for the EU instance, the maximum length of a sampled departure times sequence is
4407). Therefore, the entire lookup procedure takes O(1) time (e.g., at most 13 comparisons,
even for EU).

Due to this novel methodology for the succinct representation of the preprocessed
data, preprocessing a large number of landmarks is now possible, even for continental-size
datasets. In terms of performance, this novel storage scheme provides a cache-friendly gain
that beats the overhead of the bit-field and bit-mask extraction operations. This, in turn,
leads to results of higher quality and significantly lowers the observed relative error of the
travel-time approximations in the summaries of the landmarks.

3.2. Query Algorithm of TDAG

The TDAG query algorithm executes three sequential phases for serving a query
(o, d, to) ∈ V ×V × [0, T).

PHASE 1: Landmark Settlement

A forward TDD tree SPTo(to) is grown from (o, to) until either the destination-node d
is settled or a set F = SPTo(to) ∩ L of the |F| = N closest landmarks are settled (whichever
comes first). Subsequently, a reverse BFS tree RBFSd from d is constructed that ignores,
totally, the traversal-times of the arcs and exploring the neighborhood around d in a
backward fashion. The growth of RBFSd is interrupted when its size becomes equal to
|RBFSd| = c · |SPTo(to)|, for some constant c ≥ 1. Our experimental analysis showed that
c = 1.2 is an appropriate choice.

We experimented also with growing a reverse TDD tree towards d; however, this
approach was more time-consuming, and the resulting alternative graph, to be constructed
in the next phases, was eventually similar to the one constructed using the reverse BFS tree
from d.

PHASE 2: Path Collection

Using the preprocessed data, our next task was to construct a subgraph of the ap-
proximate shortest paths from the N landmarks ` ∈ F, with their own departure times t`,
which were already computed in PHASE 1, towards each leaf node of RBFSd. This was
done as follows: For each leaf-node v of RBFSd and landmark ` ∈ F with departure time t`,
we recursively move backwards from v towards ` by recursively looking-up predecessors
in the timestamped shortest-path trees SPT`(i) and SPT`(i + 1) for which it holds that
ti
` ≤ t` < ti+1

` . All the arcs that participate in these (`, v)-paths, for all landmarks ` ∈ F
and all leaves v of RBFSd, become marked.

The initial alternative graph H consists, then, of the union of the two trees SPTo(to)
and RBFSd of PHASE 1, with the set of all the marked arcs during PHASE 2.

We continue by expanding the forward TDD tree SPTo(to) of PHASE 1 towards d,
by working only in the subgraph H, until all the nodes in H are settled. This allows us to
obtain a tentative arrival time t̃d at d:

t̃d = to + DH [o, d](to) ≤ to + min
`∈F
{DG[o, `](to) + D[`, d](to + DG[o, `](to))}

where D[`, d](t) is the upper-bounding (1 + ε)-approximate travel-time function from ` to
v, stored in the preprocessed data of TDAG. As was proved in [21], t̃d is a constant upper-
bound of the earliest-arrival-time td = to + DG[o, d](to). The quality of this upper bound
depends on the choice of the precision ε of the preprocessed information, the number N of
settled landmarks within SPTo(to), and the size of the reverse BFS tree RBFSd.

Algorithms 2021, 14, 220 14 of 22

PHASE 3: Pruning of the Alternative Graph

The graph H produced by PHASE 2 is already smaller than G. Nevertheless, it is
further pruned so as to meet the three quality criteria for an alternative graph: small path
overlapping, small stretch, and small size. This is done in three steps.

Step 3.1: Enforcement of the small stretch. We first aim at a loose pruning over H, in or-
der to obtain a subgraph containing candidate od-paths with reasonable travel-times.
Towards this direction, we consider the rationale of the via-node shortest od-routes.
In particular, any node v in H whose shortest travel-time from o to d via v is greater
than the targeted upper-bound, i.e., DH [o, v](to) + DH [v, d](to + DH [o, v](to)) >
maxStretch · DH [o, d](to), is removed.

Step 3.2: Decrease in the number of candidate od-routes. For further reducing the num-
ber of the candidate od-paths, we initially use the Plateau method [11,13] within H,
by having previously run TDD from (o, to) and RTDD from (d, to + DH [o, d](to)). Any
arc not belonging to the resulting Plateau candidate od-paths is removed from H. The
Penalty pruning method [11,14] is then applied to the resulting subgraph, in order to
prune it even further. At each Penalty iteration, TDD runs on H, computing a new
time-dependent shortest path πo,d, whose constituent arcs are marked and are then
appended to the solution set Es. Additionally, all the arcs in Es, and the all the arcs
incident to nodes of πo,d, are penalized with increasing the penalty factors p(e) and
r(e), respectively, both initially set to 0.

In particular, for each arc e = uv ∈ Es, its travel-time is increased to D[e](t)(penalized) =
(p(e)(current) + 1)D[e](t)(original); otherwise, if u or v are nodes in πo,d and e is not
an arc of πo,d ∪ Es, its travel-time is increased to D[e](t)(penalized) = (r(e)(current) +

1)D[e](t)(original). The penalty factors of the affected arcs are increased at the end of
each step to p(e)(new) = p(e)(old) + pc and r(e)(new) = r(e)(old) + rc, where pc > 0
and rc > 0 are constants.

