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Abstract: The problem of classification for imbalanced datasets is frequently encountered in practical
applications. The data to be classified in this problem are skewed, i.e., the samples of one class (the
minority class) are much less than those of other classes (the majority class). When dealing with
imbalanced datasets, most classifiers encounter a common limitation, that is, they often obtain better
classification performances on the majority classes than those on the minority class. To alleviate
the limitation, in this study, a fuzzy rule-based modeling approach using information granules is
proposed. Information granules, as some entities derived and abstracted from data, can be used to
describe and capture the characteristics (distribution and structure) of data from both majority and
minority classes. Since the geometric characteristics of information granules depend on the distance
measures used in the granulation process, the main idea of this study is to construct information
granules on each class of imbalanced data using Minkowski distance measures and then to establish
the classification models by using “If-Then” rules. The experimental results involving synthetic and
publicly available datasets reflect that the proposed Minkowski distance-based method can produce
information granules with a series of geometric shapes and construct granular models with satisfying
classification performance for imbalanced datasets.

Keywords: fuzzy granular classification; information granules; Minkowski distance; imbalanced
datasets

1. Introduction

As one of the key components of machine learning, fuzzy rule-based classifiers [1–3]
explore the features of data by constructing fuzzy sets with strong generalization ability
and extracting fuzzy rules with good interpretability. Compared with some traditional
classification algorithms, such as decision trees [4,5], logistic regression [6], naive Bayes [7],
neural networks [8], etc., fuzzy classifiers tend to consider both classification performance
and interpretability of fuzzy rules when designing models. Fuzzy techniques are also
combined with some classic classifiers to deal with human cognitive uncertainties in
classification problems. Fuzzy decision trees [9] is a famous one of those, which have been
proved as an efficient classification method in many areas [10–12]. Similarly, there are also
some multiple classifier systems, such as fuzzy random forest [13] which are constructed by
combining a series of fuzzy decision trees. However, when dealing with the data in practice,
such as disease diagnosis [14], protection systems [15], nature disaster predictions [16] and
financial problems [17], traditional fuzzy rule-based classifiers could not always extract
fuzzy classification rules with good interpretability, which directly leads to the decrease
of classification accuracy. This is mainly because the data in the real world often have
the characteristic of imbalance [18,19], that is, the samples of a certain class (called the
minority class) is far less than those of other classes (collectively called the majority class).
Traditional fuzzy classifiers usually assume that the number of samples contained in each
class in the dataset is similar, while the classification for imbalanced data focus on just two
classes, viz., the minority class and the majority class.
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To resolve the issue of classification for imbalanced data, some auxiliary methods have
emerged. Data sampling is a common one of them, whose aim is to balance the dataset
through increasing the sample size of the minority class (oversampling) or decreasing the
sample sizes of majority classes (undersampling) before modeling. A famous oversampling
method called “synthetic minority over-sampling technique (SMOTE)” is proposed by [20],
where the minority class is oversampled through selecting the proper nearest neighbor
samples from the minority class. In [21,22], the SMOTE part is modified before its first stage
in which samples weight and k-means are added right before selecting nearest neighbor
samples from the minority class of a dataset, respectively. Similarly, there are also a series of
studies based on undersampling to help better deal with imbalanced data classification [23].
A number of fuzzy algorithms are combined with these data sampling techniques to handle
imbalanced data classification issues. [24] presented a study in which the synergy between
three fuzzy rule-based systems and preprocessing techniques (data sampling included) is
analyzed in the issue of classification for imbalanced datasets. In [25], some new fuzzy
decision tree approaches based on hesitant fuzzy sets are proposed to classify imbalanced
datasets. An obvious advantage of the above-mentioned data balancing techniques is
that they do not depend on the specific classifier and have good adaptability. However,
the data are balanced with compromise, i.e., oversampling would increase the size of
training set which may cause overfitting problems and undersampling would remove
some useful samples from the training data. This is obviously contrary to the nature of
data classification. In addition to the method of data sampling, another commonly used
approach focuses on modifying the cost function of classification models so that the penalty
weight of the misclassified minority samples in the cost function is greater than the one
of the misclassified majority samples. The disadvantage is that there are no universally
adequate standards to quantify the penalty weight of the misclassified minority samples.

The above-mentioned methods aim at improving the classification performance by
adding some auxiliary methods, such as data sampling methods. However, interpretabil-
ity is also a significant requirement when constructing classification models. As we all
know, fuzzy rules or fuzzy sets constructed by fuzzy algorithms are usually highly inter-
pretable which can reveal the structure of data. For example, the Takagi–Sugeno–Kang
fuzzy classifier [26], a famous two-stage fuzzy classification model, obtains the antecedent
parameters or initial structure characteristics through clustering algorithms [27,28]. How-
ever, when dealing with imbalanced datasets, the samples in the minority class may be
treated as outliers or noise points or be completely ignored when applying clustering
methods. This obviously affects the classification performance of imbalanced datasets.
Thus, a fuzzy method considering both classification performance and interpretability
should be constructed. Information granules are a concept worth considering.

