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Abstract: A grammar-based compressor is an algorithm that receives a word and outputs a context-
free grammar that only produces this word. The approximation ratio for a single input word is the
size of the grammar produced for this word divided by the size of a smallest grammar for this word.
The worst-case approximation ratio of a grammar-based compressor for a given word length is the
largest approximation ratio over all input words of that length. In this work, we study the worst-case
approximation ratio of the algorithms Greedy, RePair and LongestMatch on unary strings, i.e., strings
that only make use of a single symbol. Our main contribution is to show the improved upper bound
of O((log n)8 · (log log n)3) for the worst-case approximation ratio of Greedy. In addition, we also
show the lower bound of 1.34847194 . . . for the worst-case approximation ratio of Greedy, and that
RePair and LongestMatch have a worst-case approximation ratio of log2(3).

Keywords: data compression; grammar-based compression; approximation algorithm; addition chain

1. Introduction

The goal of grammar-based compression is to represent a word w by a small context-
free grammar that produces exactly {w}. Such a grammar is called a straight-line program
(SLP) for w. In the best case, one gets an SLP of size Θ(log n) for a word of length n, where
the size of an SLP is the total length of all right-hand sides of the rules of the grammar.
A grammar-based compressor is an algorithm that produces an SLP for a given word w.
There are various grammar-based compressors that can be found in many places in the
literature. A well-known example is the classic LZ78-compressor of Lempel and Ziv [1].
Although it was not introduced as a grammar-based compressor, it is straightforward to
compute from the LZ78-factorization of w an SLP for w of roughly the same size. Other
examples include BISECTION [2] and SEQUITUR [3]. In this work, we study the global
grammar-based compressors Greedy [4–6], RePair [7] and LongestMatch [8], to which we
will also refer to as global algorithms. Global algorithms are important in practice because
they show excellent compression results in various fields. For example, Greedy is used
in [5] to compress DNA sequences. Among all global algorithms, RePair is probably the
most used one. Examples include compressing web graphs [9], searching compressed
text [10], suffix array compression [11] and compressing XML [12]. A key concept of
global compressors are maximal strings. A maximal string of an SLP A is a word that
has length at least two and occurs at least twice without overlap as a factor of the right-
hand sides of the rules of A. Furthermore, no strictly longer word appears at least as
many times without overlap as a factor of the right-hand sides of A. For an input word
w, a global grammar-based compressor starts with the SLP that has a single rule S → w,
where S is the start nonterminal of the grammar. The SLP is then recursively updated by
choosing a maximal string γ of the current SLP and replacing a maximal set of pairwise
nonoverlapping occurrences of γ by a new nonterminal X. Additionally, a new rule X → γ
is introduced. The algorithm stops when the obtained SLP has no maximal string. In the

Algorithms 2021, 14, 65. https://doi.org/10.3390/a14020065 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14020065
https://doi.org/10.3390/a14020065
https://doi.org/10.3390/a14020065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020065
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/65?type=check_update&version=3


Algorithms 2021, 14, 65 2 of 19

case of Greedy the chosen maximal string minimizes the size of the SLP in each round, while
RePair selects in each round a most frequent maximal string, and LongestMatch chooses
a longest maximal string. Please note that the Greedy algorithm as originally presented
in [4–6] is different from the version studied in this work as well as in [13]: The original
Greedy algorithm only considers the right-hand side of the start rule for the choice and the
replacement of the maximal string. In particular, all other rules do not change after they
are introduced.

In [13] the worst-case approximation ratio of grammar-based compressors is studied.
For a grammar-based compressor C that computes an SLP C(w) for a given word w, one
defines the approximation ratio of C on w as the quotient of the size of C(w) and the size
g(w) of a smallest SLP for w. The approximation ratio αC(n) is the maximal approximation
ratio of C among all words of length n. In [13] the authors provide upper and lower bounds
for the approximation ratios of several grammar-based compressors (among them are
all compressors mentioned so far), but for none of the compressors the lower and upper
bounds match. For LZ78 and BISECTION these gaps were closed in [14]. For all global
algorithms the best upper bound on the approximation ratio isO((n/ log n)2/3) [13], while
the best known lower bounds so far are Ω(log n/ log log n) for RePair [15], Ω(log log n)
for LongestMatch and 5/(3 log3(5)) = 1.137 . . . for Greedy [13]. In general, the achieved
bounds “leave a large gap of understanding surrounding the global algorithms" as the
authors in [13] conclude.

Unary words have the form an for some symbol a and integer n ≥ 1. Grammar-based
compression on unary words is strongly related to the field of addition chains, which
has been studied for decades (see [16] (Chapter 4.6.3) for a survey) and still is an active
topic due to the strong connection to public key cryptosystems (see [17] for a review from
that point of view). An addition chain for an integer n of size m is a sequence of integers
1 = k1, k2, . . . , km = n such that for each d (2 ≤ d ≤ m), there exists i, j (1 ≤ i, j < d) such
that ki + k j = kd. It is straightforward to compute from an addition chain for an integer n
of size m an SLP for an of size 2m− 2. Vice versa, an SLP for an of size m yields an addition
chain for n of size m. Therefore, grammar-based compressors on unary inputs can also be
thought of as addition chain solvers, i.e., algorithms that find a (small) addition chain for a
given integer.

The worst-case approximation ratio for global algorithms is difficult to analyze. A
good starting point is therefore to analyze them on unary words because of their simplicity.
Even though unary words are not interesting to compress, it is still interesting to look at
how global algorithms perform on them. The improved upper bound we show for Greedy
uses unary words and is the first improvement that happened in 15 years.

We show the worst-case approximation ratio of RePair and LongestMatch for unary
words to be log2(3). Both algorithms are basically identical to the binary method that
produces an addition chain for n by creating powers of two using repeated squaring, and
then the integer n is represented as the sum of those powers of two that correspond to a one
in the binary representation of n. Based on that information, we show that for any unary
input w the produced SLPs of RePair and LongestMatch have size at most log2(3) · g(w)
and we also provide a lower bound.

We improve the upper bound for the approximation ratio of Greedy on unary words
to O((log n)8 · (log log n)3). In [18], which is the previous version of this article, the
authors showed an upper bound for the approximation ratio of Greedy of O(n1/4/ log n)
for unary inputs, by only analyzing the first three rounds. Here, we present a more
in-depth analysis that makes use of every round. We can prove that Greedy produces
an SLP of size O((log n)9 · (log log n)3) on input an, which together with the fact that a
smallest SLP for an has size Ω(log n) then yields the improved upper bound ofO((log n)8 ·
(log log n)3). To prove the size bound on the SLP produced by Greedy, we distinguish
unary and nonunary nonterminals. A nonterminal X is called unary if its right-hand side
is of the form X → Zd when it is first introduced. Otherwise, it is nonunary. We bound
the total number of occurrences of all unary and nonunary nonterminals in the grammar
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produced by Greedy separately. For the unary nonterminals, we bound their total number
to be O((log n)9), while each of them contributes a size of O(log log n), which yields a
total size contribution of O((log n)9 · log log n). We then bound the number of occurrences
of nonunary nonterminals using the already established number of unary nonterminals,
which comes out to be O((log n)9 · (log log n)3). Thus, we obtain the desired upper bound
on the size of the grammar.

We also show the lower bound of 1.34847194 . . . for the approximation ratio of Greedy.
The key to achieve this bound is the sequence yk = y2

k−1 + 1 with y0 = 2, which has been

studied in [19] (among other sequences), where it is shown that yk = bγ2kc for γ = 2.258 . . . .
To prove the lower bound, we show that the SLP produced by Greedy on input ayk has size
3 · 2k − 1, while a smallest SLP for ayk has size 3 · log3(γ) · 2k + o(2k) (this follows from a
construction used to prove the lower bound for Greedy in [13]).

This paper is an extended version of our paper published in the proceedings of
SPIRE 2019 [18].

Related Work

One of the first appearances of straight-line programs in the literature are [20,21],
where they are called word chains (since they generalize addition chains from numbers
to words). In [20] it is shown that the function g(k, n) = max{g(w) | w ∈ {1, . . . , k}n}
is in Θ(n/ logk n). Recall that g(w) is the size of a smallest SLP for the word w and
thus g(k, n) measures the worst-case SLP-compression over all words of length n over a
k-letter alphabet.