The process is repeated until a sufficient number of alternative paths are found or
the travel time adjustments of πo,d paths bring no better results. Eventually, all the
unmarked arcs are removed from H. In order to speedup the Penalty method at
path computation, the time-dependent variant of A∗ [28,29] can be used in place
of TDD. For each node of H, its remaining distance towards d, which was already
computed from RTDD during the Plateau substep, can be used as a lower bound for
the time-dependent A∗ heuristic.

Step 3.3: Reduction in complexity of the alternative graph. The final pruning of H is per-
formed via a ranking procedure. Initially, if a path πx,y in H has outdeg(x) ≥ 2 and
indeg(y) ≥ 2, and ∀v ∈ πx,y − {x, y} outdeg(v) = indeg(v) = 1 (i.e., it increases by
one the decisionEdges), then it is considered as a decision-path and it is ranked by
the function rank(πx,y, t) = ∑e∈πx,y (share[e](t) − stretch[e](t)) that represents the
contribution of πx,y in terms of averageDistance and totalDistance in H.

The ranked decision paths are then sorted by increasing ranking order in a priority
queue Q. Consequently, an iterative procedure starts where, in each iteration, a path
πx,y is dequeued from Q. If the condition outdeg(x) ≥ 2 and indeg(y) ≥ 2 remains
in effect, then πx,y is removed from H, leading to a decrease by one of the parameter
decisionEdges. After the removal of πx,y, if, for v ∈ {x, y}, it holds that outdeg(v) =
indeg(v) = 1, then a new decision path π is revealed that has v as an internal node. π
is ranked and inserted in Q, in order to be considered along with the rest of decision
paths. The iterative procedure stops when decisionEdges ≤ maxDecsionEdges.

3.3. Analysis of TDAG’s Preprocessing Phase and Query Algorithm

In this section, we provide a theoretical analysis for the quality of the alternative graph
produced by TDAG, by means of the stretch of the optimal od-path in the alternative graph
H, compared to the one in the original graph G.

Algorithms 2021, 14, 220 15 of 22

Since TDAG employs a series of heuristic improvements, which make it difficult to
provide a theoretical analysis, we focus here on a simplified variant of TDAG without any
heuristic improvements, which we shall explain in detail later on.

Before that, we start with our working assumptions on the input instance. We con-
sider a directed graph G = (V, E) with n = |V| vertices and m = |E| arcs, which is
sparse: m ∈ O(n). G is accompanied with a time-dependent cost metric, succinctly repre-
sented by periodic, continuous, pwl arc-traversal-time functions D[uv] : [0, T) 7→ R>0. All
time-dependent distances in this metric are indeed the minimum-travel-times D[o, d](to),
for each pair of vertices (o, d) ∈ V ×V and departure time to ∈ [0, T) from the origin o.

Apart from the travel-times metric, we also consider the Dijkstra-Ranks metric for
vertex-pairs: For any pair (o, d) ∈ V × V and departure time to ∈ [0, T), the (also time-
dependent) Dijkstra-Rank value, DR[o, d](to) is the cardinal number of d (i.e., its position
in the settling order) when growing a forward TDD ball from (o, to).

For theses two metrics that we consider, we make the following assumptions that have
also been considered in previous works concerning time-dependent oracles, e.g., in [22].

Assumption 1 (Bounded Travel-Time Slopes). All the minimum-travel-time slopes are bounded
in a given interval [−Λmin, Λmax], for the given constants Λmin ∈ [0, 1) (Λmin < 1 due to the
FIFO property) and Λmax ≥ 0.

Assumption 2 (Bounded Opposite Trips). The ratio of minimum-travel-times in opposite
directions between two vertices for any specific departure time, but not necessarily via the same
path, is upper bounded by a given constant ζ ≥ 1.

Assumption 3 (Min-Travel-Times vs. Dijkstra-Ranks). There exist constants λ, c1, c2 ∈ O(1)
and functions f (n) ≤ logc1(n), g(n) ≤ c2 log(n), s.t. the following hold:

(i) DR[o, d](to) ≤ f (n) · (D[o, d](to))λ, and
(ii) D[o, d](to) ≤ g(n) · (DR[o, d](to))1/λ.

Analogous inequalities hold for the static free-flow and the full-congestion metrics, D(f)

and D(c).

Our next consideration is the preprocessed data-structure that is created by a time-
dependent oracle (e.g., the CFLAT oracle in [22]). We start with an i.u.a.r. (i.e., independent
and uniformly at random, without repetitions) selection of a small subset L ⊂ V of
landmark-vertices: each vertex v ∈ V is chosen to be included in L with probability
ρ ∈ (0, 1), independently of the other vertices. The preprocessed data structure succinctly
represents the upper-bounding functions D[`, v] : [0, T) 7→ R>0 of the (unknown) minimum-
travel-time functions DG[`, v] : [0, T) 7→ R>0, for all landmark-to-vertex pairs (`, v) ∈ L×V.

