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Abstract: Schizophrenia is a serious mental illness associated with neurobiological deficits. Even
though the brain activities during tasks (i.e., P300 activities) are considered as biomarkers to diagnose
schizophrenia, brain activities at rest have the potential to show an inherent dysfunctionality in
schizophrenia and can be used to understand the cognitive deficits in these patients. In this study, we
developed a machine learning algorithm (MLA) based on eyes closed resting-state electroencephalo-
gram (EEG) datasets, which record the neural activity in the absence of any tasks or external stimuli
given to the subjects, aiming to distinguish schizophrenic patients (SCZs) from healthy controls
(HCs). The MLA has two steps. In the first step, symbolic transfer entropy (STE), which is a measure
of effective connectivity, is applied to resting-state EEG data. In the second step, the MLA uses
the STE matrix to find a set of features that can successfully discriminate SCZ from HC. From the
results, we found that the MLA could achieve a total accuracy of 96.92%, with a sensitivity of 95%,
a specificity of 98.57%, precision of 98.33%, F1-score of 0.97, and Matthews correlation coefficient
(MCC) of 0.94 using only 10 out of 1900 STE features, which implies that the STE matrix extracted
from resting-state EEG data may be a promising tool for the clinical diagnosis of schizophrenia.

Keywords: effective connectivity; machine learning; resting-state electroencephalography (EEG);
schizophrenia; symbolic transfer entropy

1. Introduction

Schizophrenia is a severe neuropsychiatric disorder affecting approximately 20 mil-
lion people worldwide according to the World Health Organization (WHO) report [1,2].
Schizophrenia is characterized by noticeable psychotic symptoms including hallucinations,
delusions, reduction in performance, and thought disorder. Based on neuroimaging evi-
dence on structural, functional, and effective brain connectivity, a core deficit of schizophre-
nia can be proposed as the failure of effective functional integration within and between
brain areas [3].

Several studies proved alterations in functional connectivity (FC) in patients with
schizophrenia (SCZs) in comparison to healthy controls (HCs) in response to external
cognitive or sensorimotor stimulation [4–6]. However, resting-state electroencephalogra-
phy (EEG) FC reflects the intrinsic inter-neuronal connections in specific circuits such as
the default mode network (DMN) that are attenuated or interrupted during cognitive or
sensorimotor tasks [7]. Therefore, investigating resting-state brain connectivity may reveal
an intrinsic functional disintegration of brain regions for SCZ.

Machine learning algorithms (MLAs) have been widely used in applications related to
neuroscience and psychiatry (e.g., [6,8–10]). Recently, there has been an increasing number
of studies that use MLAs to diagnose schizophrenia based on resting-state EEG patterns. In
Table 1, we highlighted the outcomes of the fourteen most recent studies in this area with the
highest classification accuracy. Boostani et al. [11] extracted several features including band
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power, autoregressive (AR) model parameters, and a fractal dimension from the recorded
resting-state EEG data (286 features). They applied different classifiers to extracted features
to classify the two groups of 13 SCZs and 18 HCs. They achieved the highest classification
accuracy of 87.51% using a boosted version of direct linear discriminant analysis (BDLDA).
Khodayari et al. [12] used various statistical quantities such as the spectral coherence
between all electrode pairs, the absolute and relative power spectral densities (PSDs), the
left-to-right hemisphere power ratios, the anterior-to-posterior power ratios, and mutual
information between all electrode pairs at the frequency range of 4–36 Hz with 1 Hz
resolution to classify 40 SCZs, 64 patients with major depressive disorder (MDD), and
91 HCs. Using 42 most discriminating features and the mixture of factor analysis (MFA) for
classification, they achieved the classification accuracy of 87.1%. Sabeti et al. [13] applied
MLA to 20 SCZs and 20 HCs. They first selected the most informative EEG electrodes
using mutual information techniques. Several features including autoregressive model
parameters, fractal dimension, and band power were used for classification. Using 20 EEG
electrodes, the total number of features was 300 for each 1 s window of EEG data, which
resulted in 300 × 120 = 36,000 features for 2-min recorded data for each participant. Then,
they employed genetic programming (GP) to select the best features. GP is a technique of
creating algorithms that can program themselves by mimicking natural biological breeding
and evolution. GP starts from a population of random programs and lets the machine
automatically search among the space of all programs and breed the most successful or
suitable ones in new generations [14]. They obtained the highest classification accuracy of
91.94% using the Adaboost classifier with 80 features. Thilakvathi et al. [15] considered
Shannon entropy and Higuchi’s fractal dimension at five lobes of frontal, central, parietal,
temporal, and occipital (in total 10 features) as their selected features to compare the
complexity of a resting-state EEG signal for SCZ and HC using 55 SCZs and 23 HCs. Using
these 10 features, the support vector machine (SVM) classifier obtained the highest accuracy
of 80% using 20% of the data in each group for testing. Liu et al. [16] applied MLA to the
resting-state EEG data of 40 clinically high-risk individuals (CHRs), 40 SCZs, and 40 HCs
to investigate whether the EEG characteristics of these three groups can differentiate CHRs
and SCZs from each other and from HCs. Using von Neumann Entropy as the linear
eigenvalue statistics (LES) feature for each window of 200 EEG data samples (1500 features
in total for 300,000 EEG data samples), they showed that the SVM classifier achieved the
highest classification performance of 91.16% for classifying SCZs from HCs and 73.31%
for classifying the three classes of CHRs, SCZs, and HCs. Phang et al. [17] proposed a
deep multi-domain connectome convolutional neural network (MDC-CNN) framework
for classifying the resting-state EEG-derived brain connectome in SCZs and HCs. By
combining three connectivity features of (1) time-domain vector autoregressive (VAR)
model coefficients; (2) the frequency-domain partial directed coherence (PDC); and (3) the
network topology-based complex network (CN) measures (2730 features), they achieved
the classification performance of 93.06% for classifying 45 SCZs and 39 HCs. Li et al. [18]
used the inherent spatial pattern of the network (SPN) features extracted from resting-state
EEG data to classify 19 SCZs and 23 HCs. Using four SPN filters, they achieved the highest
accuracy of 88.10% with the SVM classifier.