The smallest grammar problem is the problem of computing a smallest SLP for a
given input word. It is known from [13,22] that in general no grammar-based compressor
can solve the smallest grammar problem in polynomial time unless P = NP. Even worse,
unless P = NP one cannot compute in polynomial time for a given word w an SLP of
size at most 8569

8568 · g(w) [13]. One should mention that the constructions to prove these
hardness results use alphabets of unbounded size. Although in [13] it is remarked that the
construction in [22] works for words over a ternary alphabet, in [23] it is argued that this is
not clear at all and a construction for fixed alphabets of size at least 24 is given. However,
for grammar-based compression on unary strings as studied in this work (as well as for
the problem of computing a smallest addition chain), there is no NP-hardness result, so
there might be an optimal polynomial-time algorithm even though it is widely believed
that there is none.

Other notable systematic investigations of grammar-based compression are provided
in [8,24]. However, in [8], grammar-based compressors are used for universal lossless
compression (in the information-theoretical sense), it is shown in [24] that the size of
so-called irreducible SLPs (that include SLPs produced by global algorithms) can be upper-
bounded by the (unnormalized) k-th order empirical entropy of the produced string plus
some lower order terms.

2. Preliminaries

For i, j ∈ N we write [i, j] = {i, i + 1, . . . , j} for i ≤ j and [i, j] = ∅ otherwise. For
m, n ∈ N we denote by m div n the integer division of m and n. We denote by m mod n the
modulo of m and n, i.e., m mod n ∈ [0, n− 1] and

m = (m div n) · n + (m mod n).

If m/n or m
n is used, then this refers to the standard division over R. Please note that

m div n = bm/nc and (m div n) + (m mod n) ≥ m/n.
An alphabet Σ is a finite set of symbols. For a word or string w = a1 · · · an over Σ with

a1, . . . , an ∈ Σ and n ≥ 0 we write |w| = n to denote w’s length. The set of Σ∗ consists of
all words over Σ and Σ+ = Σ∗ \ {ε}, where ε is the word of length 0. A unary word is a



Algorithms 2021, 14, 65 4 of 19

word of the form an with a ∈ Σ and n ∈ N. All other words w ∈ Σ+ are called nonunary.
For words w, v ∈ Σ+ we say that v is a factor of w if there are x, y ∈ Σ∗ such that w = xvy.

A context-free grammar is a tuple (N, Σ, P, S), where N is the finite set of nonterminals,
Σ is the alphabet with Σ ∩ N = ∅, P is the set of productions of the form X → v, where
X ∈ N and v ∈ (Σ∪ N)+, and S ∈ N is the start symbol. An SLP is a context-free grammar
A = (N, Σ, P, S), where

• every X ∈ N has exactly one production, i.e.,

|{(X → v) ∈ P | v ∈ (Σ ∪ N)+}| = 1, and

• the relation {(A, B) ∈ N × N | (A→ v) ∈ P, B occurs in v} is acyclic.

This way, for every X ∈ N there exists a unique word w ∈ Σ+ with X →+ w. We say
that A produces w if S→+ w. Please note that some authors require SLPs to be in Chomsky
Normal Form (CNF), i.e., every production is of the form A → BC, where B, C ∈ N or
A→ a, where a ∈ Σ. We do not make this assumption here because, in general, grammar-
based compressors produce SLPs that are not in CNF. Furthermore, every SLP can easily
be transformed into an SLP that is in CNF, produces the same word and has roughly the
same size. A grammar-based compressor C is an algorithm that given an input w ∈ Σ+

outputs an SLP A that produces w. The size of an SLP is defined as |A| = ∑(X→v)∈P|v|. For
a word w ∈ Σ+ we write g(w) for the size of a smallest SLP that produces w. The worst-case
approximation ratio αC(k, n) of C is the maximal approximation ratio over all words of length
n over an alphabet of size k:

αC(k, n) = max
{
|C(w)|
g(w)

| w ∈ [1, k]n
}

.

For a given SLP A, a word γ is called a maximal string of A if

• |γ| ≥ 2,
• γ appears at least twice without overlap as a factor of the right-hand sides,
• and no strictly longer word appears at least as many times as a factor of the right-hand

sides without overlap.

Example 1. Let A = ({S, X, Y, Z}, {a, b}, P, S) such that P contains

• S→ aXXXXbbYZYZ,
• X → YbbYZYZa,
• Y → bbbZZaZ, and
• Z → abb.

The maximal strings of A are bb, YZ and bbYZYZ. The factors bb and YZ occur four times
on the right-hand sides without overlap and bbYZYZ occurs twice without overlap.

A global grammar-based compressor (or simply global algorithm) starts on input w with the
SLP A0 = ({S}, Σ, {S→ w}, S). In each round i ≥ 1, the algorithm selects a maximal string
γ of Ai−1 and updates Ai−1 to Ai by replacing a largest set of pairwise nonoverlapping
occurrences of γ in Ai−1 by a new nonterminal X. Additionally, the algorithm introduces
the rule X → γ in Ai. The algorithm stops when no maximal string occurs. Please note that
the replacement is not unique, e.g., the word a5 has a unique maximal string γ = aa, which
yields SLPs with rules S → XXa, X → aa or S → XaX, X → aa or S → aXX, X → aa.
We assume the first variant here, i.e., maximal strings are replaced from left to right. The
compressor Greedy that we study in this work chooses a maximal string in each round i ≥ 1
such that the size of Ai is minimal.

Example 2 (Greedy). Let w = aaaaabbababbbaaabb. We have

A0 : S→ aaaaabbababbbaaabb,
A1 : S→ aaaaXabXbaaX, X → abb,
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A2 : S→ YYXabXbYX, X → abb, Y → aa,
A3 : S→ YYXZXbYX, X → Zb, Y → aa, Z → ab,
A4 : S→ YAZXbA, X → Zb, Y → aa, Z → ab, A→ YX.

Please note that in the first round, instead of the maximal string abb the algorithm could also
choose the maximal string aaabb, because both choices yield SLPs of minimal size 15. In the second
round, instead of aa the algorithm could also choose aaX, because both choices yield SLPs of size
14. Finally, the order of the choices ab (round 3) and YX (round 4) could be swapped because both
choices yield SLPs of unchanged size 14.

The following lemma from [13] provides a lower bound on the size of an SLP for a
word of length n.

Lemma 1 ([13] (Lemma 1)). For every word w ∈ Σ+ of length n, we have g(w) ≥ 3 log3(n)− 3.

3. Upper Bound for Greedy

To show our improved upper bound for the approximation ratio of Greedy on unary
words, we are first going to prove that the size of the SLP produced by Greedy for the input
an is upper-bounded by O((log n)9 · (log log n)3.

Proposition 1. For all n, we have

|Greedy(an)| ∈ O((log n)9 · (log log n)3).

First, we need to prove several lemmas that are fulfilled for any global algorithm.
When we apply specific arguments to Greedy, we draw attention to it. For better readability,
we will use X0 = a, i.e., the input is Xn

0 . Furthermore, let Ai = (Ni, {X0}, Pi, S) be the SLP
obtained by the global algorithm on input Xn

0 after i rounds. Please note that until the
algorithm stops, we have |Ni \ {S}| = i since exactly one new nonterminal is introduced
in each round. If we quantify over the rounds of the algorithm, we always implicitly mean
that the statements hold until the algorithm stops. If i is mentioned without a quantification,
then the statement holds for any Ai constructed after some round i of the algorithm.

Lemma 2. For every i, there is a fixed order Xi > Xi−1 > · · · > X1 of the nonterminals in
Ni \ {S} such that every right-hand side of a rule (X → v) ∈ Pi satisfies

v ∈ X∗i X∗i−1 · · ·X∗1 X∗0 .

