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Abstract: Autonomous vehicles require fleet-wide data collection for continuous algorithm develop-
ment and validation. The smart black box (SBB) intelligent event data recorder has been proposed
as a system for prioritized high-bandwidth data capture. This paper extends the SBB by applying
anomaly detection and action detection methods for generalized event-of-interest (EOI) detection.
An updated SBB pipeline is proposed for the real-time capture of driving video data. A video dataset
is constructed to evaluate the SBB on real-world data for the first time. SBB performance is assessed
by comparing the compression of normal and anomalous data and by comparing our prioritized
data recording with an FIFO strategy. The results show that SBB data compression can increase the
anomalous-to-normal memory ratio by ∼25%, while the prioritized recording strategy increases the
anomalous-to-normal count ratio when compared to an FIFO strategy. We compare the real-world
dataset SBB results to a baseline SBB given ground-truth anomaly labels and conclude that improved
general EOI detection methods will greatly improve SBB performance.

Keywords: event data recorder; autonomous vehicles; vehicle data collection

1. Introduction

Traditional automotive data collection has focused on low-bandwidth vehicle data
such as speed and brake status. However, as autonomous vehicles increasingly seem to
be the future of transportation [1], these data collection methods are becoming obsolete.
Modern autonomous vehicles require the large-scale collection of high-bandwidth data
(e.g., video, point clouds) for algorithm development and validation and verification.
Deep-learning networks for common autonomous vehicle perception tasks such as object
detection [2–4], object tracking [5–7], and trajectory prediction [8–11] need significant
quantities of high-bandwidth real-world data for effective training and testing.

The finite on-board storage capacity presents a challenge for high-bandwidth data
capture that low-bandwidth data logging systems do not encounter. Recently, event data
recorders specialized for such high-bandwidth data capture have been explored. The smart
black box (SBB) [12,13] is one such system. The SBB uses pre-defined rules for event-
of-interest (EOI) detection and computes the data value according to the detected EOI.
The data value is then used to determine data compression factors and as the basis for
prioritized data recording.

This paper expands the smart black box to record high-priority video data and applies
the SBB to a real-world driving dataset. Rather than using pre-defined rules for EOI
detection as in [12,13], machine learning-based methods for generalized EOI detection
are applied to derive the data value. Raw data are grouped into buffers, compressed,
and stored in a priority queue in order to discard low-value data as the storage capacity is
filled. The SBB is assessed on real-world driving video. We focus on video data due to the
ubiquity of cameras as a sensor in automotive applications.

This paper offers two primary contributions. Firstly, we apply video anomaly detec-
tion (VAD) [14,15] and online action detection (OAD) [15,16] as methods for generalized
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EOI detection on real-world driving video. To estimate the data value from combined VAD
and OAD outputs, we introduce a hybrid value method based on a weighted sum. Sec-
ondly, we present an updated SBB pipeline incorporating VAD and OAD and designed for
the real-time recording of dash camera video data. We find that while the SBB improves the
collection and retention of high-value data, improved EOI detection methods are needed
to realize the full potential of the SBB.

The paper is structured as follows. First, related work is explored in Section 2. Then,
an overview of the original SBB [13] is presented, and the changes we made for applica-
tion to real-world data are discussed in Section 3. Section 4 describes our adjusted data
classification system, the updated SBB pipeline, and the new value estimation method.
Section 5 presents experimental results on a combined real-world dataset and analyzes the
performance of our updated SBB. Section 7 concludes the paper and discusses future work.

2. Related Work
2.1. Event Data Recorders

Automotive event data recorders use low-level triggers, such as vehicle impact or
engine faults, to log vehicle data leading up to and during anomalous events [17,18].
However, these systems focus on low-bandwidth data and do not sufficiently address
the storage problems posed by high-bandwidth sensors. In the case that the on-board
memory is filled, one of two strategies is used. The more common strategy writes data
until the memory is full, then stops recording data, meaning that the newest data are
dismissed. The second strategy uses a circular buffer equivalent to a first-in-first-out (FIFO)
queue. In this model, the newest data overwrite the oldest data. Neither of these strategies
considers the value of the data being discarded.

High-bandwidth data recorders address this by using prioritized data recording. In the
case of [12,13], valuable data are identified using pre-defined rules for EOI detection. This
paper seeks to build on the prioritized recording strategy in [12,13] by applying methods
for general EOI detection.