Table 1. Summary of most recent and accurate automated frameworks to diagnose schizophrenia
using resting-state EEG data.

Article # of
Features Classifier Best

Accuracy EEG Dataset

Boostani et al. (2009) [11] 286 BDLDA 87.51% 13 SCZs and 18 HCs

Khodayari et al. (2010) [12] 42 MFA 87.1% 40 SCZs, 64 MDDs,
and 91 HCs

Sabeti et al. (2011) [13] 80 Adaboost 91.94% 20 SCZs and 20 HCs
Thilakvathi et al. (2017) [15] 10 SVM 80% 55 SCZs and 23 HCs
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Table 1. Cont.

Article # of
Features Classifier Best

Accuracy EEG Dataset

Liu et al. (2018) [16] 1500 SVM 91.16% 40 SCZs and 40 HCs
Phang et al. (2019) [17] 2730 MDC-CNN 93.06% 45 SCZs and 39 HCs

Li et al. (2019) [18] 4 SVM 88.10% 19 SCZs and 23 HCs
Oh et al. (2019) [19] - CNN 81.26% 14 SCZs and 14 HCs

Jahmunah et al. (2019) [20] 14 SVM 92.91% 14 SCZs and 14 HCs
Buettner et al. (2020) [21] 200 RF 96.77% 14 SCZs and 14 HCs

Racz et al. (2020) [22] 21 RF 89.29% 14 SCZ and 14 HCs
Goshvarpour et al.

(2020) [23] 19 PNN 100% 14 SCZs and 14 HCs

Baradits et al. (2020) [24] 14 SVM 82.7% 70 SCZs and 75 HCs
Kim et al. (2020) [25] 27 LDA 80.66% 119 SCZs and 119 HCs

Oh et al. [19] applied an 11-layer CNN model to differentiate resting-state EEGs
of 14 SCZs and 14 HCs with deep learning. A total of 1142 EEG segments were used
for each subject, where each segment consisted of 6250 time samples and 19 electrodes.
Therefore, the total number of sampling points was 1142 × 6250 × 19 = 135,612,500. The
most significant features were then automatically extracted by the CNN. Their proposed
model achieved classification accuracies of 81.26%. This dataset (14 SCZs and 14 HCs)
has been used in four more studies to diagnose schizophrenia [20–23]. In [20], Jahmunah
et al. first segmented the EEG data for each subject into segments of 25 sec. Therefore,
they obtained 516 segments for HC and 626 segments for SCZ. They extracted 157 non-
linear features such as the largest Lyapunov exponent, Kolmogorov–Sinai entropy, Hjorth
complexity and mobility, Kolmogorov complexity, bispectrum, and permutation entropy.
The optimal 14 features were then selected and applied to various classifiers, where the
best performance belonged to the SVM classifier with an accuracy of 92.91%. In [21],
Buettner et al. used 200 power bands within a range of 0.5 Hz each as features that applied
to a random forest (RF) classifier. Using 499 1-min samples for all 28 subjects (375 for
training and 124 for evaluation), they yield an accuracy of 96.77%. In [22], Racz et al.
used 21 dynamic features of dynamic FC (DFC) at delta frequency bands (0.5–4 Hz) such
as its entropy and multifractal properties to classify the two groups. They achieved a
classification performance of 89.29% using an RF classifier. In [23], Goshvarpour et al.
selected non-linear features including complexity (Cx), Higuchi fractal dimension (HFD),
and Lyapunov exponent and the fusion of these features using five different combination
rules (R1: summation, R2: product, R3: division, R4: weighted sum using F-values, and
R5: weighted sum using information gain ratio (IGR) rules) for 19 EEG electrodes. Using
the probabilistic neural network (PNN) classifier and the R3 rule features, they achieved a
classification performance of 100%.

