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Abstract: The stochastic approximation algorithm (SAA), starting from the pioneer work by Robbins
and Monro in 1950s, has been successfully applied in systems and control, statistics, machine learning,
and so forth. In this paper, we will review the development of SAA in China, to be specific, the
stochastic approximation algorithm with expanding truncations (SAAWET) developed by Han-Fu
Chen and his colleagues during the past 35 years. We first review the historical development for
the centralized algorithm including the probabilistic method (PM) and the ordinary differential
equation (ODE) method for SAA and the trajectory-subsequence method for SAAWET. Then, we
will give an application example of SAAWET to the recursive principal component analysis. We will
also introduce the recent progress on SAAWET in a networked and distributed setting, named the
distributed SAAWET (DSAAWET).

Keywords: stochastic approximation algorithm; expanding truncation technique; centralized and
distributed algorithm

1. Introduction

SAA was first introduced by Robbins and Monro in 1950s [1] and is also called the
RM algorithm in the literature. Since the 1950s, SAA has found successful applications
in systems and control, statistics, machine learning, the stochastic arithmetic, and the
CESTAC method for numerical calculation [2,3], energy internet [4], and so forth, and there
are plenty of studies on various theoretical properties of SAA, including the sample path
convergence [1,5–7], the weak convergence [8], convergence of time-varying root-searching
functions [9–12], robustness of SAA [13], stable and unstable limit points [14], convergence
rate and asymptotic normality [7,15–20], and so forth. In this paper, due to space limitations,
we will not give an overview of all aspects of SAA, but focus on the sample path analysis of
this kind of algorithm, and particularly introduce the centralized and distributed SAAWET
developed by Han-Fu Chen and his colleagues during the past 35 years.

At the early stage of SAA, to guarantee the convergence of the algorithm, it usually
requires restrictive conditions on the noise {εk}k≥0 and the function f (·), for example,
{εk}k≥0 being a martingale difference sequence and f (·) being bounded by a linear function.
Then, by tools from the probability theory, such as the martingale theory, the almost
sure convergence of SAA can be established and such an analysis method is called the
probabilistic method (PM) [1,20]. However, in many situations, the noise {εk}k≥0 may not
be a martingale difference sequence, and it may depend on the past estimates generated by
SAA itself, which we call the state-dependent noise, and in such cases, PM fails. Towards
relaxing the restrictive conditions in PM, in the 1970s a so-called ordinary differential
equation (ODE) method was introduced [7,21], which transforms the convergence analysis
of SAA into the stability of the equilibrium point of an associated ODE and forms another
representative direction for theoretical analysis of SAA. For the ODE method, it a priori
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assumes that the estimate sequence generated by the algorithm is bounded, which is not
easy to be verified in practice. For many theoretical problems, due to the complexity of the
system noise and less a priori information on the estimate sequence, neither PM nor the
ODE method can be applied.

In order to essentially relax the assumptions required by PM and the ODE method,
in the past 35 years an expanding truncation technique was introduced into SAA by
Han-Fu Chen and his colleagues, and a so-called stochastic approximation algorithm
with expanding truncations (SAAWET) has been developed [22,23]. The key idea of the
expanding truncation technique lies in that if the magnitude of the estimate exceeds the
truncation bound, then the estimate is reset to the initial value but with a decreased
stepsize, and, at the same time, an enlarged truncation bound will be used for the next
recursion, while if the magnitude of estimate is smaller than the truncation bound, then
SAAWET evolves as the classical SAA in the next recursion and the truncation bound
remains unchanged. The expanding truncation technique introduces a way of adaptively
choosing the step-sizes of the algorithm and essentially relaxes the conditions on the
noises and the root-searching function. Furthermore, to guarantee the convergence of
SAAWET, one only needs to verify the noise condition along the index sequence {nk}k≥0
of any convergent subsequence {xnk}k≥0 rather than along the whole sequence {xk}k≥0,
which greatly facilitates the application of such an algorithm. The convergence analysis
method of SAAWET is accordingly named the trajectory-subsequence (TS) method. In the
past 35 years, SAAWET has successfully been applied to recursive identification of a
multivariate ARMAX system [24], recursive identification of nonlinear systems [25,26],
adaptive regulation of a nonlinear system [27], consensus control of multiagent systems [28],
convergence of a distributed randomized PageRank algorithm [29], and so forth. In this
paper, we first review the probabilistic method (PM) and the ordinary differential equation
(ODE) method for SAA and the trajectory-subsequence method for SAAWET. Then, we will
give an application example of SAAWET to the recursive principal component analysis.