Our precondition is that these upper-bounding functions are also periodic, continuous,
pwl, and constitute (1 + ε)-approximations of the optimal travel-time functions. The
variant of the TDAG query algorithm that we consider, called TDAGsimple, considers that
N = 1, i.e., it attempts to exploit only the closest landmark from the origin of the route. We
explain the main steps of this query algorithm for alternative routes in Figure 3.

In order to proceed with the analysis of TDAGsimple, we first recall a theorem that
concerns the analysis of the FCA+ query algorithm for computing an (approximation of
an) earliest-arrival-time route in sparse, time-dependent networks:

Theorem 1 ([15]). If a TD-instance, with m ∈ O(n) and compliant with Assumptions 1, 2 and 3 is
preprocessed using BIS+ for constructing travel-time summaries from ρn i.u.a.r chosen landmarks,
then the expected preprocessing space SBIS+ and time PBIS+ are

E{SBIS+} ∈ O
(
ρn2(K∗ + 1)

)
E{PBIS+} ∈ O

(
ρn2(K∗ + 1)[log(n) + log log(Kmax)]

)
= O

(
ρn2(K∗ + 1) log(n)

)
E{QFCA+} ∈ O((1/ρ)[log(1/ρ) + log log(Kmax)]) = O((1/ρ) log(1/ρ))

For the approximation guarantee, FCA+ returns either an exact od-path or approximate od-path
via the nearest landmark ` s.t. D[o, d](to) ≤ Ro + D[`o, d](to + Ro) ≤ (1 + ε) · D[o, d](to) +

Algorithms 2021, 14, 220 16 of 22

ψ · Ro ≤ (1 + ε + ψ) · D[o, d](to) , where Ro = D[o, `](to) is the minimum-travel-time to `,
and ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ is a constant that only depends on the
parameters of the travel-times metric but is independent of the network size.

TDAGsimple

INPUT: G = (V, E). 0 < γ ≤ δ < 1. ρ = n−δ. L ⊂iuar(ρ) V. ∀uv ∈ E, D[uv] :
[0, T) 7→ R>0. ∀(`, v) ∈ L × V, D[o, d] : [0, T) 7→ R>0. (o, d, to) ∈
V ×V × [0, T).

OUTPUT: H ⊂ G s.t. DH [o, d](to) ≤ α · DH [o, d](to), for some constant α ≥ 1.

1. Grow a forward TDD-ball SPT(o, t) from (o, to), until the first land-
mark ` ∈ L is settled.

2. t` = to + D[o, `](to) is the earliest-arrival-time at `. π[o, `] is the (opti-
mal) o`-path discovered in this step.

3. t̄d = t` + D[`, d](t`) is the upper-bounding arrival time at d, provided
by an approximate od-path π̄[o, d|`] = π[o, `]⊕ π̄[`, d], where π̄[`, d]
is the preprocessed (1 + ε)-approximate `d-path when departing from
` at time t`.

4. Grow a reverse BFS-ball from d, RBFSd, until its size is |RBFSd| = nγ.
5. For each leaf-vertex v ∈ RBFSd, construct (by recursively querying the

preprocessed data structure) the (1 + ε)-approximate `v-path, π̄[`, v],
which arrives at v no later than t̄v, when departing from ` at time t`.

6. Grow a reverse TDD-ball from (d, t̄d), until all the vertices in RBFSd
are settled.

7. For each leaf-vertex v ∈ RBFSd, t̂v is the latest-departure-time from v,
so that (d, t̄d) is met: t̄d = t̂v + D[v, d](t̂v). Moreover, π̂[v, d] is the
corresponding optimum-travel-time vd-path, when departing from v
at time t̂v. Note that t̂v ≥ t̄v.

8. The alternative graph H is the subgraph induced by the edges of: (i)
the ball SPT(o, t), and (ii) the union, over all leaf-vertices v ∈ RBFSd,
of the (preprocessed) `v-paths π̄[`, v] and the optimal vd-paths π̂[v, d]
in the reverse TDD ball from (d, t̄d).

Figure 3. The pseudocode for TDAGsimple.

The following theorem provides a similar analysis for the query time and the approxi-
mation guarantee of TDAGsimple (the preprocessing requirements remain the same).

Theorem 2. TDAGsimple has the expected time-complexity Õ
(
n1+γ

)
, and also returns an alterna-

tive graph H in which the minimum-travel-time for (o, d, to) is, at most, a constant approximation
of the minimum-travel-time for (o, d, to) within G: DH [o, d](to) ≤ α · DG[o, d](to), for some
constant α = 1 + ε + ψ ∈ O(1).

Proof (sketch). The expected size of the landmark set is E{|L|} ∈ O(ρn) = O
(
n1−δ

)
.

Moreover, by a simple application of Chernoff Bounds, we know that |L| ∈ (1± o(1)) · n1−δ,
with high probability.

The expected size of the forward TDD-ball grown, cf. step 1, is E{|SPT(o, t)|} ∈
O
(

1
ρ

)
= O

(
nδ
)
. Again, by a simple application of Chernoff Bounds, it can be shown

that |SPT(o, t)| ∈ (1± o(1)) · nδ, with high probability. The expected time-complexity to
construct this ball is Õ

(
nδ
)
.