Proof. We prove this property by induction. Initially, the property holds for the SLP A0
since N0 \ {S} = ∅ and the only rule S→ Xn

0 satisfies Xn
0 ∈ X∗0 . Now assume the claim is

true for Ai, i.e., each right-hand side of a rule in Pi is a word from X∗i X∗i−1 · · ·X∗1 X∗0 . Please
note that any nonempty factor of such a right-hand side is a word from X∗k · · ·X

∗
j+1X+

j for
some i ≥ k > j ≥ 0. Therefore, assume the global algorithm chooses a maximal string
γ ∈ X∗k · · ·X

∗
j+1X+

j in round i + 1 and (X → γ) ∈ Pi+1 is the corresponding new rule. We
show that v ∈ X∗i X∗i−1 · · ·X∗X∗j · · ·X∗1 X∗0 for all rules (Y → v) ∈ Pi+1, i.e., the order of the
nonterminals after round i + 1 is obtained by inserting the new nonterminal X directly
before Xj in the previous order. First, this is obviously true for the new rule X → γ as well
as for all rules that have not been modified during round i + 1. It remains to check the
rules (Y → v) ∈ Pi+1 that are obtained from a rule (Y → v′) ∈ Pi by replacing a largest set
of pairwise nonoverlapping occurrences of γ in v′ by the new nonterminal X. If γ = Xd

j

(d ≥ 2) is unary and X`
j is the single maximal Xj-block that occurs in v′, then replacing

occurrences of γ from left to right yields X` div dX` mod d
j as the new maximal blocks of X

and Xj in w. It follows that v ∈ X∗i X∗i−1 · · ·X∗X∗j · · ·X∗1 X∗0 . If otherwise γ is not a unary
word, i.e., γ ∈ X+

k · · ·X
∗
j+1X+

j for i ≥ k > j ≥ 0, then v′ has exactly one occurrence of γ as



Algorithms 2021, 14, 65 6 of 19

a factor. It follows that v ∈ X∗i X∗i−1 · · ·X∗k XX∗j · · ·X∗1 X∗0 and thus v satisfies the claim. This
finishes the induction.

In other words, there is at most one maximal block for each symbol on each right-hand
side and the order of these blocks is the same for all rules. Similar to the case distinction
in the last steps of the proof of Lemma 2, we will distinguish two types of nonterminals.
Let X → γ be the introduced rule in some round of the algorithm. If γ is unary, then we
call X a unary nonterminal. Otherwise, we call X nonunary. We categorize X0 as a unary
nonterminal, although formally X0 is not a nonterminal. Please note that the type of a
nonterminal is decided when it is introduced and does not change later, i.e., even if the
right-hand side of a unary nonterminal becomes nonunary during the execution of the
algorithm, the type of the nonterminal stays the same. Our strategy to prove Theorem 1 is to
bound the total number of occurrences of unary nonterminals and nonunary nonterminals
on right-hand sides independently. It follows from Lemma 2 that every factor that occurs
more than once on the right-hand side of a single rule is unary. The following lemma is a
direct consequence of that fact.

Lemma 3. Every nonunary nonterminal occurs at most once on the right-hand side of each rule at
any time of the algorithm.

Corollary 1. If a unary nonterminal X is introduced and X → Zd with d ≥ 2 is the corresponding
rule for X, then Z is a unary nonterminal.

Next, we bound the number of rules that contain a unary nonterminal X on the right-
hand side. For a nonterminal X, including X0, let #i(X) be the number of rules of Ai where
X occurs on the right-hand side, or more formally

#i(X) = |{(Y → v) ∈ Pi | X occurs in v}|.

The next two lemmas describe how #i evolves depending on the type of the intro-
duced nonterminal.

Lemma 4. If a nonunary nonterminal X is introduced in some round i + 1, then for every X′ 6= X
(including X0), we have #i+1(X′) ≤ #i(X′).

Proof. To prove this point, we use that all rules (Y → v) ∈ Pi satisfy v ∈ X∗i X∗i−1 · · ·X∗1 X∗0
(Lemma 2). Since X is nonunary, the chosen maximal string γ satisfies γ ∈ X+

k · · ·X
∗
j+1X+

j
for i ≥ k > j ≥ 0. If a nonterminal X′ does not occur in γ, then #i+1(X′) = #i(X′). So,
assume the nonterminal X′ occurs in γ, i.e., X′ = Xt for t ∈ [j, k]. Note first that Xt occurs
on the right-hand side of the new rule (X → γ) ∈ Pi+1. It follows that to prove the claimed
result, we must show that for at least one rule (Y → v) ∈ Pi such that Xt occurs in v, all
occurrences of Xt must disappear, i.e., Xt does not occur in v′ for (Y → v′) ∈ Pi+1. Let

M = {Y ∈ Ni | (Y → v) ∈ Pi and γ is a factor of v} ⊆ Ni

be the set of nonterminals of Ai where the corresponding rule is modified in round i + 1.
Please note that |M| ≥ 2 since a maximal string occurs at least twice on all right-hand sides
and γ occurs at most once as factor of each rule since X is nonunary (Lemma 3). If k < t < j
then for all Y ∈ M and (Y → v′) ∈ Pi+1, the nonterminal Xt does not occur in v′ anymore
since the complete Xt-block (among other symbols) has been replaced. This means that
#i+1(Xt) < #i(Xt) since one new rule contains Xt on the right-hand side, while for at least
two rules the occurrences of Xt have been removed in round i + 1. If otherwise t = k or
t = j, then the same argument fails since for Y ∈ M and (Y → v′) ∈ Pi+1, the right-hand
side v′ could still contain Xt since it is not necessarily true that the complete Xt-block has
been replaced. However, due to the properties of a maximal string, we show that Xt does
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not occur in v′ for at least one Y ∈ M and (Y → v′) ∈ Pi+1. Towards a contradiction,
assume Xt occurs in v′ for all Y ∈ M and (Y → v′) ∈ Pi+1. This means that for all Y ∈ M
and (Y → v) ∈ Pi, the length of the maximal Xt-block that occurs in v is strictly larger than
the length of the maximal Xt-block that occurs in γ. If t = k, it follows that Xkγ is a factor
of v for all Y ∈ M and (Y → v) ∈ Pi, and symmetrically, if t = j then γXj is a factor of v for
all Y ∈ M and (Y → v) ∈ Pi. This contradicts the property that no strictly longer string
than γ occurs at least as often on the right-hand sides of the rules. It follows that in this
case #i+1(Xt) ≤ #i(Xt), which finishes the proof.

Lemma 5. If a unary nonterminal X is introduced in some round i + 1 and X → Zd with d ≥ 2
is the corresponding rule, then #i+1(X) ≤ #i(Z) and #i+1(Z) ≤ #i(Z) + 1.

Proof. Both points are straightforward: A rule (Y → v) ∈ Pi+1 only contains X on the
right-hand side if Zd is a factor of v′ for (Y → v′) ∈ Pi, which shows that #i+1(X) ≤ #i(Z).
For the second point, note that if (Y → v) ∈ Pi does not contain Z on the right-hand side,
then the same is true for (the unchanged rule) (Y → v) ∈ Pi+1. The only rule where Z
occurs new is the new rule X → Zd, and thus #i+1(Z) ≤ #i(Z) + 1.

So far, we have shown that when a unary nonterminal X is introduced and X → Zd

with d ≥ 2 is the corresponding rule, then Z is a unary nonterminal as well (Corollary 1).
Furthermore, we argued that introducing a nonunary nonterminal does not increase the
number of rules where a unary nonterminal occurs on the right-hand side (Lemma 4).
It follows that we can upper-bound the number of unary nonterminals and the num-
ber of rules where those nonterminals occur on right-hand sides independently of the
nonunary nonterminals.

To do so, we inductively define a binary tree Ti that describes how the unary nonter-
minals evolve until Ai is reached. All nodes in the tree are labeled with (X, k), where X is a
unary nonterminal and k is an upper bound on #j(X) for some j.

(1) Initially, the tree T0 only contains a single node that is labeled with (X0, 1).
(2) If a rule X → Zd is introduced in round i + 1 for some d ≥ 2, then we update Ti to

Ti+1 by adding two children to the unique leaf that is labeled with (Z, k) for some k.
The new left child is labeled with (Z, k + 1) and the new right child is labeled with
(X, k) as depicted on the left of Figure 1.