All the above algorithms and methods are applied in a centralized situation. In recent
years, distributed algorithms have been extensively investigated—for example, the consen-
sus problem [30,31], distributed estimation [32,33], and so on. The distributed algorithms
work in a network situation, where there is no central agent collecting and processing
the data over the whole network but the agents cooperatively accomplish a global ob-
jective by using their local observations and information obtained from communication
with their adjacent neighbours [34–38]. Recently, many distributed problems have been
solved by SAA-based algorithms, such as distributed estimation [32,39], and distributed
convex optimization [34,35]. As a result, the distributed algorithm for SAA has naturally
drawn much attention from researchers. Distributed SAA (DSAA) was proposed in [40–43]
and so forth, in which agents cooperatively find roots of a function, being a sum of lo-
cal functions associated with agents connected in a network. It is noticed that almost
all the above DSAA algorithms require restrictive conditions to guarantee convergence;
for example, in [41] it requires the global Lipschitz continuity of local functions and the
observation noise as a martingale difference sequence. However, these assumptions may
not hold for many problems, including the distributed principal component analysis and
the distributed gradient-free optimization, and so forth. Aiming at solving the distributed
root-seeking problem under weaker conditions compared with those used in [41], a dis-
tributed version of SAAWET (DSAAWET) was recently developed [44]. In this paper, we
will introduce DSAAWET and its convergence properties and also give some application
examples of DSAAWET.

The rest of the paper is arranged as follows. In Section 2, the centralized SAA and PM,
as well as the ODE method for its convergence analysis are reviewed. Then, SAAWET is
introduced with the conditions for its convergence analysis and its general convergence
theorem given. In this paper, SAAWET is also applied to solve the recursive principal
component analysis problem. In Section 3, DSAAWET and its convergence properties
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are introduced, and some application examples are given as well. In Section 4, some
concluding remarks are addressed. The notations used in this paper are listed in Table 1.

Table 1. Notations.

||v||, ||A|| L2 norm of vector v, matrix A

||v||1, ||A||1 L1 norm of vector v, matrix A

Im m×m identity matrix

1 Vector or matrix with all entries equal to 1

0 Vector or matrix with all entries equal to 0

XT Transpose of matrix X

col{x1, . . . , xm} col{x1, . . . , xm} , {xT
1 , . . . , xT

m}T , stacks of vectors or matrices
{x1, . . . , xm}

IA(x) Indicator function, IA(x) = 1 if x ∈ A, IA(x) = 0 otherwise

E[·] Expectation operator

m(k, T) m(k, T) , max{m : ∑m
i=k ai ≤ T}

σi,k Truncation number of agent i at time k

σ̂i,k σ̂i,k , maxj∈Ni(k) σj,k, where Ni(k) is the set of neighbors of agent i at
time k

σk Largest truncation number of all agents at time k, that is,
σk = maxi∈V σi,k = maxi∈V σ̂i,k

2. Centralized Stochastic Approximation Algorithm
2.1. Probabilistic Martingale Method

We first give the detailed problem formulation of SAA.
Assume that f (·) : Rl → Rl is an unknown function with root x0, that is, f (x0) = 0.

At time k, assume that xk is an estimate of x0 and the measurement of f (·) at xk is yk+1,
that is,

yk+1 = f (xk) + εk+1, k ≥ 0, (1)

where εk+1 is the observation noise.
With an arbitrary initial value x0, in [1] a recursive algorithm for searching the root x0

of f (·) is introduced

xk+1 = xk + akyk+1, k ≥ 0, (2)

where {ak}k≥1 is the stepsize sequence which satisfies

ak > 0, ak −→
k→∞

0,
∞

∑
k=0

ak = ∞. (3)

Assumption (3) requires that the stepsize sequence tends to zero, but the sum of the
stepsizes goes to infinity. This indicates that the noise effect can be asymptotically reduced
while the algorithm has the ability to search in the whole feasible domain.

Example 1. Assume that at time k, the estimate xk is very close to the root x0. Then there exists
an ε > 0 small enough, such that

‖xk − x0 + ak f (xk)‖ < ε. (4)
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Then,

‖xk+1 − x0‖ = ‖xk − x0 + ak f (xk) + akεk+1‖ ≥ ‖akεk+1‖ − ε. (5)

From (5) it can be seen that if the stepsize sequence {ak}k≥1 has a positive lower bound, then
for the unbounded noises, such as Gaussian variables, the estimation error will not converge to zero.
Thus, for the stepsize sequence {ak}k≥1, ak −→

k→∞
0 is a necessary condition for convergence of SAA.

