fj algorithms

Article

Compressed Communication Complexity of Hamming Distance

Shiori Mitsuya 1, Yuto Nakashima !

check for

updates
Citation: Mitsuya, S.; Nakashima, Y.;
Inenaga, S.; Bannai, H.; Takeda, M.
Compressed Communication
Complexity of Hamming Distance.
Algorithms 2021, 14, 116. https://
doi.org/10.3390/a14040116

Academic Editor: Frank Werner

Received: 3 March 2021
Accepted: 31 March 2021
Published: 3 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Shunsuke Inenaga ">*(0, Hideo Bannai 3{” and Masayuki Takeda !

Department of Informatics, Kyushu University, 744, Motooka, Nishiku, Fukuoka 819-0395, Japan;
mitsuya.shiori@inf kyushu-u.ac.jp (5.M.); yuto.nakashima@inf.kyushu-u.acjp (Y.N.);

inenaga@inf kyushu-u.acjp (S.1.); takeda@inf kyushu-u.ac.jp (M.T.)

PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan

3 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; hdbn.dsc@tmd.ac.jp
* Correspondence: inenaga@inf.kyushu-u.ac.jp

Abstract: We consider the communication complexity of the Hamming distance of two strings. Bille
et al. [SPIRE 2018] considered the communication complexity of the longest common prefix (LCP)
problem in the setting where the two parties have their strings in a compressed form, i.e., represented
by the Lempel-Ziv 77 factorization (LZ77) with /without self-references. We present a randomized
public-coin protocol for a joint computation of the Hamming distance of two strings represented by
LZ77 without self-references. Although our scheme is heavily based on Bille et al.’s LCP protocol, our
complexity analysis is original which uses Crochemore’s C-factorization and Rytter’s AVL-grammar.
As a byproduct, we also show that LZ77 with/without self-references are not monotonic in the sense
that their sizes can increase by a factor of 4/3 when a prefix of the string is removed.

Keywords: communication complexity; Hamming distance; Lempel-Ziv compression

1. Introduction

Communication complexity, first introduced by Yao [1], is a well-studied sub-field
of complexity theory which aims at quantifying the total amount of communication (bits)
between the multiple parties who separately hold partial inputs of a function f. The goal
of the k (> 2) parties is to jointly compute the value of f(Xj, ..., Xi), where X; denotes the
partial input that the ith party holds. Communication complexity studies lower bounds
and upper bounds for the communication cost of a joint computation of a function f. Due to
the rapidly increasing amount of distributed computing tasks, communication complexity
has gained its importance in the recent highly digitalized society. This paper deals with
the most basic and common setting where the two parties, Alice and Bob, separately hold
partial inputs A and B and they perform a joint computation of f(A, B) for a function f
following a specified protocol.

We pay our attention to communication complexity of string problems where the
inputs A and B are strings over an alphabet ~. Communication complexity of string
problems has played a critical role in the space lower bound analysis of several streaming
processing problems including Hamming/edit/swap distances [2], pattern matching with
k-mismatches [3], parameterized pattern matching [4], dictionary matching [5], and quasi-
periodicity [6].

Bille et al. [7] were the first to consider the communication complexity of the longest
common prefix (LCP) problem in the setting where the two parties have their strings in a
compressed form, i.e., represented by the Lempel-Ziv 77 factorization (LZ77) [8] with/without
self-references. Bille et al. [7] proposed a randomized public-coin protocol for the LCP
problem with O(log z,) communication rounds and O(log¢) total bits of communication,
where ¢ denotes the length of the LCP of the two strings A and B and z, denotes the size
of the non-self-referencing LZ77 factorization of the LCP A[1../]. In addition, Bille et al. [7]
showed a randomized public-coin protocol for the LCP problem with

Algorithms 2021, 14, 116. https:/ /doi.org/10.3390/a14040116

https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6269-9353
https://orcid.org/0000-0002-1833-010X
https://orcid.org/0000-0002-6856-5185
https://orcid.org/0000-0002-6138-1607
https://doi.org/10.3390/a14040116
https://doi.org/10.3390/a14040116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14040116
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/4/116?type=check_update&version=2

Algorithms 2021, 14, 116

2 0f 8

(i) O(logz + loglog¢) communication rounds and O(log /) total bits of communica-
tion, or

