
algorithms

Article

An Investigation of Alternatives to Transform Protein Sequence
Databases to a Columnar Index Schema

Roman Zoun 1, Kay Schallert 2 , David Broneske 3,* , Ivayla Trifonova 1, Xiao Chen 3, Robert Heyer 2,3 ,
Dirk Benndorf 2 and Gunter Saake 3

����������
�������

Citation: Zoun, R.; Schallert, K.;

Broneske, D.; Trifonova, I.; Chen, X.;

Heyer, R.; Benndorf, D.; Saake, G. An

Investigation of Alternatives to

Transform Protein Sequence

Databases to a Columnar Index

Schema. Algorithms 2021, 14, 59.

https://doi.org/10.3390/a14020059

Academic Editor: Antonello Rizzi

Received: 9 January 2021

Accepted: 8 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Line of Business Life Science, Adesso Schweiz AG, 8048 Zürich, Schweiz; roman.zoun@adesso.ch (R.Z.);
ivayla.trifonova@adesso.ch (I.T.)

2 Bioprocess Engineering, University of Magdeburg, 39106 Magdeburg, Germany; kay.schallert@ovgu.de (K.S.);
robert.heyer@ovgu.de (R.H.); dirk.benndorf@ovgu.de (D.B.)

3 Databases and Software Engineering, University of Magdeburg, 39106 Magdeburg, Germany;
xiao.chen@ovgu.de (X.C.); gunter.saake@ovgu.de (G.S.)

* Correspondence: david.broneske@ovgu.de

Abstract: Mass spectrometers enable identifying proteins in biological samples leading to biomarkers
for biological process parameters and diseases. However, bioinformatic evaluation of the mass
spectrometer data needs a standardized workflow and system that stores the protein sequences. Due
to its standardization and maturity, relational systems are a great fit for storing protein sequences.
Hence, in this work, we present a schema for distributed column-based database management
systems using a column-oriented index to store sequence data. In order to achieve a high storage
performance, it was necessary to choose a well-performing strategy for transforming the protein
sequence data from the FASTA format to the new schema. Therefore, we applied an in-memory map,
HDDmap, database engine, and extended radix tree and evaluated their performance. The results
show that our proposed extended radix tree performs best regarding memory consumption and
runtime. Hence, the radix tree is a suitable data structure for transforming protein sequences into the
indexed schema.

Keywords: trie; radix tree; storage system; sequence data; proteomics; mass spectrometry

1. Introduction

Mass spectrometers are widely-used devices (the mass spectrometry market will
grow from $5.3 billion to $10.5 billion from 2016–2025 [1]) enabling the identification of
proteins from any sample and thus to understand the ongoing biological process in the
sample [2–4]. The identified proteins can help to optimize biochemical processes, for
example those in biogas plants [5,6], or diagnose diseases such as inflammatory bowel
diseases [7] or even the spike proteins of the SARS-CoV2 virus [8]. The measurement of
a mass spectrometer takes up to two hours and is followed by converting the measured
data into a readable format. In order to gain insights into the converted data, an analysis
step is required: the protein identification [9]. The state-of-the-art protein identification
approach uses a peptide-centric approach comparing the experimental (spectrum) data
with theoretical spectra from a protein sequence database. For this purpose, the proteins
are digested into peptides, and theoretical spectra are calculated, resulting in billions of
data sets. Subsequently, protein database search algorithms compare the measured spectra
with the theoretical spectra to find the highest similarity. As a consequence of all these
steps, bioinformatic protein identification takes several hours to complete. In order to
speed up the bioinformatic processes, we are currently developing a cloud-based pipeline
for protein identification [10]. One key challenge for this pipeline is the well-performing
and efficient storage and retrieval of the proteins. Therefore, we tested and evaluated
an index schema to query only suitable candidates of the sequence data and reduce the

Algorithms 2021, 14, 59. https://doi.org/10.3390/a14020059 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1683-7222
https://orcid.org/0000-0002-9580-740X
https://orcid.org/0000-0001-7840-8899
https://orcid.org/0000-0003-4021-8525
https://orcid.org/0000-0001-9576-8474
https://doi.org/10.3390/a14020059
https://doi.org/10.3390/a14020059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020059
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/59?type=check_update&version=2

Algorithms 2021, 14, 59 2 of 16

search area to a minimum [11,12], using a column-based index in a distributed database
management system (DBMS) that allows streamlining of the analysis step.

In this work, we present an indexing schema for the sequence data of a protein
sequence database, using a column-based index in a distributed database management
system (DBMS) that allows streamlining of the analysis step. This step’s key challenges are
the memory-efficient and fast transformation of the protein sequence data from the current
state-of-the-art FASTA format to the DBMS indexed schema. The transformation involves
separating the sequence data, deduplication of the sequence data, and mass calculation
steps, which have to be calculated before inserting into the DBMS.

After presenting the transformation process, we describe four methods to aggregate
the data into the index structure. The first one is the naive in-memory approach; the second
is the structured hard disk approach; the third method uses DBMS queries; and the last
one is the radix tree-based method. In the end, we evaluate those methods and show that
the radix tree is very efficient for the storage of sequence data and has the best overall
performance of all approaches.

In summary, we make the following contributions:

• Database schema: We propose a suitable schema for protein sequence data in a
real-time cloud system as an extension to our prior paper [13].

• Protein data transformation: We review the process of protein data transformation into
the proposed database schema and detail suitable techniques for the transformation
steps.

• Indexing: We propose a radix tree for efficient deduplication (including an extended
description compared to our prior paper [13]).

• Performance comparison: We evaluate the best method to transform the protein
sequence data using the four proposed approaches.