Example 2. Consider the case εk+1 ≡ 0. If ∑∞
k=0 ak < ∞ and f (·) is bounded, then

∞

∑
k=0
‖xk+1 − xk‖ ≤

∞

∑
k=0

ak‖ f (xk)‖ < ∞. (6)

If the initial value x0 satisfies ‖x0 − x0‖ −
∞
∑

k=0
ak‖ f (xk)‖ > 0, then from (6) it follows that

‖xk+1 − x0‖ = ‖xk+1 − x0 + x0 − x0‖ ≥ ‖x0 − x0‖ −
∞

∑
k=0
‖xk+1 − xk‖ > 0, (7)

and {xk}k≥0 will not converge to x0. Thus, ∑∞
k=0 ak = ∞ is another necessary condition for

convergence of SAA.

We make the following assumptions.

A2.1 The stepsize sequence {ak}k≥0 satisfies

ak > 0,
∞

∑
k=0

ak = ∞,
∞

∑
k=0

a2
k < ∞. (8)

A2.2 There exists a twice-differentiable function v(·) : Rl → R, such that:

(i) The Hessian matrix of v(·) is bounded.
(ii) v(x0) = 0, v(x) > 0, ∀ x 6= x0 and v(x)→ ∞ as ‖x‖ → ∞.
(iii) For any ε > 0, there exists an βε > 0 such that

sup
‖x−x0‖>ε

Ov(x)T f (x) = −βε < 0. (9)

A2.3 {εk,Fk}k≥0 is an m.d.s., that is, E[εk+1|Fk] = 0, k ≥ 0 and further, supk≥0 E‖εk‖2 < ∞.
A2.4 There exists a constant c > 0 such that

‖ f (x)‖2 + E[‖εk+1‖2|Fk] < c(1 + v(x)), k ≥ 0. (10)

Theorem 1. ([20,45,46]) Assume that A2.1–A2.4 hold. Then, with an arbitrary initial value x0,
estimates generated from (2) converge to the root x0 of f (·) almost surely, that is,

xk −→
k→∞

x0 a.s. (11)

Proof. Here, we list the sketch of the proof.
By using the function v(·) given in A2.2, define vk+1:

vk+1 , (1 + v(xk+1))
∞

∏
i=k+1

(1 + a2
i ), (12)
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By (9), we can obtain

0 ≤E(vk+1|Fk)

≤vk + akOv(xk)
T f (xk)

∞

∏
i=k+1

(1 + a2
i )

≤vk + akOv(xk)
T f (xk) ≤ vk. (13)

By the properties of a nonnegative supermartingale, we have that {vk}k≥0 converges
almost surely. Noting (8), we further obtain ∏∞

i=k+1(1 + a2
i ) −→k→∞

1 and thus, {v(xk)}k≥0

converges almost surely.
With an arbitrary ε > 0, define

Gε , {x : ‖x− x0‖ > ε} (14)

and a stopping sequence {σi
ε}i≥0:

σi
ε = min{t : t > σi−1

ε , xt ∈ Gc
ε}. (15)

By (13) and (14) and noting (9), we have

E[vk+1|Fk] ≤ vk − βεak I[σi
ε>k]. (16)

From (16) and by the properties of the supermartingale, we have

∞

∑
k=1

ak I[σi
ε>k] < ∞ a.s. (17)

By (17) and (8), we can prove that σi
ε is finite almost surely, and there exists a subse-

quence {xki
}i≥1 which satisfies ‖xki

− x0‖ ≤ ε. Since ε > 0 can be arbitrarily small, we
know that there exists a subsequence of {xki

}i≥0 which converges to x0. By the convergence
of {v(xk)}k≥0, we can finally prove (11).

The above proof is based on the convergence of the nonnegative supermartingale,
and the analysis method is accordingly named the probabilistic method (PM).

Remark 1. If A2.2 is changed to

inf
‖x−x0‖>ε

Ov(x)T f (x) = βε > 0, (18)

then we can prove the almost sure convergence of the following SAA

xk+1 = xk − akyk+1, k ≥ 0. (19)

Remark 2. From A2.3 we can see that it requires the observation noise being an m.d.s. In many
problems, the observation noise may contain complicated state-dependent uncertainties, for example,
εk+1 = εk+1(xk). On the other hand, if we choose v(x) = ‖x− x0‖2, then from A2.4 we have

‖ f (x)‖2 ≤ c(1 + ‖x− x0‖)2, (20)

which indicates that f (·) is bounded by a linear function. These are restrictions for PM.

2.2. Ordinary Differential Equation Method

We first introduce two technical lemmas.
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Lemma 1. (Arzelà-Ascoli, [47]) Let { fλ(t), t ∈ [0,+∞), λ ∈ Λ} be a function class satisfying
the condition of uniform boundedness and equi-continuity. Then there exists a continuous function
f (t) and a subsequence { fλk (t)}k≥1 such that { fλk (t)}k≥1 converges to f (t) uniformly on any
fixed bounded interval in [0,+∞).