The size of the reverse BFS ball grown in step 4 is chosen as |RBFSd| ∈ nγ. In
the original version of the TDAG algorithm (which we implemented in this work), we
considered the case where |RBFSd| ∈ O(|SPT(o, t)|), i.e., γ = δ. For our analysis here, we
consider the more general case where the BFS ball is chosen independently of the forward
TDD ball (e.g., we could select γ = δ

3 , in order to reduce the number of paths to reconstruct
in step 7). The time-complexity for step 4 is linear in the size of the BFS ball, i.e., O(nγ).

Algorithms 2021, 14, 220 17 of 22

The expected size of the reverse TDD ball, cf. step 6, is E{|TDDr|} ∈ Õ(nγ). This
is because of the facts that G is a sparse graph, and moreover the Dijkstra-Rank and the
minimum-travel-time metrics are correlated within polylogarithmic factors (a consequence
of Assumption 3).

The expected time for constructing all the landmark-to-vertex paths in step 7 is
O
(
n1+γ

)
, since there exist O(nγ) leaves in the BFS ball, and each path consists of, at most,

n− 1 edges.
The overall running time of TDAGsimple is dominated by step 7 and is, therefore,

O
(
n1+γ

)
.

As for the approximation guarantee, within the constructed alternative graph H,
the earliest-arrival-time at d when departing from (o, to) is DH [o, d](to) ≤ t̄d. To see this,
consider the leaf-vertex v in RBFSd, which also belongs to the approximating `d-path
π̄[`, d], that reaches d at time (at most) t̄d, when departing from (`, t`). The path π̄[`, d] is
not necessarily a subgraph of H. Nevertheless, its subpath π̄[`, v] exists in H. Moreover,
the optimal path π̂[v, d] also exists in H. By following π̄[`, v], we reach v at time (at most) t̃v.
It also holds that t̂v ≥ t̃v, because t̂v is the latest-departure-time from v that reaches (d, t̄d).
Therefore, if from (`, t`) we follow the path π̄[`, v]⊕ π̂[v, d], then we can be sure that the
arrival time at d is, at most, t̄d, essentially due to the FIFO property in the travel-times
metric:

t̄v ≥ t̂v = t` + D[`, v](t`)
t̄v + D[π̂[v, d]](t̄v) ≤ t̂v + D[π̂[v, d]](t̂v) = t̂v + D[v, d](t̂v) = t̄d

It is already known (cf. Theorem 1) that the approximate travel-time t̄d − to is an
(1 + ε + ψ)-approximation of the minimum-travel-time in G, D[o, d](to), and thus this
approximation guarantee also holds for DH [o, d](to).

4. Experimental Evaluation

In this section, we present our experimental study to assess the practical performance
of the TDAG query algorithm for providing alternative routes in real-world time-dependent
road networks.

4.1. Experimental Setup and Goal

TDAG was implemented in C++ (GNU GCC version 9.3.0). All the experiments were
conducted on an AMD Ryzen Threadripper 3960X 24-Core 3.8 GHz Processor, with 256 GB
of RAM, running Ubuntu Linux (20.04 LTS). We used 24 threads for the preprocessing
phase of CFLAT [21], using ε = 0.1 as the preprocessing precision.

Three typical benchmark instances for testing speedup techniques and oracles in
time-dependent road networks were used in our experiments, kindly provided to us by
TomTom and PTV for scientific purposes.

(BE) The real-world instance of Berlin, provided by TomTom, has 473,253 nodes and
1,126,468 arcs. It is accompanied with arc-traversal-time functions taken from historical
data of a working day (Tuesday) in a typical urban environment.

(GE) The real-world instance of Germany, provided by PTV, has 4,692,091 nodes and
10,805,429 arcs. The arc-traversal-time functions represent a typical working day.

(EU) The instance of Western Europe, provided by PTV, has 18,010,173 nodes and 42,188,664
arcs. It is a synthetic time-dependent benchmark instance that is typically considered in
the related literature.

The TDAG query algorithm was executed on a single thread. For the sake of compari-
son, in all the query algorithms that were evaluated in this work, we used the same set of
10,000 queries chosen i.u.a.r. from V ×V × [0, T) in each instance, for randomly selected
departure times from [0, T). The static (forward-star) variant of the PGL library [30] was
used for the graph representation. For Dijkstra-based algorithms, we used as priority queue

Algorithms 2021, 14, 220 18 of 22

Sander’s implementation (http://algo2.iti.kit.edu/sanders/programs/spq/, accessed on
September 2020) of the sequence heap [31].

In [21], various methods were considered for the selection of the landmark set, signifi-
cantly influencing the performance of CFCA (subroutine of TDAG). In our experimental
evaluation of TDAG, we consider the sparse-random (SR) landmark-selection method that
provides the best performance [21]: the landmark nodes are chosen sequentially, each new
landmark is chosen i.u.a.r. from the remaining nodes, and excludes a free-flow neighbor-
hood of nodes around it from future landmark selections. That selection is simple and yet
effective on providing a high performance in TDAG.

