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Abstract: This work focuses on energy management for a system operated by multiple energy sources
which include batteries, super capacitors, a hydrogen fuel cell, and a photovoltaic cell. The overall
objective is to minimize the power consumption from all sources needed to satisfy the system’s power
demand by optimizing the switching between the different energy sources. A dynamic mathematical
model representing the energy sources is developed taking into account the different constraints on
the system, i.e., primarily the state-of-charge of the battery and the super capacitors. In addition to
the model, a heuristic approach is developed and compared with the mathematical model. Both
approaches were tested on a multi-energy source ground robot as a prototype. The novelty of this
work is that the scheduling of an energy system consisting of four different types of sources is
compared by performing analysis via dynamic programming, and a heuristic approach. The results
generated using both methods are analyzed and compared to a standard mode of operation. The
comparison validated that the proposed approaches minimize the average power consumption across
all sources. The dynamic modeling approach performs well in terms of optimization and provided a
superior switching sequence, while the heuristic approach offers the definite advantages in terms of
ease of implementation and simple computation requirements. Additionally, the switching sequence
provided by the dynamic approach was able to meet the power demand for all simulations performed
and showed that the average power consumption across all sources is minimized.

Keywords: batteries; photovoltaic cell; fuel cell; super capacitor; state-of-charge; energy management

1. Introduction

To limit the effects of pollution due to the use of fossil fuels, there is a move toward
renewable and sustainable energy sources. This has potential to ensure a better future
for our environment. Currently, the transportation industry is responsible for consuming
the most significant amount of fossil fuels, where “two-thirds of the oil used around the
world currently goes to power vehicles, of which half goes to passenger cars and light
trucks” [1]. Therefore, developments in this industry that could result in a reduction in
the consumption of fossil fuels would have a significant impact on our environment and
society. Consequently, companies and governments are eager to find new methods to
generate energy that pave the way toward a clean and efficient transportation system [2].

Research into developing efficient drones and electric vehicles has significantly in-
creased in recent times. There is research on integrating multiple energy sources such as
batteries, fuel cells, photovoltaic cells, and super capacitors, onboard such vehicles. Electric
vehicles containing only a single source of power can face limitations on the maximum
distance they can travel before having to recharge [3]. This is especially important to
consider when one wishes to build a robust and reasonably failure resistant power system
for a vehicle. The integration of multiple renewable and sustainable sources, along with
traditional energy sources, has the potential to improve robustness to failures of individual
types of power sources. This was in fact the motivation of the researchers in [4] in develop-
ing a fuel-cell battery hybrid propulsion system for a small utility vehicle. According to
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the authors, the fuel economy was apparently improved by a factor of three. Further, it
is important to note that, the integration of multiple types of energy sources is not only
important for electric vehicles. But, this is also of definite importance when considering
islanded micro grid systems, where the objective is to have a variety of types of energy
systems available to meet demand specifically in the absence of a main power grid [5].
Currently even traditional power grids are incorporating multiple different renewable
energy sources and batteries [6]. The main principle in energy management of such systems
with many different energy sources, is efficiently matching the demand and supply of
power in the system. The main challenge faced is determining in what proportion each of
the available sources is used to ensure that enough power is available to meet the demand
in the system. The process is tedious because of the different characteristics of the various
sources integrated into a multi-source power system. The behavior of the power sources
must be taken into account to achieve efficient management of the sources.

Drones are ubiquitous, and future drones/flight systems could benefit from multiple
onboard energy sources. Drones are used by delivery companies [7,8], as well as by pho-
tographers. They are also being used in the medical field to deliver automated external
defibrillators to out-of-hospital cardiac arrest patients [9]. Most commercial drones are
equipped only with a single lithium-ion battery that allows a maximum flight time of
about thirty minutes, mostly less [10]. Presently, researchers are attempting to incorpo-
rate multiple renewable and sustainable energy sources in drones [11]. While successful
integration of multiple energy sources for long duration flight remains to be researched,
as reported in the works above, there are many avenues where utilizing multiple energy
sources improves efficiency. This also extends the duration of usage of such a multi-source
power system compared to one that uses a single source of a specific type.

Thus, this work is concerned with optimizing the energy management of a system that
contains four different types of power sources. The objective is to optimize the scheduling
of the switching sequence of the sources to minimize the power dissipation in the system
and ensure meeting the power demand. The problem can be approached as a resource-
constrained scheduling problem of multiple sources, and is subject to several constraints,
mainly the state of charge of the battery and super capacitor [10]. The novelty of this work
is that the scheduling of an energy system consisting of four different types of sources is
compared by performing analysis via dynamic programming, and a heuristic approach.
While the dynamic programming approach performs well in terms of optimization, yet the
heuristic based method has definite advantages in terms of ease of implementation and
simple computation requirements.

This remainder of this paper is organized as follows: Section 2 presents a review of
the literature pertaining to the problem at hand. The methodology, which includes the
energy management model, Analytic Hierarchy Process (AHP), and heuristics, is presented
in Section 3. Section 4 presents the results and discussion of the demonstration example
and the experimental work. Lastly, concluding remarks along with suggestions for future
work are presented in Section 5.

2. Literature Review

In this section, we review previous work related to scheduling approaches, battery
modeling, fuel cell modeling, super capacitor modeling, usage of power electronics, and
control strategies.

2.1. Scheduling Approaches

Researchers have proposed different approaches to optimize the usage of multiple
energy sources. One of the approaches is predictive modeling. Torreglosa et al. [12] used
predictive control to manage the energy generated from a fuel cell, battery, and super
capacitor operated tramway in Spain. The predictive control collected data to generate a
sequence of operations of the three sources. Xie et al. [13] compared a stochastic predictive
control model of a hybrid electric bus to the traditional dynamic programming with no
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prediction. The electric bus has two sources of energy; the battery and an engine that uses
petrol. The stochastic predictive control model uses Markov Chain Monte Carlo methods
to predict the future velocities of the bus. The forecasted velocities are then input into a
dynamic programming algorithm to provide the optimal control sequence to minimize
the energy consumption of the bus while taking into consideration the state of charge of
the battery.

Hu et al. [2] used convex programming on a hybrid bus, integrating a fuel cell and
battery, to optimize the power management and sizing of the sources. Hadj-Said et al. [14]
also used convex programming for the energy management of an electric powertrain. The
researchers used a convex model of the powertrain to minimize the fuel consumption
of the vehicle. They compared the model results to traditional dynamic programming.
Convex programming provided an optimal solution close to that of dynamic programming.
However, convex programming provided one advantage of requiring a lower computation
time compared to dynamic programming.