This paper is structured as follows: In Section 2, we explain the basics of the mass
spectrometry workflow, the protein identification, the protein data, and the radix tree data
structure. In Section 3, we describe our architecture for the real-time processing of mass
spectrometer data and explain the index of the protein data and how to transform this one
into an indexed structure. Next, in Section 4, we present the four methods for the data
transformation. Section 5 presents the evaluation of the methods and is followed by the
related work in Section 6. In the last section, Section 7, we conclude our work.

2. Background

In this section, we provide basic knowledge to understand the proposed database
schema and storage alternatives. First, we clarify the protein sequence data structure.
Afterward, we present the data processing steps for protein identification, followed by
explaining the real-time processing platform of mass spectrometry data and the radix tree
data structure.

2.1. Protein Data

The data acquired by the mass spectra are the masses of the peptides (parts of a protein)
and their amino acids. The mass of the particles is represented by a mass spectrum; see
Figure 1. On the x-axis, the mass-to-charge ratio can be seen, and on the y-axis, the intensity
of the signal measured by the device is represented. The intensity signal represents the
collisions that are detected by the digitizer of the mass spectrometer device. The mass of a
peptide is a list of peaks that can be represented in a textual format or as a plot of the peaks.

Algorithms 2021, 14, 59 3 of 16

m/z

In
te
ns
ity

Figure 1. A plot of a mass spectrum [14].

Besides the XML standard mzML (XML-based textual representation of mass spec-
trum data), the Mascot Generic File (MGF) (lightweight textual representation of mass
spectrum data) format is the standard format to store mass spectra [15–17]. One mass
spectrometer produces around 200,000 spectra every two hours, resulting in over 40 GB
files. For the further analysis of mass spectrometry data, a collection of all possible protein
sequences is required. The protein sequences are usually stored in FASTA format, includ-
ing a textual representation of the protein sequences and their descriptions [18]. Listing 1
shows one protein with its unstructured text description (Listing 1, Line 1) and its protein
sequence (Listing 1, Lines 2–4). Each letter of the protein sequence represents one of the 22
amino acids. The uniqueness of a protein is not only given by the protein sequence, but
also by the description.

1 >mg|Testsequence_1 Methyl−coenzyme
2 MPMYEDRIDLYGADGKLLEEDVPLEAVSPLKNPTIANLVSDVKRSV
3 GAFERMHLLGLAYQGLNANNLLFDLVKENSKGTVGTVIASLVERAI
4 IGSVYSEIDYFREPIVNVAKGAAEIKDQL

Listing 1: Textual representation of one protein in FASTA format.

A popular protein sequence database is SwissProt from UniProtKB (numbers of
UniProtKB as of the beginning of 2019; https://www.uniprot.org/, accessed on 22 January
2021) with 556,196 proteins. After the digestion of the proteins to peptides, the SwissProt
proteins are divided into 37,403,696 peptides. This digestion increases the amount of data
from 500 MB of proteins to over 17 GB of peptides. In our system, the peptides have to be
indexed additionally by their mass and the charge to guarantee fast access. This indexing
enables considering for the identification step only suitable peptide candidates fitting the
mass spectrometer. In the next section, we explain the basic protein identification approach.

2.2. Protein Identification

The protein identification approach compares the experimental mass spectra from the
mass spectrometer and the theoretical data calculated from a protein sequence database [9].
In Figure 2, the top shows the biological preparation of the sample until the mass spectrum
data are generated. On the bottom, the procedure is mirrored theoretically on a protein
sequence database (e.g., SwissProt). First, the protein sequences are split into peptides.
For each of the peptides, a theoretical mass spectrum is calculated containing only per-
fect values and no noise. The subsequent comparison between the theoretical and the
experimental spectrum results in a score representing the consensus between spectra. The
match with the highest score identifies the experimental spectrum and is assigned to the
proteins [9]. State-of-the-art protein identification algorithms compare the experimental
spectra with all theoretical spectra. However, this results in long calculation times, which
might be critical for clinical diagnosis. In order to accelerate this step, we store all protein
and peptide data in a database and create an index to query only the suitable candidates of
the protein sequence database instead of looping through all the peptides.

https://www.uniprot.org/

Algorithms 2021, 14, 59 4 of 16

Figure 2. A general peptide-centric protein identification method, which compares the experimental
spectra and the theoretical ones [9].

2.3. Real-Time Analysis of Mass Spectrometry Data

As introduced above, protein identification is not usually streaming-based and needs
all the experimental data at once. In order to circumvent waiting hours until the mea-
surement is finished, we need to adapt the algorithm to the FAST data architecture [19].
Figure 3 shows the general cloud architecture of the real-time diagnostic platform [20].
Each measured experimental spectrum is streamed directly from the device during the mea-
surement (Step 1 in Figure 3). For the identification, the protein data are already digested
and indexed in a distributed DBMS, using a column-oriented index on the charge and the
mass of the peptides (Step 2 in Figure 3). For each incoming spectrum, the similarity with
every suitable candidate from the database is calculated (Step 3 in Figure 3), and the best
results get validated (Step 4 in Figure 3). For each spectrum, we need to query only suitable
candidates. Since the mass spectrometer measures the peptide’s total mass (notably, the
mass spectrometer produces mass-to-charge ratios, which we then use to calculate the
masses of the peptides), we can use the measuring accuracy from the device specifications
to generate a range query over the total mass of the peptide in the DBMS. For example, the
mass of a peptide is 125.2941 Daltons (Da), and the measuring accuracy is 0.001 Da. The
mass of the candidates should be between 125.2931 and 125.2951. The peptide ion charge
is also known during the measurement, which should be considered in our DBMS and
precalculated. This group of indices is necessary to reduce the number of candidates for
each spectrum to a minimum.