(ii) O(logz)) communication rounds and O(log ¢ + logloglog 1) total bits of communi-
cation,

where zj, denotes the size of the self-referencing LZ77 factorization of the LCP A[1../] and
n=|Al

In this paper, we consider the communication complexity of the Hamming distance of
two strings of equal length, which are represented in a compressed form. We present a
randomized public-coin protocol for a joint computation of the Hamming distance of two
strings represented by non-self-referencing LZ77, with O(dlogz) communication rounds
and O(d log ¢max) total bits of communication, where d is the Hamming distance between
A and B, z is the size of the LZ77 factorization of string A, and ¢max is the largest gap
between two adjacent mismatching positions between A and B (if the first/last characters
of A and B are equal, then we can add terminal symbols as #A$ and $B# and subtract 2
from the computed distance). Although our scheme is heavily based on Bille et al.’s LCP
protocol, our complexity analysis is original which uses Crochemore’s C-factorization [9]
and Rytter’s AVL-grammar [10].

Furthermore, as a byproduct of our result for the Hamming distance problem, we
also show that LZ77 with/without self-references are non-monotonic. For a compression
algorithm A let A(S) denote the size of the compressed representation of string S by A.
We say that compression algorithm A is monotonic if A(S[1..j]) < A(S) forany 1 <j < [§]
and A(S[i..|S]]) < A(S) for any 1 < i < |S]|, and we say it is non-monotonic otherwise. It
is clear that LZ77 with/without self-references satisfy the first property, however, to our
knowledge the second property has not been studied for the LZ77 factorizations. We prove
that LZ77 with/without self-references is non-monotonic by giving a family of strings such
that removing each prefix of length from 1 to \/n increases the number of factors in the
LZ77 factorization by a factor of 4/3, where n denotes the string length. We also show
that in the worst-case the number of factors in the non-self-referencing LZ77 factorization
of any suffix of any string S of length 1 can be larger than that of S by at most a factor of
O(logn).

Monotonicity of compression algorithms and string repetitive measures has gained
recent attention. Lagarde and Perifel [11] showed that Lempel-Ziv 78 compression [12] is
non-monotonic by showing that removing the first character of a string can increase the size
of the compression by a factor of Q)(log n). The recently proposed repetitive measure called
the substring complexity J is known to be monotonic [13]. Kociumaka et al. [13] posed an
open question whether the smallest bidirectional macro scheme size b [14] or the smallest
string attractor size vy [15] is monotonic. It was then answered by Mantaci et al. [16] that «y
is non-monotonic.

2. Preliminaries
2.1. Strings

Let X be an alphabet of size 0. An element of 2.* is called a string. The length of a string
S is denoted by |S|. The empty string ¢ is the string of length 0, namely |e| = 0. The i-th
character of a string S is denoted by S[i] for 1 < i < |S|, and the substring of a string S
that begins at position i and ends at position j is denoted by S[i..j] for 1 <i < j < |S|. For
convenience, let S[i..j] = eif j < i. Substrings S[1..j] and S[i..|S|| are respectively called a
prefix and a suffix of S. For simplicity, let S[..j] denote the prefix of S ending at position j
and S[i..] the suffix S[i..|S|] of S beginning at position i. A suffix S[j..] with j > 11is called a
proper suffix of S.

For string X and Y, let lcp(X, Y) denote the length of the longest common prefix (LCP) of
strings X, Y, namely lcp(X,Y) = max({¢ | X[..{] = Y[..{],1 < ¢ < min{|X|, |Y|}} U{0}).
The Hamming distance dyy (X, Y) of two strings X, Y of equal length is the number of positions
where the underlying characters differ between X and Y, namely dy(X,Y) = |{i | X[i] #
Y[i],1 <i<|X[}].

Algorithms 2021, 14, 116

30f8

2.2. Lempel-Ziv 77 Factorizations

Of many versions of Lempel-Ziv 77 factorization [8] which divide a given string in a
greedy left-to-right manner, the main tool we use is the non-self-referencing LZ77, which is
formally defined as follows:

Definition 1 (Non-self-referencing LZ77 factorization). The non-self-referencing LZ77 fac-

torization of string S, denoted LZN(S), is a factorization S = f - - - f;n that satisfies the fol-

lowing: Let u; denote the beginning position of each factor f; in the factorization fi - - - fon, that

is, uy = |fi--- fial + 1. (D Ifi > 1 and maxq<jcy,{lep(Slu;..], S[j..u; — 1))} > 1, then

for any position s; € arg maxlcp(S|u;..],S[j..u; —1]) in S, let p; = lcp(S[u;..], S[s;..u; — 1]).
1<j<u;

(2) Otherwise, let p; = 0. Then, f; = S|s;..u; + p;| foreach 1 <i < zn.