Information granules [29] are entities composed of data with similar properties or func-
tional adjacency which are the core concept in the field of granular computing (GrC) [30,31].
To a certain degree, an information granule is the indistinguishable minimum entity with
explicit semantics which can depict data. This implies that data with similar numerical
values can be arranged together and abstracted into an information granule with spe-
cific fuzzy semantics. This is consistent with the abstract process of building fuzzy sets
around data. Since information granules can be built in different formalisms such as
one-dimensional intervals, fuzzy sets, rough sets, and so on. Thus, in the view of high di-
mensionality and the special geometric structure of imbalanced datasets, we can construct
two different collections of information granules to depict the characteristics of the majority
class and the minority class [32], respectively. For instance, we can see clearly in Figure 1
that the hollow square-shape samples can be abstracted into a fuzzy set composing six
cube-shaped information granules and the solid dot-shape ones can be abstracted into
a fuzzy set containing only one cube-shaped information granule. Intuitively, the data
is divided into two parts, i.e., the majority class is represented by a fuzzy set composed
of six cubes and the minority one is represented by a fuzzy set composed of only one
cube. This intuitive classification process demonstrates the principle of using information



Algorithms 2021, 14, 54 3 of 17

granules to classify imbalanced data. Therefore, the objective of this paper is to generate
some information granules and then use them to form the fuzzy rules for the classification
of imbalanced data. To achieve the objective, we proposed a Minkowski distance-based
granular classification method. In our proposed method, the information granules in
different Minkowski spaces are constructed based on a spectrum of Minkowski distance,
which can well reveal the geometric structure of both the majority class and minority class
of data. In other words, our approach aims at improving classification performance by
exploring and understanding the geometric characteristics of imbalanced datasets, rather
than just using some auxiliary methods. At the first stage of our Minkowski distance-based
granular classification method, the imbalanced dataset is divided into two partitions in
light of their class labels, viz., the majority class and the minority class. Each sample in
each partition is considered a “spot” information granule. At the second stage, a series
of bigger union information granules is constructed in each partition through using a
Minkowski distance-based merging mechanism. The last stage aims at adjusting the radius
of the overlapping information granules and building the granular description for each
class of data by uniting the refined information granules contained by each corresponding
partition. Subsequently, the granular Minkowski distance-based classification model for
imbalanced datasets is constructed and two “If-Then” rules emerge to articulate the gran-
ular description for each partition and its minority or majority class label. Compared to
the existing fuzzy classification methods for imbalanced datasets, this paper exhibits the
following original aspects:

• The use of Minkowski distance provides an additional parameter for the proposed
fuzzy granular classification algorithm, which helps to understand the geometric
characteristics of imbalanced data from more perspectives.

• The constructed union information granules present various geometric shapes and
contain different quantities of information granules, which can disclose the structural
features of both majority classes and the minority class.

• The proposed Minkowski distance-based modeling method has an intuitive structure
and a simple process, and there is no optimization or data preprocessing involved.

x
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x

y

x

y
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Fuzzy set
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Figure 1. (a) Two classes of imbalanced data; (b) Two classes of data covered by six information
granules and one information granule, respectively; (c) Two fuzzy sets are formed for classification.

The rest of the paper is organized as follows. The representation of information
granules, the Minkowski distance calculation and the merging mechanism between two
information granules are introduced in Section 2. In Section 3, the Minkowski distance-
based granular classification method is described in detail. The experiments on some
imbalanced datasets are presented in Section 4. Section 5 concludes the whole paper.

2. Information Granules and Minkowski Distance

This section begins with a brief explanation of the Minkowski distance. Then a method
of Minkowski distance representation of information granules is introduced. Finally, how to
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calculate the distance between two information granules and how to merge two information
granules are introduced in detail.

2.1. Minkowski Distance

The distance between two points, i.e., xa = (xa1, xa2, · · · , xan) and xb = (xb1, xb2, · · · ,
xbn), in the n-dimensional real vector space Rn is usually calculated by

‖xa − xb‖2 = (|xa1 − xb1|2 + |xa2 − xb2|2 + · · ·+ |xan − xbn|2)
1
2 . (1)

This distance is the length of straight line between xa and xb, which is named Euclidean
distance. However, the straight-line distance is not always applicable in my situations.
As a result, Minkowski distance is considered. Here we still use two points, viz., xa =
(xa1, xa2, · · · , xan) and xb = (xb1, xb2, · · · , xbn), and let them in space [0, 1]n, the Minkowski
distance is defined by

‖xa − xb‖p = (|xa1 − xb1|p + |xa2 − xb2|p + · · ·+ |xan − xbn|p)
1
p , (2)

where p is a pivotal parameter. Obviously, the Minkowski distance is a set of distances
determined by different values of p. Referring to (1), the Euclidean distance (‖ · ‖2) is
obtained when p equals 2. When we set p as 1, the Manhattan distance (‖ · ‖1) is obtained,
where the sum of the absolute values of the coordinate difference between xa and xb is
calculated, says,

‖xa − xb‖M = |xa1 − xb1|+ · · ·+ |xan − xbn|. (3)

When p is equal to infinity, we obtain the Chebyshev distance (‖ · ‖∞), viz.,

‖xa − xb‖C = max{|xa1 − xb1|, · · · , |xan − xbn|}, (4)

which means the greatest absolute value among all coordinate differences between xa
and xb. Figure 2 presents a two-dimensional example. The length of the green oblique
line represents the Euclidean distance, the length of the orange polyline is the Manhattan
distance, and the length of the blue horizontal line is the Chebyshev distance, respectively.

xa = (xa1, xa2)

x

y
∥xa − xb∥2 = ( |xa1 − xb1 |

2 + |xa2 − xb2 |
2 ) 12

xb = (xb1, xb2)

∥xa − xb∥∞ = max{ |xa1 − xb1 | , |xa2 − xb2 |}

∥xa − xb∥M = |xa1 − xb1 | + |xa2 − xb2 |

Euclidean distancep = 2

Chebyshev distancep = ∞

Manhattan distancep = 1

Figure 2. Three typical Minkowski distances, i.e., Euclidean, Manhattan and Chebyshev distances.