2.2. Traffic Video Anomaly Detection and Classification

Several methods exist for identifying EOIs in autonomous vehicles. Pre-defined
rules may be applied based on vehicle odometry [19–21] to identify certain EOIs. Other
approaches use physiological signals from the driver [22]. In recent years, deep-learning
computer vision techniques have been applied to anomaly detection in first-person driving
videos [14,15,23,24]. Other works further attempt to classify the type of anomaly occurring
in the video, either offline after the video is fully observed [25–27] or in real time [16]. These
methods present a way for generalized EOI detection based only on dash camera video.
As such, we use methods from [14,16] in the SBB to assign the data value in accordance
with our focus on video data. Table 1 below presents a summary of the reviewed anomaly
detection methods.

Table 1. Video-based anomaly detection and action recognition methods. TRN, temporal recurrent network.

Method Aim Description

TAD [14] Anomaly detection (unsupervised) Predicts future bounding boxes using RNN encoder-decoders, then takes the standard
deviation of the predictions as the anomaly score.

DSA-RNN [23] Anomaly detection (supervised) Uses a dynamic-spatial-attention (DSA)-RNN, which learns to distribute soft attention to
objects and model the temporal dependencies of detected cues.

STAG [24] Anomaly detection (supervised) Uses a spatio-temporal action graph (STAG) network to model the spatial and temporal
relations among objects.

TSN [25] Action recognition (offline) Sparsely samples video snippets and predicts action using RGB and optical flow data.
R(2+1)D [26] Action recognition (offline) Uses a 3D convolutional neural network with separate 2D and 1D convolutional blocks.

SlowFast [27] Action recognition (offline) Extracts frames from a low frame rate stream to capture spatial information and a high
frame rate stream to capture motion.

TRN [16] Action recognition (online) Simultaneously detects the current action and predicts the action of the following frame.
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2.3. Real-World Driving Datasets

The increasing popularity of deep-learning methods for self-driving perception tasks
has created a demand for high-quality high-bandwidth datasets. Naturalistic field op-
eration test projects such as [28,29] have been used in the past to gather large amounts
of driving data. One such dataset [28] uses 100 cars to log nearly 43,000 h of video and
vehicle performance data over a distance of 2,000,000 miles. The more recent Safety Pilot
Model Deployment dataset [29] contains roughly 17,000,000 miles of data collected over
almost 64,400 h, including 17 TB of video. However, these datasets primarily focus on the
capture of low-bandwidth data; the video streams of both datasets are compressed and
downsampled to low frame rates.

Recently, high-quality computer vision-oriented datasets have been published. These
include general driving datasets like Cityscapes [30], KITTI [31], and BDD100K [32]
and traffic anomaly datasets like A3D [14], DADA [33], and Detection of Traffic Anomaly
(DoTA) [15]. Cityscapes contains 24,999 labeled images at 55 GB, while KITTI includes
7481 images at 12 GB, in addition to 29 GB of point clouds and GPS and IMU data. BDD100K
is one of the largest public driving datasets, having 100,000 HD video clips (1.8 TB) for over
1100 driving hours in a variety of conditions. A3D, DADA, and DoTA focus specifically on
traffic anomalies. A3D contains 1500 on-road accident clips with accident start and end
times labeled. DADA released 1000 video clips with simulated driver eye-gaze. DoTA
is comprised of 4677 videos with spatial, temporal, and anomaly category annotations.
Table 2 summarizes some major driving video datasets.

Table 2. High-quality driving video datasets. DoTA, Detection of Traffic Anomaly.

Dataset # of Frames Data Size (GB) Anomaly-Focused # of Anomalous Videos

KITTI 7481 (15 fps) 12 No N/A
Cityscapes 24,999 (17 fps) 55 No N/A
BDD100K 120,000,000 (30 fps) ∼1800 No N/A

A3D 128,174 (10 fps) 15 Yes 1500
DADA 648,476 (30 fps) 53 Yes 2000
DoTA 732,932 (10 fps) 57 Yes 4677

Datasets like BDD100K and DoTA have significantly extended publicly available
data access for deep-learning methods to use. However, anomaly-focused datasets are
still relatively small; larger datasets like BDD100K contain very few EOIs with which to
test self-driving algorithms. As a result, the evaluation of the SBB required the creation
of a combined dataset using BDD100K and DoTA video clips in order to have sufficient
quantities of both normal and anomalous driving data. The SBB aims to address this
problem by providing a method to collect high-value video data across an entire fleet
of vehicles.