Intuitively, each factor f; in LZN(S) is either a fresh letter, or the shortest prefix of
fi -+ fzn that does not have a previous occurrence in f; ... f;_1. This means that self-
referencing is not allowed in LZN(S) , namely no previous occurrences S|s;..s; + p;| of each
factor f; can overlap with itself.

The size zn(S) of LZN(S) is the number zn of factors in LZN(S).

We encode each factor f; by a triple (s;, p;, «;) € ([1..n] x [1..n] x X), where s; is the
left-most previous occurrence of f;, p; is the length of f;, and «; is the last character of f;.

Example 1. For S = abaababaabaabaabaabaabb, LZS(S) = a | b | aa | bab | aabaa | baabaab
| aabb | and it can be represented as (0,0,2a),(0,0,b),(1,2,a),(2,3,b),(3,5,2),(7,7,b),
(3,4,b). The size of LZS(S) is 7.

The self-referencing counterpart is defined as follows:

Definition 2 (Self-referencing LZ77 factorization). The self-referencing LZ77 factoriza-

tion of string S, denoted LZS(S), is a factorization S = g1 - - - 55 that satisfies the following:

Let v; denote the beginning position of each factor g; in the factorization g1 - - - gz, that is,

v; = [g1-- &1l +1. (D Ifi > 1and maxi<jy,{lcp(S[v;..],S[j..])} > 1, then for any po-

sition t; € arg maxlcp(S[v;..], S[j..]) in S, let q; = lep(S[v;..], S[t;..]). (2) Otherwise, let q; = 0.
1<j<w;

Then, g; = S[v;..v; + q;] foreach 1 < i < zs.

Intuitively, each factor g; of LZS(S) is either a fresh letter, or the shortest prefix of
Qi - - gzs that does not have a previous occurrence beginning in g - - - g;—1. This means
that self-referencing is allowed in LZS(S), namely the left-most previous occurrence with
smallest t; of each factor g; may overlap with itself.

The size zs(S) of LZS(S) is the number zs of factors in LZS(S).

Likewise, we encode each factor g; by a triple (,q;, B;) € ([1..n] x [1..n] x L), where
t; is the left-most previous occurrence of g;, g; is the length of g;, and B; is the last character

of gi.

Example 2. For S = abaababaabaabaabaabaabb, LZN(S) = a|b| aa|bab | aabaa |
baabaabaabb | and it can be represented as (0,0,a),(0,0,b),(1,2,2),(2,3,b),(3,5,a),
(7,11,b). The size of LZS(S) is 6.

2.3. Communication Complexity Model
Our approach is based on the standard communication complexity model of Yao [1]
between two parties:

® The parties are Alice and Bob;
® The problem is a function f : X x Y — Z for arbitrary sets X, Y, Z;
e Alice has instance x € X and Bob has instance y € Y;

Algorithms 2021, 14, 116

40f8

e The goal of the two parties is to output f(x,y) for a pair (x,y) of instances by a
joint computation;

¢ The joint computation (i.e., the communication between Alice and Bob) follows a
specified protocol P.

The communication complexity [1] usually refers merely to the total amount of bits
that need to be transferred between Alice and Bob to compute f(x,y). In this paper, we
follow Bille et al.’s model [7] where the communication complexity is evaluated by a pair
(r,b) of the number of communication rounds r and the total amount of bits b exchanged
in the communication.

In a (Monte-Carlo) randomized public-coin protocol, each party (Alice/Bob) can access
a shared infinitely long sequence of independent random coin tosses. The requirement
is that the output must be correct for every pair of inputs with probability at least 1 — e
for some 0 < € < 1/2, which is based on the shared random sequence of coin tosses. We
remark that one can amplify the error rate to an arbitrarily small constant by paying a
constant factor penalty in the communication complexity. Please note that the public-coin
model differs from a randomized private-coin model, where in the latter the parties do not
share a common random sequence and they can only use their own random sequence. In a
deterministic protocol, every computation is performed without random sequences.