2.2. The Representation of Information Granules

Clustering methods and a method called the principle of justifiable granularity [33] are
usually used to transform data into information granules. In light of the unique distribution
of imbalanced data, other methods should be considered for constructing and representing
information granules. Since information granulation is a process of extracting knowledge
from data by organizing close or similar data points. The organization of data points
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involves the calculation of the distances. Therefore, we use Minkowski distance to represent
information granules. Assuming that there is a series of n-dimensional normalized data
points, viz., D = {xt ∈ [0, 1]n|t = 1, 2, · · · , N}, which are close to a fixed point, i.e., v,
the information granule generated on D can be represented by

Ω =
{

xk | ‖xk − v‖p ≤ ρ, xk ∈ D
}

, (5)

where the fixed point v is the center of the information granule Ω, ρ is the predefined radius
of Ω, and ‖xk − v‖p means the Minkowski distance between xk and v. The information
granule Ω can be treated as a hollow geometry, which covers the points whose distance
to v is within [0, ρ]. For convenience, we represent the information granule simply with
Ω = (v, ρ)p.

When we change the values of parameter p in (5), different geometric shapes of the
corresponding information granules are produced. Specifically, when p equals 1, 2 and ∞
the Minkowski distance is determined as Manhattan, Euclidean and Chebyshev distances,
respectively. Referring to (1), when the dimension (n) of points in D is 2, 3 and higher
values, the corresponding information granule Ω appears in the form of a circle, a sphere,
and hypersphere, respectively. Similarly, seeing (3), when p is set to 1, the geometric
shapes of the constructed information granule would appear in the shape of a diamond,
an octahedron and “hyper-diamond”. When p is set to ∞, the corresponding geometric
shape of the corresponding information granule becomes a square, a cube and a hypercube.
It is worth noting that when the parameter p of Minkowski distance is set as 2, 1 and
∞, the resulting information granules of different dimensions will appear as a series of
corresponding regular shapes, see Figure 3. Given the above, the information granules
constructed with Minkowski distance can be easily represented by two symbols, i.e., v and
ρ, which effectively reduces the difficulty of presenting high-dimensional imbalanced data.

ρ ρ ρ
ρρ1

ρ2

ρ = ρ1 + ρ2 ρ = ρ1 + ρ2 + ρ3

ρ1
ρ2

ρ3

(a)

v v v vv v

p = 2 (c) p = ∞(b) p = 1
Figure 3. The geometric shapes of 2-dimensional and 3-dimensional information granules with three
Minkowski distances: (a) a circle and a sphere with Euclidean distance (p = 2), (b) a diamond and
a octahedron with Manhattan distance (p = 1), (c) a square and a cube with Chebyshev distance
(p = ∞).

2.3. The Distance Measure and Merging Method between Information Granules

In the field of fuzzy granular classification, it is very necessary to study the location
relationship of the constructed information granules in the Minkowski space. It is easy to
know that the center and the radius determine the position and size (space occupation)
of an information granule. Also, there is an important indicator to measure the location
relationship of information granules, that is, the distance between information granules.
In the Minkowski space, we anticipate the distance between two information granules,
such as Ωa = (va, ρa)p and Ωb = (vb, ρb)p, can be calculated by

d(Ωa, Ωb)p = ‖va − vb‖p − ρa − ρb, (6)

where va and vb are the centers, ρa and ρb are the corresponding radii.
In our proposed granular classification method, a point-to-granule and bottom-up

model is constructed, which involves a process of merging method between information
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granules. For two information granules Ωa = (va, ρa)p and Ωb = (vb, ρb)p, they can be
merged into a bigger information granule Ωab = (vab, ρab), where

vab = (sa + sb)/2, (7)

ρab =
1
2
‖s1 − s2‖p. (8)

s1 and s2 are two points from the surface of both Ωa and Ωb owning the greatest Minkowski
distance among others, which are calculated by

s1 = va − ρa × ~uab, (9)

s2 = vb + ρb × ~uab, (10)

where ~uab is the unit vector in Minkowski space which records the direction from va to
vb, viz.,

~uab =
vb − va

‖vb − va‖p
. (11)

For convenience, we take the information granules in R2 space as an example and
set the value of p as 2, 1 and ∞, respectively. Three couples of information granules
are shown in Figure 4. Through the above-mentioned distance calculating and merging
methods, for Ω1 = ((0.1, 0.1), 0.1)2 and Ω2 = ((0.2, 0.2), 0.15)2 in Figure 4a, the dis-
tance between them is d(Ω1, Ω2)2 = −0.1086 and the information granule obtained by
merging them is Ω12 = ((0.167, 0.167), 0.196)2. For Ω3 = ((0.1, 0.1), 0.05)1 and Ω4 =
((0.2, 0.2), 0.075)1 in Figure 4b, the distance between them is d(Ω3, Ω4)1 = 0.075 and the
information granule obtained by merging them is Ω34 = ((0.15625, 0.0.15625), 0.1625)1.
For Ω5 = ((0.1, 0.1), 0.05)∞ and Ω6 = ((0.25, 0.2), 0.1)∞ in Figure 4c, the distance be-
tween them is d(Ω5, Ω6)∞ = 0 and the information granule obtained by merging them is
Ω56 = ((0.2, 0.167), 0.15)∞.