Remark 3. For the function class { fλ(t), t ∈ [0,+∞), λ ∈ Λ}, the equi-continuity means that
for any ε > 0, there exists δ > 0 such that for any |t− s| < δ,

i fλ(t)− fλ(s)| < ε, ∀ λ ∈ Λ. (21)

The following result is well-known for the Lyapunov stability of ODE.

Lemma 2. Consider the ODE

ẋ(t) = f (x(t)), t ≥ 0 (22)

with an equilibrium point x0, that is, f (x0) = 0. If there exists a continuously differentiable v(x)
such that

(i) v(x0) = 0;
(ii) v(x) > 0, ∀ x 6= x0; v(x) −→

‖x‖→∞
∞;

(iii) Ov(x)T f (x) < 0, ∀ x 6= x0;

then x0 is the globally stable solution of (22).

Before introducing the conditions and the results for the ODE method, we first intro-
duce a crucial notation to be used in this paper. For any T > 0, define

m(n, T) , max

{
m :

m

∑
i=n

ai ≤ T

}
. (23)

From the definition in (23) we can see that m(n, T) is the maximal number of steps
starting from n with the sum of stepsizes not exceeding T. Noting that ak→ 0 as k → ∞,
we have that m(n, T)→ ∞ as n→ ∞.

We make the following assumptions.

A3.1 ak > 0, ak−→k→∞ 0, ∑∞
k=0 ak = ∞.

A3.2 There exists a twice-differentiable function v(·) : Rl → R such that

(i) v(x0) = 0;
(ii) v(x) > 0, ∀ x 6= x0 and v(x)→ ∞ as ‖x‖ → ∞;
(iii) Ov(x)T f (x) < 0, ∀ x 6= x0.

A3.3 The noise {εk}k≥0 satisfies

lim
T→0

lim sup
n→∞

1
T

∥∥∥∥∥m(n,T)

∑
i=n

aiεi+1

∥∥∥∥∥ = 0, akεk+1 −→
k→∞

0. (24)

A3.4 The function f (·) is continuous.

Remark 4. If the stepsizes further satisfy ∑∞
k=0 a2

k < ∞ and the noise {εk,Fk}k≥0 is an m.d.s.
and supk≥0 E[‖εk+1‖2|Fk] < ∞ a.s., then it can be directly verified that ∑∞

k=0 akεk+1 < ∞,
and hence, A3.3 holds. If the noise is not stochastic but satisfies εk −→

k→∞
0, then A3.3 also holds.

In this regard, (24) is more general compared with A2.3.

We give the following result for the ODE method.
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Theorem 2. ([6,7,21]) Consider the sample path ω where A3.3 takes place. If A3.1, A3.2, and A3.4
hold on the sample path ω and {xk(ω)}k≥0 is bounded, then

xk(ω) −→
k→∞

x0. (25)

Proof. We sketch the proof.
Define tk , ∑k

i=0 ai with t0 = 0. By interpolating the estimates generated from (2), we
have a sequence of continuous functions

x0
t ,

tk − t
ak

xk−1 +
t− tk−1

ak
xk, t ∈ [tk−1, tk], (26)

xk(t) = x0
t+k, k ≥ 1, (27)

which can be proved to be bounded by the boundedness of {xk}k≥0 and uniform continuity
by A3.3.

Then by Lemma 1, we can prove that there exists a subsequence {xnk (t)}k≥0 converg-
ing a continuous function x(t) satisfying the following ODE

ẋ(t) = f (x(t)). (28)

By A3.2 and Lemma 2 we can further prove that the equilibrium point x0 is globally
stable and the estimates {xk}k≥0 converge to x0 on the sample path ω.

The essential idea of the above proof is to transform the convergence of a recursive
algorithm to the stability of an associated ODE, and thus the analysis method is called
the ODE method. From assumption A3.3 we can see that the ODE method has a wider
application potential than the PM method. However, the boundedness assumption on
the estimate sequence is still restrictive. Aiming at removing this condition and further
relaxing the technical assumptions on the noise and the root-seeking function, in the next
section we will introduce the SAA with expanding truncations (SAAWET) and its general
convergence theorem.

2.3. SAAWET and Trajectory-Subsequence Method

We first give an example.

Example 3. ([5]) Consider the root-seeking of the function f (x) = −(x− 10)3 and assume that
the observation noise εk ≡ 0.

(i) If we choose the initial value x0 = 0 and the stepsize ak =
1

k+1 , it can be directly verified that
the estimates generated from (2)

x0 = 0, x1 = 1000, x2 = −485, 148, 500, x3 ≈ 3.8× 1025, · · ·

(ii) If we choose the initial value x0 = 0 and the stepsize ak = 1
k+103 , it can be directly verified

that the estimates generated from (2) is convergent, that is, xk −→
k→∞

10.