(3) If otherwise a nonunary nonterminal is introduced in round i + 1, then Ti+1 = Ti,
i.e., nonunary nonterminals are ignored.

The initial tree T0 reflects that the only unary nonterminal of A0 is X0 and #0(X0) = 1.
If the tree is modified according to point (2) of the definition, this refers to Lemma 5,
where #i+1(X) ≤ #i(Z) and #i+1(Z) ≤ #i(Z) + 1 is shown when a rule X → Zd for d ≥ 2
is introduced.

The level of a node is the length of the path from the node to the root. For a unary
nonterminal X ∈ Ni, we denote by leveli(X) the level of the unique leaf of Ti that is labeled
with (X, k) for some k.

Example 3. Assume that the first three rules introduced by a global algorithm are X2 → Xd1
0 in

the first round, X1 → Xd2
0 in the second round and X3 → Xd3

2 in the third round for d1, d2, d3 ≥ 2.
The tree T3 that corresponds to this introduced rules is depicted on the right of Figure 1. The indices
for the introduced nonterminals are chosen such that the ordering of the nonterminals in N3 \ {S}
(see Lemma 2) is X3 > X2 > X1, i.e., all right-hand sides of rules are contained in X∗3 X∗2 X∗1 X∗0 .
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The corresponding SLPs A0, A1, A2 and A3 are depicted next, where we simply use ∗ instead of the
exact exponents of the symbols due to better readability.

A0 : S → X∗0 A2 : S → X∗2 X∗1 X∗0 A3 : S → X∗3 X∗2 X∗1 X∗0
A1 : S → X∗2 X∗0 X2 → X∗1 X∗0 X2 → X∗1 X∗0

X2 → X∗0 X1 → X∗0 X1 → X∗0
X3 → X∗2

Please note that in this example, we have #3(X0) ≤ 3, #3(X2) ≤ 2, #3(X1) ≤ 2 and
#3(X3) ≤ 1, which is exactly the information contained in the second components of the leaf labels
in T3. Furthermore, we have level3(Xi) = 2 for i ∈ [0, 3] in this example.

(Z, k)

(Z, k + 1) (X, k)

(X0, 1)

(X0, 2)

(X0, 3) (X1, 2)

(X2, 1)

(X2, 2) (X3, 1)

Figure 1. On the left, the general pattern that is applied during the construction of Ti is illustrated,
where the split refers to a rule X → Zd that has been introduced by the global algorithm. On the
right, the tree T3 that corresponds to the introduced rules of Example 3 is shown.

The following lemma is a direct consequence of the fact that the maximal k that
occurs for some label (X, k) is incremented from one level to the next level (as described in
Lemma 5).

Lemma 6. For each node of Ti at level m that is labeled with (X, k) for some unary nonterminal
X ∈ Ni, we have k ≤ m + 1. Also, let X ∈ Ni be a unary nonterminal. Then we have
#i(X) ≤ leveli(X) + 1.

So far, we provided information about the number of rules where a unary nonterminal
occurs. Next, we move on to the total number of occurrences of a unary nonterminal on all
right-hand sides. We denote by ti(X) the total number of occurrences of X on right-hand
sides of rules in Ai. We have #i(X) ≤ ti(X) by the definition of both functions and for a
nonunary nonterminal X, we have #i(X) = ti(X) due to Lemma 3.

Lemma 7. Let X → γ be the rule that is introduced in some round i + 1 and let M = {Y ∈ Ni |
Y occurs in γ}. We have

(1) ti+1(Y) ≤ ti(Y) for all Y ∈ Ni = Ni+1 \ {X}, and
(2) ∑Y∈M ti+1(Y) + ti+1(X) ≤ ∑Y∈M ti(Y).

Proof. Point (1) is straightforward: For Y ∈ M let Y` be the maximal Y-block that occurs
as a factor in γ for some ` ≥ 1 . Replacing γ on right-hand sides yields that at least two
occurrences of Y` are eliminated while only Y` is added as a part of the new rule X → γ. If
otherwise Y /∈ M, then ti+1(Y) = ti(Y) because the occurrences of Y are not affected by
the new rule.

Point (2) is also based on a simple observation. Please note that ∑Y∈M ti(Y) de-
scribes the part of the SLP Ai that is affected by the replacement of γ in round i + 1,
and ∑Y∈M ti+1(Y) + ti+1(X) is the size of that part in Ai+1 after the occurrences of γ are
replaced by X plus the new occurrences in the introduced rule. All other parts of Ai
are not affected by the new rule. Now the properties of a maximal string ensure that
|Ai+1| ≤ |Ai|. The extreme case where γ has length two and occurs only twice without
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overlap on the right-hand sides of rules in Ai satisfies |Ai+1| = |Ai|. All other cases even
satisfy |Ai+1| < |Ai|. Point (2) directly follows.

Our next goal is to bound ti(X) depending on leveli(X) for a unary nonterminal X. To
do so, we now apply arguments specific to Greedy. Recall that Greedy selects a maximal
string that minimizes the size of the obtained SLP in each round.

Lemma 8. Let Z ∈ Ni ∪ {X0} be a unary nonterminal and assume a rule X → Zd for some
d ≥ 2 is introduced by Greedy in round i + 1. We have

ti+1(X) + ti+1(Z) ≤ 2
√

ti(Z)
√

#i(Z) + 1 + 1.

Proof. If a unary nonterminal X and a rule X → Zd with d ≥ 2 are introduced in round
i+ 1, then the choice of d only depends on the maximal Z-blocks occurring on all right-hand
sides of rules in Ai since the remaining part of Ai does not change. Assume that #i(Z) = k
and let `1, . . . , `k be the lengths of the maximal Z-blocks occurring on right-hand sides of
Ai, i.e., ∑k

j=1 `j = ti(Z). Then Greedy minimizes ti+1(X) + ti+1(Z) = d + ∑k
j=1(`j div d) +

(`j mod d), where d is the size of the new rule X → Zd and for each j ∈ [1, k] a maximal
block Z`j on the right-hand side of a rule in Ai is transformed into X`j div dZ`j mod d. Due to
the greedy nature of the algorithm, the following equation holds for all d ≥ 1:

ti+1(X) + ti+1(Z) ≤ d +
k

∑
j=1

(`j div d) + (`j mod d)

≤ d +
k

∑
j=1

`j

d
+ k(d− 1)

= d +
ti(Z)

d
+ k(d− 1).

Please note that the chosen maximal string has length at least 2, but the upper bound
also holds for d = 1 since in this case we have ti+1(X) + ti+1(Z) ≤ ti(Z) due to Lemma 7
(point (2)). If we apply d =

⌈√
ti(Z)/

√
k + 1

⌉
, we get

ti+1(X) + ti+1(Z) ≤
⌈√

ti(Z)√
k + 1

⌉
+

ti(Z)⌈√
ti(Z)√
k+1

⌉ + k

(⌈√
ti(Z)√
k + 1

⌉
− 1

)

≤
√

ti(Z)√
k + 1

+ 1 +
ti(Z)√

ti(Z)√
k+1

+ k

(√
ti(Z)√
k + 1

)

= (k + 1)

√
ti(Z)√
k + 1

+
ti(Z) ·

√
k + 1√

ti(Z)
+ 1

= 2
√

ti(Z)
√

k + 1 + 1.

Together with k = #i(Z) this proves the lemma.

The following lemma is essential for the proof of Theorem 1 since we bound the total
number of occurrences of a unary nonterminal depending on its level.

Lemma 9. Let X ∈ Ni ∪ {X0} be a unary nonterminal with leveli(X) = m. We have

ti(X) ≤ 22−21−m
n2−m

m

∏
j=1

(m + 2− j)2−j
. (1)
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Proof. We prove the lemma by induction on m = leveli(X) and we start with m = 0. The
only SLP Ai that contains a unary nonterminal X such that leveli(X) = 0 is the initial SLP
A0 and the unary nonterminal is X = X0. Please note that the maximal string γ chosen
by any global algorithm in the first round on input Xn

0 trivially satisfies γ ∈ X∗0 and thus
the two unary nonterminals of A1 have level one. We have t0(X0) = n and this is exactly
what we obtain when m = 0 is used on the right side of Equation (1) (the empty product is
considered to be 1).