Another method for scheduling sources in electric vehicles is real-time programming.
Trovão et al. [15] developed an optimal real-time energy management architecture for
electric vehicles using two different sources. The system restricts its search for the optimal
solution to the high level categorization considering the capabilities of the available sources
to preserve the battery’s state of charge by trying to rely heavily on the super capacitors to
meet the demands of the vehicle. At the middle level, the energy management system is
used to ensure that the power supply is uninterrupted and minimizes the difference in the
power demanded and power supplied. Trovão et al. [16] also studied another real-time
energy management approach using a fuzzy logic approach on a three-wheeled vehicle. In
this approach, a super capacitor was combined with a battery on an electric vehicle. The
battery is responsible for supplying the average power demand of the vehicle, while the
super capacitor provided the rest of the required energy. They found that there was a 3%
reduction in energy consumption by the vehicle, and the battery current RMS value was
reduced by 12%.

Zhou et al. [17] proposed an online energy management strategy that combines both
an online and offline approach test on hybrid vehicles consisting of a fuel cell and battery.
The online energy management is based on the time series prediction model nonlinear
autoregressive neural network. After the data is collected, offline optimization-based
strategies are used to optimize the use of the sources in the next time window. Additionally,
Chen et al. [18] implemented online energy management on a hybrid electric vehicle to
reduce energy consumption. The online energy management strategy is divided into two
layers. The first layer is used to determine whether the battery alone or the battery and
engine will supply the energy demand of the vehicle. The second layer of the strategy
is used for the power allocation between the battery and engine when both sources are
being used based on a sequence generated by dynamic programming. Under specific
driving conditions, the researchers were able to reduce energy consumption by up to 5.77%.
Qin et al. [19] employed neuro-dynamic programming (NDP) method to simultaneously
optimize fuel economy and battery state-of-charge (SOC). Mathur et al. [20] developed a
robust online scheduling framework that utilizes stochastic optimization within a model-
based feedback scheme to tackle the uncertainties in electricity prices, electric power
demands, water inflows and plant model parameters.

Park et al. [21] used a greedy heuristic to assign batteries and chargers of drones to
services with a temporal order. The objective was to find the optimal charging schedule
and task dispatching. The researchers divide the batteries and services into categories
depending on the required energy to complete tasks and the battery capacity of the drones.
They also used integer linear programming to schedule the charging of batteries and dis-
patching of drones to complete their tasks. They took into account the battery’s maximum
and minimum states of charge to protect the battery’s life and not degrade the battery.
Also, Umetani et al. [22] used a linear programming based heuristic algorithm for charging
and discharging scheduling the electric vehicles. The algorithm consists of two steps:
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solving the linear programming problem and rounding the optimal solution to obtain
feasible integer solutions. The heuristic algorithm was able to reduce the peak load of the
vehicle while also handling the uncertain demands of the electric vehicle with minimal
computation time. Zhen et al. [23] designed a fuzzy mixed integer programming method to
support the planning of energy systems management and air pollution mitigation control
under multiple uncertainties. Vaccari et al. [24] developed an optimization tool for a gen-
eral hybrid renewable energy system to generate an operating plan to meet electrical and
thermal load requirements with possibly minimum operating costs plan over a specified
time horizon.

2.2. Modeling of Power Sources

There are two crucial factors for batteries which are power dissipation and runtime.
Chen and Rincon-Mora [25] presented an accurate and efficient battery model that could
help researchers predict and optimize the battery’s runtime as well as the overall system
performance. The model accounts for various dynamic characteristics of the battery,
including open-circuit voltage, current, temperature, and many more. While testing their
model, the researchers observed less than 0.4% runtime error and a mere 30 mV error in
the voltage. While designing hybrid systems, consisting of fuel cells along with batteries
and super capacitors, the battery is selected based on its energy requirements to reduce
its size and weight. This does not take into account the deep discharges of the battery,
which have a significant effect on the battery’s lifetime. Therefore, Schaltz et al. [26] and
Lami et al. [27] argued that the lifetime of the battery must be considered alongside the
energy and power requirements of the battery.

Another aspect of the system that must be modeled and managed is the fuel cell. This
is required to minimize the hydrogen consumption to ensure the appropriate runtime.
Bernard et al. [28] investigated the effects of the sizing and modeling of the fuel cells in
a powertrain powered by fuel cell and energy storage systems. They examined different
combinations of fuel cell models alongside energy storage systems to determine which
combination results in the least hydrogen consumption to increase the runtime of the pow-
ertrain. Pukrushpan [29] stated that the efficiency of fuel cells depends on understanding,
predicting, and controlling the distinctive performance of fuel cell systems. He provided a
number of modeling and control techniques that can be used to ensure quick and stable dy-
namic system behavior. Also, he discussed various limitations of the controlling techniques
and ways to measure the performance of the fuel cell system.

Lastly, super capacitors are being used more frequently in hybrid vehicles because of
their ability to provide a quick burst of current needed during acceleration [8]. Spyker and
Nelms [30] explained how to model a super capacitors. Amjadi and Williamson [31] added
that a super capacitor can be used to supply the excess instantaneous power needed by a
hybrid system. By doing so, the battery’s lifetime can be protected and the dynamic stress
on the battery is reduced with the help of the super capacitor.

3. Methodology

The methodology includes two parts. First, a dynamic mathematical model repre-
senting the energy sources is developed taking into account the different constraints on
the system. In the second part, a heuristic approach is developed and compared with the
mathematical model.

3.1. Mathematical Model

The decision problem is to determine the optimal switching sequence between the
multiple energy sources with the objective of supplying the needed power for a system and
minimizing the power dissipation of the energy sources. The basics of some details related
to models for batteries, fuel cells, and supercapacitors, used at the level necessary for this
work can be found in [5,29,30]. For simplification of the overall model, it is assumed that
the power profile of a photovoltaic cell is available beforehand.
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3.1.1. Assumptions and Notation

The mathematical model presented in this paper is developed under the following
assumptions:

1. The initial state-o-charge of the battery is 100%.
2. The initial state-of-charge of the super capacitor is 100%.
3. The hydrogen tank of the fuel cell is full.
4. The batteries can only be charged by the photovoltaic cell.
5. The super capacitor can be charged from either the batteries or the photovoltaic cell.

The following notation will be used throughout the paper.