3. Preliminaries

This work builds upon the smart black box (SBB) intelligent event data recorder
proposed in [13]. The original SBB design, data value estimation method, and its issues in
the real world are reviewed.

3.1. Smart Black Box Design

The SBB aims to record high-quality high-value data through value-driven data
compression and prioritized data recording. At each time step, one data frame is observed
and collected. Based on event detectors, a scalar frame value vt ∈ [0, 1] is computed
for each frame. The data frame is then appended to a buffer, which caches seconds or
minutes of data. The process of buffering data frames is managed by a deterministic Mealy
machine (DMM) which uses the new data value, data similarity, and the current buffer
size to determine when to end the current buffer and start a new one [13]. After the DMM
terminates, local buffer optimization (LBO) is used to determine the optimal compression
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factor dt ∈ [0, 1], called the LBO decision, for each frame in the buffer. A Gaussian data
value filter can be applied over the buffered data to smooth the estimated data value.
The buffered data are then compressed according to the LBO decisions and stored in long-
term storage. After on-board storage is full, a priority-queue discards the lowest value
buffers to make space for higher value buffers.

3.2. SBB Value Estimation

The SBB was previously tested only in a simulation environment, The Open Source
Racing Simulator (TORCS) [34]. Experiments done using TORCS in [13] classified each
frame as either normal (ε1) or as one of four pre-defined events-of-interest (EOIs): cutin,
hardbraking, conflict, or crash, denoted as ε2, ε3, ε4, or ε5, respectively. The value of each
event is pre-computed using its event likelihood in Equation (1):

v(εj) = − log2(P(εj)) (1)

where P(εj) is the likelihood of event εj. These event values are then normalized over [0, 1]
with maxj v(εj) = 1. The frame value at time t, vt, is then set according to:

vt = v(ε(t)) (2)

where ε(t) is the event detected at time t.
This data value estimation method works well in a simulation environment. However,

it has two main drawbacks that affect its usability in the real world. First, the method
relies entirely on a set of pre-defined rules for EOI detection. In reality, the space of traffic
EOIs is large and diverse, and capturing them purely using pre-defined rules is insufficient
for real-world applications. Second, the detection of the four EOIs is not always possible
given only dash camera data. In simulation, the EOIs are easily detectable by tracking
the cars surrounding the ego vehicle. However, limiting the available sensing to a single
front-facing camera makes the identification of these EOIs significantly more challenging.
In this paper, we apply an adjusted event classification system in Section 4.1.1 and a new
value estimation method in Section 4.3.

4. Materials and Methods

This section introduces a new event classification system to extend the previous SBB
and defines updated data frame and buffer representations in Section 4.1. Then, an updated
SBB pipeline for real-world video data is presented in Section 4.2. Finally, methods for data
value estimation using video anomaly detection and online action detection are discussed
in Section 4.3.

4.1. Data Classification and Representation
4.1.1. Frame Classification

As mentioned in Section 3.2, the event classification system in [13] does not straight-
forwardly apply to real-world applications. Instead, real-world datasets such as DoTA [15]
classify frames based on anomaly type and causation, e.g., an on-coming collision event.
As such, we employ the classification system used in the DoTA dataset [15], which defines
the eight traffic anomaly categories described in Table 3. Each of these anomaly categories
can be further specified as ego or non-ego events. Including the normal event class, this
results in 17 total event classes. Online action detection aims to classify frames according
to these event classes.

To realize generalized EOI detection, we also utilize a binary anomalous or normal
classification. Video anomaly detection is used to solve this binary classification problem.
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Table 3. Event Classes in the DoTA dataset [15].