−0.1 0.0 0.1 0.2 0.3 0.4
−0.1

0.0

0.1

0.2

0.3

0.4

d(Ω1, Ω2)2= −0.1086

(a) Ω1, Ω2 and Ω12

−0.1 0.0 0.1 0.2 0.3 0.4
−0.1

0.0

0.1

0.2

0.3

0.4

d(Ω3, Ω4)1=0.075

(b) Ω3, Ω4 and Ω34

−0.1 0.0 0.1 0.2 0.3 0.4
−0.1

0.0

0.1

0.2

0.3

0.4

d(Ω5, Ω6)∞=0

(c) Ω5, Ω6 and Ω56

Figure 4. The merger of three couples of information granules in R2 space: (a) two overlapped granules merged into a
bigger one (Ω1, Ω2 → Ω12), (b) two isolated granules merged into a bigger one (Ω3, Ω4 → Ω34), (c) two tangent granules
merged into a bigger one (Ω5, Ω6 → Ω56). The information granules obtained by merging each couple are represented in
grey lines.

3. The Proposed Fuzzy Granular Classification Methods for Imbalanced Datasets
Based on Minkowski Distance

In this section, the proposed Minkowski distance-based fuzzy granular classifica-
tion method is detailed. To better demonstrate the modeling process, a normalized n-
dimensional imbalanced dataset D is used. Since D is an imbalanced dataset, we partition
it into two subsets, where all the sample in the majority class are grouped together into one
subset, i.e., Dmaj =

{
xi = (xi1, xi2, · · · , xin) | xi ∈ [0, 1]n, i = 1, 2, · · · , N1

}
and the samples

in rest minority class are grouped into another one, i.e., Dmin =
{

xj = (xj1, xj2, · · · , xjn) |
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xj ∈ [0, 1]n, j = 1, 2, · · · , N2
}

. N1 and N2 are the numbers of samples in Dmaj and Dmin,
respectively. The blueprint of the proposed three-stage classification method is shown in
Figure 5.

Stage 1: Let each single point  
be a spot information granule 

Stage 2: Merge the spot  
information granules 

Stage 3: The emergence of the  
granular classification model

Dmaj

Dmin Ωmin

Ωmaj

Ωmin
opt

Ωmaj
opt

D

Figure 5. The blueprint of the proposed fuzzy granular classification method based on Minkowski distance when p is set
as ∞.

3.1. The Construction of Information Granules for Each Class

Considering the large difference between the quantities of samples in the majority class
and the minority one for imbalanced datasets, it is unrealistic to use the same amount of
information granules to capture the geometric characteristics of both majority and minority
classes. It is a feasible option to construct two collections containing different quantities
of granules to depict the structure of both two classes. Thus, the task of this section is to
elaborate the process of constructing the corresponding collection of information granules
on Dmaj and Dmin.

Take the majority class Dmaj =
{

xi = (xi1, xi2, · · · , xin) | xi ∈ [0, 1]n, i = 1, 2, · · · , N1
}

as an example. Through the merging mechanism aforementioned in Section 2, a collection
of information granules can be constructed by the following steps. At the beginning, each
point in Dmaj is regarded as a “spot” information granule whose radius equals zero and
center is the point itself. Thus, we obtain the initial collection of Dmaj, says, IGmaj =

{Ωmaj
1 , Ωmaj

2 , · · · , Ωmaj
N1
} = {(x1, 0)p, (x2, 0)p, · · · , (xN1 , 0)p}, where p is the Minkowski

parameter. Next, the merging mechanism is conducted among these “spot” information
granules in IGmaj. Specially, the distances between any two information granules in
collection IGmaj are first calculated with (6) and the nearest pair of information granules
Ωmaj

a and Ωmaj
b , a 6= b, a, b ∈ 1, 2, · · · , N1 are obtained. Then, we suppose that Ωmaj

a and

Ωmaj
b are merged into a bigger information granule Ωmaj

ab . Its radius, i.e., ρ
maj
ab can be

calculated by (8). Here, a key parameter is imported, that is, the radius threshold eps to
adjust the size of the generated information granules. If this new radius is greater than the
predefined eps, i.e., ρ

maj
ab > eps, the merging mechanism will not be executed and the two

information granules Ωmaj
a and Ωmaj

b are maintained in collection IGmaj. Otherwise, Ωmaj
a

and Ωmaj
b are merged into Ωmaj

ab = (vmaj
ab , ρ

maj
ab )p with (7) and (8). Usually, when designing a

granular model, a right value of eps is usually selected which makes ρ
maj
ab <= eps. In this

situation, the contents of the collection IGmaj is updated by removing Ωmaj
a and Ωmaj

b and

adding Ωmaj
ab . So far, two “spot” information granules are merged into one new bigger one.

After this, the above merging process can be repeated until the radius of the information
granule obtained by merging any two information granules in IGmaj is less than eps, which
is represented in Algorithm 1.
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Algorithm 1: The Minkowski distance-based merging process for majority class

subset Dmaj.
Input: Dmaj = {x1, x2, · · · , xN1}, eps

Result: IGmaj = {Ωmaj
1 , Ωmaj

2 , · · · , Ωmaj
M1
}

1 Initialize ĨG
maj

= {Ωmaj
1 , Ωmaj

2 , · · · , Ωmaj
M1
} = {(x1, 0), (x2, 0), · · · , (xN1 , 0)},

(M1 = N1);

2 Produce a M1-by-M1 upper triangular matrix A by pairwise calculate the

Minkowski distance between any two granules in ĨG
maj

;

3 Pick up Ωmaj
a and Ωmaj

b correspond to the minimum entry in A and merge them

two into Ωmaj
ab = (vmaj

ab , ρ
maj
ab );

4 if ρ
maj
ab <= eps then

5 ĨG
maj ← ĨG

maj ∪ {Ωab} − {Ωa, Ωb};
6 Go to 2;