2.4. Joint Computation of Compressed String Problems

In this paper, we also consider the communication complexity of the Hamming distance
problem between two compressed strings of equal length, which are compressed by LZ77
without self-references.

Problem 1 (Hamming distance with non-self-referencing LZ77).
Alice’s input: LZN(A) for string A of length n.

Bob’s input: LZN(B) for string B of length n.

Goal: Both Alice and Bob obtain the value of dy(A, B).

The following LCP problem for two strings compressed by non-self-referencing LZ77
has been considered by Bille et al. [7].

Problem 2 (LCP with non-self-referencing LZ77).
Alice’s input: LZN(A) for string A.

Bob’s input: LZN(B) for string B.

Goal: Both Alice and Bob obtain the value of Icp(A, B).

Bille et al. proposed the following protocol for a joint computation of the LCP of two
strings compressed by non-self-referencing LZ77:

Theorem 1 ([7]). Suppose that the alphabet % and the length n of string A are known to both
Alice and Bob. Then, there exists a randomized public-coin protocol which solves Problem 2 with
communication complexity (O(logz,),O(log{)), where ¢ = lcp(A, B) and z; = zn(A[1..]).

The basic idea of Bille et al.’s protocol [7] is as follows: In their protocol, the sequences
of factors in the non-self-referencing LZ77 factorizations LZN(A) and LZN(B) are regarded
as strings of respective lengths zn(A) and zn(B) over an alphabet [1..n] x [1..n] x X. Then,
Alice and Bob jointly compute the LCP of LZN(A) and LZN(B), which gives them the first
mismatching factors between LZN(A) and LZN(B). This LCP of LZN(A) and LZN(B) is
computed by a randomized protocol for doubling-then-binary searches with O(logzy)
communication rounds. Finally, Alice sends the information about her first mismatching
factor to Bob, and he internally computes the LCP of A and B. The total number of bits
exchanged is bounded by O(log ¢).

Algorithms 2021, 14, 116

50f8

In Section 3, we present our protocol for Problem 1 of jointly computing the Hamming
distance of two strings compressed by non-self-referencing LZ77. The scheme itself is a
simple application of the LCP protocol of Theorem 1 for non-self-referencing LZ77, but our
communication complexity analysis is based on non-trivial combinatorial properties of
LZ77 factorization which, to our knowledge, were not previously known.

3. Compressed Communication Complexity of Hamming Distance

In this section, we show a Monte-Carlo randomized protocol for Problem 1 that
asks for the Hamming distance diy(A, B) of strings A and B that are compressed by non-
self-referencing LZ77. Our protocol achieves (O(dlogz), O(d1og ¢max)) communication
complexity, where d = dy(A, B), z = zn(A), and fmax is the largest value returned by the
sub-protocol of the LCP problem for two strings compressed by non-self-referencing LZ77.

The basic idea is to apply the so-called Kangaroo jumping method, namely if d is the
number of mismatching positions between A and B, then one can compute d = dy (A, B)
with at most d + 1 LCP queries. More specifically,let 1 <i; < --- < iy < n be the sequence
of mismatching positions between A and B. By using the protocol of Theorem 1 as a black
box, and using the fact that zn(S) > zn(S[1..j]) for any prefix S[1..j] of any string S, we
immediately obtain the following:

Lemma 1. Suppose that the alphabet ¥ and the length n of strings A and B are known to both
Alice and Bob. Then, there exists a randomized public-coin protocol which solves Problem 1
with communication complexity (O(Y4_, logzn(Alix + 1..])),0(d10g fmax)), where Imax =
maxqx<g{ix — ik—1 +1}.

3.1. On the Sizes of Non-Self-Referencing LZ77 Factorization of Suffixes

Our next question is how large the zn(A[ix + 1..]) term in Lemma 1 can be in compari-
son to zn(A). To answer this question, we consider the following general measure: For any
string of length n, let

¢(n) = max{zn(8[i.])/zn(S) | S € =",1 < i < n}.

3.1.1. Lower Bound for ¢ (n)

In this subsection, we present a family of strings S such that zn(S[i..]) > zn(S) for
some suffix S[i..], namely {(n) > 1. More specifically, we show the following:

Lemma 2. {(n) is asymptotically lower bounded by 4/ 3.