Now assume any unary nonterminal that has level m satisfies the claimed bound and
we consider a unary nonterminal X such that leveli(X) = m + 1 > 0 for some i. It follows
from the definition that there is a leaf node at level m + 1 in Ti that is labeled with (X, k)
for some k. There are two cases that need to be distinguished. Either this leaf is a left child
or a right child of its parent node. Assume that (X, k) is the label of a right child and let
(Z, k + 1) be the label of the left sibling of that node. To prove both cases simultaneously,
we prove the upper bound for X and for Z, i.e., we use Z to cover the second case where
the node is a left child. The parent node of (Z, k + 1) and (X, k) is labeled with (Z, k) (see
Figure 1 on the left). Let i′ < i be the maximal i′ such that leveli′(Z) = m, i.e., X → Zd for
d ≥ 2 is the introduced rule in round i′ + 1 and (Z, k) is the label of a leaf at level m in
Ti′ . By induction, we have ti′(Z) ≤ 22−21−m

n2−m
∏m

j=1(m + 2− j)2−j
. Now by Lemma 8, we

have
ti′+1(X) + ti′+1(Z) ≤ 2

√
ti′(Z)

√
#i′(Z) + 1 + 1.

Together with #i′(Z) ≤ m + 1 (Lemma 6), this yields

ti′+1(X) + ti′+1(Z) ≤ 2

(
22−21−m

n2−m
m

∏
j=1

(m + 2− j)2−j

) 1
2

(m + 2)
1
2 + 1

= 22−2−m
n2−m−1

m

∏
j=1

(m + 2− j)2−j−1
(m + 2)2−1

+ 1

= 22−2−m
n2−m−1

m+1

∏
j=2

(m + 2− j + 1)2−j
(m + 2)2−1

+ 1

= 22−2−m
n2−m−1

m+1

∏
j=1

(m + 2− j + 1)2−j
+ 1.

Using the fact that ti′+1(X) ≥ 2 (there are at least two nonoverlapping occurrences of a
maximal string) and ti′+1(Z) ≥ 2 (the new rule contains Z at least twice) yields the claimed
upper bound on ti′+1(X) and ti′+1(Z). Finally, this upper bound holds for i ≥ i′ + 1 due to
Lemma 7 (point (1)).

Corollary 2. Let X ∈ Ni ∪ {X0} be a unary nonterminal with leveli(X) = m. We have

ti(X) ≤ 4n2−m
(m + 2).

Proof. Please note that 22−2−m ≤ 4 for all m ≥ 0. We upper-bound the right side of
Equation (1) (Lemma 9) as follows:

22−21−m
n2−m

m

∏
j=1

(m + 2− j)2−j ≤ 4n2−m
m

∏
j=1

(m + 2)2−j

= 4n2−m
(m + 2)∑m

j=1 2−j

≤ 4n2−m
(m + 2)
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What we achieved so far is to bound the total size ti(X) that a unary nonterminal X
contributes on right-hand sides of the rules depending on leveli(X). Next, we bound the
size that nonunary nonterminals contribute to |Ai| depending on the levels of all unary
nonterminals. To do so, we need the following definitions. Let Ri(X) be the number
of distinct right neighbors of X (which are not equal to X) on right-hand sides plus the
number of occurrences of X as the last symbol of a right-hand side in Ai, i.e.,

Ri(X) = |{A ∈ Ni ∪ {X0} | A 6= X, XA occurs on a right-hand side in Ai}|
+ |{(Y → vX) ∈ Pi | Y ∈ Ni, v ∈ (Ni ∪ {X0})∗}|.

Let Li(X) be the number of distinct left neighbors of X (which are not equal to X) on
right-hand sides plus the number of occurrences of X as the first symbol of a right-hand
side in Ai, i.e.,

Li(X) = |{A ∈ Ni ∪ {X0} | A 6= X, AX occurs on a right-hand side in Ai}|
+ |{(Y → Xv) ∈ Pi | Y ∈ Ni, v ∈ (Ni ∪ {X0})∗}|.

Also, let fi(X) = #i(X)− Ri(X) and gi(X) = #i(X)− Li(X). Please note that Ri(X) ≤
#i(X) and Li(X) ≤ #i(X) since for each right-hand side of a rule there is at most one right
(respectively, left) neighbor A 6= X for some occurrence of X due to Lemma 2 and each
right-hand side can contain X at most once as the last (respectively, first) symbol. Also,
#i(X) = Ri(X) means that all maximal X-blocks on right-hand sides are either at the end
of the right-hand side or are followed by a distinct symbol. Similarly, #i(X) = Li(X)
means that all maximal X-blocks on right-hand sides are either at the beginning of the
right-hand side or are preceded by a distinct symbol. The following lemmas describe how
the functions fi(X) and gi(X) evolve.

Lemma 10. If X ∈ Ni ∪ {X0} then fi+1(X) ≤ fi(X). If a nonunary, maximal string γ = Xv is
selected in round i + 1 for some v ∈ (Ni ∪ {X0})+, then fi+1(X) < fi(X).

Proof. Let Y → γ be the introduced rule in round i + 1. If X does not occur in γ, then it is
straightforward to see that fi+1(X) ≤ fi(X) since #i+1(X) = #i(X) and Ri+1(X) ≥ Ri(X).
The new nonterminal Y could be a new right neighbor for some occurrences of X, but
all occurrences of X which have this new right neighbor Y in Ai+1 shared the same right
neighbor in Ai (the first symbol of γ).

If otherwise X occurs in γ, then first assume that γ = Xd for some d ≥ 2. Please note
that replacing an occurrence of γ on the right-hand side of a rule (Z → u) ∈ Pi either
removes all occurrences of X on this right-hand side (in case u contains a maximal X-block
of length k · d for some integer k ≥ 1) or the right neighbor of the maximal X-block in u
does not change in the modified rule (Z → u′) ∈ Pi+1 since occurrences of γ are replaced
from left to right. It follows that the only way to obtain Ri+1(X) < Ri(X) is to remove
all occurrences of X on a right-hand side, but then #i(X) decreases by the same value.
Additionally, the new rule Y → Xd adds a new right-hand side to #i+1(X), but since X
is the last symbol on this right-hand side it follows that Ri+1(X) is incremented as well.
Together this yields fi+1(X) ≤ fi(X) in this case.

The case remains where γ is nonunary and X occurs in γ. Here, we have #i+1(X) ≤
#i(X) due to Lemma 4 and γ occurs at most once on each right-hand side due to Lemma 2.
However, again, the only way to reduce Ri+1(X) compared to Ri(X) is to remove all
occurrences of X on a right-hand side, but then again #i+1(X) decreases by the same value.
This yields fi+1(X) ≤ fi(X).

Assume now that a nonunary, maximal string γ = Xv for some v ∈ (Ni ∪ {X0})+ is
selected in round i + 1. We show that fi+1(X) < fi(X). If X only occurs in the new rule in
Ai+1 after occurrences of γ are replaced on all right-hand sides in Ai, i.e., all modified rules
do not contain X anymore, then #i+1(X) < #i(X) because at least two right-hand sides do
not contain X as a factor anymore while only the new rule Y → γ adds a new right-hand
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side which contains X to #i+1(X). Also, we have Ri+1(X) = Ri(X) in this case and thus
fi+1(X) < fi(X) because all rules where the maximal X-block is removed shared the same
right neighbor due to the fact that γ = Xv is the chosen maximal string. However, Xv still
occurs in the new rule of Ai+1 and thus Ri+1(X) = Ri(X). If otherwise at least one of the
modified rules still contains X on the right-hand side, then XY is a factor of this right-hand
side in Ai+1 after the replacement of γ. It follows that Ri+1(X) > Ri(X) in this case and
thus fi+1(X) < fi(X) because each distinct right neighbor of X in Ai is still a right neighbor
of X in Ai+1 as argued above, but additionally XY is new since Y is a new nonterminal.