3.1.2. Model Formulation
Objective Function

Min
N

∑
k=1

(
2

∑
j=1

wBj P
Bj
k

(
1− ch

Bj
k

))
+
(

wCPC
k

(
1− chC

k

))
+
(

wPV PPV
k

)
+
(

wFCPFC
k

)
(1)

The objective function (1) is of minimization type based on weights assigned to the
different power sources that are utilized by the system. The model will use the sources with
lowest weight as the preferred source to meet the needed power while the sources with
highest weight will be used as needed to ensure that the duration of usage of the system is
extended by considering the demand and its nature. The weights are based on four criteria
which are cost of using the source, the ease of charging the source, the duration in which
the source is able to supply power, and the discharge speed of the source. The first term
in the objective function is for the battery, the second term is for the super capacitor, the
third is for the photovoltaic cell, and the last term is for the fuel cell. If the batteries or
the super capacitor are being charged, the power used to charge these sources will not be
considered in the objective function. For instance, if the first battery is being charged from
the photovoltaic cell, the power consumed by the battery and supplied by the photovoltaic
cell will not be considered in the objective function. Therefore, the power provided by

the batteries and super capacitor is multiplied by a factor,
(

1− ch
Bj
k

)
and

(
1− chC

k
)
, made

equal to zero when one of these sources is being charged, as shown in the objective function
above. All of these sources do not behave in the same manner; each has its own unique
characteristics and running costs. A weighting system will be used to account for these
differences, developed using an analytic hierarchy process (AHP) presented in Section 3.2.
The power supplied by each of the sources will be multiplied by the assigned weight to it;
wBj , wC, wPV , wFC as shown in the objective function. As an example, we are considering
the weights to be $/W (watt of power), but they can have any monetary/appropriate unit
as necessary.

Constraints

All of the below equations are essentially constraints to be obeyed while minimizing (1).

Battery Model

The state-of-charge (SOC) of the battery is calculated continuously as the system is
running using the following Equation (2). The current through the battery is calculated
using Equation (3). The battery is operated at rated conditions, providing the maximum
continuous current the system is designed for, and for which a specific battery is selected.

SOC
Bj
k = ∆t

−1
CC

I
Bj
k

(
S

Bj
k − ch

Bj
k

)
+ SOC

Bj
k ((k− 1)) ∀k (2)

I
Bj
k = IBrated ∀k (3)
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It is assumed that the battery voltage remains constant. The assumption of a constant
voltage is valid because a voltage regulator is usually present along with such a battery
based supply system. Therefore, the power provided by the battery is calculated using
Equation (4).

P
Bj
k = V

Bj
k I

Bj
k

(
S

Bj
k + ch

Bj
k

)
∀k (4)

Constraint (5) ensures that both batteries are either charging, idle, or supplying at
each time step k. Constraint (6) ensures that only one of the batteries is charging at time
step k. Constraint (7) ensures that the state of charge of the batteries stays between 30%
and 100% to protect the lifetime of the battery.

S
Bj
k + ch

Bj
k ≤ 1 ∀k (5)

2

∑
j=1

ch
Bj
k ≤ 1 ∀k (6)

30% ≤ SOC
Bj
k ≤ 100% ∀k (7)

Super Capacitor Model

The time constant of the super capacitor is calculated using Equation (8). When the
super capacitor is charging, the voltage is calculated using Equation (9).

τ = RC (8)

VC
k = Vs

(
1− e

−k∆t
τ

)
chC

k ∀k (9)

When the super capacitor is supplying the system, the voltage is calculated using
Equation (10).

VC
k = VC

k−1 e
−k∆t
τ SC

k ∀k (10)

If the capacitor is left idle, the voltage remains the same as shown in Equation (11).

VC
k = VC

k−1

(
1−

(
SC

k + chC
k

))
∀k (11)

The current of the super capacitor is calculated using the following Equation (12).

IC
k =

C·Vs
τ
·e
−k∆t
τ ·chC

k +
C·Vc((k− 1)∆t)

τ
·e
−k∆t
τ SC

k ∀k (12)

The power provided by the super capacitor is calculated using Equation (13) and the
state-of-charge (SOC) of the super capacitor is calculated continuously as the system runs
using Equation (14).

PC
k = IC

k VC
k

(
SC

k + chC
k

)
∀k (13)

SOCC
k =

VC
k

VCrated
∀k (14)

The sizing of the super capacitor is based on the rush of current needed during spikes
in the energy demand. As an example for the case of considering a drone needing to
suddenly navigate to a higher altitude compared to its present altitude, a spike in the
drone’s demand can occur due to a sudden increase in the drone’s traveling altitude.
Therefore, the size of the super capacitor needed can be found as follows:

The energy E needed to raise an object of mass m to a height h is:

E = mgh (15)
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where g is the gravitational acceleration.
By definition, 1 joule is equal to 1 volt multiplied by 1 coulomb. Therefore:

E = QV (16)

where Q is the charge of the super capacitor in coulombs and V is the voltage in volts.
Additionally, the charge of the capacitor is dependent on the capacitance and voltage:

Q = CV (17)

where C is the capacitance in Farads.
Therefore, by using Equations (15)–(17) the following Equation (18) can be used to

determine the size of the super capacitor need. Considering the example of drone flight, a
safety factor could also be considered to ensure that the super capacitor can handle any
spikes in demand resulting from turbulences encountered during the flight,

C =
mgh
V2 (18)

Constraints (19) ensures that the super capacitor is either charging, supplying, or
unused at each time step k.

SC
k + chC

k ≤ 1 ∀k (19)

Please note that the capacitor sizing is not constrained to the type of problem, i.e., if
the problem is not of drone flight, but of supplying power to an islanded micro grid; then
instead of considering the height h in (15), one can simply calculate the energy needed
to supply such a spike in demand. Then equating such a spike to the stored energy in a
supercapacitor, can trivially give the size of the capacitor necessary.

Photovoltaic Cell Model

The power profile of the photovoltaic cell, PV(k), is uploaded into the system via a
controller and its output is determined using Equation (20). The photovoltaic cell can either
be supplying the demand of the system or charging one of the batteries.

PPV
k = SPV

k PV(k)
(

1−
[
chB1

k + chB2
k + chC

k

])
∀k (20)

Fuel Cell Model

I =
Ist

A f c
(21)

where I is the current density, Ist is the stack current, and Afc is active cell area of the
fuel cell.

Activation losses:
Vact = a ln

I
Io

(22)

where a and Io are both constants determined experimentally.
Ohmic losses:

Vohm = IRohm (23)

Rohm =
Tm

σm
(24)

where Tm is the thickness of the membrane and σm is the conductivity of the membrane.