Peptide Spectrum Match
Validation

Classifier

Web Interface

PSM

Preprocessed Protein
DB

User Interaction

1 3

2

4

Figure 3. Architecture of the analytic platform for real-time diagnostics of mass spectrometry data.

2.4. Radix Tree Data Structure

Trie structures represent an efficient way to organize textual data. Rene De La
Briandais used a trie for textual data with all possible letter entries on each level [21].

Algorithms 2021, 14, 59 5 of 16

All redundant entries are eliminated during the filling process because the same letters
are stored in one node. The adaptive radix tree by Leis et al. [22] extends the trie with the
property that each parent node with only one child is merged with this exact child. This
optimization is also known from prefix trees [23]. In Figure 4, we create a sample radix tree
for the seven proteins presented at the bottom of the figure. The end nodes are marked
bold in the figure, such that the protein MERT ends at the node with the number 1, while
MERTFAI ends at Node 2. Each combination of all nodes from the root node to an end
node defines one protein sequence. For our work, we want to use a radix tree with an
additional relation on each end node to a protein because of the many-to-many relation
between peptides and proteins. The related radix tree is used as an in-between step of the
data transformation from the protein sequence database in FASTA format into our table
schema.

MERT SKEQA TNPAN

AEPGTKGFYCGGFYIIKPFAI

1. MERT
2. MERTFAI
3. MERTIIKP

4. SKEQAGGFY
5. SKEQAKGFYC

1

2 3 4 5

6

7

6. TNPAN
7. TNPANAEPGT

Figure 4. A sample radix tree with peptide sequences [23].

3. Data Preparation for Real-Time Protein Identification

An index structure is needed to reduce the number of suitable candidates for each
spectrum to decrease computational time. This section first explains the schema followed
by the transformation methods into the indexed schema [13].

3.1. Indexed Masses of Peptides

To enable fast access to suitable candidates without losing all the information from the
protein sequence database, we introduce our data structure. Our schema for the protein
data consists of three tables: the protein table, the peptide table, the pepmasstable, and the
relations between them (see Figure 5).

Protein
PK: UUID

Protein Sequence

Protein Data 1

...

Protein Data n

Peptide
PK: Peptide Sequence

Protein Set 1

...

Protein Set n

Pepmass
PK: FASTA-UUID

Charge

Pepmass

Peptide List

Figure 5. General schema of preprocessed protein data in the mass spectrometry analytic cloud system.

3.1.1. Protein Table

The protein table uses a UUID created from the protein sequence as a primary key,
avoiding the redundant storage of protein sequences. At the beginning, the protein
table consists of two columns: “UUID” and “Protein Sequence”. For each uploaded
protein sequence database, a new column, “Protein Data”, is added to the table containing

Algorithms 2021, 14, 59 6 of 16

the protein description from the FASTA file. Hence, uploading new data brings new
descriptions, but not necessarily new protein sequences. Therefore, we can save storage in
the DBMS since the sequence data are much bigger than the description data (Figure 5).
In Table 1, we show the sample data of a protein table. Two files are loaded into the table,
creating two columns, “FILE_1” and “FILE_2”. For each new protein, the table is extended
by a row.

Table 1. Sample data of a protein table.

prot_id FILE_1 FILE_2 prot_seq

PROTEIN_1 null [’json-data’] TEMRTEQAFY
PROTEIN_2 [’json-data’] [’json-data’] TEMRTEMQG

3.1.2. Peptide Table

The peptide table consists of the peptide sequence as a primary key and has a set of
protein UUIDs, which relate to the protein table. Like the protein table, each uploaded
protein sequence database appends a new column, “Protein Set”, to the peptide table
containing a non-redundant collection of protein UUIDs. The protein UUIDs belong to
the proteins containing the peptide. Using this relation information, we can later link
identified peptides (Figure 5) to the proteins. In Table 2, we show the data of the peptide
table corresponding to the data from the protein table (see Table 1).

Table 2. Sample data of a peptide table.

pep_seq FILE_1 FILE_2

TEMR [PROTEIN_2] [PROTEIN_1, PROTEIN_2]
TEQAFY null [PROTEIN_1]
TEMQG [PROTEIN_2] [PROTEIN_2]

3.1.3. Pepmass Table

The pepmass table is a table that groups the peptides with the same “Charge” and
“Pepmass” for each “FASTA-UUID”. Peptides with the same values for these three proper-
ties are stored as a list of strings in the column “Peptide List”. Since all proteins from one
FASTA file should be present in one partition, we use “FASTA-UUID” as a partition key
in the pepmass table. Peptide ions may contain a different number of charges. Therefore,
we created separate entries for each charge of one, two, and three with their associated
pepmasses. Additionally, peptides may be chemically modified, resulting in changed pep-
masses. For example, during the sample preparation process, the amino acid methionine
could be oxidated. Each modification is similar to an additional letter in the sequence and
drastically increases the number of peptide sequences. In our work, we considered two
typical modifications: oxidation of methionine and carbamidomethylation. The consider-
ation of different charges and modification resulted in a high number of peptides in the
pepmass table. In Table 3, we show some exemplary data of the pepmass table matching
the data from the protein table and peptide table (see Tables 1 and 2).

Table 3. Sample data of a pepmass table.