The same result does not hold for gi(X). In particular, gi+1(X) > gi(X) is possible
when a rule Y → Xd is introduced in round i + 1 for some d ≥ 2 due to the assumption
that global algorithms replace occurrences of the maximal string from left to right. For
example, assume that AX4, BX7 and CX10 are the maximal X-blocks on right-hand sides
of Ai including distinct left neighbors for each X-block (A, B and C). Therefore, we have
#i(X) = 3, Li(X) = 3 and thus gi(X) = 0 in this example. If now a rule Y → X3 is
introduced, then this yields AYX, BY2X and CY3X after replacing X3. Hence we have
#i+1(X) = 4, Li+1(X) = 2 and thus gi+1(X) = 2. We show in the following lemma that
this is the only case where gi+1(X) > gi(X) occurs.

Lemma 11. Let X ∈ Ni ∪ {X0}. If a rule Y → γ is introduced in round i + 1 such that γ /∈ X+,
then gi+1(X) ≤ gi(X). If a nonunary, maximal string γ = Xv is selected in round i + 1 for some
v ∈ (Ni ∪ {X0})+, then gi+1(X) < gi(X)

Proof. The arguments are similar to the corresponding cases in Lemma 10. Let Y → γ
be the introduced rule in round i + 1. If X does not occur in γ, then gi+1(X) ≤ gi(X)
since #i+1(X) = #i(X) and Li+1(X) ≥ Li(X). The new nonterminal Y could be a new left
neighbor for some occurrences of X in Ai+1, but all these occurrences of X shared the same
left neighbor in Ai (the last symbol of γ).

If otherwise γ is nonunary and contains X, then we have #i+1(X) ≤ #i(X) due to
Lemma 4 and γ occurs at most once on each right-hand side due to Lemma 2. The only
way to obtain Li+1(X) < Li(X) is again to remove all occurrences of X on a right-hand
side, but then #i+1(X) decreases by the same value. Please note that due to the assumption
that γ is nonunary, it is not possible to modify two (or more) rules such that the maximal
X-blocks have different left neighbors in Ai and after the replacement these X-blocks share
the same left neighbor in Ai+1. This yields gi+1(X) ≤ gi(X).

Assume now that a nonunary, maximal string γ = vX is selected in round i + 1 for
some word v ∈ (Ni ∪ {X0})+. We show that gi+1(X) < gi(X). If X only occurs in the new
rule in Ai+1, i.e., X does not occur in the modified rules, then we have #i+1(X) < #i(X)
because at least two right-hand sides do not contain X as a factor anymore while only
the new rule Y → γ adds a new right-hand side which contains X to #i+1(X). Moreover,
we have Li+1(X) = Li(X) in this case because all rules where the maximal X-block is
removed shared the same left neighbor since γ = vX is the selected nonunary, maximal
string. However, vX still occurs on the right-hand side of the new rule of Ai+1. It follows
that gi+1(X) < gi(X). If otherwise at least one of the modified rules still contains X on the
right-hand side, then YX is a factor of this right-hand side in Ai+1 after the replacement
of γ. It follows that Li+1(X) > Li(X) and thus gi+1(X) < gi(X) because each distinct
left neighbor of X in Ai is still a left neighbor of X in Ai+1 for some occurrence of X.
Additionally, Y is a new left neighbor.

In the following proof, we use the notation

Ui = {X ∈ Ni ∪ {X0} | X is a unary nonterminal}

for all unary nonterminals that appear in Ai and Mi = Ni \Ui for all nonunary nonterminals
that appear in Ai.
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Lemma 12. We have

∑
X∈Mi

ti(X) ≤ ∑
X∈Ui

(leveli(X) + 1) · (leveli(X) + 1 + (leveli(X) + 1)2).

Proof. Let s(i) = ∑X∈Mi
ti(X) be the total size that all nonunary nonterminals contribute

to the size of Ai. We first bound the number of rounds where the function s increases,
i.e., we bound |{j ∈ [0, i − 1] | s(j + 1) > s(j)}|. If a unary nonterminal is introduced
in some round j + 1, then s(j + 1) = s(j), i.e., we can ignore these rules. So, consider
some round j + 1 where a nonunary nonterminal X is introduced and let X → γ be the
introduced rule. Let M = {Z ∈ Nj | Z occurs in γ} be the set of nonterminals that occur
at least once in γ. We first show that if k := |Mj ∩ M| ≥ 2, then s(j + 1) ≤ s(j). In
other words, if two nonunary nonterminals occur in γ, then s(j + 1) ≤ s(j). Let r be the
number of rules (Z → v) ∈ Pj such that γ is a factor of v. Recall that nonunary factors and
nonterminals occur at most once on the right-hand side of a single rule (Lemma 3). We
have s(j + 1)− s(j) = k + r− k · r because the new nonunary nonterminal X occurs now
on r right-hand sides, γ contains k nonunary nonterminals which occur exactly once in
γ each, and the replacement of γ on right-hand sides deletes these k nonterminals on r
right-hand sides. We have r ≥ 2 (due to the properties of a maximal string) which together
with k ≥ 2 yields s(j + 1)− s(j) ≤ 0. Hence we can assume that k = |Mj ∩M| ≤ 1. The
maximal string γ has length |γ| ≥ 2 and is not unary, so the first and the last symbol of
γ are different and at least one of them is unary due to our assumption that at most one
nonunary nonterminal occurs in γ. Let Y be this unary nonterminal and assume that Y
is the first symbol, i.e., the nonunary, maximal string is γ = Yv for some (nonempty) v.
Afterwards we discuss the case where Y is the last symbol, i.e., γ = vY.

We bound the number of rounds where a nonunary, maximal string γ = Yv is selected
for some v. Let j0 ≤ i be the round where the unary nonterminal Y has been introduced.
We have

f j0(Y) ≤ #j0(Y) ≤ levelj0(Y) + 1 ≤ leveli(Y) + 1

due to Lemma 6 and levelj(Y) ≤ leveli(Y) for all j ≤ i. We also have f j+1(Y) ≤ f j(Y) for
j ∈ [j0, i− 1] by Lemma 10. In addition to that, if Yv is the selected nonunary, maximal
string in round j + 1 for some v, then we have f j+1(Y) < f j(Y) again by Lemma 10. It
follows that after at most leveli(Y) + 1 many rounds where the chosen maximal string is
nonunary and has the form Yv for some (nonempty) v, we have fi(Y) = 0. In this case, all
maximal Y-blocks have distinct right neighbors or occur at the end of a right-hand side.
Hence there is no possibility to select a nonunary, maximal string Yv anymore.

Now we similarly bound the number of rounds such that a nonunary, maximal string
γ = vY is selected for some v. However, care must be taken in this case, because it is
possible that gj+1(Y) > gj(Y) when a rule X′ → Yd for d ≥ 2 is introduced in round j + 1
as explained above. Fortunately, rules of this form (the selected maximal string is from Y+)
are introduced at most leveli(Y) many times up to round i by the definition of leveli(Y). Let
j0 ≤ i be the round where the unary nonterminal Y has been introduced. We have

gj(Y) ≤ #j(Y) ≤ levelj(Y) + 1 ≤ leveli(Y) + 1

for each j ∈ [j0, i] due to Lemma 6 and levelj(Y) ≤ leveli(Y) for all j ≤ i. Furthermore, if the
selected maximal string in round j + 1 (j ≥ j0) is not from Y+, we have gj+1(Y) ≤ gj(Y)
due to Lemma 11. Moreover, if the maximal string γ is nonunary and γ = vY for some
(nonempty) v, then gj+1(Y) < gj(Y). It follows that between two rounds where maximal
strings from Y+ are selected, there are at most leveli(Y) + 1 many rounds where a nonunary,
maximal string of the form vY is chosen because then gj(Y) = 0 is reached (for some j)
and thus all maximal Y blocks have distinct left neighbors or occur at the beginning of
a right-hand side. Hence no nonunary string of the form vY for some v occurs twice on
right-hand sides. Since maximal strings from Y+ are chosen at most leveli(Y) many times
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up to round i, it follows that the number of rounds where a nonunary, maximal string of
the form vY for some v is selected is at most (leveli(Y) + 1)2.