Baradits et al. [24] investigated whether abnormalities in microstates, quasi-stable
electrical fields in the EEG data, can be used to classify SCZs and HCs. They used four
microstates (microstate A: auditory network; microstate B: visual network; microstate C:
salience network; and microstate D: fronto–parietal network) and obtained 24 features
including basic microstate features (microstate average duration, occurrence per second,
full coverage of the time, 4 × 3 = 12 features) and the microstates transition probabilities
(12 features). Using 14 out of 24 features that demonstrate significant differences between
SCZ and HC and SVM classifier, they yield 82.7% accuracy for classifying 70 SCZs and
75 HCs. Kim et al. [25] recruited 119 SCZs and 119 HCs in their study. They obtained
the source-level cortical FC network, where minimum norm estimation (MNE) was used
to estimate the time series of source activity and the phase-locking value was used for
calculating FC. Values of the clustering coefficient (CC) and path length for the cortical
functional network were then used as selected features. Using the linear discriminant
analysis (LDA) classifier, the best classification performance was 80.66% by choosing
27 optimal features.
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In eight of these studies, a small dataset of SCZs and HCs was analyzed [11,13,18–23],
which limits the power and applicability of the MLAs and deep learning algorithms. Using
databases with larger data samples would allow having sufficient training data to adjust the
model parameters more accurately and therefore increase the generalizability/reliability
of the model, i.e., the performance on previously unseen data. Particularly when the
selected features display significant variability, a larger training dataset is required to have
a reliable classification performance. Furthermore, the sample size (Ns) to the number of
features (Nf) ratio in some studies [11–13,16,20–23] is much lower than the rule of 10:1,
or Nf is larger than the square root of Ns, which are referred to as the rules of preventing
over-fitting (good quality) [24]. Finally, two of these studies [17,19] used deep learning
algorithms, which are more complex compared to traditional MLAs and therefore require
more training data to be reliable. Furthermore, complex feature engineering (the process
of using domain knowledge to extract features from raw data) increases the difficulty to
interpret the model [26]. Hence, only three studies [15,24,25] meet the optimal properties
of a high to very high sample size (Ns > 100) and Nf to Ns ratio rules; however, the
classification accuracy of these studies is less than 85%.

The objective of this study is to develop a new MLA based on effective connectivity
(EC) measurements to study distinguishing characteristics between schizophrenics and
healthy brains using a small set of selected features. FC reflects the statistical dependencies
of signals from different brain regions as typically revealed by cross-correlation, coherency,
or phase lag index measures. In contrast, EC measures the causal influences that a neural
unit applies over another, which defines the mechanisms of neuronal coupling much more
precisely than FC [27].

The method to measure EC must fulfill four criteria to be useful for measuring connec-
tivity between brain areas [28], which are (1) independence from any a priori definitions
and models; (2) ability to detect strong non-linear interactions across all levels of the brain
function from the mechanism of action potential generation in neurons to psychometric
functions; (3) the ability to detect EC even with a wide interaction delay between the two
signals, reflecting signal transmission through multiple pathways or over complex axonal
networks; and (4) robustness against linear cross-talk between signals. Transfer entropy
(TE), a model-free statistic that can measure the directed flow of information between two
incidents, accomplishes all four of these criteria and can therefore be considered as a suit-
able method to measure EC [28,29]. For these reasons, TE has gained growing application
in neurological science for measuring the information exchanges or understanding the EC
across data modalities like EEG [28]. Moreover, it has been recently demonstrated that, for
Gaussian variables, it can be estimated with linear vector autoregressive models, since it is
operationally equivalent to Granger causality [30]. In this form, it has been used for the
estimation of EC on real EEG data [31].

Various methods are available to estimate TE from experimental data (e.g., [32–34]).
However, most of the methods are very sensitive to noise and need large amounts of data
and parameters tuning which limit their utility. Symbolic TE (STE) [35], which estimates
TE through symbolization, is a convenient, robust, and computationally efficient method
to measure the flow of information in dynamic and multidimensional systems. This makes
STE a promising measure of the preferred direction of information flow between brain
regions.

STE has been widely applied in EEG studies, including the effects of anesthesia on
information processing in the brain [36], the study of epileptic networks [37], investigating
the impacts of sleep apnea–hypopnea on the EEG signal [38] and predicting response to
clozapine therapy for SCZ patients using resting-state [10] and P300 activities [39]. This
confirms that the STE method is a promising tool to study brain network connectivity
and its alteration due to mental and neurological disorders and the use of medications.
However, to the best of our knowledge, this is the first study applying STE to diagnose
schizophrenia from resting-state EEG data. In this study, we investigated the impacts of
schizophrenia on STE at various frequency bands.