For Example 3, neither the growth rate condition on f (·) used by PM nor the bound-
edness condition on the estimate sequence used by the ODE method take place. On the
other hand, if we can choose the stepsize in an adaptive manner, estimates generated from
SAA may still converge. The core idea of SAAWET consists in adaptively choosing the
stepsizes. Let us describe it.

Denote by J the root set of an unknown function f (·) : Rl → Rl , that is, f (x0) = 0
∀ x0 ∈ J. Choose {Mk}k≥0 a positive sequence increasingly diverging to infinity, Mk −→

k→∞
∞.



Algorithms 2021, 14, 174 8 of 15

With an arbitrary initial value x0 ∈ Rl , the estimate sequence {xk}k≥1 is generated by the
following SAAWET:

xk+1 =(xk + akyk+1)I[‖xk+akyk+1‖≤Mσk ]
+ x∗ I[‖xk+akyk+1‖>Mσk ]

, (29)

σk =σk−1 + I[‖xk−1+ak−1yk‖>Mσk−1 ]
, σ0 = 0, (30)

where

yk+1 = f (xk) + εk+1, (31)

yk+1 is the observation of f (·) at xk, εk+1is the observation noise, ak is the stepsize and xk is
the estimate for the root set of f (·) at time k.

From (29) and (30), we can see that if the magnitude of xk + akyk+1 is located in
the truncation bound, then the algorithm evolves as the classical SAA (2), while if the
magnitude of xk + akyk+1 exceeds the truncation bound, then xk+1 is pulled back to x∗ with
the truncation bound being enlarged and the stepsize being reduced for the next recursion.

We first list conditions for theoretical analysis.

A4.1 ak > 0, ak −→
k→∞

0,
∞
∑

k=1
ak = ∞;

A4.2 There exists a continuously differentiable function v(·) : Rl → R such that

(i) sup
δ≤d(x,J)≤∆

Ov(x)T f (x) < 0, ∀ 0 < δ < ∆,

(ii) The set v(J) , {v(x), x ∈ J} is nowhere dense,
(iii) For x∗ ∈ Rl in (29), there is a c0 > 0 such that‖x∗‖ < c0 and v(x∗) < inf

‖x‖=c0
v(x),

A4.3 On the sample path ω, for any convergent subsequence {xnk}k≥1 generated from
(29) and (30), it holds that

lim
T→0

lim sup
k→∞

1
T

∥∥∥∥∥m(nk ,Tk)

∑
i=nk

aiεk+1

∥∥∥∥∥ = 0, ∀ Tk ∈ (0, T], (32)

with m(nk, Tk) , max

{
m :

m
∑

i=nk

ai ≤ Tk

}
;

A4.4 The function f (·) is measurable and locally bounded.

Remark 5. A set being nowhere dense means that the set of the interior points of its closure is
empty. It is clear that a set with a single point is nowhere dense. Note that for the noise condition
A3.3, it only requires to verify (32) on a fixed sample path and along the index of any convergent
subsequence, which compared with (24) is much easier to be verified in practice. In this regard,
the analysis method for SAAWET is called the trajectory-subsequence (TS) method.

Theorem 3. ([5]) For SAAWET (29) and (30), if A4.1, A4.2 and A4.4 hold, then on the sample
path ω where A4.3 takes place, it holds that

d(xk, J) −→
k→∞

0, (33)

where d(xk, J) , inf
y∈J
‖xk − y‖. Denote by J the closure of J and by J∗ the set of the limit points of

{xk}. It holds that

d(xk, J∗) −→
k→∞

0, (34)

and J∗ is a closed connected subset of J.
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It is direct to verify that if the root set of f (x) = 0 is a singleton, then under the
conditions of Theorem 3 we have that d(xk, x0) −→

k→∞
0 and J∗ = J = {x0}.

Proof. We outline the proof.
Denote by {xnk}k≥1 a convergent subsequence generated by (29) and (30).

Step 1. By A4.3, prove that for all k large enough and t > 0 small enough, there is no
truncation for xl , l ∈ {nk, · · · , m(nk, t)}, that is,

xl+1 = xl + alyl+1, l ∈ {nk, · · · , m(nk, t)}, (35)

and

‖xl+1 − xl‖ ≤ ct, l ∈ {nk, · · · , m(nk, t)}. (36)

Step 2. By the stability condition A4.2 and (35) and (36), prove that for SAAWET, the num-
ber of truncations is finite, that is, algorithms (29) and (30) evolve as the classical SAA after
a finite number of steps.
Step 3. To establish the convergence of {xk}k≥0.