7 else

8 IGmaj ← ĨG
maj

;

9 end

Once the merging process is accomplished, a collection containing M1 merged in-
formation granules is obtained, viz. IGmaj = {Ωmaj

1 , Ωmaj
2 , · · · , Ωmaj

M1
}. Through uniting

all the elements in the collection IGmaj, we obtain a “union information granule”, says,
Ωmaj = Ωmaj

1 ∪Ωmaj
2 ∪ · · · ∪Ωmaj

M1
. For the minority subset Dmin, the corresponding union

can also be obtained in the same way, says, Ωmin = Ωmin
1 ∪Ωmin

2 ∪ · · · ∪Ωmin
M2

. Since there
is a big difference between the quantities of samples in Dmaj and Dmin, the value of the
radius threshold eps should be the same value when producing both Ωmaj and Ωmin. In this
way, by selecting appropriate values of radius threshold eps and Minkowski parameter p,
the differences on the geometric structure and sample quantities can be capture by the two
union information granules, Ωmaj and Ωmin.

3.2. The Emergence and Evaluation of the Minkowski Distance-Based Fuzzy Granular
Classification Model

Through the processing at the above two stages, the two union information granules,
i.e., Ωmaj and Ωmin, are produced to describe the key features of the majority class Dmaj and
minority class Dmin. Note that both Ωmaj and Ωmin can depict the distribution and location
of samples belonging to their corresponding classes, such as Ωmaj may occupy much more
Minkowski space than Ωmin, which indicates that the two unions are non-overlapping
with each other. Therefore, before establishing the Minkowski distance-based classification
model, the overlap between the two union information granules Ωmaj and Ωmin should
be eliminated.

If there is an overlap between Ωmaj and Ωmin, there must be their element information
granules are overlapping with each other. For instance, for Ωmaj

k = (vmaj
k , ρ

maj
k )p from Ωmaj

and Ωmin
h = (vmin

h , ρmin
h )p from Ωmin, if the Minkowski distance between their centers is lee

than the sum of their radii, viz.,‖vmaj
k − vmin

h ‖p < ρ
maj
k + ρmin

h , they are overlapped. In order

to eliminate the overlap, we let Ωmaj
k and Ωmin

h tangent to each other through scaling their
radii into the half of the Minkowski distance between their centers,

ρ
maj
opt k = ρmin

opt h =
‖vmaj

k − vmin
h ‖p

2
. (12)
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In this way, we can eliminate all overlaps between two union information granules
Ωmaj and Ωmin and obtain two optimized ones, i.e., Ω

maj
opt = Ωmaj

opt 1 ∪Ωmaj
opt 2 ∪ · · · ∪Ωmaj

opt M1

and Ωmin
opt = Ωmin

opt 1 ∪Ωmin
opt 2 ∪ · · · ∪Ωmin

opt M2
. Thus they can be tagged with the correspond-

ing majority class and minority class with “If-Then” rules. A Minkowski distance-based
granular classification model containing two fuzzy rules are emerged, i.e.,

majority class: If x is Ω
maj
opt = Ωmaj

opt 1 ∪Ωmaj
opt 2 ∪ · · · ∪Ωmaj

opt M1
, then x is majority class;

minority class: If x is Ωmin
opt = Ωmin

opt 1 ∪Ωmin
opt 2 ∪ · · · ∪Ωmin

opt M2
, then x is minority class.

(13)

For a given test sample xt ∈ [0, 1]n, we can calculate its activation levels versus the rule
of majority class and the one of minority class in (13). Since the activation levels are usually
determined by distances, those can be obtained by judging the position relation between
the sample and union information granules, which can be considered by discussing the
following three situations:

(1) xt ∈ Ω
maj
opt : In this situation, the sample xt is positioned within the boundary of

the union information granule Ω
maj
opt of majority class. We intuitively decide that the

distance between the xt and Ω
maj
opt is zero, viz., dt−maj = 0

(2) xt ∈ Ωmin
opt : In this situation, the sample xt is positioned within the boundary of union

information granule Ωmin
opt of minority class. We intuitively decide that the distance

between the xt and Ωmin
opt is zero, viz., dt−min = 0

(3) xt /∈ Ω
maj
opt and xt /∈ Ωmin

opt : In this situation, the sample xt locates in neither two union
information granules. The Minkowski distance between the sample xt and a union
information granule is determined with the minimum distance between xt and all
information granules in Ω

maj
opt and Ωmin

opt , i.e.,

dt−maj = min{d(xt, Ωmaj
opt i)p|i = 1, 2, · · · , M1}

dt−min = min{d(xt, Ωmin
opt j)p|j = 1, 2, · · · , M2}

(14)

xt can be regarded as a information granule whose radius is zero, and the Minkowski
distances d(xt, Ωmaj

opt i)p and d(xt, Ωmin
opt j)p can be calculated referring to (6) in Section 2.

Now the activation level of xt versus the majority class Ω
maj
opt and Ω

maj
opt can be obtained

by calculating

µt−maj =


1, if xt ∈ Ω

maj
opt , dt−maj = 0

1

(1+
dt−maj
dt−min

)2
, if xt /∈ Ω

maj
opt ,

µt−min =


1, if xt ∈ Ωmin

opt , dt−min = 0
1

(1+
dt−min
dt−maj

)2
, if xt /∈ Ωmin

opt ,

(15)

respectively. After obtaining the activation levels of xt versus the two rules in (13), its class
label lt can be determined by choosing the higher activation level, i.e., lt = arg maxi=maj,min
{µt−i}. A particular case, that is µt−maj = µt−min, means that xt is a boundary point which
can be classified into both two classes.