Proof. For simplicity, we consider an integer alphabet {0,1,...,0} of size o + 1. Consider
the string

S§=(012---0—1 0)(0124)(012346)(01234568) - - - (012-- -0 — 2 0)
and its proper suffix
S[2.]=(12---0—1 0)(0124)(012346)(01234568) - - - (012--- 0 — 2 0).
The non-self-referencing LZ77 factorization of S and S[2..] are:

LZN(S) = 0]1]2]---|c —1|c|0124 |012346 |01234568 |---|012---0—2 ¢ |
LZN(S[2.]) = 1|2|---|c—1|c|01|24|0123|46]012345|68]---|012---|c—2 0|

Observe that after the first occurrence of character o, each factor of LZN(S) is divided
into two smaller factors in LZN(S[2..]). Since zn(S) = [LZN(S)| = (¢ + 1)+ (§ - 1) = ¥
and zn(S[2..]) = |LZN(S[2.])| = (¢) + (¢ —2) = 20 —2, zn(S[2..])/zn(S) = 22

(30/2)

Algorithms 2021, 14, 116

6 0f 8

% — Z, which tends to 4/3 as ¢ goes to infinity. We finally remark that |S| = n = ©(c?)

which in turn means that o = ©(y/n). O

Remark 1. One can generalize the string S of Lemma 2 by replacing 0 with 0" for arbitrarily
fixed 1 < h < a- o for any constant a. The upper limit a - ¢ comes from the fact that the
number of 0’s in the original string S is exactly §. Since |S| = n = @(c?), replacing 0 by
0" with h < a - o keeps the string length within O(n). This implies that one can obtain the
asymptotic lower bound 4/3 for any suffix S[h..] of length roughly up to n — /n.

Note also that the factorizations shown in Lemma 2 coincide with the self-referencing
counterparts LZS(S) and LZS(S[2..]), respectively. The next corollary immediately follows
from Lemma 2 and Remark 1.

Corollary 1. The Lempel-Ziv 77 factorization with/without self-references is non-monotonic.

3.1.2. Upper Bound for ()

Next, we consider an upper bound for {(n). The tools we use here are the C-
factorization [9] without self-references, and a grammar compression called AV L-grammar [10].

Definition 3 (Non-self-referencing C-factorization). The non-self-referencing C-factorization

of string S, denoted CN(S), is a factorization S = cy - - - ccn that satisfies the following: Let w; de-

note the beginning position of each factor c; in the factorization cq---ccn, that is,

w; = |ep--ciq| + 1 (1) Ifi > 1 and maxq<jy,{lep(S[w;..], S[j.w; — 1))} > 1, then for

any position r; € arg max lep(S[w;..], S[j..w; —1]) in S, let y; = lep(S[w;..], S[ri..w; — 1]) — 1.
1<j<w;

(2) Otherwise, let y; = 0. Then, ¢; = S|w;..w; + y;| foreach 1 < i < cn.

The size cn(S) of CN(S) is the number cn of factors in CN(S).

Example 3. For S = abaababaabaabaabaabaabb, CN(S) = a|b|a | ab | abaab | aaba |
abaabaab | b | and its size is 8.

The difference between LZN(S) and CN(S) is that while each factor f; in LZN(S) is
the shortest prefix of S[u;..] that does not occur in S[1..u; — 1], each factor ¢; in CN(S)
is the longest prefix of S[w;..] that occurs in S[1..w; — 1]. This immediately leads to the
next lemma.

Lemma 3. For any string S, cn(S) > zn(S).
We also use the next lemma in our upper bound analysis for {(n).
Lemma 4. For any string S, cn(S) < 2zn(S).

Proof. Suppose that there are two consecutive factors c;,c;y1 of CN(S) and a factor f;
of LZN(S) such that ¢j,c;;1 are completely contained in f; and the ending position of
ciy1 is less than the ending position of f;. Since c;c;;1 is a substring of f;[..|f;| — 1] and
fil-Ifjl = 1] has a previous occurrence in f - - - f; 1, this contradicts that ¢; terminated
inside f;[..|f;| — 1].