Furthermore, the maximal increase max{s(j + 1) − s(j) | j ∈ [0, i − 1]} in a single
round is at most leveli(Y) + 1, because the new nonunary nonterminal occurs in Aj+1 on
at most #j(Y) ≤ levelj(Y) + 1 ≤ leveli(Y) + 1 many right-hand sides of rules for any j ≤ i
and the total number of occurrences of all other (nonunary) nonterminals does not increase
(Lemma 7, point (1)).

We conclude that for each unary nonterminal Y, at most

leveli(Y) + 1 + (leveli(Y) + 1)2

many rules are introduced such that the nonunary, maximal string γ satisfies γ = Yv
or γ = vY for some v and each of those rules increases the total size that nonunary
nonterminals contribute by at most leveli(Y) + 1. In all other cases, we showed that the size
that nonunary nonterminals contribute does not increase.

Now we are able the prove Proposition 1.

Proof of Proposition 1. Let A f = Greedy(Xn
0 ) be the final SLP obtained by Greedy, i.e., after

f rounds the algorithm stops because A f has no maximal string. First, we want to bound
the level of unary nonterminals occurring in A f . Assume there is a unary nonterminal X
such that leveli(X) = dlog log ne after some round i ≤ f of the algorithm. By Corollary 2,
we have

ti(X) ≤ 4n2− log log n
(log log n + 3) ≤ 8(log log n + 3).

Consider the unique leaf node vX in the tree Ti which has level dlog log ne and label
(X, k) for some k. If in some round j ∈ [i + 1, f ] two children with labels (X, k + 1) and
(Y, k) are attached to vX, i.e., the introduced rule in round j is Y → Xd for some d ≥ 2,
then we have tj(X) + tj(Y) ≤ tj−1(X) ≤ ti(X) by Lemma 7. To be more specific, if the
length of the chosen maximal string Xd is exactly d = 2 and this maximal string XX
occurs exactly twice without overlap in Aj−1, then we have tj(X) + tj(Y) = tj−1(X) (and
|Aj| = |Aj−1|). Please note that in this case, there does not exist a maximal string Xd or
Yd of Ak for all k ∈ [j, f ] (since Y occurs only twice and XX does not occur on right-hand
sides of Aj), i.e., the children of the node vX in Tk are leaves for k ∈ [j, f ]. Otherwise, if
the maximal string has length d ≥ 3 or occurs at least three times without overlap, then
we have tj(X) + tj(Y) < tj−1(X) since |Aj| < |Aj−1| holds in this setting. This means that
when a new branch occurs in the tree Tj for some j, then the new children of the branching
node are either leaves of the final tree Tf or the corresponding nonterminals contribute
strictly less to the size of the current SLP than the nonterminal which corresponds to the
parent node did before the branch. We can iterate this argument for the children of the
children of vX and so on, i.e., if we consider the subtree rooted at vX in Tf , then from level
to level the size that the nonterminals contribute decreases until only leaves occur at some
level. Since ti(X) ≤ 8(log log n + 3), it follows that the subtree of Tf rooted at vX has depth
at most 8(log log n + 3) + 1 and thus the maximal level of any unary nonterminal in A f is
bounded by

dlog log ne+ 8(log log n + 3) + 1 ≤ 9 log log n + 26.

Consequently, the number of unary nonterminals (the number of leaves of Tf ) is
bounded by O((log n)9) since Tf is a binary tree of depth at most 9 log log n + 26. Fur-
thermore, each unary nonterminal X in A f satisfies t f (X) ≤ O(log log n). If there is a
round i ≤ f such that leveli(X) = dlog log ne we obtain t f (X) ≤ ti(X) ≤ 8(log log n + 3)
by Corollary 2 and Lemma 7, point (1). Otherwise, let m = level f (X) < dlog log ne. Then
t f (X) ≤ m + 3 ≤ log log n + 3, because there is at most one nonoverlapping occurrence
of XX on right-hand sides of A f (otherwise there would exist a maximal string of A f )
and the number of rules where X occurs on the right-hand side is # f (X) ≤ m + 1 by
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Lemma 6. To be more precise, a single right-hand side of A f could have a maximal X-
block of length 3 and all other right-hand sides must have at most one occurrence of
X since two different right-hand sides where X-blocks of length 2 occur as well as one
right-hand side where an X-block of length 4 occurs would contradict the fact that A f has
no maximal string. It follows that the size which unary nonterminals contribute to A f is
O((log n)9 · log log n). By Lemma 12, we can bound the size that nonunary nonterminals
contribute by O((log n)9 · (log log n)3) since there are at most O((log n)9) many unary
nonterminals and each has level at most O(log log n) as argued above. It follows that
|A f | ≤ O((log n)9 · (log log n)3), which proves the proposition.

The following theorem follows directly from Proposition 1 and Lemma 1, where
g(w) ≥ Ω(log n) is shown for words w of length n.

Theorem 1. For all n, we have

αGreedy(1, n) ≤ O((log n)8 · (log log n)3).

4. Lower Bound for Greedy

We proceed with the lower bound on the approximation ratio of Greedy. The best
lower bound [13] (Theorem 11) that was known previously was

αGreedy(k, n) ≥ 5
3 log3(5)

= 1.13767699 . . .

for all k ≥ 1 and infinitely many n. This bound was shown using unary words, which we
will also use in our proof for the improved lower bound. A key concept for doing this is
the sequence xn described in the following lemma by [19]:

Lemma 13 ([19] (Example 2.2)). Let xn+1 = x2
n + 1 with x0 = 1 and

β = exp

(
∞

∑
i=1

1
2i log

(
1 +

1
x2

i

))
.

We have xn =
⌊

β2n
⌋

.

In this work, we use the shifted sequence yn = xn+1, i.e., we start with y0 = 2. It
follows that yn =

⌊
γ2n
⌋

, where γ = β2 = 2.25851845 . . . . Additionally, we need the
following lemma:

Lemma 14. Let m ≥ 1 be an integer. Let fm : R>0 → R with

fm(x) = x +
m2 + 1

x
.

We have fm(x) > 2m for all x > 0.

Proof. The unique minimum of fm(x) is 2
√

m2 + 1 for x =
√

m2 + 1. It follows that
fm(x) ≥ 2

√
m2 + 1 > 2

√
m2 = 2m.

Now we can prove the new lower bound for Greedy:

Theorem 2. For all k ≥ 1 and infinitely many n, we have

αGreedy(k, n) ≥ 1
log3(γ)

= 1.34847194 . . . .
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Proof. Let Σ = {a} be a unary alphabet. We define wk = ayk . By Lemma 13, we have
|wk| ≤ γ2k

. Applying Lemma 1 yields

g(wk) ≤ 3 · log3(γ) · 2
k + o(2k).

In the remaining proof we show that on input wk, Greedy produces an SLP of size
3 · 2k − 1, which directly implies αGreedy(1, n) ≥ 3/(3 log3(γ)). We start with the SLP A0
which has the single rule S→ ayk . Consider now the first round of the algorithm, i.e., we
need to find a maximal string ax of A0 such that the grammar A1 with rules

X1 → ax, S→ Xyk div x
1 ayk mod x

has minimal size. We have |A1| = x + (yk div x) + (yk mod x) ≥ x + yk/x. By the
definition of yk we have |A1| ≥ x + (y2

k−1 + 1)/x. Applying Lemma 14 yields |A1| ≥
2yk−1 + 1. Please note that for x = yk−1 this minimum is achieved, i.e., we can assume that
Greedy selects the maximal string ayk−1 and A1 is

X1 → ayk−1 , S→ Xyk−1
1 a.

Each maximal string of A1 is either a unary word over X or a unary word over
a, i.e., we can analyze the behavior of Greedy on both rules independently. The rule
X1 → ayk−1 is obviously treated similarly as the initial SLP A0, so we continue with
analyzing S → Xyk−1

1 a. However, again, the same arguments as above show that Greedy
introduces a rule X3 → Xyk−2

1 which yields S → Xyk−2
3 X1a as the new start rule. This

process can be iterated using the same arguments for the leading unary strings of length yi
for some i ∈ [1, k].