Table 1 shows a confusion matrix of a two-class classification issue. In traditional
classification algorithms, classification accuracy is often used as an evaluation index to
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quantify the performance of a classification model. According to Table 1, the classification
accuracy can be calculated by

Acc =
TP + TN

TP + FN + FP + TN
(16)

Table 1. Confusion matrix for a two-class problem.

Positive (Minority) Prediction Negative (Majority) Prediction

Positive (minority) class True positive (TP) False negative (FN)
Negative (majority) class False positive (FP) True negative (TN)

However, when facing imbalanced data sets, the samples in the minority class have
little effect on the classification accuracy. Even if the classification model regards all samples
as majority classes, the accuracy is still high. This means that it is difficult to well reflect the
classification performance of the classifier on imbalanced data sets when using classification
accuracy as the evaluation index alone. Thus, in this work, we consider the accuracy of
each class and use the following geometric mean as the evaluation index.

GM =
√

Accmaj × Accmin =

√
TP

TP + FN
× TN

TN + FP
. (17)

4. Experiment Studies and Discussion

In this section, a series of experiments based on some synthetic and publicly available
datasets are conducted. There are three purposes in this section: (1) verifying the feasibility
of the proposed Minkowski distance-based method for imbalanced data classification,
(2) exploring the impact of two key parameters, viz., the Minkowski parameter p and
the radius threshold eps, on the results, (3) completing the comparison with some other
methods for imbalanced data classification.

In order to obtain more rigorous experimental results, we first normalize the datasets
used in the experiment before the experiment, viz., each attribute is normalized into a unit
interval. As for the two parameters, the Minkowski parameter p is set as some certain
values due to different datasets, i.e., p = 1,

√
2, 2, 2

√
2, ∞, and the value of the radius

threshold eps ranges from 0.02 to 0.12 with step 0.02. A fivefold cross-validation approach
is considered for higher confidence results, where four of five partitions (80%) for training
and the left one (20%) for testing. Reasonably, the five partitions for testing form the whole
set. Thus the average result of the five partitions for each dataset is used.

4.1. Synthetic Datasets

Two synthetic datasets showing imbalanced characteristics and unique geometrical
structures are used, see Figure 6. They are generated in the following way.
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Figure 6. The visualization of synthetic datasets involved in the experiments: (a) Moon-Blob dataset,
(b) Circles dataset.

(1) Moon-Blob dataset. This dataset contains 420 samples and two classes. One class,
as the majority class, shows a shape of a moon and contains 400 samples. It is governed
as follows: {

x1 = cos(θ) + δ

x2 = cos(θ) + δ
(18)

where θ ranges in [0, π] and δ is a noise variable in a normal distribution N(0, 0.15).
The samples of this Moon class are marked in red in Figure 6a. Another class, the mi-
nority class, shows a shape of a blob and contains 20 samples. The samples are
randomly generated with regard to the normal distribution with the mean vector

µ = [0, 0.42] and the covariance matrix Σ =

[
0.20 0

0 0.20

]
, which are marked in blue

in Figure 6b.
(2) Circles dataset. It is a two-dimensional dataset containing 420 samples with two

classes. The majority class contains 400 samples, and governed as follows:{
x1 = α1cos(θ) + δ

x2 = α1cos(θ) + δ
(19)

The minority class contains 20 samples, and governed as follows:{
x1 = α2cos(θ) + δ

x2 = α2cos(θ) + δ
. (20)

θ rangs in [0, 2π], α1 = 0.5 and α2 = 1.0 are scale factors and δ is s noise following a
normal distribution N(0, 0.15). In Figure 6b, the majority class is represented in red
points and the minority class is in blue.

The above two imbalanced datasets are generated to validate the feasibility of the
Minkowski distance-based method. The experimental results on the two synthetic imbal-
anced datasets are presented in Tables 2 and 3, where eps stands for the radius threshold, p
stands for the parameter for calculating Minkowski distances, and the symbol GM contains
the average value and the standard deviation of the geometric mean, referring to (17),
delivered by the models on the testing sets. In individual tables, the results with the highest
value of average value are highlighted in bold-face.
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Table 2. Experimental results (GM) obtained by the corresponding classification models with different values of p and eps
established on Moon-Blob dataset.

p
GM (%) eps

0.02 0.04 0.06 0.08 0.10 0.12

1 94.39± 6.36 94.45± 6.41 94.47± 6.43 94.52± 6.47 94.54± 6.48 94.52± 6.47√
2 94.39± 6.36 94.39± 6.36 94.43± 6.40 94.45± 6.41 94.49± 6.44 94.51± 6.47

2 94.39± 6.36 94.39± 6.36 94.43± 6.40 94.45± 6.41 94.39± 6.36 94.43± 6.40
2
√

2 94.39± 6.36 94.39± 6.36 94.39± 6.36 94.39± 6.36 94.42± 6.38 93.90± 7.57
∞ 94.52± 6.47 94.52± 6.47 93.46± 8.61 93.75± 8.17 93.93± 7.88 94.05± 7.68

Table 3. Experimental results (GM) obtained by the corresponding classification models with different values of p and eps
established on Circles dataset.

p
GM (%) eps

0.02 0.04 0.06 0.08 0.10 0.12

1 94.14± 11.71 95.73± 9.24 94.27± 10.26 89.33± 22.55 89.12± 21.17 90.13± 10.57√
2 91.35± 11.65 92.94± 9.63 92.61± 8.74 90.86± 10.46 88.54± 12.32 88.55± 12.33