Algorithms 2021, 14, 139 5 of 15

The contribution of this paper is 2-fold. First, the fast and robust STE approach is
used to measure the EC between brain regions for schizophrenic patients. Second, an
MLA is developed based on the features extracted from these EC measures to diagnose
schizophrenia. The novelty of this study is therefore in combining STE and MLAs to
diagnose schizophrenia, which helps to discriminate SCZ patients from HCs with high
accuracy by using a small number of features and less complex traditional MLAs, relative
to previous studies.

2. Materials and Methods
2.1. Subjects

Sixty-two (62) SCZs (males: 37 (58.7%), females: 25 (41.3%), age: 37.27± 8.98 (range:
17–56) years) as well as 70 HCs (males: 38 (54.3%), females 32 (45.7%), age: 37.74 ± 16.57
(range: 18–81) years) were invited to participate in this study. All subjects were unpaid
volunteers, who were recruited from Hamilton Psychiatric Hospital, Hamilton, Ontario,
to investigate whether EEG data can differentiate SCZ from HC. The study was reviewed
and approved by the Research Ethics Board of the Hospital. All participants in this study
filled the informed consent and were aware of the nature of the study. All SCZs met the
diagnostic and statistical manual of mental disorders, fourth edition (DSM-IV) criteria
for schizophrenia [40]. The severity of the symptoms was measured for SCZs using the
positive and negative syndrome scale (PANSS) score. The values of the PANSS sub- and
total scores are as follows: PANSS positive sub-score 28.45 ± 7.87(range: 13–48), PANSS
negative sub-score 29.05 ± 8.01 (range: 8–49), PANSS general sub-score 58.79 ± 12.55
(range: 27–97), and PANSS total score 116.29 ± 24.73 (range: 51–187). Furthermore, the age
of symptom onset was 20.86 ± 4.84 (range: 13–32 years), and the duration of the illness at
the time of recording was 16.52 ± 7.97 (range: 4–35.5 years).

2.2. EEG Data

An experienced technician recorded 3.5-min eyes-closed resting-state EEG in a sound-
proof electromagnetically shielded room using a 10–20 EEG setup with 20 electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2), where the
electrodes’ locations follow the unipolar 10–20 Jasper registration scheme [41]. All the
recording sessions were scheduled in the morning and the subjects were requested to
avoid smoking and consuming coffee, alcohol and drugs before the session. The signals
were notch filtered at 60 Hz and band-pass filtered between 0.5 Hz and 80 Hz during the
recording and digitalized with the sampling frequency of 204.8 Hz. Figure 1 illustrates an
example of EEG recordings for HC and SCZ.
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2.3. Data Pre-Processing

To minimize the artifacts, we first band-pass-filtered the EEG signal with cut-off fre-
quencies of 0.5 Hz and 50 Hz. We then used the wavelet-enhanced independent component
analysis (wICA) method to detect and remove the components that were contaminated
with the artifacts [42]. wICA uses the wavelet threshold to enhance artifact removal with
independent components analysis and can therefore better recover the neural activities
that are hidden in the artifacts.

2.4. EEG-STE

TE measures the directional information flow between two incidents (data), without
assuming any particular model for them, which is especially relevant for detecting the
direction of information flow for non-linear interactions with unknown structural informa-
tion [28,29]. However, estimating the transition probabilities from raw data is not trivial.
One solution for this issue is STE. STE transforms the raw data with continuous time series
and therefore distribution into symbolic sequences with discretized symbols to simplify the
calculation of probability distributions [35]. Here, we briefly describe the STE procedure.

Consider two random processes X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), where xi
and yi are the ith samples that are obtained from two regions of the brain. Symbolic transfer
entropy (STE) estimates the transfer of information between X and Y with a symbolization
process. In this method, first for a given i, m amplitude values Xi = {xi; xi + d; . . . ; xi + (m−1)d}
are arranged in an ascending order Xa

i ={xi+(ki1−1)d < xi+(ki2−1)d < . . . < xi+(kim−1)d}, where m
is the embedding dimension, which shows the length of the segments in random processes
to be compared, and d is the time delay sample. Xa

i is then transformed into a sequence
of discretized symbols, X̂i = {ki1; ki2 . . . ; kim}, where kij, j = 1, 2, . . . m are the indexes
of original elements of Xa

i . Knowing the two symbol sequences, X̂i and Ŷi, STE is then
calculated as [35].