The goal of our experimental evaluation was twofold:

(i) To investigate the scalability of TDAG, i.e., how smoothly it trades higher query times
with better quality guarantees for the resulting alternative graph H, using the value
of N as our tuning parameter;

(ii) To compare TDAG’s performance with the performances of straightforward time-
dependent variants of existing techniques for constructing alternative graphs in static
graphs [7,11], which serve as our baseline approaches.

In general, we assume that DH [o, d](t) is equal or close enough to DG[o, d](t), be-
cause of the TDD-based steps. Moreover, the relative error RelativeError, defined as

RelativeError =
DH [o, d](t)− DG[o, d](t)

DG[o, d](t)
,

provides the observed approximation accuracy of H, that is, how close DH [o, d](t) is to
DG[o, d](t), given that DH [o, d](t) ≥ DG[o, d](t).

4.2. Experimental Results

Our bit-level data compression technique (cf. Section 3.1) was found to be beneficial.
The byte-based approach of CFLAT [21] for the succinct representation of the travel-time
summaries of 2000 landmarks chosen with SR (SR2K) consumed space of 5.2 GB in Berlin,
53.6 GB in Germany, and 107.2 GB in Europe. Using the new profiling, the bit-level based
approach of TDAG, the preprocessed data for SR2K landmarks consumed space of 0.28 GB
in Berlin, 3.2 GB in Germany, and 31.05 GB in Europe. That is, the exploitation of the bit-
level representation of a sparse matrix, without sacrificing the landmark and node indexing,
leads to a significant reduction of about 70% in space requirements, which, in turn, allows
for the selection of larger landmark sets—especially for continental-size instances.

In Tables 1 and 2, we report the results of our experimental evaluations of TDAG on the
approximation accuracy RelativeError (relative error in %) and the various quality indicators
(To simplify the notation, we omit, in the rest of the paper, the departure time t notation.)
(cf. Section 2): targetFunction (TargetFunction), totalDistance (TotDist), averageDistance
(AvgDist), and decisionEdges (DecEdges). Similar to [11], in order to evaluate the quality
of the constructed alternative graph, the aggregate quality indicator TargetFunction is used,
which is defined as follows:

TargetFunction = totalDistance + 1− averageDistance

In all our experiments, the resulting alternative graphs were evaluated using the
following constraints: maxStretch ≤ 1.2, averageDistance ≤ 1.1, and decisionEdges ≤ 10.
In the path pruning step, multiple choices on penalty constants were tested. The best
results were achieved by selecting up to pc = 0.3 and rc = 0.1.

Table 1 demonstrates the effect of the parameter N on the execution time of TDAG,
as well as on the quality of the constructed AG. As N grows, PHASE 1 becomes computa-
tionally more expensive; however, the relative error rapidly drops towards 0 for BE and GE.
This is due to the fact that, as N increases, the expanded (forward) TDD tree becomes larger,
the resulting od-paths increase in number, and we also obtain more candidate od-paths
providing an AG of better quality.

http://algo2.iti.kit.edu/sanders/programs/spq/

Algorithms 2021, 14, 220 19 of 22

Table 1. Quality measures and execution times of TDAG. The background colors in certain cells
highlight specific values of the target function and the corresponding execution times of TDAG’s
query algorithm, per instance and landmark set. These values are used in Table 2, for comparison
with the baseline approaches for time-dependent alternative routes.

Network
Landmark

N
Target Total Avg Decision Relative Time AG Size

Set Function Dist. Dist. Edges Error (%) (ms) |V′|, |E′|

BE SR4000

1 1.53 1.54 1.01 4.63 0.48 0.52 285, 288
2 1.98 2.00 1.02 7.69 0.06 0.89 387, 393
4 2.40 2.43 1.03 9.07 0.02 1.50 487, 495

10 2.97 3.02 1.04 9.68 0.01 3.11 634, 642
32 3.65 3.71 1.06 9.72 0.00 8.45 826, 835
76 3.99 4.06 1.07 9.62 0.00 18.86 932, 946
100 4.06 4.14 1.08 9.58 0.00 25.80 964, 973
250 4.22 4.30 1.08 9.46 0.00 64.44 1057, 1065

GE SR8000

1 1.50 1.51 1.01 8.60 0.51 1.31 536, 542
2 1.93 1.94 1.02 9.96 0.06 2.80 737, 746
8 2.77 2.81 1.04 9.93 0.00 11.38 1180, 1189

18 3.26 3.32 1.06 9.86 0.00 28.89 1477, 1486
25 3.45 3.51 1.07 9.80 0.00 43.33 1727, 1736
64 3.88 3.96 1.09 9.63 0.00 135.04 2071, 2080
100 4.02 4.11 1.09 9.54 0.00 213.05 2193, 2201
200 4.15 4.25 1.10 9.40 0.00 384.15 2295, 2303

EU SR16000

1 1.43 1.43 1.01 8.63 0.85 4.30 1397, 1405
6 2.07 2.09 1.02 9.95 0.55 21.95 2124, 2133