2 94.64± 6.56 93.00± 9.60 95.55± 8.73 92.45± 8.26 90.55± 9.68 90.34± 9.11
2
√

2 91.64± 6.56 93.30± 6.70 94.40± 8.64 92.96± 9.53 92.20± 8.99 91.15± 9.34
∞ 91.96± 6.56 95.92± 6.10 90.90± 8.38 91.02± 9.34 90.02± 9.54 90.32± 9.15

For Moon-Blob dataset, when the value of Minkowski parameter p equals 1 and the
radius threshold eps is set as 0.10, the value of GM reaches its maximum, say, 94.54%.
Refer to Figure 7a, we can see clearly that the majority class are exactly covered by the
red diamond-shape information granules. The union information granule represents a
moon shape just matching the original distribution of the samples in the majority class.
In contrast, much less blue information granules are constructed for capturing the shape
of the minority class. The corresponding classification decision boundary with p = 1 and
eps = 0.1 is presented in Figure 7b. The darker the color of an area in Figure 7b, the greater
probability the samples in this area belong to the corresponding class. However, when
p = 2 and eps = 0.06, the generated round-shape information granules do not cover the
samples in majority class and minority class better than those with p = 1 and eps = 0.1, see
Figure 7c. For Circles dataset, when the value of Minkowski parameter p is set as ∞ and
the one of the radius threshold eps is set as 0.04, the value of GM reaches the maximum,
say, 95.92%. It can be seen clearly that union information granules composed of red and
blue cubes cover the samples of both majority and minority classes perfectly.

Apparently, the configuration of Minkowski parameter p and the radius threshold
eps dramatically affects the classification performance of the Minkowski distance-based
granular models constructed by our proposed method. The main reason behind this is that
p directly determines the geometric shape of the constructed information granules and
eps determines the sizes. In detail, different imbalanced datasets have different sample
distributions, which leads to the diversification of the geometric structure of datasets.
The Minkowski parameter p used in our method enriches the geometric shapes of the
constructed information granules. This enables the constructed granular classification
models to explore the geometric structure of data from multiple perspectives and as
accurately as possible, which helps to improve the classification performance. The radius
threshold eps is the key parameter of this method to deal with imbalanced data. Since the
minority class occupy tiny spaces, such as three blue diamonds in Figure 7a, eps transform
the spaces occupied by the majority class into a union of some tiny space (similar to the
ones occupied by the minority class). The proposed Minkowski distance-based granular
classification method broadens the perspective of classification modeling, and also deftly
solves the problem of too few samples in minority class in imbalanced data classification.
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Figure 7. (a) Diamond information granules on Moon-Blob dataset (p = 1 and eps = 0.1); (b)
Decision boundaries on Moon-Blob dataset (p = 1 and eps = 0.1); (c) Circle information granules on
Moon-Blob dataset (p = 2 and eps = 0.06); (d) Decision boundaries on Moon-Blob dataset (p = 2 and
eps = 0.06); (e) Circle information granules on Circles dataset (p = ∞ and eps = 0.04); (f) Decision
boundaries on Circles dataset (p = ∞ and eps = 0.04);
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4.2. Publicly Available Datasets and Comparison with Other Methods

Twelve publicly available imbalanced datasets are considered from the KEEL repos-
itory (https://sci2s.ugr.es/keel/category.php?cat=clas). It is worth mentioning that the
imbalanced datasets are obtained by splitting and reorganizing the “standard” datasets. Six
of them are with low imbalanced ratio (the ratio of the number of samples in majority class
to the one in minority class is less than 9) and the rest six are with a high imbalanced ratio
(greater than 9). They are summarized in Table 4, where the names of datasets, the number
of attributes, the number of samples and their imbalance ratio are presented.

Table 4. Summary of publicly available imbalanced datasets from KEEL repository involved in
the experiments.

Dataset Attributes Samples Imbalanced Ratio

Datasets with low imbalance ratio (1.5 to 9)
Ecoli0vs1 7 220 1.86
Iris0 4 150 2
Glass0 9 214 2.06
Vehicle0 18 846 3.25
New-thyroid1 5 215 5.14
Glass6 9 214 6.38

Datasets with high imbalance ratio (higher than 9)
Yeast2vs4 8 514 9.08
Glass2 9 214 10.39
Glass4 9 214 15.47
Page-Blocks13vs4 10 472 15.85
Yeast1289vs7 8 514 30.56
Ecoli0137vs26 7 281 39.15

The configuration of the relevant parameters on the publicly available datasets is as
follows: for datasets with low imbalanced ratio, the Minkowski parameter p is set as 1 and
the radius threshold eps is set as 0.08; for datasets with high imbalanced ratio, p is set as
2 and eps is set as 0.04. Other configurations of the two parameters are also used but no
evident increases of the geometric mean (17) appear. In order to validate the performance
of the model built by this Minkowski distance-based method, we conducted a comparative
study based on the twelve publicly available datasets. In addition to the model established
by this method, there are more classification models established by other fuzzy learning
methods, which are Ichibushi et al.’s rule learning algorithms [2], Xu et al.’s E-algorithm
on imbalanced dataset classification [34], the well-known C4.5 decision tree algorithm [35],
and Fernández et al.’s hierarchical fuzzy rule-based classification model which adds a
SMOTE preprocessing [36]. The experiment parameter set-up of these classifiers is shown
in Table 5. Table 6 shows the corresponding comparison results (the average of GM with
its associated standard deviation) for the test partitions of each classification method.
In detail, by columns, we include the Ishibuchi et al.’s method (says, Ishibuchi), Xu et al.’s
method (says, the E-Algorithm), the C4.5 algorithm, Fernández et al.’s method (says,
Smote-HFRBCS) and our Minkowski distance-based method.

https://sci2s.ugr.es/keel/category.php?cat=clas
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Table 5. Configuration of the parameters of the selected four classifiers.