TS
Y,X = ∑ p(X̂i+t, X̂i, Ŷi) log2

p(X̂i+t
∣∣X̂i, Ŷi)

p(X̂i+t
∣∣X̂i)

, (1)

where p denotes the transition probability density, the sum runs over all symbols and
t denotes a time step. We used the EEGapp pipeline [43] to calculate the STE between
every two electrodes. In this app, firstly, the 3.5-min EEG signal was divided into 21-time
segments of 10 s. Then, for each segment, the STE value was computed for a set of d values
(d = 1:2:30) and the embedding dimension of m = 3. The maximum value of STE is then
selected as the STE between two electrodes, which corresponds to the correct time delay
between them. The average of selected STEs among all 21-time segments is then considered
as the final STE between two electrodes. This results in 380 STE values for each subject,
{STE1,2, STE1,3, STE1,4, . . . .,STE1,20, STE2,1, STE2,3, . . . , STE19,20}, where STEi,j measures the
directed flow of information from the ith to the jth EEG electrode at each frequency band
of δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–50 Hz). Therefore, the total
number of features for all 5 frequency bands is Nc = 380 × 5 = 1900 for each subject.

2.5. Machine Learning

The dataset in this study consists of the STE features for all 132 subjects and their
corresponding labels: label 1 for the 62 SCZs and label 2 for the 70 HCs. MLA employs a
training set consisting of labeled samples from SCZ and HC subjects to the class of subjects.
The most discriminating features, defined as features whose values differ between the SCZ
and HC classes, were identified from a list of candidate features, using various types of
feature selection algorithms. We need this step to avoid over-fitting, which impacts the
classification performance. These selected features then define a feature space. The job of a
classifier is to optimally partition the available training samples into two separate regions
(i.e., an SCZ region and an HC region) in the feature space. The class of a previously unseen
sample can then be determined by extracting the selected features from the sample and
plotting the corresponding point in the feature space. The proximity of each subject’s point,
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in the feature space, to the regions in this feature space occupied by others who are known
to be either SCZ or HC, then determines that subject’s class.

In this study, we used the Relief algorithm [44] for selecting the most discriminating
feature, which is noise-tolerant and robust to feature interactions. The key idea of the
algorithm is to select features according to how their values are similar for the neighboring
samples in the same class and different for the neighboring samples in different classes [44].
One repeatedly noted drawback of the Relief algorithm is that it does not effectively remove
feature redundancies, i.e., it selects features without considering their correlation. However,
unless two features are highly correlated (i.e., redundant), useful information may be lost
when redundant features are removed [45,46]. Furthermore, there is an inverse relationship
between the correlation of EEG electrodes and their distance. In this study, since we used a
low-density EEG set up with just 20 electrodes, the ECs between these electrodes are not
highly correlated due to the long distance between them [47].

We used a newly developed consensus nested cross-validation (CN-CV) approach
to avoid choosing dominant features among a few subjects [48]. CN-CV is an iterative
process, wherein first, the subjects are divided into k (here k = 5) outer folds with the same
number of subjects for each class. Then, at each iteration, one particular fold is considered
as a test fold and all the features associated with that fold are removed from the training
set. The remaining k − 1 folds are then combined and divided into l (here l = 5) inner folds.
Then, at each fold l (here l = 1, 2, . . . , 5), all features with a positive score based on the
Relief algorithm, that are more likely to be relevant to classification, are considered as the
selected features for that fold. Consensus (common) features through all the l folds are
then considered as the feature set for outer fold k. The iterations repeat until all outer folds
have been removed from the training set once. The structure of the CN-CV algorithm is
analogous to the well-known nested CV(N-CV) [49], but unlike N-CV only feature selection
is achieved in each inner fold. This makes the CN-CV algorithm more computationally
efficient than the N-CV method that selects fewer irrelevant features [49]. We then selected
the first Nr features among all the selected features with the CN-CV approach that gives
the highest generalized classification accuracy (averaged accuracy over all k outer folds) as
the final selected features.

The third step is to indicate the class (label) of subjects based on the selected features.
Various types of classifiers are available for classifying biological signals. In this study, we
compare the performance of the five most popular classifiers including Gaussian naïve
Bayes (GNB), linear discriminant analysis (LDA), K-nearest neighbors (KNN), support
vector machine (SVM), and random forests (RF) using MATLAB R2020a. The choice of
these classifiers is based on their effectiveness and simplicity in their implementation. Here,
we briefly describe each method.
(1) Gaussian Naïve Bayes (GNB)

GNB method classifies the new data based on applying Bayes’ theorem with the
“naive” assumption, where the features are assumed to be independent with Gaussian
probability distribution. We used the GNB classifier in our study because of its simplicity
and transparency in machine learning modalities [50].
(2) Linear Discriminant Analysis (LDA)

LDA classifier assumes the data samples in each class have Gaussian distribution and
the covariance matrices for both classes are the same. As a result, the decision boundary is a
linear surface and the LDA predicts the class of a new datum by estimating the probability
that it belongs to each class. The class with higher probability is considered the class for
the new data. Since the discriminant function is linear, LDA may not be suitable for the
non-linearly separable features. Furthermore, this classifier is very sensitive to outliers [51].
(3) K-Nearest Neighbors (KNN)