Name ID Description

N 0 No anomaly
ST 1 Collision with another vehicle which starts, stops, or is stationary
AH 2 Collision with another vehicle moving ahead or waiting
LA 3 Collision with another vehicle moving laterally in the same direction
OC 4 Collision with another oncoming vehicle
TC 5 Collision with another vehicle that turns into or crosses a road
VP 6 Collision between vehicle and pedestrian
VO 7 Collision with an obstacle in the roadway
OO 8 Out-of-control and leaving the roadway to the left or right

4.1.2. Data Frame Representation

A data frame is defined as all data, both observed and computed, associated with a
single video frame. In this paper, we consider only data derived from camera input. These
data include:

Image : The video frame captured by the camera. In this paper, we use RGB images at
1280× 720 resolution.

Value : The value of the frame vt ∈ [0, 1]. The value is calculated according to the value
function defined in Section 4.3 and is used in the DMM, as well as in buffer value computation.

Cost : The normalized storage cost of the frame ct ∈ [0, 1].

Anomaly score : The anomaly score s ∈ [0, 1] of the frame generated using video anomaly
detection. More details can be found in Section 4.3.1.

Classification scores : The output scores ot = [ot,0, ot,1, . . . , ot,16] for each event class in
Table 3 from online action detection. More details can be found in Section 4.3.2.

Object data : The tracking ID, object type, bounding box, and detector confidence of each
object detected in the frame. Object data are used to support buffer tagging; details can be
found in Section 4.1.3.

4.1.3. Frame Buffer Representation

A buffer is a collection of frames grouped by the DMM described in Section 3.1.
The buffer cost Ck and value Vk of the kth buffer are computed as

Vk = (1 + λ)k max
i

(vidi) (3)

Ck = ∑
i

ĉi (4)

where vi is the value of the ith frame in the buffer, di is its compression quality, and ĉi is
its post-compression storage cost. The 1 + λ with 0 < λ << 1 is an aging factor used to
slightly favor more recent buffers.

Additionally, buffer tags are high-level descriptions of data buffers which enable buffer
indexing and searching in downstream applications. These tags include:

Anomaly score : The mean, max, and variance of the anomaly scores of the frames in
the buffer.

Frame classifications : A list of event classes ε for which there is a frame ft in the buffer
where ot,ε > ρε and ρε is a user-defined threshold score for class ε.

Objects : The tracking ID, object type, and bounding boxes and detector confidences over
time of each object in the buffer.

4.2. Updated SBB Design

The updated SBB is separated into four processes running in parallel: video capture,
buffer management, value estimation, and prioritization. Figure 1 describes the updated
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SBB pipeline. Our code is available at https://github.com/rzf16/sbb2_algs (accessed on 8
February 2021).

Figure 1. The updated smart black box (SBB) data recording pipeline. Green blocks denote new
modules that were not present in the original SBB [13]. Black arrows indicate logic flow, and blue
arrows indicate data flow. LBO, local buffer optimization.

Video Capture reads video input and publishes each video frame to value estimation and
buffer management. This module remains unchanged from the original SBB.

Value Estimation assigns a value vt ∈ [0, 1] for each frame to be used in buffer man-
agement and storage prioritization. The value estimation module first executes object
detection, object tracking [5], and optical flow estimation [35]. The outputs are then used
in video anomaly detection and online action detection, which are used to compute the
value. Details on this calculation can be found in Section 4.3. The value estimation method
used differs significantly from [13]. In [13], perfect EOI detection using pre-defined rules
was assumed, and the data value was computed based on detected EOIs. In this paper,
we instead use video anomaly detection and action detection methods for generalized
EOI detection and calculate the data value based on their output scores. More details on
the value estimation of the original SBB can be found in Section 3.2. More details on our
updated value estimation can be found in Section 4.3.

Buffer Management groups frames into buffers using the DMM from [13] after receiv-
ing each frame from Video Capture and its corresponding value from Value Estimation.
The similarity of a data frame to the current buffer is computed as the percentage of object
tracking IDs in the frame that have already appeared in the buffer. With A being the set
of tracking IDs in the frame and B being the set of tracking IDs that have appeared in
the buffer, we compute the similarity ξt =

|A∩B|
|A| . Once the DMM terminates, LBO solves

an optimization problem over the output buffer to determine the compression quality of
each frame.