18 2.51 2.54 1.03 9.92 0.55 80.61 2722, 2731
64 3.09 3.15 1.05 9.74 0.55 330.72 3763, 3772
100 3.30 3.36 1.06 9.63 0.55 514.45 4384, 4393
150 3.47 3.54 1.07 9.51 0.55 770.48 4553, 4562
200 3.57 3.64 1.07 9.42 0.55 965.07 4837, 4846
250 3.62 3.69 1.07 9.32 0.55 1237.80 4992, 5001

Figure 4 shows the quality (targetFunction) and run time performance of TDAG with
respect to the number |L| of landmarks and the selection of N for GE. Each increase of
the targetFunction depends on collecting and processing a larger number of candidate
alternative paths between origin o and destination d, which, in turn, requires a higher
computation time. However, by increasing either |L| or N, the error is reduced. The target-
Function obtains higher values either by a long TDD tree step or by a long predecessor tree
step. The first case happens when |L| is smaller—where landmarks are more distant from
each other. The second case happens when |L| is larger—where landmarks are less distant
from each other.

As for EU, the relative error seems to stop at 0.55 due to the steepest slopes of the
earliest-arrival-time functions (which necessitate an increased number of sampled depar-
ture times during the preprocessing phase), the propagation of floating point rounding
errors along the arcs of long paths, and the smaller density |L|/|V| of the preprocessed
landmarks, compared to the instances of BE and GE. All these issues can be tackled by
affording more memory for the computations.

In Table 2, we present the results of the baseline approaches and their comparison to
TDAG. DPP is a combination of the Plateau and the Penalty methods [7], which collects
and evaluates the candidate od-paths using a greedy selection approach. In our time-
dependent context, Dijkstra’s algorithm was replaced by its time-dependent variant, TDD.
APP is, again, a combination of the Plateau and Penalty methods of [7,11], which uses
the ALT pruner and filtering approach [11]. Dijkstra’s algorithm was, again, replaced by
TDD, and for the lower bounds required by ALT the constant free-flow minimum-travel-
time distances were used (i.e., each arc has a scalar cost corresponding to its minimum
traversal-time).

Algorithms 2021, 14, 220 20 of 22

Table 2. Speedups of TDAG over DPP (with TDD) and APP (with A∗ and free-flow lower-bounds).

Network Method Target Function Query Time Speedup

BE

DPP 3.01 319.38 102.7
TDAG vs. DPP 2.97 3.11

APP 4.21 134.73
2.1TDAG vs. APP 4.22 64.44

GE

DPP 3.27 2623.36
90.8TDAG vs. DPP 3.26 28.89

APP 4.17 1860.80
4.8TDAG vs. APP 4.15 384.15

EU

DPP 3.36 19,511.93
37.9TDAG vs. DPP 3.30 514.45

APP 3.89 10,266.29
8.3TDAG vs. APP 3.62 1237.80

1/8000 1/4000 1/2000 2/8000 2/4000 4/8000 2/2000 6/8000 4/4000 4/2000 16/8000 6/2000 25/8000 18/4000 20/4000 25/4000 18/2000 64/8000
targetFunction 1.43 1.57 1.77 1.93 2.09 2.24 2.38 2.59 2.56 2.90 3.19 3.18 3.45 3.51 3.56 3.68 3.76 3.88

1

1.5

2

2.5

3

3.5

4

4.5 target Function

1/8000 1/4000 1/2000 2/8000 2/4000 4/8000 2/2000 6/8000 4/4000 4/2000 16/8000 6/2000 25/8000 18/4000 20/4000 25/4000 18/2000 64/8000
time 1.29 1.86 2.98 2.8 4.29 4.22 7.43 8.43 9.06 17.60 25.14 29.57 43.33 58.00 66.64 88.42 97.61 152.08

0
20
40
60
80

100
120
140
160 time (ms)

1/8000 1/4000 1/2000 2/8000 2/4000 4/8000 2/2000 6/8000 4/4000 4/2000 16/8000 6/2000 25/8000 18/4000 20/4000 25/4000 18/2000 64/8000
ratio 1.11 0.84 0.59 0.69 0.49 0.53 0.32 0.31 0.28 0.16 0.13 0.11 0.08 0.06 0.05 0.04 0.04 0.03

0.00

0.20

0.40

0.60

0.80

1.00

1.20 performance ratio

1/8000 1/4000 1/2000 2/8000 2/4000 4/8000 2/2000 6/8000 4/4000 4/2000 16/8000 6/2000 25/8000 18/4000 20/4000 25/4000
error 0.51 0.72 0.92 0.06 0.08 0.01 0.09 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.20

0.40

0.60

0.80

1.00 apx error(%)

Figure 4. The targetFunction, execution time, and ratio of targetFunction/time of TDAG at GE. In the
first row of the horizontal axis, the tested combinations of N/|L| are shown.

DPP does not require prepossessing, while APP requires a linear-in-space and super-
linear-in-time prepossessing phase for computing the lower bounds required by ALT.
Regarding the computation of the alternative graph (column q-time in Table 2), both
baseline approaches had a slow path collection phase. DPP constructs a subgraph H that
is huge in size, using an expensive phase of pure TDD as there are no heuristics. APP
improves the time of the path collection phase; however, the lower bounds are not tight for
a time-dependent metric. In both cases, the achieved quality is high, at the cost of large
processing times.