Fasta Charge Pepmass Peptide_List

FILE_1 1 536 [’TEMR’]
FILE_1 1 565 [’TEMQG’]
FILE_2 1 536 [’TEMR’]
FILE_2 1 768 [’TEQAFY’]
FILE_2 1 565 [’TEMQG’]

Algorithms 2021, 14, 59 7 of 16

3.2. Data Transformation

Our proposed schema improves the performance of getting the suitable candidates
for each spectrum up to a few milliseconds, which leads however to increased storage
because of the precalculation of all masses. As mentioned, we have to consider more
than one protein sequence database. Hence, an efficient technique is needed that allows
uploading new databases and transforming their data into our schema [13]. In Figure 6,
we show the four steps to transform the data from the FASTA format into our schema. The
first step is to deduplicate the protein sequences and merge the descriptions of the entries
with a similar protein sequence (Step 1 in Figure 6). The next step is the protein digestion,
which splits the protein sequence into smaller peptides. Equal peptide sequences can be
extracted from different proteins, which leads to a many-to-many relationship between
proteins and peptides. Due to the high number of those relationships, the protein digestion
is conducted with a list of the protein IDs in the table (Step 2 in Figure 6). The next step is
the deduplication of the peptides during which only the unique peptides are left within
the relation to the proteins that they came from (Step 2 in Figure 6). For each of those
peptides, the mass needs to be calculated with all the possible modifications and charges.
Afterwards, all the data are stored in the DBMS.

Protein Knowledge Base

descriptionText

protein_sequenceText

Protein

protein_idUUID

protein_sequenceText,PK

descriptionsList<Text>

Protein Deduplication

Protein Digestion

Peptide

peptide_sequenceText,PK

protein_idsList<UUID>

Commit

Pepmass

protein_kb_idUUID,PaK,PK

chargeNumber,PK

pepmassNumber,PK

peptidesList<Text>

Peptide Deduplication

Distributed Storage

1

2

3

4

Figure 6. Transformation steps from FASTA format to our indexed schema.

For the task of data transformation, we evaluate different approaches, which include
a map structure in-memory and on-disk and the radix tree structure. In the following,
we explain the steps in detail, because their understanding is necessary to follow our
evaluation.

3.2.1. Protein Deduplication

The goal of this step is to map all descriptions to a unique protein sequence. The
naive approach is to create a map with the protein sequence as a key and a collection of
descriptions as a value. In this case, a map would only consider the currently loaded protein
sequence database. However, since we want to persist the results in the database, this
deduplication step needs to be executed on the DBMS side. Hence, we have to use update
queries to append data to an existing protein sequence or insert the protein sequence if the
data set does not exist. A sample query is shown in Listing 2. The name of the new column
is “fastaID”, and the query inserts a new entry or updates the list in the new column by a
new description of the protein. This is because, in Cassandra, an UPDATEstatement can
INSERTdatasets if the data do not exist.

Algorithms 2021, 14, 59 8 of 16

1 UPDATE protein SET prot_seq=’proteinSequence’, "fastaID"= "fastaID" + [’
proteinData’]

2 WHERE prot_id = prot_uuid;

Listing 2: Query for protein deduplication in the DBMS.

3.2.2. Protein Digestion

After the deduplication of the protein sequences, the peptides need to be extracted
using the digestion method. Hence, the sequences are divided into the specific letters of the
sequence. This method simulates the digestion from a laboratory on the digital sequence.
Additionally, we have to consider missed cleavages (MCs), which define the possibility of
missed cut outs in the sequence. As an example, let us consider a protein sequence with a
length of 300 that would be split into 23 peptide when defining the MCs as zero. Defining
the MCs to the value of one would generate 56 peptides. The missed cleavage parameter
increases the amount of peptides linearly [9]. In our work, we define this parameter with
the value of two, which is enough for most of the mass spectrometer experiments.

3.2.3. Peptide Deduplication and Mass Calculation

The peptide deduplication is conducted only for the currently used protein sequence
database and does not depend on the data from the other columns. During this step, each
peptide has to be deduplicated without losing the information about the protein from
which the peptide comes. The protein sequences are already mapped to an identifier in
our DBMS. Hence, there are four possible approaches to deduplicate peptides: The naive
approach is to create a map with the peptide sequence as a key and a collection of the
protein identifiers as a value. The map approach can be divided into (1) an in-memory map
approach and (2) a file-based map approach. (3) The next approach is to update the list
of protein identifiers in the DBMS, and (4) the last approach is to use a radix tree for the
sequences with relations to the protein identifiers on each end node.

Afterwards, the pepmass needs to be calculated. For each unique peptide sequence,
the mass for all combinations of possible modifications and for all charges has to be
calculated and stored in the DBMS. Therefore, the sequences of the peptides have to be
mapped to the precalculated masses. Since each peptide generates many different masses,
this peptide is stored multiple times in the pepmass table. In the last step, all the grouped
and precalculated data need to be inserted into the DBMS.

3.2.4. Approaches for Data Transformation

Due to the fast data architecture and the need for fast access to the protein data, an
efficient service for uploading protein sequence databases to our system is needed. In
order to achieve this, the transformation was implemented using different approaches.
Firstly, we implemented the naive approach using in-memory hash maps. Secondly, we
implemented the steps, using a structured storage on the hard disk. In the third approach
we implemented the steps using DBMS queries, and in the last one, we implemented an
extended radix tree as an in-memory data structure.

In summary, the four steps of the transformation process can be implemented in
different ways; see Table 4. The first and the last step are done with the database engine
method. As a result, an evaluation is needed to find the best method to transform (digestion
and deduplication) the data.

Table 4. An overview of protein data transformation step approaches.

Method Protein Deduplication Protein Digestion Peptide Deduplication Commit

In-Memory Map No Yes Yes No

HDD-resident Map No Yes Yes No

Database Engine Yes Yes Yes Yes

Radix Tree No Yes Yes No

Algorithms 2021, 14, 59 9 of 16

4. Implementation

We implemented a protein sequence database transformation as a cloud service, using
the Java Jetty application server and the Cassandra DBMS on an Apache Mesos system.
Additionally, SQLite was used as the storage for the local structured data. The in-memory
approach, the file system approach (SQLite), and the DBMS query approach used standard
methods (i.e., Cassandra Query Language (CQL) queries) and data structures (hash maps
and sets) for the deduplication and other transformation steps. In this section, we give a
brief description of the implementation of the naive approaches and a detailed explanation
of our extensions to the radix tree approach [13].