According to [13], a decoupled LBO strategy can optimize the compression qual-
ity of a single frame independently of all other frames in the buffer. Given constant η

ζ ,
the uncoupled LBO objective function for frame ft is:

min
dt

ctφ(dt)−
η

ζ
v̂tdt

subject to dt ∈ [0, 1]
(5)

https://github.com/rzf16/sbb2_algs
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where η, ζ ≥ 0 are weighting parameters and φ(dt) maps from the compression quality
to the compression ratio. Note that φ(dt) increases monotonically over dt ∈ [0, 1]. In this
paper, we use the φ function of JPEG compression on real-world driving data following [12].
Throughout the paper, the values η = 0.9 and η = 1.7 are used based on [13]. These
parameters were assigned to maximize the value-per-memory (VPM) of the recorded data.
Further details on η and ζ parameter selection can be found in [13].

DMM and LBO functionality remain the same as [13]. However, the data similar-
ity metric is adjusted to match our focus on dash camera data. In the previous SBB,
data similarity was computed using the odometry of the host and surrounding vehicles.
However, a single front-facing camera cannot capture sufficient information to use this
approach. As such, we compute data similarity using detected objects in the frame, as men-
tioned above.

Prioritization maintains a buffer priority heap in order to retain high-value buffers and
delete low-value buffers as the memory capacity is reached. The buffer value Vk and cost
Ck of the kth buffer are computed according to Equations (3) and (4) respectively. A binary
min-heap is constructed to store buffers based on Vk following [13]. This module is also
unchanged from [13].

4.3. Value Estimation Method

This section introduces the data value estimation method used by the DMM module
to group buffers and decide the optimal compression factors. Similar to [12,13], we define
the value of a data frame as a measure of data anomaly. The data value is determined
by: (1) the anomaly score estimated by a video anomaly detection (VAD) module; (2) the
anomaly category detected by an online action detection (OAD) module.

4.3.1. Video Anomaly Detection

A VAD algorithm takes observed image frames and predicts an anomaly score for each
frame as a description of the degree of abnormality of that frame. Existing VAD algorithms
can be categorized as frame-level VAD and object-level VAD. A frame-level VAD algorithm
reconstructs or predicts image frames (e.g., in RGB or grayscale) and computes the L2 error
of reconstruction or prediction as the anomaly score [36–38]. An object-level algorithm,
on the other hand, predicts object appearance and/or motions and computes the anomaly
score based on prediction error [39,40] or consistency [14,15].

In this paper, we run an off-the-shelf VAD algorithm to estimate an anomaly score st
of a frame ft and use it to inform our value estimation. To be specific, we trained the TAD
algorithm in [14] using the Detection of Traffic Anomaly (DoTA) dataset following [15] and
applied it to our data value estimation module.

4.3.2. Online Action Detection

While the anomaly score from VAD provides information about the probability that
an anomaly occurs in a frame, it does not assess the anomaly category, which is important
information for determining the data value in long-term driving according to [13]. Catego-
rizing anomalous events is essential to the SBB design since it allows the SBB to prioritize
high-value categories when the storage limit is encountered, and it allows the SBB to focus
on specific event types per a user’s request.

In this paper, we implement an off-the-shelf OAD algorithm to obtain a confidence
score vector ot for a frame ft, which is then combined with the anomaly score st to esti-
mate the data value. To be specific, we trained an OAD algorithm called the temporal
recurrent network (TRN) [16] using the DoTA dataset [15]. The TRN outputs a 17D vector
ot = [Pt(ε1), Pt(ε2), . . . , Pt(ε17)] for each frame with ∑16

j=0 Pt(εj) = 1, which represents the
confidence score that a frame belongs to each class.
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4.3.3. Hybrid Value

A hybrid value estimation method is proposed that sums the VAD and OAD scores
according to:

v = max(1, αs + β
16

∑
i=1

wioi) (6)

where wi is the information measure of class i and α, β are weighting parameters in [0, 1].
Because oi estimates the probability that a frame is of class i, the weighted sum over o is
equivalent to the expected information measure of the frame. By using the information
measure of each anomaly class, anomaly types of higher rarity are assigned a higher value.
Note that Class 0, the normal class, is not included in the computation. This is equivalent
to w0 = 0. Throughout this paper, we use α = β = 1 for simplicity.

The information measures wi for each class are calculated using the class likelihoods
in the DoTA dataset found in Table 4. The information measure wi for class i is cal-
culated in Equation (7). Values are normalized to [0, 1] by dividing by the maximum
information measure.

wi = − log2(P(class = i)) (7)

Table 4. DoTA Anomaly Class Probabilities and Values. An anomaly label with “*” indicates an event where the ego car is
not involved (i.e., non-ego); otherwise, the event is ego-involved.