σm = B1e
(B2(

1
303−

1
Tf c

))
S/m (25)
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where Tfc is the operating temperature of the fuel cell.

B1 = B11λm − B12 (26)

where B11, B12, and B2 are constants determined experimentally.
Concentration losses:

Vconc = I(C2
I

Imax
)

C3

(27)

where C2, C3, Imax are constants determined experimentally.

VFC
k = Ek −Vact

k −Vohm
k −Vconc

k ∀k (28)

where E is the open circuit voltage. Taking into account all the losses involved in the fuel
cell, the output voltage can be found using Equation (29) where n is the number of cells in
the fuel cell.

VFCctotal = nVFC
k ∀k (29)

The power provided by the fuel cell will be calculated using Equation (30).

PFC
k = IFC

k VFCtotal
k SFC

k ∀k (30)

Constraints (31) and (32) ensure that both batteries are only charged from the photo-
voltaic cell at time step k.

chB1
k ≤ SPV

k ∀k (31)

chB2
k ≤ SPV

k ∀k (32)

Constraint (33) ensures that the super capacitor can only be charged from the photo-
voltaic cell at time step k.

chC
k ≤ SPV

k ∀k (33)

Constraint (34) ensures that enough power is supplied to meet the demand of the
system at all times.

PB1
k

(
1− chB1

k

)
+ PB2

k

(
1− chB2

k

)
+ PC

k

(
1− chC

k

)
+ PPV

k + PFC
k ) ≥ Pdemand

k ∀k (34)

Constraint (35) ensures the super capacitor cannot be charged if any of the batteries is
being charged.

chC
k + ∑2

j=1 ch
Bj
k ≤ 1 ∀k (35)

3.2. Analytic Hierarchy Process (AHP)

The Analytic hierarchy process is a tool used for making complex decisions reducing
them into a sequence of pairwise comparisons to help include both subjective and objective
features of a decision. It is important to note that the best option of the alternatives is not
one that is the most superior alternative at all criteria, rather it is the one that accomplishes
the most appropriate trade-off between the set of criteria.

An AHP will be used to calculate the weights used in the objective function. The
criteria by which the sources will be evaluated on are the cost of using the source, the
ease of charging the source, the duration in which the source is able to supply power, and
the discharge speed of the source. For each criterion, a score is assigned to each of the
alternatives according to the decision maker’s pairwise comparisons of the alternatives
regarding that specific criterion. The higher the score of the alternative, the more important
that alternative is with regards to that specific criterion. The scores used in the pairwise
comparisons of the alternatives are shown in Table 1.
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Table 1. AHP table of relative score [32].

The Verbal Judgment of Preference Numerical Rating

Extremely important 9
Very strong to extremely important 8

Very strongly important 7
Strongly to very strongly important 6

Strongly important 5
Moderately to strongly important 4

Moderately important 3
Equally to moderately important 2

Equally important 1

AHP also provides a weight for each of the evaluation criteria considered using the
decision maker’s pairwise comparisons of the criteria. The more important the a criterion
is to the decision makers, the higher the weight assigned to that criteria. The AHP then
combines each of the alternative’s scores with the weights of each criterion, to determine a
global score for the alternatives. The global score for the alternatives is a weighted sum of
the scores given to the alternative about each of the criteria [32].

3.2.1. Cost of Usage

Table 2 shows the relative scores of the cost of usage for the different power sources.
The cost of usage criteria refers to the cost incurred by the system each time the source is
used to supply the demand of the system. The scores were allocated by conducting a pair
wise comparison between the different sources. For example, the fuel cell will be less costly
to use than the battery. Some of the costs a source could experience are the degradation
that occurs to the source each time it is used, or it could be the fuel used by the source, for
instance, the hydrogen used by fuel cells. Therefore, the cost of usage of the sources is as
follows from most feasible to least feasible cost [33]:

Photovoltaic cell −→ Super capacitor −→ Fuel Cell −→ Battery

Table 2. Cost of usage relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 1/3 1/6 1/8 0.05
Fuel cell 3 1 1/4 1/6 0.10

SC 6 4 1 1/3 0.28
PV 8 6 3 1 0.57

3.2.2. Ease of Charge

Table 3 shows the relative scores for the different power sources. The ease of charge
criteria refers to how easily a source can be charged. Some of the aspects considered were
the duration needed to charge the source, and by how many other sources can a source can
be charged by, for example, the super capacitor can be charged by the batteries or the PV
panel, but the batteries can only be charged by the PV panel. Therefore, the ease of charge
of the sources is as follows from highest to lowest [34,35]:

Super capacitor −→ Battery −→ Fuel Cell −→ Photovoltaic cell
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Table 3. Ease of charge relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 4 1/2 8 0.32
Fuel cell 1/4 1 1/5 7 0.14

SC 2 5 1 9 0.50
PV 1/8 1/7 1/9 1 0.04

3.2.3. Duration

Table 4 shows the duration relative scores for the different power sources. The duration
criteria refer to how long the source can supply power to help meet the demand of the
system before needing to be charged. Therefore, the duration of the sources from the
highest duration to the lowest is as follows [35]:

Battery −→ Fuel cell −→ Photovoltaic cell −→ Super capacitor

Table 4. Duration relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 3 8 6 0.55
Fuel cell 1/3 1 7 5 0.30

SC 1/8 1/7 1 1/3 0.05
PV 1/6 15 3 1 0.10

3.2.4. Discharge Speed

Table 5 shows the discharge speed relative scores for the different power sources. The
discharge speed criteria refer to how quickly the source can react and discharge to meet
the demand of the system once given the command. Therefore, the discharge speed of the
sources from the highest to the lowest is as follows [8,33,34]:

Super capacitor −→ Battery −→ Fuel Cell −→ Photovoltaic cell

Table 5. Discharge speed relative scores.

Source Battery Fuel Cell SC PV Average

Battery 1 3 1/7 5 0.19
Fuel cell 1/3 1 1/8 2 0.08

SC 7 8 1 9 0.68
PV 1/5 1/2 1/9 1 0.05

3.2.5. Criteria

Table 6 shows the relative criteria scores. The importance of each of the criteria will
depend on the demand profile of the system. For instance, if the demand profile contains
many spikes, then the discharge speed criteria will be given greater weight. This is done to
make sure that the system can react in an adequate time to the spikes in demand.

Table 6. Criteria relative scores.