4.1. Transformation Using a Map Structure

This approach uses a map and a key-value structure for the peptide deduplication
and the protein relationship. The maps’ keys are the peptide sequences, and the values are
the sets of protein identifiers. For the first implementation, we used an in-memory map
and for the second implementation, an SQLite table as the key-value storage.

4.2. Transformation Using DBMS Queries

To insert the result data into the database management system (DBMS), we imple-
mented queries to transform the data directly in the DBMS. We used UPDATE queries,
which add a new row if the key does not exist, or otherwise append a value to the list in the
column. The deduplication of proteins was already implemented using UPDATE queries
on the protein table. In this approach, we implemented additional UPDATE queries
for the peptide table and for the pepmass table. In Listing 3, we present these UPDATE
queries, which are used in this method to update the peptide table (Lines 1–2) and the
pepmass table (Lines 3–4).

1 UPDATE peptide SET "fastaID" = "fastaID" + ["protID"]
2 WHERE pep_sequence=’pep_seq’;
3 UPDATE pepmass SET "peptide_list" = "peptide_list" + {’peptideSequence’}
4 WHERE "fasta"=fastaID AND "charge"=charge AND "pepmass"=totalMass;

Listing 3: Queries to transform protein data from FASTA format to the table schema using
the DBMS.

4.3. Transformation Using the Extended Radix Tree Structure

A radix tree [21–23] is more complex, and hence, we give a detailed explanation of
the transformation algorithm (Listing 4) and visualize its application on an example in
Figure 7. At the beginning, a new column is added to the protein table and to the peptide
table (Line 2). For each protein, an identifier is generated, and the protein descriptions
in the protein table are updated (Lines 6 and 7). Next, each protein is digested into
peptides, and we generate a list of peptides for each protein (Line 8). In our example, the
protein “TEMRTEQAFY” is digested to the peptides “TEMR”, “TEQAFY” and the second
protein “TEMRTEMQG” to the peptides “TEMR”, “TEMQG”. Subsequently, each peptide
is inserted into the tree with the associated protein identifier (Line 10). At the beginning
(Figure 7, Step 0), the tree and the set of pepmasses are empty. In Step 1, we add the peptide
“TEMR” to the tree. The end node gets a relation to the protein to which it belongs and
a pointer to the set of pepmasses. In Step 2, we add the peptide “TEQAFY” to the tree.
Because both peptides share the prefix “TE”, the first node is split, and two end nodes are
created. Because the mass is different from other values in the set of pepmasses, a new
entry in the set of pepmasses is created. In Step 3, we add the peptide “TEMR” to the tree.
The complete sequence is already available, and only a new relation to another protein
is created in the last node. In the last step, we add the peptide “TEMQG” to the tree. All
the shared prefixes create an additional node, and only the suffix nodes are left with the
relation to the protein that the peptide comes from and a pointer to the unique pepmasses.

Algorithms 2021, 14, 59 10 of 16

1 Foreach Protein sequence database, FASTA
2 Add column to protein−table and peptide−table
3 RADIXTREE <− null
4 massMap <− null
5 for each protein in FASTA
6 UUID <− fromString(protein.sequence)
7 UPDATE protein−table WHERE protein.uuid = UUID
8 peptides <− digest(protein.sequence)
9 for each pep in peptides

10 RADIXTREE.insert(pep.sequence, UUID)
11 for each Node in RADIXTREE
12 if Node.proteins not empty
13 INSERT * INTO peptide−table
14 massMap.put(mass,Node)
15 for each entry in massMap
16 INSERT * INTO pepmass−table

Listing 4: Transformation algorithm to transform protein data from FASTA format into the
table schema using the radix tree data structure.

4.4. Our Radix Tree Adaptation

The difference from the original radix tree by De La Briandais [21] is our usage of
the pessimistic path compression and lazy expansion of tree nodes that we adapted from
Leis et al. [22]. However, we do not use special adaptive node types and rely on the node16
design by Leis et al. [22], because it matches our fan-out. Furthermore, our main use case is
the efficient deduplication of proteins, which has a high priority on insertion, while the
tree is traversed only once at the end of the process.

Another difference to other radix trees is that we are not indexing the peptides (i.e.,
adding a reference to the storage location of the peptides on disk). Instead, we link the
protein relationship to the peptides. Hence, in order to adapt the radix tree to our use case
of peptide deduplication, we extend the usual radix tree using a set of protein identifiers
in each node. Hence, the tree contains all information for the peptide table (Line 13). The
link to the proteins is needed to identify the proteins, based on the peptide identification.
As a positive side effect, the peptide sequences are automatically deduplicated.

The next step is to calculate the masses for each peptide. Therefore, an additional map
with the pepmass as the key and a list of the pointers to the end nodes in the radix tree as
the value are created. For each of the end nodes, the pepmasses are calculated (Line 14),
focusing first on the different modifications and second on the three charges. For each mass,
the peptide sequences are calculated from the end node recursively. Beginning with the
end node, which represents the end of a peptide sequence, one needs to traverse over all
nodes to the top of the tree to get the sequence completely. The last step is to insert the data
from the map with masses and the peptide sequences into the pepmass table (Line 16). As
we show in the example in Figure 7, the radix tree needs only a few nodes to store multiple
peptide sequences, while the map approach adds a new entry for each different sequence.
If only one letter is different, only one additional node in the radix tree structure is added,
which is more compressed than a whole additional entry in the map.