ST AH LA OC TC VP VO OO ST * AH * LA * OC * TC * VP * VO * OO *

Likelihood 0.011 0.057 0.054 0.023 0.163 0.012 0.010 0.089 0.010 0.091 0.104 0.081 0.207 0.010 0.011 0.070

Normalized
info.measure

0.977 0.635 0.633 0.816 0.395 0.957 0.995 0.525 1.0 0.521 0.491 0.546 0.342 1.0 0.990 0.576

5. Experiments

In this section, we conduct SBB data collection experiments on a specifically designed
large-scale real-world video dataset and present the results. We discuss the storage require-
ments of SBB-compressed data to showcase its preservation of valuable data. We then
compare our SBB prioritized data recording with an FIFO queue data recording strategy.
We examine the SBB results on each anomaly class. Finally, we evaluate the performance of
the VAD-OAD hybrid value method with several parameter combinations.

5.1. Dataset

The SBB is designed for high-bandwidth data collection in long-term driving where
on-board storage is limited. Therefore, SBB performance evaluation requires a large, high-
quality video dataset, which contains both normal driving data, as well as events-of-interest
(EOIs). To our best knowledge, there is currently no single dataset that satisfies all these
requirements. The BDD100K dataset [32] is one of the largest high-quality driving video
datasets and contains 100,000 video clips covering about ∼1100 driving hours. The DoTA
dataset [15] is the largest and newest high-quality video dataset for traffic anomalies and
contains 4677 anomalous video clips. We combined the 10,000 validation videos in the
BDD100K dataset and randomly sampled and interspersed 500 anomalous video clips
from the DoTA dataset, resulting in a large testing video with ∼4,000,000 frames at 10 FPS.
The frames from BDD100K were compressed using OpenCV with JPEG quality 85 in order
to eliminate the difference in image size between BDD100K and DoTA. This combined
dataset contains over 100 h of driving video at 1280× 720 resolution with 0.5% of frames
being anomalous, meeting our requirements for a large, high-quality, and mostly non-
anomalous dataset. Note that the ST*anomaly class was not included in this combined
dataset, as its rarity in the DoTA dataset led to no ST* clips being sampled.
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5.2. Results

Experimental results for the SBB are presented and discussed below. In general, a high
storage size and decisions are desirable for anomalous data, while the opposite is true for
normal data.

SBB data compression: SBB data compression statistics with no memory limit are pre-
sented in Table 5. It can be seen that the storage cost of normal frames is significantly
reduced (427.20 GB to 65.53 GB, 85%) by the SBB. This leads to a 24.4% increase in the
ratio of anomalous data storage-to-normal data storage. Both the average (avg.) and me-
dian (med.) compression factor decisions of the SBB are higher for the anomalous frames,
indicating that the SBB is able to identify and preserve anomalous frames over normal
ones. Figure 2 displays normal frames that were highly compressed by the SBB along with
preserved anomalous frames; Figure 3 shows two failure cases where anomalous frames
were mistakenly compressed. Both of these failures showcase a lack of robustness against
cases where anomalous objects are occluded.

(a) A normal driving frame (b) A vehicle-object collision (VO) event

(c) Precursor of the TC event (d) An ego turning collision (TC) event

Figure 2. Compressed normal frames (left) and preserved anomalies (right).

However, the decision difference between normal and anomaly frames is not as
significant compared to the simulation experiment in [13] due to the fact that the anomalous
event detection in the simulation was 100% accurate, while VAD on real-world data is far
from perfect. Moreover, the median decision for a normal frame is significantly lower than
the mean, indicating that there are outlier normal frames with unusually high value scores.
The standard deviation (std.) of anomalous frames is significantly larger than that in the
simulation experiment (0.26 vs. ∼0.02), showing how inaccurate VAD and OAD reduces
the SBB’s efficiency on real-world data.
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(a) A non-ego out-of-control (OO*) event
where a windshield wiper is partially block-
ing the anomaly

(b) A non-ego road crossing collision (TC*)
where one vehicle is partially occluded

Figure 3. Compressed anomaly failure cases. * indicates non-ego.