Remark 6. If it is a priori known that estimates {xk}k≥0 generated from (29) and (30) are in
a subspace S(⊂ Rl), then for the convergence of {xk}k≥0, we only need to verify the stability
condition in J ∩ S and in such a case assumption A4.2 is formulated as follows:

A4.2’There exists a continuously differentiable function v(·) : Rl → R such that

(i) sup
δ≤d(x,J∩S)≤∆, x∈S

Ov(x)T f (x) < 0, ∀ 0 < δ < ∆,

(ii) The set v(J ∩ S) , {v(x), x ∈ J} is nowhere dense,
(iii) For x∗ ∈ S in (29), there exists a constant c0 > 0 such that ‖x∗‖ < c0 and v(x∗) <

inf‖x‖=c0
v(x).

Example 4. Consider the root-seeking problem in Example 3. Assume that yk+1 = f (xk) + εk+1
with εk+1 − 0.9εk = wk+1 + 0.5wk and {wk}k≥1 being a sequence of iid Gaussian variables
wk ∼ N(0, 0.12). In (29) and (30), choose Mk = 2k+1, x∗ = 0.5. By a direct calculation, it
obtains that

x10 = 0.5 x50 = 7.76 x100 = 9.26
x200 = 9.46 x300 = 9.52 x400 = 9.61.

From the above sections, we can see that SAAWET does not require that the obser-
vation noise is purely stochastic or the estimate sequence is bounded. In fact, it can be
shown that conditions for convergence of SAAWET are the weakest possible in a certain
sense [5]. In the next section, we will apply SAAWET to give a recursive algorithm for
principal component analysis.

2.4. Recursive Principal Component Analysis Algorithm

Before introducing the recursive algorithm, we first make the following assumption.

A5.1 {A, Ak, k ≥ 1} are n × n symmetric matrices. A is unknown and {Ak}k≥1 is the
observation sequence of A satisfying Ak −→

k→∞
A.

The principal component analysis algorithm considered in this paper aims at estimat-
ing the eigenvalues and eigenvectors based on the observation sequence {Ak}k≥1. Since
A is unknown, if we perform SVD or QR decomposition for each Ak, k ≥ 1, it would be
rather time-consuming. In the following, we will introduce a SAAWET-based recursive
algorithm for solving the problem.

The eigenvectors of matrix A are recursively estimated as follows:
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Choose the stepsize ak = 1
k and any initial values u(1)

0 ∈ Rn with unit modular
and define

ũ(1)
k+1 = u(1)

k − ak Aku(1)
k . (37)

If ‖ũ(1)
k+1‖ 6= 0, then

u(1)
k+1 = ũ(1)

k+1/‖ũ(1)
k+1‖. (38)

Otherwise, ‖ũ(1)
k+1‖ = 0 and reset u(1)

k+1 as another vector with a unit modular.

Assume that u(i)
k , i = 1, · · · , j have been well-defined. Next, we inductively define

the estimation algorithm for u(j+1)
k .

Define the n× j-matrix

V(j)
k ,

[
u(1)

k P(1)
k u(2)

k · · · P(j−1)
k u(j)

k

]
,

where P(i)
k , I −V(i)

k V(i)+
k , i = 1, · · · , j− 1 and V(i)+

k is the pseudo inverse of V(i)
k .

With an arbitrary initial vector u(j+1)
0 with a unit modular, define

ũ(j+1)
k+1 = P(j)

k u(j+1)
k − akP(j)

k AkP(j)
k · u

(j+1)
k . (39)

If ‖ũ(j+1)
k+1 ‖ 6= 0, then

u(j+1)
k+1 = ũ(j+1)

k+1 /‖ũ(j+1)
k+1 ‖. (40)

Otherwise, ‖ũ(j+1)
k+1 ‖ = 0 and reset u(j+1)

k+1 as another vector denoted still by u(j+1)
k+1

satisfying ‖u(j+1)
k+1 ‖ = 1 and V(j)τ

k u(j+1)
k+1 = 0.

{u(1)
k , · · · , u(n)

k } serve as the estimates for eigenvectors of matrix A.

Based on {u(1)
k , · · · , u(n)

k }, we introduce the recursive algorithms for estimating eigen-
values of matrix A.

Choose a positive sequence increasingly diverging to infinity, Mk+1 > Mk > 0,
Mk −→

k→∞
∞. With arbitrary initial values λ

(j)
0 , {λ(j)

k }k≥1, j = 1, · · · , n are generated by the

following algorithms:

λ
(j)
k+1 =

[
λ
(j)
k − ak

(
λ
(j)
k − u(j)T

k Aku(j)
k

)]
· I[∣∣∣λ(j)

k −ak

(
λ
(j)
k −u(j)T

k Aku(j)
k

)∣∣∣≤Mσk(j)

], (41)

σk(j) =
k−1
∑

i=1
I[∣∣∣λ(j)

i −ai

(
λ
(j)
i −u(j)T

i Aiu
(j)
i

)∣∣∣>Mσi(j)

], σ0(j) = 0, (42)

where λ
(j)
k is the estimate for the eigenvalue corresponding to the eigenvector which u(j)

k
estimates at time k.