Thus, the only possible case is that ¢;c; 1 occurs as a suffix of f;. Please note that in
this case ¢; 1 cannot occur inside f; by the same reasoning as above. Therefore, at most two
consecutive factors of CN(S) can occur completely inside of each factor of LZN(S). This
leads to cn(S) < 2zn(S). O

An AVL-grammar of a string S is a kind of a straight-line program (SLP), which is a
context-free grammar in the Chomsky-normal form which generates only S. The parse-tree
of the AVL-grammar is an AVL-tree [17] and therefore, its height is O(logn) if n is the
length of S. Let avI(S) denote the size (i.e., the number of productions) in the AVL-grammar

Algorithms 2021, 14, 116

7 of 8

for S. Basically, the AVL-grammar for S is constructed from the C-factorization of S, by
introducing at most O(log) new productions for each factor in the C-factorization. Thus,
the next lemma holds.

Lemma 5 ([10]). For any string S of length n, avl(S) = O(cn(S) logn).
Now we show our upper bound for (n).
Lemma 6. (1) = O(logn).

Proof. Suppose we have two AVL-grammars for strings X and Y of respective sizes avl(X)
and avl(Y). Rytter [10] showed how to build an AVL-grammar for the concatenated string
XY of size avl(X) + avl(Y) + O(h), where h is the height of the taller parse-tree of the two
AVL-grammars before the concatenation. This procedure is based on a folklore algorithm
(cf [18]) that concatenates two given AVL-trees of height # with O(h) node rotations. In the
concatenation procedure of AVL-grammars, O(1) new productions are produced per node
rotation. Therefore, O(h) new productions are produced in the concatenation operation.

Suppose we have the AVL-grammar of a string S of length n. It contains avl(S)
productions and the height of its parse-tree is 1 = O(log n) since an AVL-tree is a balanced
binary tree. For any proper suffix S’ = S[i..] of S with 1 < i < n, we split the AVL-
grammar into two AVL-grammars, one for the prefix S[1..i] and the other for the suffix
S[i..n]. We ignore the former and concentrate on the latter for our analysis. Since split
operations on a given AVL-grammar can be performed in a similar manner to the afore-
mentioned concatenation operations, we have that avl(S’) < avl(S) + alogn for some
constant a > 0. Now it follows from Lemma 3, Lemma 4, Lemma 5, and that the size cn of
the C-factorization of any string is no more than the number of productions in any SLP
generating the same string [10], we have

zn(S") < en(S') < avi(S') < avi(S) +alogn < a’en(S)logn < 2a’zn(S) logn

where a’ > 01is a constant. This gives us zn(S’) /zn(S) = O(logn) for any string S of length
n and any of its proper suffix S’. [

Since the size zn(S) of the non-self-referencing LZ77 factorization of any string S of
length # is at least log 11, the next corollary is immediate from Lemma 6:

Corollary 2. For any string S and its proper suffix S', zn(S") /zn(S) = O(zn(S)).

3.2. Compressed Communication Complexity of Hamming Distance

Now we have the main result of this section.

Theorem 2. Suppose that the alphabet . and the length n of strings A and B are known to
both Alice and Bob. Then, there exists a randomized public-coin protocol which solves Problem 1
with communication complexity (O(dlogzn), O(dlog max)), where zn = zn(A) and lmax =
maxy cg<g{ix —ix-1 +1}.

Proof. The protocol of Lemma 1 has O(Y¢_, log zn(Alix + 1..])) rounds. By Corollary 2, we
have that zn(Ali; +1..]) = O(zn(A)?). Therefore, Y-¢_, log zn(A[ix +1..]) = O(dlogzn(A)),
which proves the theorem. [J

4. Conclusions and Open Questions

This paper showed a randomized public-coin protocol for a joint computation of the
Hamming distance of two compressed strings. Our Hamming distance protocol relies on Bille
et al.’s LCP protocol for two strings that are compressed by non-self-referencing LZ77,

Algorithms 2021, 14, 116 8of8

while our communication complexity analysis is based on new combinatorial properties of
non-self-referencing LZ77 factorization.

As a further research, it would be interesting to consider the communication complex-
ity of the Hamming distance problem using self-referencing LZ77. The main question to this
regard is whether zs(S[i..]) = O(poly(zs(S))) holds for any suffix S[i..] of any string S. In
the case of non-self-referencing LZ77, zn(S[i..]) = O(zn(S)?) holds due to Lemma 2.