Criteria Cost of Usage Ease of Charge Duration Discharge Speed Average

Cost of usage 1 2 1/5 1/3 0.11
Ease of charge 1/2 1 1/7 1/5 0.06

Duration 5 7 1 3 0.56
Discharge speed 3 5 1/3 1 0.27
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Finally, the ratings of each of the alternatives are then multiplied by the weights of
the sub-criteria and combined to get local ratings concerning each of the criteria. The
local ratings are then multiplied by the weights of the criteria and combined to get overall
ratings of the alternatives shown in Table 7. For example, the battery weight is found by
multiplying (0.05 × 0.11) + (0.32 × 0.06) + (0.55 × 0.56) + (0.19 × 0.27) = 0.39

Table 7. Weights assigned to each of the sources.

Source Weight

Battery 0.39
Fuel cell 0.21

SC 0.27
PV 0.13

3.3. Heuristic Approach

The developed mathematical model requires a long time to compute the optimal
solution; therefore, a heuristic approach was developed to solve the problem under study.
The developed heuristic identifies the smallest combination of sources needed to meet the
demand of the system. The heuristic algorithm used, assuming two batteries, is shown in
Figure 1 and detailed steps are as Algorithm 1:
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The heuristic starts with checking if the demand for power is greater than 200 W.
The value of 200 W was chosen because the fuel cell provides 210 W of power at rated
conditions. If the power demand is less than or equal to 200 W, the system will move into a
charging mode. The system will turn on the fuel cell to meet the demand of the drone and
check if there is an output from the photovoltaic cell. If the photovoltaic cell is providing
an output, the system will check whether or not the super capacitor is fully charged. If the
super capacitor is not fully charged, the photovoltaic cell will charge it. Next, the system
will check if the batteries are fully charged; if not, they will be charged by the photovoltaic
cell individually. On the other hand, if the photovoltaic cell does not provide an output,
the system will take no action and move to the next time instant.

If the power demand is greater than 200 W, the system will move to supply mode.
First, the system will check if there is a spike in demand. A spike in demand is considered
when the demand increases by 30% from a one-time instance to the next. This is done
so that the system can discharge the super capacitor during spikes in demand due to the
super capacitor’s rapid discharge speed [36]. If there is a spike in power demand and the
super capacitor is charged, the system will discharge the super capacitor along with other
sources to meet the demand of the system.
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Algorithm 1. Energy management Heuristic.

1: for k = 1:10
2: if (Pdemand

k > 200)
3: if Pdemand

k < PFC
k

4: SFC
k = 1;

5: else if Pdemand
k < PFC

k + PPV
k

6: SFC
k = 1;

7: SPV
k = 1;.

8: else if SOCB1
k > 47

9: if Pdemand
k < PFC

k + PPV
k + PB1

k
10: SFC

k = 1;
11: SPV

k = 1;
12: SB1

k = 1;
13: else if SOCB2

k > 47.
14: SFC

k = 1;
15: SPV

k = 1;
16: SB1

k = 1;
17: SB2

k = 1;
18: else if SOCC

k = 100
19: SFC

k = 1;
20: SPV

k = 1;.
21: SB1

k = 1;
22: SC

k = 1;
23: end
24: else if SOCB2

k > 47.
25: SFC

k = 1;
26: SPV

k = 1;
27: SB2

k = 1;
28: else if SOCC

k = 100
29: SFC

k = 1;
30: SPV

k = 1;
31: SB2

k = 1;
32: SC

k = 1;
33: end
34: end
35: if Pdemand

k ≤ 200
36: SFC

k = 1;
37: if SOCC

k < 99
38: SPV

k = 1;
39: chC

k = 1;
40: else if SOCB1

k < 100
41: SPV

k = 1;
42: chB1

k = 1;
43: else if SOCB2

k < 100
44: SPV

k = 1;
45: chB2

k = 1;
46: end
47: end for
48: return SFC

k , SPV
k , SB1

k , SB2
k , SC

k , chC
k , chB1

k , chB2
k

On the other hand, if there is no spike in demand, the system will not discharge the
super capacitor. Next, the system will check if there is an output from the photovoltaic
cell to make use of the photovoltaic cell while it provides an output. Assuming that the
photovoltaic cell is providing an output, the system will check which combination of
sources along with the photovoltaic cell will be able to meet the demand of the system.
For instance, if the photovoltaic cell and fuel cell are not enough to meet the demand, the
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system will first check the state-of-charge of the first battery. If the state-of-charge of the
battery is between 47% and 100%, the system will use the fuel cell, photovoltaic cell, and
battery to meet the demand of the drone. If the state-of-charge of the first battery is less
than 47%, the system will move to check the state-of-charge of the second battery and
so on. The range of 47% to 100% was chosen because at the ratings used for simulation
(Supercapacitor ratings: 24 V, 200 A, time constant 0.36; Battery ratings: 22.4 V, 165 A; Fuel
Cell ratings: 21 V, 10 A; Photovoltaic Cell power rating: 120 W), using a battery for one-
time instance reduces the state-of-charge of the battery by 17%, based on the rated power
demand considered in this example. If the rated power requirement of the application
at hand changes, then this 47% number used for the SOC will have to be changed in the
heuristic approach accordingly. Further, the age/health of the battery can also be used to
arrive at an appropriate threshold for the SOC to be checked other than 47%-and this is
left for future work. Therefore to keep the state-of-charge of the battery greater than or
equal to 30%, a lower bound of 47% was chosen for the range. On the occasion that there is
no output from the photovoltaic cell, the system will check the remaining sources to meet
the demand of the system. Moreover, the heuristic approach could generate a solution in
a matter of seconds on Matlab, while the dynamic algorithm used on Lingo sometimes
required hours depending on the instance size and model complexity. Please also note that
to be able to visualize all the possible switching scenarios in a reasonably short time frame,
the battery Ah capacity was reduced the simulation so as not to have to wait for a very
long time for energy source switching behavior to be noticed.

4. Demonstration Example and Results

In this section, the results and analysis are presented for generating an optimal switch-
ing sequence between the energy sources for a system using the dynamic model and
heuristic approaches. To demonstrate that the methodologies developed are not limited
to any particular application, the results are demonstrated on two types of applications:
(i) simulated power profiles which may be realized in drone flight (ii) experimental veri-
fication on a multi-source ground vehicle (robot). In case of the simulated results, three
different demonstration scenarios were conducted that simulate the system, a drone in this
case. The executed scenarios include object pickup, altitude maintenance, and multiple
object pickup. The first scenario will be presented next and the other two are presented in
Appendices A and B. Similarly, in case of the experimental results, both approaches were
used for experimental verification on a ground robot. Lingo modeling software was used
to obtain an optimal solution to the dynamic model, and Matlab was used to obtain the
solutions for the heuristic approach and the standard mode of operation. The considered
standard mode of operation represents using each source separately until the source is
completely depleted, starting with the first battery, followed by the second battery, super
capacitor, fuel cell, and finally, the photovoltaic cell. The simulations were conducted for
ten-time steps where the step size is five seconds. Only ten time steps were considered
due to the large computing power needed to conduct simulations for the full length of a
drone’s flight. The object pickup scenario and the experimental work are presented next.
The other two simulation scenarios, altitude maintenance and multiple object pickup, are
presented in Appendices A and B, respectively.