From Tables 1 and 2, it is clear that, for all instances, the configurations of TDAG
that achieve analogous aggregate quality required execution times that were about two
orders of magnitude smaller than those of DPP. In particular, the achieved speedups were
more than 102.7 for BE, 90.8 for GE, and 37.9 for EU. Similarly, the configurations of TDAG
achieving similar values of the target function were faster than APP by about one order

Algorithms 2021, 14, 220 21 of 22

of magnitude, as the instance size increased. In particular, the speedups were 2.1 for BE,
4.8 for GE, and 8.3 for EU.

5. Conclusions

In this work, we presented TDAG, a novel algorithm for computing alternative routes
in FIFO-abiding time-dependent road networks based on succinctly stored preprocessed
travel information. One of TDAG’s strong features is that it can smoothly trade-off the
quality of the resulting alternative graph with the required execution time via proper
choices of its parameter N. This feature provides a significant advantage over all existing
approaches, which have only one solution set of od-paths.

Our experimental evaluation, on two real-world instances and one synthetic instance,
demonstrated that TDAG clearly outperformed both baseline approaches (DPP and APP),
since it provided time-dependent alternative routes of the same quality as DPP and APP
within smaller execution times. TDAG can also provide “quick-and-dirty” alternative
routes with a speedup of more than 100 over both DPP and APP; however, it can continue
its execution until it finds alternative routes of the same quality as DPP and APP and is
still much faster (less than half time for BE and one fifth of time for GE) than these two
baseline approaches.

Many different approaches and experiments have been left for future research, due
to a lack of time, as the experiments with continental-sized road networks are very time
consuming. Our plans for future work also concern a deeper analysis of the particular
procedures that we use as well as some novel approaches and methods for the path
collection phase and the pruning schemes. There is still plenty of space for improving
the path aggregation phase and the penalty and ranking pruning steps to acquire the best
qualitative alternative paths faster and with a reduced computational cost. In addition,
further heuristics (e.g., exploiting the special features of road networks) should also be
considered, in order to improve the overall performance of an algorithm to discover
meaningful alternative routes.

Author Contributions: Conceptualization, S.K., A.P. and C.Z.; methodology, S.K., A.P. and C.Z.;
software, A.P.; validation, S.K., A.P. and C.Z.; formal analysis, S.K. and C.Z.; investigation, S.K., A.P.
and C.Z.; resources, S.K., A.P. and C.Z.; data curation, A.P.; writing—original draft preparation, S.K.,
A.P. and C.Z.; writing—review and editing, S.K., A.P. and C.Z.; All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Operational Program Competitiveness,Entrepreneurship
and Innovation (co-financed by EU and Greek national funds), under contract no. T2EDK-03472
(project iDeliver).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors wish to sincerely thank the anonymous reviewers, as well as the
editorial office of ALGORITHMS, for providing valuable comments towards improving earlier
versions of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bast, H.; Delling, D.; Goldberg, A.V.; Müller-Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F. Route planning

in transportation networks. In Algorithm Engineering: Selected Results and Surveys; Kliemann, L., Sanders, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 19–80.

2. Delling, D.; Wagner, D. Pareto paths with SHARC. In International Symposium on Experimental Algorithms; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 125–136.

3. Kriegel, H.P.; Renz, M.; Schubert, M. Route skyline queries: A multi-preference path planning approach. In Proceedings of the
26th International Conference on Data Engineering (ICDE), Long Beach, CA, USA, 1–6 March 2010; pp. 261–272.

4. Eppstein, D. Finding the k shortest paths. J. Comput. 1998, 28, 652–673. [CrossRef]

http://doi.org/10.1137/S0097539795290477

Algorithms 2021, 14, 220 22 of 22

5. Feng, G. Finding k-shortest simple paths in directed graphs: A node classification algorithm. Networks 2014, 64, 6–17. [CrossRef]
6. Yen, J.Y. Finding the k shortest loopless paths in a network. Manag. Sci. 1971, 17, 712–716. [CrossRef]
7. Bader, R.; Dees, J.; Geisberger, R.; Sanders, P. Alternative route graphs in road networks. In International Conference on Theory and

Practice of Algorithms in (Computer) Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–32.
8. Ittai, A.; Delling, D.; Goldberg, A.V.; Werneck, R.F. Alternative routes in road networks. In International Symposium on Experimental

Algorithms; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–34.
9. Kobitzsch, M. An alternative approach to alternative routes: Hidar. In European Symposium on Algorithms; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 613–624.
10. Luxen, D.; Schieferdecker, D. Candidate sets for alternative routes in road networks. In International Symposium on Experimental

Algorithms; Springer: Berlin/Heidelberg, Germany, 2012; pp. 260–270.
11. Paraskevopoulos, A.; Zaroliagis, C. Improved Alternative Route Planning. In 13th Workshop on Algorithmic Approaches for

Transportation Modelling, Optimization, and Systems (ATMOS); OpenAccess Series in Informatics (OASIcs); OASICS Dagstuhl
Publishing: Saarbrücken, Germany, 2013; Volume 33, pp. 108–122.