Algorithms 2021, 14, 59 11 of 16

Step 4

Step 3

Step 2

Step 1

Step 0
ROOT

MASS:

ROOT

MASS:

+ "TEMR"

TEMR <1>

536

+ "TEQAFY"

ROOT

TE

MR <1> QAFY <1>

MASS: 536 758

+ "TEMR"

TE

ROOT

MR <1,2> QAFY <1>

MASS: 536 758

TE

ROOT

M QAFY <1>

MASS: 536 758

R <1,2> QG <2>

565

+ "TEMQG"

PROTEIN 1: "TEMRTEQAFY"
PROTEIN 2: "TEMRTEMQG"

PEPTIDE 1: "TEMR" MASS: 536 Da
PEPTIDE 2: "TEQAFY" MASS: 758 Da

PEPTIDE 3: "TEMR" MASS: 536 Da
PEPTIDE 4: "TEMQG" MASS: 565 Da

Figure 7. Sample of a radix tree as the peptide storage in the data transformation process.

5. Evaluation

The evaluation compares resource consumption and the runtime of all four approaches
for the peptide deduplication step. As test datasets, we used the entire UniProt/SwissProt
protein database and a subset containing only proteins from the species Homo sapiens.

The Homo sapiens data set (Table 5) comprises 4794 proteins and requires a storage
size of 2.88 MB. It results in 484,479 overall peptides and 248,996 non-redundant peptides.
Finally, these peptides result in a radix tree structure with 295,602 nodes. UniProt/Swis-
sProt has a 255 MB storage size and contains 556,196 proteins and 37,403,696 peptides.
After deduplication, only 23,254,068 peptides are left using 28,481,207 nodes in the radix
tree.

Algorithms 2021, 14, 59 12 of 16

Table 5. Statistical data about our used protein database for the evaluation.

Homo Sapiens SwissProt

Size in MB 2.88 255

Number of proteins 4794 556,196

Number of peptides 484,479 37,403,696

Number of unique peptides 248,996 23,254,068

Number of radix nodes 295,602 28,481,207

5.1. Time Evaluation

In order to identify the fastest indexing strategy, we repeated each measurement
50 times and averaged the runtimes. We visualize the runtimes for each strategy on each
of the two protein databases in Figure 8.

0

500

1000

1500

2000

2500

3000

3500

4000

IN-MEMORY Sqlite DBMS Radix

Ti
m

e
in

 s
ec

o
n

d

Transformation Time

Homosapiens SwissProt

Figure 8. Evaluation of the runtime of the transformation process on the data sets Homo sapiens
(blue) and SwissProt (orange).

5.1.1. Homo sapiens Data Set

For the Homo sapiens protein database (represented by the blue bars in Figure 8), the
naive in-memory approach was five seconds faster than the radix tree method. Furthermore,
we observed that the SQLite and the DBMS approach are very slow, requiring one half to
one hour of runtime. This was caused by the high number of writes on the slow hard disk.

5.1.2. UniProtKB/SwissProt Data Set

The naive approach required for the indexing of the UniProtKB/SwissProt protein
database (represented by the orange bars in Figure 8) 58 min and the radix tree 60 min. The
differences come from the calculation of the sequence recursively from the end node. In
the radix tree structure, the mass is calculated traversing over the nodes, while in the naive
approach, the whole sequence is accessible. This is not needed in the naive approach. The
SQLite and the DBMS approaches took days on the UniProtKB/SwissProt data and are

Algorithms 2021, 14, 59 13 of 16

not applicable for such big protein sequence databases. Hence, only the naive in-memory
approach and the radix tree approach seem to be promising.

5.2. Memory Consumption

We only consider the in-memory approach and the radix tree method for the memory
consumption evaluation in Figure 9, because the other two approaches required too long
computation times. The in-memory approach required around 1 GB for the Homo sapiens
data set and over 100 GB for the UniProtKB/SwissProt data set. In contrast, the radix tree
approach consumed less than 300 MB for the Homo sapiens data set and around 14 GB
for the UniProtKB/SwissProt data set. Moreover, the memory consumption of the radix
tree increased between the data sets by a factor of 50, while the naive in-memory approach
by a factor of 92. Hence, the radix tree method combines in-memory speed and efficient
data compression for sequence data and is, therefore, beneficial for storing the peptide
sequence data.

Figure 9. Evaluation of the memory consumption during the transformation process on the data sets
Homo sapiens and SwissProt.

5.3. Result Summary

The evaluation shows that radix trees are beneficial for peptide sequence data and
could be transformed into our system. In our in-depth investigation, we could identify three
benefits of the radix tree structure for peptide sequences. Firstly, most of the differences
between peptides are in the first amino acid position. Hence, in higher levels of the tree,
the sequences end up in an end node. Due to this fact, the tree consumes less memory.
Secondly, many of the differences are only due to one letter. A single-letter difference results
in only one additional node in the tree compared to two separate peptide sequences being
stored in the naive approach. Thirdly, the insertion of new data into the tree automatically
resolves redundancy, which is needed for further processing. Due to its minimized memory
consumption, it is even possible to process the data in the RAM, reaching a considerable
performance boost compared to its competitors.

6. Related Work

This section presents related work: the protein data indexing approach of Andromeda
and the use case of the radix tree structure as a storage structure for sequence data. The

Algorithms 2021, 14, 59 14 of 16

protein search engine Andromeda, part of the MaxQuant Software suite, uses an indexing
method on pepmasses to reduce the search space during the identification. This approach
points to proteins in the protein sequence database files [24]. Nevertheless, the data are still
in a FASTA file. In contrast, we structure and transform them completely. Furthermore, we
remove redundancies over all the protein databases uploaded into our system.