4.1. Object Pickup Scenario–Simulated For Drone Flight

The following simulation represents the situation where a drone must travel to a
specific location to pick up an object and return the object to the drone’s base. During this
simulation, ideal conditions are considered where the drone does not face any disturbances
or turbulence during its flight. The assumed demand profile for this simulation is shown
in Figure 1. Initially, the drone starts traveling to the location where the object is located.
At time step 4, the drone reaches the object’s location and descends to pick up the desired
object. After the drone picks up the object, it continues its flight to return to its base.

Figures 2–4 display the system voltages, current, and state-of-charge, respectively,
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for both the dynamic and heuristic approaches. The switching sequence generated by the
dynamic approach chose not to use the super capacitor. As for the current, as the super
capacitor was not used by the dynamic approach, the current remains 0 while the currents
of the batteries vary as they are being used. However, in the heuristic approach, both
batteries and the super capacitor were used; therefore, their currents vary accordingly.
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In the object pickup simulation, both the switching sequences of the dynamic approach
and heuristic approach were able to meet the demand of the drone, but that of the standard
approach did not. After both batteries and the super capacitor were completely depleted,
the standard approach was unable to meet the demand of the drone in the 10th time
instance. However, although both the switching sequences of the dynamic approach
and heuristic approach met the demand, the dynamic approach provided a sequence of
switching superior to that of the heuristic approach. The obtained objective function value
of the dynamic approach was 9% lower with a value of 6536.2, while the heuristic approach
was 7123.3. However, the switching sequences of the heuristic approach had a lower
average power consumption of 3361.2 W compared to the dynamic approach’s 3720 W.
This was due to the switching sequence of the dynamic approach resulting in significant
power consumption in time steps 6 and 7. From Figure 4, the following can also be seen.
The dynamic approach resulted in battery 1 having a SOC level of around 35% and battery
2 with a SOC level of around 50% after 10 s. While the SOC level of the supercapacitor
was unchanged and remained at 100% throughout the time period. It is worth noting is
that none of the batteries enter charging. In contrast, the heuristic approach seems to favor
using the supercapacitor as a result of which the supercapacitor is completely discharged,
re-charged, and discharged to SOC level zero again within the ten second time period.
Battery 1 ends at a SOC level of 40%, and battery 2 ends at a SOC level of around 70%. The
differences in behavior can be attributed to the optimization of the objective function value
as mentioned above. The power used to meet the demand of the drone during each time
step is shown in Figure 5. Figure 6 shows as additional examples the switching sequence
and the sources used to meet demand shown in Figure 6a,b at each time step.
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4.2. Experimental Work—On a Multi-Energy Source Ground Robot

The following experiment was conducted on a ground robot shown in Figure 7. The
ground robot contains three sources: batteries, super capacitor, and fuel cell. The robot was
run in remote-control mode while conducting the tests. The robot was controlled by the
remote controller to move around a lab bench in a rectangular path. The demand profile
for all tests is shown in Figure 8.
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For experimental work, a multi-energy source ground robot was preferred over a
drone because of several factors: i.e., (i) limitations related to drone flight height and
seeking clearances for flight paths at certain heights, (ii) even if an accurate flight power
demand profile was obtained by flying a drone in good weather conditions, the actual
flight power demand profile obtained when trying to verify results–cannot be guaranteed
because the weather may change and sudden wind gusts may introduce power demand,
not accounted for when solving for the dynamic programming solution, and (iii) it is
also possible that the wind disturbances introduce differences in the demand profiles
when performing an experiment with the heuristic approach, and entirely different power
demand profile disturbances occur because of wind gusts when testing the dynamic
approach. So, to make a comparison between the proposed approaches, which is free
from random power surges due to weather effects, a ground robot with multiple energy
sources was favored. Also, it is worth noting that when considering a drone, the demand
profile can be easily calculated from first principles, as seen in Equation (15). But when
considering a ground robot we have to actually run the robot around a path and acquire a
demand curve. This is the procedure followed to get the curve in Figure 8, and therefore
it is different from the curve in Figure 1. Please note that the developed approaches are
not profile-specific, and can compute a switching sequence for a given demand profile.
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The demand profile was uploaded to both the dynamic and heuristic algorithm to obtain
a switching sequence. The ground robot has a controller which supplies a given amount
of current to the motors if it is given a reference current. The two motors on the robot
chassis (one for controlling left side wheel speeds, and one for controlling right side wheel
speeds) rotate clockwise or anticlockwise depending on the current received. Based on the
direction of the rotation of the motors and the speed of rotation, the robot can be made to
move in straight lines, curves, or in circles. This is extremely common in robotics literature
and hence the details of the driving process (called differential drive) are not included
here. However, there is not necessarily a controller that controls where the current comes
from. The switching sequences generated by the dynamic and heuristic approaches tell
this same lower level controller what sources to use to supply the required current; to
satisfy the demand and still reduce the average power consumption across the sources.
The switching sequences were then uploaded to the main controller of the ground robot,
an Arduino microcontroller that controls the switches attached to the sources. After the
switching sequence was uploaded, the ground robot performed a lap along the rectangular
path. The power consumption across all sources after the ground robot completed a lap
with the uploaded switching sequences was then compared with the standard mode of
operation. For a ground robot, the standard mode of operation assumes no scheduling;
however the needed power is first supplied by the battery until it’s completely depleted
then moving to the other available sources.