KNN classifier assigns new data to a specific class if the majority of its k-nearest
neighbors belong to that class within the training set. With a sufficiently high value of
k and enough training data samples, KNN can produce non-linear decision boundaries.
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KNN is sensitive to the feature vector dimension [52]. However, it is efficient when the
dimension of the feature vector is low [53].
(4) Support Vector Machine (SVM)

SVM classifier creates the hyperplanes known as support vectors that maximize the
distance (margin) between the two classes by minimizing the SVM cost function, which
leads to maximizing the classification accuracy [54]. SVM is a widely employed classifier
in EEG data classification (e.g., [15,16,18,20,24]) because of its high generalization power
and relatively good scalability to high-dimensional data.
(5) Random Forests (RF)

RF is an ensemble learning algorithm that combines multiple decision trees at the
training stage and uses the mode of their outputs (the class that appears most often) as
a final class. This powerful learning algorithm first takes N samples with replacement
from the dataset (bootstrapping). It then trains each tree by using a subset of features.
Inserting randomness in building RF, makes it robust to the outliers in the database [55].
This method is also widely used for classification based on EEG data (e.g., [21,22]).

In this study, we considered k = 5 neighbors for the KNN classifier, and Gaussian
radial basis kernel function and the sequential minimal optimization technique [56] for
SVM, and 80 decision trees for RF.

The fourth step is evaluating the classifiers’ performance. Due to the small size of
our data sample, we first used the five outer folds of the CN-CV approach in this step
to obtain an efficient estimate of classifiers’ performances. Then, to further investigate
the performance of the proposed method, we evaluated the classifiers’ performances
with another dataset used in studies [19–23] that contains 14 SCZs (7 males (50%), age:
27.9 ± 3.3 and 7 females (50%), age: 28.3 ± 4.1) and 14 HCs (7 males (50%), age: 26.8 ± 2.9
and 7 females (50%), age: 28.7 ± 3.4 years) collected by the Institute of Psychiatry and
Neurology in Warsaw, Poland [57], which is available online at RepOD [58].

To evaluate the classifiers’ performance, we measured the sensitivity (SCZ prediction
rate or the proportion of SCZs that are correctly identified), specificity (HC prediction rate
or the proportion of HCs that are correctly identified), precision (the proportion of subjects
classified in SCZ class that are correctly identified), total accuracy (the ratio of the total
number of correctly identified SCZs and HCs to the total number of participants), F1-score
(a measure of a test’s accuracy that is calculated from the precision and the sensitivity of
the test, which is a better metric than the total accuracy to evaluate a classifier when an
imbalanced class distribution exists), and the Matthews correlation coefficient (MCC) (a
measure of the quality of binary (two-class) classification) for GNB, LDA, SVM, KNN and
RF classifiers. These evaluation parameters are represented by

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

Total accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2TP

2TP + FP + FN
(6)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

where true positive (TP) is the number of SCZs that are correctly identified, true negative
(TN) is the number of HCs that are correctly identified, false positive (FP) is the number of
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HCs that are misclassified into the SCZ class and false negative (FN) is the number of SCZs
that are misclassified into the HC class.

MCC is more reliable than the F1 score and total accuracy in binary classification
since it produces a high value only if we have high TP and TN rates and low FP and FN
rates [59].

3. Results and Discussion

Using the Relief algorithm, Table 2 shows the Nr = 10 most discriminating features
between SCZ and HC that provided the highest performance, where the second column
of the table indicates the frequency band of the features and the third column shows the
areas of the brain that the EC between them using STE is selected as a discriminating
feature. For example, from the first row of the table, the first feature is the directed EC
from C3 to T3 at θ frequency band. The illustration of these selected features is shown in
Figure 2. The number of features is considerably lower than 106 training samples at each
fold that will prevent over-fitting (the feature to the number of training samples ratio is
10/106 × 100 = 9.43%).

Table 2. The 10 discriminating features between SCZ and HC groups.

Feature # Frequency Band Effective Connectivity Feature

1 θ C3 to T3
2 θ P3 to T3
3 θ P4 to T4
4 θ O1 to Oz
5 θ O1 to O2
6 α O1 to O2
7 β Fp1 to F4
8 β F8 to T4
9 β C3 to T3