Author Contributions: Conceptualization, Y.N, S.I., H.B. and M.T.; methodology, S.M., Y.N., and
S.I.; writing—original draft preparation, S.I.; writing—review and editing, Y.N. and H.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Numbers JP18K18002 (YN), JP20H04141
(HB), JP18H04098 (MT), and JST PRESTO Grant Number JPMJPR1922 (SI).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Yao, A.C. Some Complexity Questions Related to Distributive Computing (Preliminary Report); In Proceedings of the Eleventh Annual
ACM-SIAM Symposium onTheory of computing, Atlanta, Georgia, 30 April — 2 May 1979, Publisher: Association for Computing
Machinery, New York, US; pp. 209-213.

Clifford, R.; Jalsenius, M.; Porat, E.; Sach, B. Space lower bounds for online pattern matching. Theor. Comput. Sci. 2013, 483, 68-74.
[CrossRef]

Radoszewski, J.; Starikovskaya, T. Streaming k-mismatch with error correcting and applications. Inf. Comput. 2020, 271, 104513.
[CrossRef]

Jalsenius, M.; Porat, B.; Sach, B. Parameterized Matching in the Streaming Model. STACS 2013, 400-411. 2013.400. [CrossRef]
Gawrychowski, P; Starikovskaya, T. Streaming Dictionary Matching with Mismatches. In Proceedings of the 30th Annual
Symposium on Combinatorial Pattern Matching (CPM 2019), Pisa, Italy, 18-20 June 2019; pp. 21:1-21:15.

Gawrychowski, P; Radoszewski, J.; Starikovskaya, T. Quasi-Periodicity in Streams. In Proceedings of the 30th Annual Symposium
on Combinatorial Pattern Matching (CPM 2019), Pisa, Italy, 18-20 June 2019; pp. 22:1-22:14.

Bille, P.; Ettienne, M.B.; Grossi, R.; Gertz, L.L.; Rotenberg, E. Compressed Communication Complexity of Longest Common
Prefixes. In International Symposium on String Processing and Information Retrieval, Proceedings of the 25th International Symposium,
SPIRE 2018, Lima, Peru, 9-11 October 2018; Springer: Cham, Switzerland, 2018; pp. 74-87.

Ziv,].; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337-343. [CrossRef]
Crochemore, M. Linear searching for a square in a word. Bull. Eur. Assoc. Theor. Comput. Sci. 1984, 24, 66-72.

Rytter, W. Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci.
2003, 302, 211-222. [CrossRef]

Lagarde, G.; Perifel, S. Lempel-Ziv: A “one-bit catastrophe” but not a tragedy. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7-10 January 2018; pp. 1478-1495.

Ziv,].; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530-536.
[CrossRef]

Kociumaka, T.; Navarro, G.; Prezza, N. Towards a Definitive Measure of Repetitiveness. In Latin American Symposium on
Theoretical Informatics, Proceedings of the 14th Latin American Symposium, Sdo Paulo, Brazil, 5-8 January 2020; Springer: Cham,
Switzerland, 2020; pp. 207-219.

Storer, J.A.; Szymanski, T.G. Data compression via textual substitution. J. ACM 1982, 29, 928-951. [CrossRef]

Kempa, D.; Prezza, N. At the roots of dictionary compression: string attractors. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, Los Angeles, CA, USA, 25-29 June 2018; pp. 827-840.

Mantaci, S.; Restivo, A.; Romana, G.; Rosone, G.; Sciortino, M. A combinatorial view on string attractors. Theor. Comput. Sci. 2021,
850, 236-248. [CrossRef]

Adelson-Velskii, G.; Landis, E. An algorithm for the organization of information. Sov. Math. Dokl. 1962, 3, 1259-1263.

Knuth, D.E. The Art of Computer Programming, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1998; Volume III.

http://doi.org/10.1016/j.tcs.2012.06.012
http://dx.doi.org/10.1016/j.ic.2019.104513
http://dx.doi.org/10.4230/LIPIcs.STACS. 2013.400
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1016/j.tcs.2020.11.006

	Introduction
	Preliminaries
	Strings
	Lempel-Ziv 77 Factorizations
	Communication Complexity Model
	Joint Computation of Compressed String Problems

	Compressed Communication Complexity of Hamming Distance
	On the Sizes of Non-Self-Referencing LZ77 Factorization of Suffixes
	Lower Bound for (n)
	Upper Bound for (n)

	Compressed Communication Complexity of Hamming Distance

	Conclusions and Open Questions
	References