12. eCOMPASS Project, 2011–2014. Available online: http://www.ecompass-project.eu (accessed on 1 September 2020).
13. Camvit: Choice Routing. 2009. Available online: http://www.camvit.com (accessed on 1 September 2020).
14. Chen, Y.; Bell, M.G.H.; Bogenberger, K. Reliable pretrip multipath planning and dynamic adaptation for a centralized road

navigation system. Trans. Intell. Transp. Syst. 2007, 8, 14–20. [CrossRef]
15. Kontogiannis, S.; Zaroliagis, C. Distance oracles for time-dependent networks. Algorithmica 2016, 74, 1404–1434. [CrossRef]
16. Dean, B.C. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Available online: https://people.cs.

clemson.edu/~bcdean/tdsp.pdf (accessed on 20 July 2021).
17. Dehne, F.; Masoud, O.T.; Sack, J.R. Shortest paths in time-dependent FIFO networks. Algorithmica 2012, 62, 416–435. [CrossRef]
18. Foschini, L.; Hershberger, J.; Suri, S. On the complexity of time-dependent shortest paths. Algorithmica 2014, 68, 1075–1097.

[CrossRef]
19. Orda, A.; Rom, R. Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM 1990, 37,

607–625. [CrossRef]
20. Batz, G.V.; Geisberger, R.; Sanders, P.; Vetter, C. Minimum time-dependent travel times with contraction hierarchies. J. Exp.

Algorithmics (JEA) 2013, 18, 1.1–1.43. [CrossRef]
21. Kontogiannis, S.; Papastavrou, G.; Paraskevopoulos, A.; Wagner, D.; Zaroliagis, C. Improved oracles for time-dependent road

networks. arXiv 2017, arXiv:1704.08445.
22. Kontogiannis, S.; Wagner, D.; Zaroliagis, C. Hierarchical time-dependent oracles. Algorithms Comput. (ISAAC) 2016, 64, 1–13.
23. Dreyfus, S.E. An appraisal of some shortest-path algorithms. Oper. Res. 1969, 17, 395–412. [CrossRef]
24. Hansen, P. Bicriterion path problems. In Multiple Criteria Decision Making Theory and Application; Springer: Berlin/Heidelberg,

Germany, 1980; pp. 109–127.
25. Queiros Vieira Martins, E. On a multicriteria shortest path problem. Eur. J. Oper. Res. 1984, 16, 236–245. [CrossRef]
26. Barth, F.; Funke, S.; Storandt, S. Alternative Multicriteria Routes. In Algorithm Engineering & Experiments (ALENEX); SIAM:

Philadelphia, PA, USA, 2019; pp. 66–80.
27. Chondrogiannis, T.; Bouros, P.; Gamper, J.; Leser, U.; Blumenthal, D.B. Finding k-shortest paths with limited overlap. VLDB J.

2020, 29, 1023–1047. [CrossRef]
28. Doran, J. An approach to automatic problem-solving. In First International Machine Learning Workshop (Machine Intelligence 1);

Oliver and Boy: Edinburgh, UK, 1967; pp. 105–124.
29. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
30. Mali, G.; Michail, P.; Paraskevopoulos, A.; Zaroliagis, C. A new dynamic graph structure for large-scale transportation networks.

In International Conference on Algorithms and Complexity—CIAC 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 312–323.
31. Sanders, P. Fast priority queues for cached memory. J. Exp. Algorithmics (JEA) 2000, 5, 7. [CrossRef]

http://dx.doi.org/10.1002/net.21552
http://dx.doi.org/10.1287/mnsc.17.11.712
http://www.ecompass-project.eu
http://www.camvit.com
http://dx.doi.org/10.1109/TITS.2006.889437
http://dx.doi.org/10.1007/s00453-015-0003-0
https://people.cs.clemson.edu/~bcdean/tdsp.pdf
https://people.cs.clemson.edu/~bcdean/tdsp.pdf
http://dx.doi.org/10.1007/s00453-010-9461-6
http://dx.doi.org/10.1007/s00453-012-9714-7
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/2444016.2444020
http://dx.doi.org/10.1287/opre.17.3.395
http://dx.doi.org/10.1016/0377-2217(84)90077-8
http://dx.doi.org/10.1007/s00778-020-00604-x
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1145/351827.384249

	Introduction
	The Curse of Alternatives
	The Curse of Time-Dependence
	Our Contribution

	Preliminaries
	Computing Time-Dependent Shortest Paths
	Time-Dependent Dijkstra
	Reversed Time-Dependent Dijkstra
	The CFLAT Oracle

	Computing Alternative Graphs in Static Road Networks
	Computing Alternative Routes within the Pareto Set
	Computing Alternative Routes from k-Shortest Path Solutions
	The Plateau Method
	The Penalty Method

	The TDAG Algorithm
	Preprocessing Phase of TDAG
	Data Structure for Timestamped Predecessors
	Lookup Procedure for Timestamped Predecessors

	Query Algorithm of TDAG
	Analysis of TDAG's Preprocessing Phase and Query Algorithm

	Experimental Evaluation
	Experimental Setup and Goal
	Experimental Results

	Conclusions
	References