The software MetaProteomeAnalyzer proposes a relational structure to store the
results in a relational database management system [25]. In order to process the data, the
MetaProteomeAnalyzer loads the whole data in a map structure into the memory, which
required many resources of the system and corresponded to our in-memory map approach.

Enrico Siragusa proposed the radix tree as a structure to store DNA sequences as
a preprocessing step in his thesis [26], which is similar to our approach. In our work,
however, we use the radix tree firstly to store the peptide sequences, and secondly, we
extend the end nodes with the relationship to the proteins.

7. Conclusions

In our work, we investigate how to transform protein sequence databases into the final
index schema. Therefore, we implemented the four approaches, in-memory map, HDD
map, database engine, and radix tree, evaluated their performance, and summed up the
results in Table 6. The extended radix tree is the best structure for the peptide sequence data
to transform the protein data into the index schema. The radix tree for peptide sequences
combines the almost best performance with a minimal memory consumption across all
competitors.

Table 6. An overview of approaches for the protein data transformation steps. The best method is written in bold.

Method Protein Deduplication Protein Digestion Peptide Deduplication Commit

In-Memory Map No Yes Yes No

HDD Map No Yes Yes No

Database Engine Yes Yes Yes Yes

Radix Tree No Yes Yes No

In the future, we will apply the radix tree as a storage system for protein databases
and build a query engine around it. Consequently, we assume that we can speed up the
current processes based on the FASTA file by using this tree structure. For the application
as a cloud service, the protein data need to be uploaded before the later identification
process can start.

Author Contributions: The contributions of the authors were distributed in the following way:
Conceptualization, R.Z., I.T., X.C., R.H.; methodology, R.Z., X.C., R.H.; software, X.C.; validation,
K.S.; data curation, K.S.; writing—original draft preparation, R.Z. and I.T.; writing—review and
editing, D.B. (Dirk Benndorf), D.B. (David Broneske) and G.S.; visualization, X.C.; supervision, D.B.
(David Broneske); project administration, R.H.; funding acquisition, D.B. (Dirk Benndorf) and G.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is partly funded by the de.NBI Network (031L0103), the European Regional
Development Fund (No. 11.000sz00.00.0 17 114347 0), and by the German Federal Ministry of Food
and Agriculture (Grant No. 22404015).

Data Availability Statement: Further results can be found in the thesis of Roman Zoun [20].

Acknowledgments: The authors sincerely thank Niya Zoun, Gabriel Campero Durand, Marcus
Pinnecke, Sebastian Krieter, Sven Helmer, Sven Brehmer, and Andreas Meister for their support and
advice. This work was a cooperation with Bruker Daltonik GmbH and is dedicated to the memory of
Mikhail Zoun.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2021, 14, 59 15 of 16

References
1. Global Mass Spectrometry Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players,

Competitive Strategies and Forecasts, 2015 to 2025. 2017. Available online: https://www.researchandmarkets.com/reports/4313
373/global-mass-spectrometry-market-size-market (accessed on 10 February 2021).

2. Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198. [CrossRef]
3. Ashcroft, A.E. An Introduction to Mass Spectrometry; The University of Leeds: Leeds, UK, 2011.
4. Heyer, R.; Kohrs, F.; Reichl, U.; Benndorf, D. Metaproteomics of complex microbial communities in biogas plants. Microb. Technol.

2015, 8, 749–763. [CrossRef] [PubMed]
5. Heyer, R.; Schallert, K.; Siewert, C.; Kohrs, F.; Greve, J.; Maus, I.; Klang, J.; Klocke, M.; Heiermann, M.; Hoffmann, M.; et al.

Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas
plants. Microbiome 2019, 7, 69. [CrossRef]

6. Petriz, B.A.; Franco, O.L. Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease. Front. Chem.
2017, 5, 4. [CrossRef]

7. Lehmann, T.; Schallert, K.; Vilchez-Vargas, R.; Benndorf, D.; Püttker, S.; Sydor, S.; Schulz, C.; Bechmann, L.; Canbay, A.;
Heidrich, B.; et al. Metaproteomics of fecal samples of Crohn’s disease and Ulcerative Colitis. J. Proteom. 2019, 201, 93–103.
[CrossRef] [PubMed]

8. D’Angelo, G.; Palmieri, F. Discovering genomic patterns in SARS-CoV-2 variants. Int. J. Intell. Syst. 2020, 35, 1680–1698.
[CrossRef]

9. Millioni, R.; Franchin, C.; Tessari, P.; Polati, R.; Cecconi, D.; Arrigoni, G. Pros and cons of peptide isolectric focusing in shotgun
proteomics. J. Chromatogr. A 2013, 1293, 1–9. [CrossRef] [PubMed]

10. Zoun, R.; Schallert, K.; Janki, A.; Ravindran, R.; Durand, G.C.; Fenske, W.; Broneske, D.; Heyer, R.; Benndorf, D.; Saake, G.
Streaming FDR Calculation for Protein Identication. In Advances in Databases and Information Systems; Springer: Budapest,
Hungary, 2018; pp. 80–87.

11. Zoun, R.; Durand, G.C.; Schallert, K.; Patrikar, A.; Broneske, D.; Fenske, W.; Heyer, R.; Benndorf, D.; Saake, G. Protein
Identification as a Suitable Application for Fast Data Architecture. In Proceedings of the DEXA 2018 International Workshops,
BDMICS, BIOKDD, and TIR, Regensburg, Germany, 3–6 September 2018; pp. 168–178.