The limitations of VAD and OAD are further shown by evaluating the performance
of the SBB given ground-truth labels as VAD and OAD scores. The anomalous-to-normal
memory ratio increases by 1610%, driven by the massive difference in decisions between
normal and anomalous frames. This upper-bound performance of the SBB indicates that
as anomaly detection techniques continue to improve, the performance of the SBB will
improve as well.

Table 5. Raw, SBB-compressed and ground-truth (GT) SBB-compressed data statistics on the
BDD100K+DoTA dataset. VAD, video anomaly detection; OAD, online action detection.

Normal Anomaly Anomaly Ratio

Raw Data # of Frames 3,967,977 16,768
size (GB) 427.20 1.76 0.41%

SBB w/VAD+OAD size (GB) 65.53 0.33 0.51%
avg. di 0.51 0.58
med. di 0.55 0.63
std. di 0.24 0.26

SBB w/GT VAD+OAD size (GB) 11.05 0.73 6.60%
avg. di 0.00 0.92
med. di 0.00 0.92
std. di 0.03 0.00

Priority queue vs. FIFO: Table 6 compares the recorded frames of a prioritized recording
system against that of an FIFO queue at memory limits of M = 3.125 GB, 6.25 GB, 12.5 GB,
and 25 GB. These values represent a non-trivial amount of data to upload (depending on
Internet connection quality) assuming continuous Internet access is not available. In all
scenarios, the prioritized recording saved fewer normal frames and more anomalous
frames than with the FIFO strategy. We also note that while the anomaly ratio stays roughly
the same in each memory limit for the FIFO queue, the ratio increases at each level for
the priority queue. The prioritization strategy of the SBB removes ∼95% of the normal
frames while still recording ∼10% anomalous frames at M = 3.125 GB. Compared to
the FIFO queue, the anomalous-to-normal count ratio of SBB-recorded data is ∼25% to
∼100% higher.
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Table 6. Comparison of prioritized recording and FIFO.

M Normal↓ Anomaly↑ Anomaly Ratio↑

25 GB FIFO 1,739,855 7851 0.45%
Priority 1,487,570 8545 0.57%

12.5 GB FIFO 889,679 4335 0.49%
Priority 734,625 5154 0.70%

6.25 GB FIFO 437,673 2029 0.46%
Priority 364,666 2898 0.79%

3.125 GB FIFO 207,951 962 0.46%
Priority 183,951 1706 0.93%

Performance per anomaly class: Figure 4 displays the decision histograms for each
anomaly class. The performance of the SBB varies heavily depending on the anomaly
category. For example, the decision distribution of class OCindicates very good detection of
this anomaly. In OC, an ego-vehicle collision with an oncoming vehicle, the anomalous ob-
ject (the oncoming vehicle), is almost always both near the camera and largely unoccluded.
However, ST, VO, LA*, VO*, and OO*have notably poor performance. ST is an extremely
difficult case for OAD due to its visual similarity to AHand LA anomalies, resulting in
lower OAD confidence that an anomaly has occurred. VO and VO* involve vehicles hitting
obstacles in the roadway. In some scenarios, such as hitting a traffic cone or a fire hydrant,
the obstacle may be blocked from view by the anomalous vehicle in a non-ego incident or
outside the camera’s field of view in an ego-incident. LA* often involves vehicles slowly
moving closer together, making the collision relatively subtle. OO*, a non-ego vehicle
leaving the roadway, can be challenging to detect simply due to the distance at which the
anomaly occurs.

Value estimation method comparison: Table 7 compares the decision statistics for hybrid
value estimation with several parameter combinations. We note that the VAD-only method
generates the largest decision difference in normal and anomalous frames; we suspect
this to be a result of OAD’s inability to consistently differentiate between anomalous
and normal frames. Readers are directed to [15] for an in-depth discussion on the poor
performance of OAD algorithms.