Method Parameters

Ichibushi Number of antecedent attributes of rules: r < 3
number restriction of rules in rule base: n = 30

E-Algorithm Number of antecedent attributes of rules: r < 3
number restriction of rules in rule base: n = 30

C4.5 The maximum depth of the tree: 5
Smote-HFRBCS linguistic partition terms selector: 0.1

Number of evaluations: 10,000
Population length: 61

Table 6. The comparison results obtained by implementing different classifiers on all datasets in terms of the average and
standard deviation of GM.

Dataset Ichibushi E-Algorithm C4.5 Smote-HFRBCS Ours

Datasets with low imbalance ratio (1.5 to 9)
Ecoli0vs1 96.66± 2.40 95.25± 4.75 96.78± 2.1 93.63± 6.45 95.09± 4.99
Iris0 100.00± 0.00 100.00± 0.00 98.97± 2.29 100.00± 0.00 100.00± 0.00
Glass0 69.34± 8.12 0.00± 0.00 78.14± 2.21 76.57± 8.05 82.07± 6.93
Vehicle0 74.27± 2.12 41.22± 18.29 90.01± 4.22 88.92± 1.96 94.45± 2.60
New-thyroid1 89.21± 12.66 84.87± 7.56 97.86± 2.84 98.58± 2.48 98.75± 3.44
Glass6 87.77± 7.91 91.63± 3.56 84.19± 10.12 86.95± 10.84 91.87± 8.09

Mean 86.21± 5.54 68.83± 22.36 90.99± 3.96 90.78± 4.96 93.71± 4.34

Datasets with high imbalance ratio (higher than 9)
Yeast2vs4 71.15± 22.57 80.22± 10.01 85.09± 10.16 89.32± 4.18 90.24± 6.22
Glass2 43.21± 16.12 9.87± 22.07 33.88± 29.14 54.84± 20.57 61.77± 12.62
Glass4 78.12± 16.64 83.38± 19.89 83.34± 10.36 70.39± 40.48 87.06± 14.85
Page-Blocks13vs4 94.63± 5.26 93.87± 9.43 98.75± 0.67 98.34± 1.85 97.78± 4.43
Yeast1289vs7 49.22± 14.23 49.24± 12.89 65.21± 8.77 69.13± 5.32 71.67± 4.54
Ecoli0137vs26 70.89± 40.88 72.17± 45.13 71.21± 41.31 71.36± 42.16 78.13± 39.13

Mean 67.87± 19.28 64.79± 19.90 72.91± 16.74 75.56± 19.09 81.11± 13.63

Alldatasets

Mean 77.04± 12.41 66.81± 21.13 81.95± 10.35 83.17± 12.03 87.41± 8.99

In light of the values of GM, it is clear that the proposed Minkowski distance-based
method can obtain higher values of geometric means than other methods on ten out of
twelve datasets. Especially for the six datasets with a high imbalanced ratio, the models
established by the proposed method perform much better referring to the mean result. This
is because that the granular classification models in this paper is specially designed for the
sample quantity, distribution and shapes of imbalanced datasets. The reason includes two
aspects. One is that the union information granules constructed separately for the majority
class and the minority one are capable of showing the difference between the two classes.
In other words, the union information granule constructed for the majority class contains
much more information granules and occupies more Minkowski space than those for the
minority class, which ensures that the geometric characteristics of the two highly different
classes can be captured separately. Another reason is that the information granules that
make up each union information granule are produced based on Minkowski distance with
various values of p, which results in the generated information granules having various
geometric shapes. By adjusting the value of parameter p, we can explore the geometric
structure of imbalanced data from different perspectives, and then achieve a more accurate
capture of data features. In summary, the proposed Minkowski distance-based method
shows some unique advantages over the other four classification methods in dealing with
imbalanced datasets, which are shown in the following aspects. (i) The condition parts of
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the models constructed with our method are information granules, which can disclose the
geometric characteristics of imbalanced datasets. (ii) The information granules constructed
with different values of the Minkowski distance parameter p realize a multi-perspective
description for both majority classes and minority classes of imbalanced datasets, which
helps to improve the classification performance of the constructed models. (iii) The reason-
ing process of the granular classification models is based on the datasets themselves, which
can achieve satisfactory classification performance without data preprocessing sampling or
additional optimization methods.

5. Conclusions

In this paper, a Minkowski distance-based granular classification method for imbal-
anced datasets is presented. When compared with other classification methods in the field
of imbalanced data classification, the proposed method aims at constructing information
granules with multiple geometric shapes in Minkowski space. These information granules
are capable of extracting key structure features from imbalanced data and establishing
granular classification models with high performance and simple fuzzy rules. Some con-
clusions are listed as follows. (i) The granular models constructed by our Minkowski
distance-based method perform better than three fuzzy rule-based classification methods
and C4.5 decision tree method on imbalanced datasets, especially on those with high
imbalanced ratio. (ii) Using different values of the Minkowski parameter p can result in
union information granules in a series of geometric shapes; (iii) The radius threshold eps
establishes a uniform size standard between the information granules constituting majority
class and those constituting minority class, which ensures that the differences between
the union information granule constructed on majority class and the one constructed on
minority class only exist in the quantities of information granules they contain and the
Minkowski space they occupy. (iv) The constructed granular models have clear structures,
simple fuzzy rules, and no need for optimization methods and data sampling preprocess.
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