Denote S the unit sphere in Rn and J the set of all eigenvectors with unit modular
of matrix A. Denote the set of all eigenvalues of matrix A by V(J), that is, V(J) ,
{λ(1), · · · , λ(n)}.

For algorithms (39)–(42), the following result takes place.
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Theorem 4. Assume that A5.1 holds.

(i) There exists a closed-subset J∗j of J such that

d
(

u(j)
k , J∗j

)
−→
k→∞

0. (43)

(ii) There exists λ(j) ∈ V(J) such that

d
(

u(j)T
k Au(j)

k , λ(j)
)
−→
k→∞

0,

and for any v(j) ∈ J∗j
Av(j) = λ(j)v(j).

(iii) λ
(j)
k converges to the eigenvalue λ(j) of matrix A and the limit set of λ

(j)
k , j = 1, · · · , n coin-

cides with V(J).

Proof. Noting that {u(j)
k }k≥0, j =, · · · , n are with a unit modular, algorithms (39)–(42) are

SAAWET. The proof can be obtained by applying Theorem 3 and Remark 5. Due to space
limitations, the detailed proof is omitted.

3. Distributed Stochastic Approximation Algorithm

In this section, we will introduce the distributed version of SAAWET (DSAAWET).
The key difference from the existing distributed SAA, see for example, [40], lies in the
expanding truncation mechanism that adaptively defines enclosing bounds. The theo-
retical results of DSAAWET guarantee that estimates generated by DSAAWET for all
agents converge almost surely to a consensus set, which is contained in the root set of the
sum function.

We first introduce the problem formulation.
Consider the case where all agents in a network cooperatively search the root of the

sum function given by
f (·) = 1

N ∑N
i=1 fi(·), (44)

where fi(·) : Rl → Rl is the local objective function which can only be observed by agent i.
Denote the root set of f (·) by J , {x ∈ Rl : f (x) = 0}.

For any i ∈ V , denote by xi,k ∈ Rl the estimate for the root of f (·) given by agent i at
time k. Since at time k + 1, agent i only has its local noisy observation

Oi,k+1 = fi(xi,k) + εi,k+1, (45)

where εi,k+1 is the observation noise, to estimate the root of f (·), all agents need to exchange
information with adjacent agents via the topology of the network.

The topology of the network at time k is described by a digraph G(k) = {V , E(k)},
where V = {1, · · · , N} is the index set of all agents, and E(k) ⊂ V × V is the edge set with
(j, i) ∈ E(k) representing the information flow from agent j to agent i at time k. Denote
the adjacency matrix of the network at time k by W(k) = [ωij(k)]Ni,j=1, where ωij(k) > 0 if,
and only if (j, i) ∈ E(k), and ωij(k) = 0, otherwise. Denote by Ni(k) = {j ∈ V : (j, i) ∈
E(k)} the set of neighbors of agent i at time k.

We apply the idea of expanding truncation to the distributed estimation. Denote by
xi,k the estimate for agent i at time k and by σi,k the number of truncations for agent i up to
time k. DSAAWET is given by (46)–(49) with any initial values xi,0, where Oi,k+1 is defined
by (45), {γk} is the stepsize, x∗ ∈ Rl is a vector known to all agents, {Mk}k≥0 is a positive
sequence increasingly diverging to infinity with M0 ≥ ‖x∗‖.
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σi,0 = 0, σ̂i,k
∆
= max

j∈Ni(k)
σj,k, (46)

x′i,k+1 =
(

∑
j∈Ni(k)

ωij(k)(xj,k I[σj,k=σ̂i,k ]
+ x∗ I[σj,k<σ̂i,k ]

) + γkOi,k+1

)
I[σi,k=σ̂i,k ]

+ x∗ I[σi,k<σ̂i,k ]
, (47)

xi,k+1 = x∗ I[‖x′i,k+1‖>Mσ̂i,k
] + x′i,k+1 I[‖x′i,k+1‖≤Mσ̂i,k

], (48)

σi,k+1 = σ̂i,k + I[‖x′i,k+1‖>Mσ̂i,k

], (49)

Denote by

σk
∆
= max

i∈V
σi,k (50)

the largest truncation number among all agents at time k. If N = 1, then by denoting
σ̂i,k = σi,k , σk, xi,k , xk, x′i,k , x′k, Oi,k , Ok, (46)–(49) becomes

x′k+1 = xk + γkOk+1,

xk+1 = x∗ I[‖x′k+1‖>Mσk ]
+ x′k+1 I[‖x′k+1‖≤Mσk ]

,

σk+1 = σk + I[‖x′k+1‖>Mσk ],

which is the SAAWET in the centralized setting.
We first introduce assumptions to be used.