For applications that value general EOIs, VAD-only value estimation (α = 1, β = 0) has
the greatest ability to distinguish normal and anomalous data. However, users interested
in specific EOIs may opt to use a hybrid value in order to incorporate the EOI classification
offered by OAD. In terms of hybrid value parameters, Table 7 shows that lower weights
result in higher decision differences. However, in situations where retaining data quality
is critical, higher α and β values may be used to achieve higher overall decision quality.
Additionally, the higher decision differences as α increases shown in Figure 5 indicate once
again that VAD contributes more to the differentiation of normal and anomalous frames
than does OAD.
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(a) ST (b) AH (c) LA (d) OC

(e) TC (f) VP (g) VO (h) OO

(i) ST* (j) AH* (k) LA* (l) OC*

(m) TC* (n) VP* (o) VO* (p) OO*

Figure 4. Decision histograms per anomaly class (ST: collision with a starting, stopping, or stationary
vehicle; AH: ahead collision; LA: lateral collision; OC: oncoming collision; TC: turning or crossing
collision; VP: vehicle-pedestrian collision; VO: vehicle-obstacle collision; * indicates non-ego; OO:
out-of-control leaving roadway). The x-axis represents decision dt ∈ [0, 1], and the y-axis represents
the frame count per bin.

Figure 5. Mean normal and anomalous decisions for α + β = 1.
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Table 7. Compression quality decisions for hybrid value estimation.

Value
Estimation α β Normal Anomaly

VAD Only 1.0 0.0
avg. di 0.27 0.38
med. di 0.15 0.38
std. di 0.30 0.34

OAD Only 0.0 1.0
avg. di 0.10 0.14
med. di 0.0 0.07
std. di 0.15 0.17

Hybrid

1.0 1.0
avg. di 0.51 0.58
med. di 0.55 0.63
std. di 0.24 0.26

0.9 0.1
avg. di 0.26 0.37
med. di 0.14 0.36
std. di 0.29 0.33

0.5 0.5
avg. di 0.20 0.30
med. di 0.10 0.27
std. di 0.24 0.28

0.1 0.9
avg. di 0.12 0.19
med. di 0.02 0.16
std. di 0.16 0.19

6. Discussion

While our results indicate that the SBB improves the recording of anomalous data,
the massive difference between the ground-truth and the actual performance of the SBB
indicates the need for improved video-based anomaly detection and action detection.
Furthermore, a key limitation of our study is the extraction of the data value purely from
a single video stream. Most autonomous vehicles feature huge sensor suites, including
multiple cameras, radar, LiDAR, CANdata, etc. Future research in intelligent event data
recorders may tap into this wealth of sensor data to more effectively detect EOIs and assign
the data value.

Additionally, further work towards high-bandwidth vehicular communication net-
works can serve to ease the onboard memory constraints under which the SBB works.
Currently, the SBB is designed to record data over the course of a day or multiple days.
However, high-speed vehicle-to-everything communication allowing for rapid data upload
in real time would significantly reduce the data recording period of the SBB and possibly
transform the SBB into a downstream application to be applied after data upload.

Finally, although our manuscript focuses on the application of the SBB to autonomous
cars, the SBB pipeline can be adapted for intelligent data recording in other domains as
well. Autonomous and semi-autonomous systems are being developed for truck, sea,
and air transport to accommodate increased volume [41–43] and to improve safety [44].
As the onboard sensor suites of these mediums continue to increase in complexity and
data bandwidth, intelligent event data recorders must be developed to store and manage
valuable sensor data.

7. Conclusions

This paper proposes a novel smart black box (SBB) data processing pipeline that
uses video anomaly detection and online action detection to efficiently record large-scale
high-value video data. We addressed the storage and value estimation problems the SBB
will face with real-world data, made adjustments to the data classification and value esti-
mation accordingly, and presented results on a large-scale real-world driving video dataset.
Value estimation is changed from an entirely information measure-based method using
pre-defined EOIs to use a combination of video anomaly detection and online action detec-
tion capable of detecting more generalized EOIs. Observed decision differences between
normal and anomalous data indicate that the SBB value estimation can distinguish normal
and anomalous frames. In the experiments, a 24.4% increase in the anomalous-to-normal
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memory ratio was achieved compared to the raw data, in addition to a ∼25% to ∼100%
increase in the anomalous-to-normal count ratio. However, we also noted that the SBB’s
performance increases significantly given ground-truth anomaly labels, suggesting that
improved methods for general EOI detection will further improve the SBB utility. Future
research in anomaly detection using sensor fusion, high-bandwidth vehicular communica-
tion networks, and intelligent event data recorders for other domains of transport can help
realize prioritized data recording and storage for intelligent transportation systems.
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