Figures 9–11 display the system voltages, current, and state-of-charge, respectively, for
the standard mode, the dynamic approach, and the heuristic approach. The standard mode
of operation did not involve the super capacitor in meeting the demand of the ground
robot. However, the dynamic programming approach and heuristic approach did. As for
the current, the use of the super capacitor by the dynamic programming approach and
heuristic approach is apparent in Figure 10. The state-of-charge of the battery decreases
most in the standard mode of operation, reaching 99.2%.
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The standard mode of operation of the ground robot relied solely on the battery to
meet the demand. On the other hand, the switching sequence of the dynamic approach
chose to use the battery and super capacitor to meet the demand, while the switching
sequence of the heuristic approach chose all three sources. Although not visible in the
current plots in Figure 10c, it can be seen from the algorithm of the heuristic approach
proposed that the fuel cell is chosen by the heuristic approach at all times. Additionally,
the current plots for the fuel cell are not shown because the fuel cell unit functions as a
base load unit. This is because the fuel cell cannot be turned on/off very quick and has
a hydrogen pressure regulator attached to its hydrogen input lines, which maintains a
certain amount of gas flow, so the terminal voltage of the fuel cell remains constant, and
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the fuel cell supplies a certain amount of power. Thus in the heuristic approach, the fuel
cell is used as a based load handling device, and the current for the fuel cell is not shown
because depending on the overall circuit impedances, and depending on which other
source is active, the fuel cell will supply the remainder of the load, and it is not subjected to
rapid starts/stops in operation. The switching sequence of the standard mode of operation
resulted in the highest average power consumption from the sources, 33.3 W. However,
the dynamic approach generated a switching sequence that resulted in a 5.5% decrease
in the average power consumption compared to the standard mode of operation due to
the voltage dynamics of the sources. Similarly, the switching sequence of the heuristic
approach was able to reduce the average power consumption by 2.5%, which is shown in
Figure 12. Furthermore, the run time of the ground robot should increase since the system
is less dependent on only one source to satisfy the demand.
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5. Conclusions

This paper is concerned with multi source power systems consisting of batteries,
super capacitors, a hydrogen fuel cell, and a photovoltaic cell. The usage of each of the
sources is controlled by turning connected switches on or off as needed to supply the
needed power demand of the system. A mathematical model was developed for the
efficient energy management of the integrated sources, generating an optimal switching
sequence between the sources. Two methods have been developed to solve for the optimal
switching sequence.

The first method uses a dynamic mathematical model solved using Lingo to minimize
the running cost of the system by generating a switching sequence. The second method uses
a heuristic approach, where a set of rules were used to generate the switching sequence. The
heuristic algorithm was primarily tested on Matlab. The switching sequences generated by
the dynamic approach resulted in power consumption that was on average 9% lower than
those of the heuristic approach. However, the main advantage introduced by the heuristic
algorithm was the short computational time needed to generate the switching sequence
between the sources. The developed approaches were implemented offline before running
the system, but can be implemented online. To be implemented online, the algorithms
would require readings of the system’s behavior and demand to generate the optimal
switching sequence.

Additionally, both approaches were tested in simulations of a drone flight scenario,
and also experimentally tested on a multi-energy source ground robot. The developed
dynamic model was capable of generating a switching sequence that minimized the power
dissipation of the energy sources for the illustrative simulation examples of a drone, while
the standard mode of operation was failed to provide the needed power. Also, the model
was able to prolong the simulated flight time of the drone by charging the batteries and
the super capacitor as needed depending on the demand profile. The switching sequences
generated by the heuristic algorithm were also able to prolong the flight time in the
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simulation tests related to the drone, and minimize the power dissipation of the energy
sources; but not as well as those of the dynamic modeling approach.

Both the dynamic modeling, and heuristic approaches, when tested on a multi-energy
source ground robot, were able to generate switching sequences that minimize the power
dissipation by reducing the average power consumption across the sources due to the
voltage dynamics of the different sources. However, the dynamic approach’s switching
sequence resulted in the most significant reduction in the average power consumption;
5.5% lower average power consumption compared to the standard mode of operation of
the robot. The switching sequence of the heuristic approach was also able to reduce the
average power consumption by 2.5% compared to the standard mode of operation.

The limitations faced in this work include the length of the simulations conducted.
Due to the large computing power required by the dynamic model based approach, the sim-
ulations were conducted for only fifty seconds. However, with access to more computing
power, better switching sequences could be generated that provide a further reduction in
the running cost of the system. Additionally, future work could include the real-time man-
agement of the sources integrated into the system, alongside continuous readings of the
behavior of the system while it is being used. By implementing the real-time management
of the sources, the system could become more responsive to fluctuations in demand.
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Abbreviations

k Time step
∆t Step size (seconds), using this and k we get time t = k∆t seconds
N Number of time steps
j Battery index ∀ j{1,2}
τ Time constant of the super capacitor
w Power source relative weight
Bj Battery number j
C Super capacitor
PV Photovoltaic cell
FC Fuel cell

S
Bj

k A binary variable that equals 1,
if battery j is supplying the demand of the system at time step k, 0 otherwise

ch
Bj

k A binary variable that equals 1,
if battery j is being charged from the system time step k, 0 otherwise

SC
k A binary variable that equals 1,

if the super capacitor is supplying the demand of the system at time step k, 0 otherwise
chC

k A binary variable that equals 1,
if the super capacitor is being charged from the system at time step k, 0 otherwise

SPV
k A binary variable that equals 1,

if the photovoltaic cell is supplying the demand of the system at time step k,
0 otherwise
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SFC
k A binary variable that equals 1,

if the fuel cell is supplying the demand of the system at time step k,
0 otherwise

SOC
Bj
k State of charge of the battery j at time step k

SOCC
k State of charge of the super capacitor at time step k

V
Bj
k Voltage of the battery j at time step k

I
Bj
k Current of the battery j at time step k

P
Bj
k Power supplied by the battery j at time step k

VC
k Voltage of the super capacitor at time step k

IC
k Current of the super capacitor at time step k

PC
k Power supplied by the super capacitor at time step k

PPV
k Power supplied by the photovoltaic cell at time step k

VFC
k Voltage of the fuel cell at time step k

IFC
k Current of the fuel cell at time step k

PFC
k Power supplied by the fuel cell at time step k

Pdemand
k Power demanded by the system at time step k

Appendix A. Illustrative Example: Altitude Maintenance

The following simulation represents the situation where a drone must maintain a
certain height above the ground for a short period of time. During its flight, the drone
faces turbulence causing fluctuations in the demand profile. The demand profile of this
simulation is shown in Figure A1; the drone starts ascending to the required height, thus
causing an increase in the energy of the drone. At time step 3, the drone reaches the
required height and tries to maintain it for five time steps. However, the drone faces
significant turbulence causing fluctuations in the height it maintains, which is represented
in the demand profile. Finally, the drone begins to descend back to its base.
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Figure A1. Demand profile.

Figures A2–A4 display the system voltages, current, and state-of-charge, respectively,
for both the dynamic and heuristic approaches.