A5.1 γk > 0, γk −→
k→∞

0, and ∑∞
k=1 γk = ∞.

A5.2 There exists a continuously differentiable function v(·) : Rl → R such that

(a) sup
δ≤d(x,J)≤∆

f T(x)vx(x) < 0 (51)

for any ∆ > δ > 0, where vx(·) denotes the gradient of v(·) and d(x, J) = miny{‖
x− y ‖: y ∈ J},
(b) v(J) , {v(x) : x ∈ J} is nowhere dense,
(c) ‖x∗‖ < c0 and v(x∗) < inf ‖x‖=c0

v(x) for some positive constant c0, where x∗ is
used in (47) and (48).

A5.3 The local functions fi(·) ∀i ∈ V are continuous.
A5.4 (a) W(k) ∀k ≥ 0 are doubly stochastic matrices (A matrix is said to be doubly

stochastic if all entries being nonnegative and the sum of entries in each row and each
column being 1.);
(b) There exists a constant 0 < η < 1 such that

ωij(k) ≥ η ∀j ∈ Ni(k) ∀i ∈ V ∀k ≥ 0;

(c) The digraph G∞ = {V , E∞} is strongly connected, where E∞ is the set of edges (j, i)
such that j is a neighbor of i which communicates with i infinitely often, that is,

E∞ = {(j, i) : (j, i) ∈ E(k) for infinitely many indices k};

(d) There exists a positive integer B such that for every (j, i) ∈ E∞, agent j sends
information to the neighbor i at least once every B consecutive time slots, that is,

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + B− 1)

for all (j, i) ∈ E∞ and any k ≥ 0.
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Remark 7. Assumptions A5.1–A5.3 are similar to those conditions used in the centralized
SAAWET. Since the DSAAWET is in a distributed setting, assumption A5.4 is a commonly
used condition describing the topology of the network [34].

Next, we introduce the condition on the observation noises for each agent.

A5.5 For the sample path ω under consideration and for each agent i,
(a) γkεi,k+1 −→

k→∞
0, and

(b) limT→0 lim supk→∞
1
T ‖ ∑

m(nk ,tk)
m=nk γmεi,m+1 I[‖xi,m‖≤K] ‖= 0 ∀tk ∈ [0, T] along indices

{nk} whenever {xi,nk} converges.

We now give the main results of DSAAWET.

Define the vectors Xk
∆
= col{x1,k, · · · , xN,k}, εk

∆
= col{ε1,k, · · · , εN,k},

F(Xk)
∆
= col{ f1(x1,k), · · · , fN(xN,k)}. Denote by X⊥,k

∆
= D⊥Xk the disagreement vec-

tor of Xk with D⊥ , (IN − 11T

N )⊗ Il , and by xk =
1
N ∑N

i=1 xi,k the average of the estimates
derived at all agents at time k.

Theorem 5. ([44]) Let {xi,k} be produced by (46)–(49) with an arbitrary initial value xi,0. Assume
A5.1–A5.4 hold. Then on the sample path ω where A5.5 holds, the following assertions take place:
(i) {xi,k} is bounded and there exists a positive integer k0 possibly depending on ω such that

xi,k+1 = ∑
j∈Ni(k)

ωij(k)xj,k + γkOi,k+1 ∀k ≥ k0, (52)

or in the compact form:

Xk+1 = (W(k)⊗ Il)Xk + γk(F(Xk) + εk+1) ∀k ≥ k0; (53)

(ii)X⊥,k −→
k→∞

0 and d(xk, J) −→
k→∞

0; (54)

(iii) There exists a connected subset J∗ ⊂ J such that

d(xk, J∗) −→
k→∞

0. (55)

Proof. The proof can be obtained by first proving the finite number of truncations, then
the consensus of estimates, and finally, the convergence of estimates. The detailed proof
can be found in [44].

DSAAWET provides a likely tool for solving the distributed problems over networks.
In fact, DSAAWET has been successfully applied in the following problems:

• Distributed identification of linear systems [48],
• Distributed blind identification of communication channels [49],
• Output consensus of networked Hammerstein and Wiener systems [38].

4. Concluding Remarks

In this paper, we briefly reviewed the historical development of SAA, and in particu-
lar, introduced SAAWET and its distributed version (DSAAWET) developed by Han-Fu
Chen and his colleagues during the past 35 years. SAAWET and DSAAWET establish
general convergence results for the root-seeking problems with noise observations. Since
many problems, such as identification, estimation, adaptive control, and optimization can
be transformed into the root-seeking problem, SAAWET and DSAAWET can hopefully
provide powerful tools for solving such problems.
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