10 β O1 to O2
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Figure 2. A rough schematic drawing which shows the selected features by connections (solid thick
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From Table 2, four of the selected features are from the connectivity between the
occipital areas at different frequency bands (features 4–6, 10). The other features are from
left centro–temporal (features 1 and 9), frontal (feature 7), fronto–temporal (feature 8)
and parieto–temporal (features 2 and 3), which were also identified in previous studies.
Several studies verify a significant alteration in these areas and their connection in SCZs
compared to HCs. Here, we briefly describe the outcomes of some of the most recent
studies. Tohid et al. [60] conducted a systematic review that reports the results of the
relevance of schizophrenia to the occipital lobe. They found out there is enough evidence
that supports the concept of a decrease in the volume of the occipital lobe in SCZs. In
another study, Maller et al. [61] showed that the prevalence of occipital bending is nearly
three times higher among SCZs in comparison to HCs. Kawasaki et al. [62] found a
significant decrease in SCZs’ source activities in comparison to HCs, especially in the
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medial frontal area, superior temporal gyrus, and temporo–parietal junction (TPJ) using
the recorded event-related potentials (ERPs) in response to auditory oddball paradigms.
Jalili et al. [63] applied a new form of multivariate synchronization analysis called the
S-estimator to the high-density resting-state EEG data of SCZs and HCs. They revealed
higher synchronization across the left fronto–centro–temporal locations and right fronto–
entro–temporo–parietal locations in SCZs than in HCs. Takahashi et al. [64] found that SCZs
have a greater complexity than HCs in fronto–centro–temporal regions using multiscale
entropy in resting-state EEG activity. Ohi et al. [65] acquired 3T MRI scans from SCZs
and HCs. They revealed that SCZs have significantly smaller bilateral superior temporal
gyrus volumes than HCs. Pu et al. [66] found significantly smaller hemodynamic changes
in SCZs than in HCs in the ventro–lateral prefrontal cortex and the anterior part of the
temporal cortex (VLPFC/aTC) and dorso–lateral prefrontal cortex and frontopolar cortex
(DLPFC/FPC) regions using 52-channel near-infrared spectroscopy (NIRS). Ibáñez-Molina
et al. [67] used the Lempel–Ziv algorithm to assess the complexity of EEG signals in SCZs.
They found a higher complexity in the resting-state EEG signals of SCZs at the right frontal
area. Using a multivariable TE (MTE), Harmah et al. [68] discovered the brain dysfunction
in EC for SCZs in the EEG signals of the oddball task that deteriorated in the parietal and
frontal lobes. These two lobes showed more difference between SCZ and HC even during
mental activity [15]. Kim et al. [25] showed that the most frequently selected features for
classifying the SCZ vs. HC were from the frontal and occipital lobes. Fuentes-Claramontea
et al. [69] used the functional MRI (fMRI) scanning of SCZs and HCs while performing
a task with three conditions of (1) self-reflection; (2) other reflection; and (3) semantic
processing. They showed a connection between alteration in the right TPJ activity and the
disorder in self/other differentiation, which could be associated with psychotic symptoms
of schizophrenia and affect social functioning in these patients.

Most of the selected features are at θ and β frequency bands. An increase in the
first episode and chronic SCZ patients in θ frequency band is one of the most consistent
observations in schizophrenia EEG/ERP studies, which can occur both locally and glob-
ally [70]. Furthermore, the EEG signals of SCZ patients show abnormal synchronization
in β and γ bands, suggesting a crucial role in cognitive deficits and other symptoms of
schizophrenia [71].

Table 3 shows the training and test performance for GNB, LDA, SVM, KNN, and
RF classifiers that averaged over the five CN-CV outer folds. From Table 3, both the
training and test scores are high, ensuring that overfitting has not occurred. Using the
test dataset, the KNN classifier can discriminate SCZ from HC with the highest averaged
total classification accuracy of 96.92%, followed by the RF, GNB, LDA, and SVM classifiers
with total accuracies of 95.47%, 95.44%, 95.44%, and 94.67%, respectively. Comparing the
sensitivity and specificity, GNB has the highest sensitivity of 96.67%, followed by RF, KNN,
SVM, and LDA with sensitivities of 95.12%, 95%, 91.92%, and 88.59% while KNN has the
highest specificity of 98.57%, followed by the SVM, LDA, RF, and GNB with the specificities
of 97.14%, 97.14%, 95.71%, and 94.28%, respectively. With regard to precision, KNN has the
highest value of 98.33%, followed by SVM, LDA, RF, and GNB with precision values of
96.92%, 96.33%, 95.48%, and 93.81%, respectively. Finally, KNN has the highest F1-score
(F1 = 0.97), followed by RF and GNB (F1 = 0.95), SVM (F1 = 0.94), and LDA (F1 = 0.92) and
the highest MCC (MCC = 0.94), followed by RF and GNB (MCC = 0.91), SVM (MCC = 0.90),
and LDA (MCC = 0.86). These high classification accuracies across different classification
algorithms prove that the selected features are highly discriminating between the two
classes.
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Table 3. Classification performance of different classifiers discriminating 62 SCZ from 70 HC subjects
using 5-fold CN-CV.