12. Zoun, R.; Schallert, K.; Broneske, D.; Fenske, W.; Pinnecke, M.; Heyer, R.; Brehmer, S.; Benndorf, D.; Saake, G. MSDataStream-
Connecting a Bruker Mass Spectrometer to the Internet. Available online: https://new-dl.gi.de/handle/20.500.12116/21719
(accessed on 10 February 2021).

13. Zoun, R.; Schallert, K.; Broneske, D.; Trifonova, I.; Chen, X.; Heyer, R.; Benndorf, D.; Saake, G. Efficient Transformation of Protein
Sequence Databases to Columnar Index Schema; Database and Expert Systems Applications; Springer International Publishing:
Cham, Switzerland, 2019; pp. 67–72.

14. Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the
Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [CrossRef] [PubMed]

15. Deutsch, E.W. File formats commonly used in mass spectrometry proteomics. Mol. Cell. Proteom. 2012, 11, 1612–1621. [CrossRef]
[PubMed]

16. McDonald, W.H.; Tabb, D.L.; Sadygov, R.G.; MacCoss, M.J.; Venable, J.; Graumann, J.; Johnson, J.R.; Cociorva, D.; Yates, J.R., III.
MS1, MS2, and SQT—three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and
identifications. Rapid Commun. Mass Spectrom. 2004, 18, 2162–2168. [CrossRef]

17. Matrix Science. Data File Format. 2016. Available online: http://www.matrixscience.com/help/data_\file_help.html (accessed
on 10 February 2021).

18. FASTA Format. 2002. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&\DOC_
TYPE=BlastHelp (accessed on 10 February 2021).

19. Wampler, D. Fast Data Architectures for Streaming Applications, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2016.
20. Zoun, R. Analytic Cloud Platform for Near Real-Time Mass Spectrometry Processing on the Fast Data Architecture. Ph.D. Thesis,

University of Magdeburg, Magdeburg, Germany, 2020.
21. De La Briandais, R. File Searching Using Variable Length Keys. In Proceedings of the Western Joint Computer Conference,

San Francisco, CA, USA, 3–5 March 1959.
22. Leis, V.; Kemper, A.; Neumann, T. The Adaptive Radix Tree: ARTful Indexing for Main-memory Databases. In Proceedings of

the 2013 IEEE International Conference on Data Engineering (ICDE 2013), Brisbane, Australia, 8–11 April 2013; pp. 38–49.
23. Shishibori, M.; Okuno, M.; Ando, K.; Aoe, J.I. An efficient compression method for Patricia tries. In Proceedings of the 1997 IEEE

International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA,
12–15 October 1997; Volume 1, pp. 415–420. [CrossRef]

24. Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated
into the MaxQuant Environment. J. Proteome Res. 2011, 10, 1794–1805. [CrossRef] [PubMed]

https://www.researchandmarkets.com/reports/4313373/global-mass-spectrometry-market-size-market
https://www.researchandmarkets.com/reports/4313373/global-mass-spectrometry-market-size-market
http://doi.org/10.1038/nature01511
http://dx.doi.org/10.1111/1751-7915.12276
http://www.ncbi.nlm.nih.gov/pubmed/25874383
http://dx.doi.org/10.1186/s40168-019-0673-y
http://dx.doi.org/10.3389/fchem.2017.00004
http://dx.doi.org/10.1016/j.jprot.2019.04.009
http://www.ncbi.nlm.nih.gov/pubmed/31009805
http://dx.doi.org/10.1002/int.22268
http://dx.doi.org/10.1016/j.chroma.2013.03.073
http://www.ncbi.nlm.nih.gov/pubmed/23639126
https://new-dl.gi.de/handle/20.500.12116/21719
http://dx.doi.org/10.1155/2012/282574
http://www.ncbi.nlm.nih.gov/pubmed/22611397
http://dx.doi.org/10.1074/mcp.R112.019695
http://www.ncbi.nlm.nih.gov/pubmed/22956731
http://dx.doi.org/10.1002/rcm.1603
http://www.matrixscience.com/help/data_\file_help.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&\DOC_TYPE=BlastHelp
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&\DOC_TYPE=BlastHelp
http://dx.doi.org/10.1109/ICSMC.1997.625785
http://dx.doi.org/10.1021/pr101065j
http://www.ncbi.nlm.nih.gov/pubmed/21254760

Algorithms 2021, 14, 59 16 of 16

25. Muth, T.; Behne, A.; Heyer, R.; Kohrs, F.; Benndorf, D.; Hoffmann, M.; Lehtevä, M.; Reichl, U.; Martens, L.; Rapp, E. The MetaPro-
teomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. J. Proteome Res.
2015, 14, 1557–1565. [CrossRef] [PubMed]

26. Siragusa, E. Approximate String Matching for High-Throughput Sequencing. Ph.D. Thesis, Freie Universität Berlin, Berlin,
Germany, 2015.

http://dx.doi.org/10.1021/pr501246w
http://www.ncbi.nlm.nih.gov/pubmed/25660940

	Introduction
	Background
	Protein Data
	Protein Identification
	Real-Time Analysis of Mass Spectrometry Data
	Radix Tree Data Structure

	Data Preparation for Real-Time Protein Identification
	Indexed Masses of Peptides
	Protein Table
	Peptide Table
	Pepmass Table

	Data Transformation
	Protein Deduplication
	Protein Digestion
	Peptide Deduplication and Mass Calculation
	Approaches for Data Transformation

	Implementation
	Transformation Using a Map Structure
	Transformation Using DBMS Queries
	Transformation Using the Extended Radix Tree Structure
	Our Radix Tree Adaptation

	Evaluation
	Time Evaluation
	Homo sapiens Data Set
	UniProtKB/SwissProt Data Set

	Memory Consumption
	Result Summary

	Related Work
	Conclusions
	References