The reader might think of this process as a binary tree, where each node is labeled
with a rule (the root is labeled with S → ayk ) and the children of a node are the two
rules obtained by Greedy when the rule has been processed. We assume that the left child
represents the rule for the chosen maximal string and the right child represents the parent
rule where all occurrences of the maximal string are replaced by the new nonterminal. In
Figure 2 this binary tree is depicted for the steps we discussed above.

S→ ayk

X1 → ayk−1

X2 → ayk−2 X1 → Xyk−2
2 a

S→ Xyk−1
1 a

X3 → Xyk−2
1 S→ Xyk−2

3 X1a

Figure 2. Three rounds of Greedy on input ayk .

Please note that when a rule is processed, the longest common factor of the two new
rules has length 1 (the remainder). More generally, after each round there is no word of
length at least two that occurs as a factor in two different rules, since a possibly shared
remainder has length 1 and otherwise only new nonterminals are introduced. It follows
that we can iterate this process independently for each rule until no maximal string occurs.
This is the case when each rule starts with a unary string of length y0 = 2 or, in terms of the
interpretation as a binary tree, when a full binary tree of height k is produced. Each right
branch occurring in this tree adds a new remainder to those remainders that already occur
in the parent rule and a left branch introduces a new (smaller) instance of the start problem.
We show by induction that at level i ∈ [0, k] of this full binary tree of height k, there is one
rule of size yk−i + i and 2i−j−1 many rules of size yk−i + j for j ∈ [0, i− 1]. At level 0, this is
true since there is only a single rule of size yk + 0. Assuming that our claim is true at level
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i < k, we derive from each rule at level i two new rules at level i + 1: A right branch yields
a rule that starts with a leading unary string of size yk−i−1 and adds a new remainder to
the parent rule. A left branch yields a rule that contains only a unary string of size yk−i−1.
If we first consider the left branches, we derive that each of the 2i many rules at level i adds
a rule of size yk−i−1 at level i + 1. For the right branches, the single rule of size yk−i + i
at level i yields a rule of size yk−i−1 + i + 1 at level i + 1. Furthermore, each of the 2i−j−1

many rules of size yk−i + j (j ∈ [0, i− 1]) yields a rule of size yk−i−1 + j + 1. When we put
everything together, we get that at level i + 1 there is a single rule of size yk−i−1 + i + 1 and
2i−j many rules of size yk−i−1 + j for j ∈ [0, i]. That finishes the induction. It follows that
the final SLP (which consists of the rules at level k) has a single rule of size y0 + k = 2 + k
and 2k−j−1 many rules of size 2 + j for j = 0, . . . , k− 1. This gives a total size of

2 + k +
k−1

∑
j=0

2k−j−1(2 + j) = 2 + k + 2k
k−1

∑
j=0

2−j + 2k
k−1

∑
j=0

2−j−1 j

= 2 + k + 2k(2− 2−k+1) + 2k(−2−kk− 2−k + 1)

= 2 + k + 2k+1 − 2− k− 1 + 2k

= 2k+1 + 2k − 1

= 3 · 2k − 1.

5. RePair and LongestMatch

In this section, we analyze the global grammar-based compressorsRePair and LongestMatch.
In each round i, RePair selects a most frequent maximal string of Ai−1 and LongestMatch selects
a longest maximal string of Ai−1.

We will abbreviate the approximation ratio αLongestMatch by αLM for better readability.
We will first show that RePair and LongestMatch produce SLPs of equal size for unary
inputs an and we show what the exact size of these SLPs depending on n is. We then use
this information to obtain our result for αRePair(1, n) and αLM(1, n), respectively. Fix an
integer n ≥ 2 and consider the binary representation

n =
blog2 nc

∑
i=0

bi · 2i (2)

of n, where bi ∈ {0, 1} for i ∈ [0, blog2 nc]. We denote by ν(n) the number of 1’s in the
binary representation of n, i.e.,

ν(n) =
blog2 nc

∑
i=0

bi.

For example, we have 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 and thus b0 = b1 = b3 = 1,
b2 = 0 and ν(11) = 3.

Proposition 2. For n ≥ 2, let A be the SLP produced by RePair on input an and B be the SLP
produced by LongestMatch on input an. We have

|A| = |B| = 2blog2 nc+ ν(n)− 1.

Proof. If n = 2 or n = 3 then an has no maximal string and thus the final SLP of any global
algorithm has a single rule S → an. The reader can easily verify the claimed result for
these cases.

We now assume that n ≥ 4. Let m = blog2 nc − 1. We prove the claim for RePair first
and for LongestMatch after. On input an, RePair runs for exactly m rounds and creates rules
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X1 → aa and Xi → Xi−1Xi−1 for i ∈ [2, m], i.e., the nonterminal Xi produces the string a2i
.

These rules have a total size of 2m. After these steps, the start rule is

S→ XmXmXbm
m Xbm−1

m−1 · · ·X
b1
1 ab0 ,

where the bi’s are the coefficients occurring in the binary representation of n, see equa-
tion (2). In other words, the symbol a only occurs in the start rule if the least significant
bit is b0 = 1, and the nonterminal Xi (i ∈ [1, m− 1]) occurs in the start rule if and only if
bi = 1. Since RePair only replaces words with at least two occurrences, the most significant
bit bm+1 = 1 is represented by XmXm. A third Xm occurs in the start rule if and only if
bm = 1. The size of the start rule is 2 + ∑m

i=0 bi. It follows that the total size of the SLP
produced by RePair on input an is 2m + 2 + ∑m

i=0 bi, which together with m = blog2 nc − 1
and bblog2 nc = 1 (the most significant bit is always 1) yields the claimed size.

Now we prove the same result for LongestMatch. In the first round, the chosen
maximal string is abn/2c, which yields rules X1 → abn/2c and S→ X1X1ab0 , i.e., the symbol
a occurs in the start rule if and only if n is odd and thus the least significant bit is b0 = 1.
Assuming that n ≥ 8, this procedure is now repeated for the rule X1 → abn/2c (for n < 8
there is no maximal string, and the algorithm stops after the first round). This yields
X2 → abn/4c, X1 → X2X2ab1 and S → X1X1ab0 (note that b(bn/2c)/2c = bn/4c). After
m = blog2 nc − 1 steps, the iteration of this process results in the final SLP with rules
S→ X1X1ab0 , Xi → Xi+1Xi+1abi for i ∈ [1, m− 1] and Xm → aaabm . The size of this SLP is
2 · (m + 1) + ∑m

i=0 bi, which directly implies the claimed result for LongestMatch.

Using Proposition 2, we prove the matching bounds for αRePair(1, n) and αLM(1, n):

Theorem 3. For all n, we have αRePair(1, n) = αLM(1, n) ≤ log2(3).

Proof. As a consequence of Proposition 2, RePair and LongestMatch produce on input an

SLPs of size at most 3 log2 n, since ν(n) − 1 ≤ log2 n. By Lemma 1, we have g(an) ≥
3 log3 n− 3. The equality log2 n/ log3 n = log2(3) finishes the proof.

Theorem 4. For infinitely many n, we have αRePair(1, n) = αLM(1, n) ≥ log2(3).

Proof. Let wk = a2k−1. We have 2k − 1 = ∑k−1
i=0 2i and thus ν(2k − 1) = k. By Proposition 2,

the size of the SLPs produced by RePair and LongestMatch is 3k− 3. By Lemma 1, we have

g(wk) ≤ 3 log3(2
k − 1) + o(log(2k − 1) ≤ 3 log3(2) · k + o(k).

The equality 1/ log3(2) = log2(3) finishes the proof.

6. Discussion

Although we improved the upper bound on the approximation ration for Greedy, the
lower bound remains quite weak. We might be able to improve it by finding a similar
sequence such that Greedy produces larger remainders in each round. However, care must
be taken since for larger remainders it is not true anymore that the rules can be analyzed
independently because the rules could share factors of length greater than one. Concerning
the upper bound, we conjecture that Greedy achieves logarithmic compression for all unary
inputs and thus the approximation ratio is constant, but we have not been able to prove
this so far. For arbitrary alphabets, a nonconstant lower bound for Greedy as well as an
improvement of the upper bound of O((n/ log n)2/3) for any global algorithm seems to be
natural starting points for future work.
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