Classifier Sensitivity Specificity Precision Total Accuracy F1-Score MCC

Training
Performance

GNB 97.97% 95.71% 95.33% 96.78% 0.97 0.94
LDA 91.53% 99.29% 99.12% 96.78% 0.95 0.91
SVM 98.38% 98.93% 98.82% 98.68% 0.99 0.97
KNN 95.56% 98.57% 98.33% 97.15% 0.97 0.94

RF 100% 100% 100% 100% 1 1

Test
Performance

GNB 96.67% 94.28% 93.81% 95.44% 0.95 0.91
LDA 88.59% 97.14% 96.33% 95.44% 0.92 0.86
SVM 91.92% 97.14% 96.92% 94.67% 0.94 0.90
KNN 95.00% 98.57% 98.33% 96.92% 0.97 0.94

RF 95.12% 95.71% 95.48% 95.47% 0.95 0.91
MCC: Matthews correlation coefficient.

For illustrative purposes, Figure 3 shows a scatter plot of the 62 SCZs (blue circles)
and 70 HCs (black crosses), using the kernelized principal component analysis (KPCA)
with the polynomial kernel [72]. From the figure, the SCZ and HC clusters are clearly
separated, which supports the hypothesis of selecting highly discriminating features. It
is worth noting that while the selected features were highly discriminating between the
two classes, no correlation was found between the values of the selected features and the
symptom severity or duration of illness in SCZ class that showed the selected features
were closer to the HC class for patients with less severe symptoms or a shorter duration of
illness.

We then evaluated the performance of the classifiers by using the selected features in
Table 2 from a new dataset available at RepOD [58]. Table 4 shows the performances of
different classifiers discriminating 14 SCZs and 14 HCs from RepOD dataset using 5-fold
CN-CV. From Table 4, the performance of all classifiers is above 90%, whereas the highest
performance belongs to KNN, SVM, and RF classifiers with the sensitivity of 95.71%,
specificity of 100%, precision of 100%, total accuracy of 97.86%, F1-score of 0.98 and MCC
of 0.96. This performance is higher than the performance of studies [19–22], while the new
dataset is not used for the feature selection. This proves again that the selected features are
very discriminating between SCZ and HC.
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Table 4. Classification performance of different classifiers discriminating 14 SCZ from 14 HC subjects
from dataset available at RepOD [58] using 5-fold CN-CV.

Classifier Sensitivity Specificity Precision Total Accuracy F1-Score MCC

GNB 90% 91.43% 91.32% 90.71% 0.90 0.81
LDA 90% 91.43% 91.32% 90.71% 0.90 0.81
SVM 95.71% 100% 100% 97.86% 0.98 0.96
KNN 95.71% 100% 100% 97.86% 0.98 0.96

RF 95.71% 100% 100% 97.86% 0.98 0.96
MCC: Matthews correlation coefficient.

4. Conclusions

In this study, we used STE for the first time to develop an MLA to diagnose schizophre-
nia from resting-state EEG data. Using the relief algorithm, we found a set of 10 discriminat-
ing features that differentiated between SCZ and HC. We then first checked the classification
performance by using 5-fold CN-CV on our dataset (Table 3) and then on a new dataset
available at RepOD [58] (Table 4). From Table 3, the highest accuracy belonged to the
KNN classifier (Sensitivity = 95%, specificity = 98.57%, precision = 98.33%, total accuracy =
96.92%, F1-score = 0.97, and MCC = 0.94) and from Table 4, the highest accuracy belonged
to KNN, SVM, and RF classifiers (Sensitivity = 95.7%, specificity = 100%, precision = 100%,
total accuracy = 97.86%, F1-score = 0.98, and MCC = 0.96).

We note that the performances indicated in Tables 3 and 4 are higher than typical
values obtained from previous studies (Table 1) with a much lower number of features,
and less complexity compared to the studies using deep learning approaches. We argue
that this performance improvement was due to the effectiveness of the STE method that
was employed in the present study. Furthermore, the number of SCZ and HC subjects in
this study is higher than most previous studies [11–23], which can increase the probability
of an accurate diagnosis of schizophrenia.

Finally, the selected features are mostly from the EC of occipital, frontal, parieto–
temporal, and centro–temporal regions that are in accordance with other research studies
related to SCZ. This supports the idea that the proposed MLA can identify features from the
regions that are mainly affected by SCZ and that the STE effective connectivity extracted
from resting-state EEGs could contribute towards a better understanding of the underlying
pathophysiology of schizophrenic illnesses.

While the number of subjects in this study was higher than in most previous studies,
it is recommended that the proposed MLA be trained on a bigger dataset with a higher
number of SCZ and HC subjects in the future to have a more reliable classification perfor-
mance. This proposed MLA also has the potential to be used in differentiating between
various neuropsychiatric disorders such as major depressive disorder (MDD), bipolar
disorder, autism and schizophrenia, as well as predict the response to different treatments
available for these diseases. Thus, further work is required to investigate disease-related
alterations of EC between brain areas in neuropsychiatric disorders and conditions other
than schizophrenia and also the ability to predict the response to different treatments.
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