In the altitude maintenance simulation, both the switching sequences of both the
dynamic and heuristic approaches were able to meet the demand of the drone, but that of
the standard approach did not. While the drone was attempting to maintain the required
altitude, the demand was higher than the power that the sources could provide separately.
Therefore, resulting in the standard approach’s inability to meet the demand of the drone.
Additionally, in this simulation, the dynamic approach performed better than the heuristic
approach. The dynamic approach provided a sequence of switching between the sources
that resulted in an objective function value of 8301.2, while the heuristic approach was
8501.3. Additionally, the average power consumption obtained using the dynamic ap-
proach was 3827.4 W, while the heuristic approached resulted in 4136.4 W. The power
used to meet the demand of the drone during each time step is shown in Figure A5. The
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switching sequence and sources used to meet demand are shown in Figure A6

Algorithms 2021, 14, x FOR PEER REVIEW 22 of 27 
 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A2. System voltage for simulation 2. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A3. System currents. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A4. System state-of-charges. 

In the altitude maintenance simulation, both the switching sequences of both the dy-

namic and heuristic approaches were able to meet the demand of the drone, but that of 

the standard approach did not. While the drone was attempting to maintain the required 

altitude, the demand was higher than the power that the sources could provide separately. 

Therefore, resulting in the standard approach's inability to meet the demand of the drone. 

Figure A2. System voltage for simulation 2.

Algorithms 2021, 14, x FOR PEER REVIEW 22 of 27 
 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A2. System voltage for simulation 2. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A3. System currents. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A4. System state-of-charges. 

In the altitude maintenance simulation, both the switching sequences of both the dy-

namic and heuristic approaches were able to meet the demand of the drone, but that of 

the standard approach did not. While the drone was attempting to maintain the required 

altitude, the demand was higher than the power that the sources could provide separately. 

Therefore, resulting in the standard approach's inability to meet the demand of the drone. 

Figure A3. System currents.

Algorithms 2021, 14, x FOR PEER REVIEW 22 of 27 
 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A2. System voltage for simulation 2. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A3. System currents. 

 
(a) Dynamic approach (b) Heuristic approach 

Figure A4. System state-of-charges. 

In the altitude maintenance simulation, both the switching sequences of both the dy-

namic and heuristic approaches were able to meet the demand of the drone, but that of 

the standard approach did not. While the drone was attempting to maintain the required 

altitude, the demand was higher than the power that the sources could provide separately. 

Therefore, resulting in the standard approach's inability to meet the demand of the drone. 

Figure A4. System state-of-charges.



Algorithms 2021, 14, 206 23 of 27

Algorithms 2021, 14, x FOR PEER REVIEW 23 of 27 
 

Additionally, in this simulation, the dynamic approach performed better than the heuris-

tic approach. The dynamic approach provided a sequence of switching between the 

sources that resulted in an objective function value of 8301.2, while the heuristic approach 

was 8501.3. Additionally, the average power consumption obtained using the dynamic 

approach was 3827.4 W, while the heuristic approached resulted in 4136.4 W. The power 

used to meet the demand of the drone during each time step is shown in Figure A5. The 

switching sequence and sources used to meet demand are shown in Figure A6 

 
Figure A5. Power consumption comparison for simulation 2. 

 

(a) Dynamic approach (b) Heuristic approach 

Figure A6. Switching sequence and sources used to meet demand. 

Appendix B. Illustrative Example-Multiple Object Pickup 

The following simulation represents a drone conducting multiple pickups of objects 

located in close proximity to each other. The demand profile of this simulation is shown 

in Figure A7. The weights assigned to the sources in the objective function have to be 

updated to account for the multiple spikes of demand during the drone's flight. As shown 

in the demand profile, the drone starts traveling to the location of the first object is located. 

At time step 2, the drone reaches the object's location and descends to pick up the object. 

After the drone picks up the object, it proceeds to proceed to pick up the next object until 

all four objects are obtained. The demand increases as the drone picks up each object, as 

the load carried by the drone increases. 

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

P
o
w

er
, 
W

at
ts

, 
W

Time step

Dynamic Heuristic Standard

Figure A5. Power consumption comparison for simulation 2.
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Appendix B. Illustrative Example-Multiple Object Pickup

The following simulation represents a drone conducting multiple pickups of objects
located in close proximity to each other. The demand profile of this simulation is shown
in Figure A7. The weights assigned to the sources in the objective function have to be
updated to account for the multiple spikes of demand during the drone’s flight. As shown
in the demand profile, the drone starts traveling to the location of the first object is located.
At time step 2, the drone reaches the object’s location and descends to pick up the object.
After the drone picks up the object, it proceeds to proceed to pick up the next object until
all four objects are obtained. The demand increases as the drone picks up each object, as
the load carried by the drone increases.

Figures A8–A10 display the system voltage, current, and state-of-charge, respectively,
for both the dynamic and heuristic approaches. In this simulation, the switching sequence
generated by the dynamic approach chose to mainly use the super capacitor to meet
the demand of the drone, as did the heuristic approach. It can be noted that the super
capacitor’s current varies in a similar manner to that of the drone’s demand as the super
capacitor was mainly used by both the dynamic and heuristic approaches. As for the
state-of-charge, since the batteries were not used in this example, the state-of-charge of the
batteries remains 100% while the super capacitor is charged and discharged multiple times
to meet the demand.
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Figure A7. Demand Profile for simulation 3.
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Figure A10. System state-of-charges.

In the multiple object pickup simulation, both the switching sequences of the dynamic
and heuristic approach were able to meet the demand of the drone, but that of the standard
approach did not. The switching sequences of the standard approach were unable to
meet the demand of the drone due to the multiple spikes in demand. During spikes in
demand, the use of the super capacitor is preferred due to its rapid discharge rate making
it best-equipped to handle spikes. The switching sequences of the dynamic and heuristic
approaches both utilized the super capacitor to meet the spikes in demand of the drone.

Additionally, in both approaches, the super capacitor was charged when the demand
was low so that it could be used during the next spike in demand. However, although both
the methods performed similarly, the dynamic approach chose to use the photovoltaic cell
in the first time step rather than the fuel cell to meet the demand. Therefore, resulting in
an objective function value of 3499.2 and average power consumption of 2496 W for the
switching sequence of the dynamic approach. On the other hand, the switching sequence
of the heuristic approach resulted in an objective function value of 3517.5 and average
power consumption of 2505 W. Therefore, resulting in slightly lower power consumption,
which is shown in Figure A11. The switching sequence and sources used to meet demand
are shown in Figure A12.
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