fj algorithms

Article

Safe Approximation—An Efficient Solution for a Hard
Routing Problem

Andras Farag6

check for
updates

Citation: Farago, A.; Mojaveri, Z.R.
Safe Approximation: An Efficient

Solution for a Hard Routing Problem.

Algorithms 2021, 14, 48. https://doi.
org/10.3390/a14020048

Academic Editor: Andras Farago
Received: 8 December 2020
Accepted: 28 January 2021
Published: 2 February 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Zohre R. Mojaveri *

Department of Computer Science, Erik Jonsson School of Engineering and Computer Science, The University of
Texas at Dallas, P.O.B. 830688, MS-EC31, Richardson, TX 75080, USA; farago@utdallas.edu
* Correspondence: zohre.r.mojaveri@utdallas.edu

Abstract: The Disjoint Connecting Paths problem and its capacitated generalization, called Unsplittable
Flow problem, play an important role in practical applications such as communication network design
and routing. These tasks are NP-hard in general, but various polynomial-time approximations are
known. Nevertheless, the approximations tend to be either too loose (allowing large deviation from
the optimum), or too complicated, often rendering them impractical in large, complex networks.
Therefore, our goal is to present a solution that provides a relatively simple, efficient algorithm for
the unsplittable flow problem in large directed graphs, where the task is NP-hard, and is known
to remain NP-hard even to approximate up to a large factor. The efficiency of our algorithm is
achieved by sacrificing a small part of the solution space. This also represents a novel paradigm
for approximation. Rather than giving up the search for an exact solution, we restrict the solution
space to a subset that is the most important for applications, and excludes only a small part that is
marginal in some well-defined sense. Specifically, the sacrificed part only contains scenarios where
some edges are very close to saturation. Since nearly saturated links are undesirable in practical
applications, therefore, excluding near saturation is quite reasonable from the practical point of
view. We refer the solutions that contain no nearly saturated edges as safe solutions, and call the
approach safe approximation. We prove that this safe approximation can be carried out efficiently.
That is, once we restrict ourselves to safe solutions, we can find the exact optimum by a randomized
polynomial time algorithm.

Keywords: routing; NP-complete; NP-hard; approximation; polynomial time algorithm; disjoint
connecting paths; unsplittable flow; network design

1. Introduction

In communication network design and routing, one often looks for disjoint routes that
connect various sources with associated terminals. This motivates the Disjoint Connecting
Paths problem, which is the following decision task:

Input: a set of source-destination node pairs (s1,t1), ..., (s, tx) in a graph.

Task: Find edge disjoint paths Py, ..., P, such that P; connects s; with ¢; for each i.

This is one of the classical NP-complete problems that appears already at the sources
of NP-completess theory, among the original problems of Karp [1]. It remains NP-complete
both for directed and undirected graphs, as well as for the edge disjoint and vertex disjoint
paths version. The corresponding natural optimization problem, when we are looking
for the maximum number of terminator pairs that can be connected by disjoint paths is
NP-hard.

There is also a capacitated version of the Disjoint Connecting Paths problem, also
known as the Unsplittable Flow problem. In this task a flow demand is given for each origin-
destination pair (s;, t;), as well as a capacity value is known for each edge. The requirement
is to find a system of paths, connecting the respective source-destination pairs and carrying
the respective flow demands, such that the capacity constraint of each edge is obeyed,

Algorithms 2021, 14, 48. https:/ /doi.org/10.3390/a14020048

https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8952-6946
https://orcid.org/0000-0003-2170-8318
https://doi.org/10.3390/a14020048
https://doi.org/10.3390/a14020048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020048
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/48?type=check_update&version=2

Algorithms 2021, 14, 48

20f11

that is, the sum of the flows of paths that traverse the edge cannot be more than the
capacity of the edge. The name Unsplittable Flow expresses the requirement that between
each source-destination pair the flow must follow a single route, it cannot split. Note that
the disjointness of the paths themselves is not required a priori in the Unsplittable Flow,
but can be enforced by the capacity constraints, if needed. The Unsplittable Flow problem
is widely regarded as a fundamental task in communication network design and routing
applications. Note that it directly subsumes the Disjoint Connecting Paths problem as a
special case, which can be obtained by taking all capacities and flow demands equal to 1.

In this paper, after reviewing some existing results, we show that the Unsplittable
Flow problem, which is known to be NP-hard (and its decision version is NP-complete),
becomes efficiently solvable if we impose a mild and practically well justifiable restriction.
Specifically, our key idea is that we “cut down” a small part of the solution space by
slightly reducing the edge capacities. In other words, we exclude solutions that are close to
saturating some edges, which would be practically undesirable, anyway. We call remaining
solutions safe solutions: safe in the sense that no link is very close to saturation. Why is this
slight capacity reduction useful? Its usefulness is based on the fact, which we constructively
prove in the paper, that if we restrict ourselves to safe solutions only, then the hard
algorithmic problem becomes solvable by a relatively simple randomized polynomial time
algorithm. With very high probability the algorithm finds the exact optimum in polynomial
time, whenever there exists a safe solution. We call this approach safe approximation.

2. Previous Results

Considerable work was done on the Disjoint Connecting Paths problem, since its first
appearance as an NP-complete task in the classic paper of Karp [1] in 1972.

One direction of research deals with finding the “heart” of the difficulty—the simplest
restricted cases that still remain NP-complete. (Or NP-hard if the optimization version is
considered, where we look for the maximum number of connecting paths, allowing that
possibly not all source-destination pairs will be connected). Kramer and van Leeuwen [2]
proves, motivated by VLSI layout design, that the problem remains NP-complete even
for graphs as regular as a two dimensional mesh. If we restrict ourselves to undirected
planar graphs with each vertex having degree at most three, the problem also remains
NP-complete, as proven by Middendorf and Pfeiffer [3]. The optimization version remains
NP-hard for trees with parallel edges, although there the decision problem is already
solvable in polynomial time [4].

The restriction that we only allow paths which connect each source node with a
dedicated target is essential. If this is relaxed and we are satisfied with edge disjoint paths
that connect each source s; with some of destinations #; but not necessarily with ¢;, then the
problem becomes solvable with classical network flow techniques. Thus, the prescribed
matching of sources and destinations causes a dramatic change in the problem complexity.
Interestingly, it becomes already NP-complete if we require that just one of the sources is
connected to a dedicated destination, the rest is relaxed as above (Faragé [5]).

Another group of results produces polynomial time algorithmic solutions for finding
the paths, possibly using randomization, in special classes of graphs. For example, Midden-
dorf and Pfeiffer [3] proves the following. Let us represent the terminator pairs by demand
edges. These are additional edges that connect a source with its destination. If this extended
graph is embeddable in the plane such that the demand edges lie in a bounded number of
faces of the original graph, then the problem is solvable in polynomial time. (The faces are
the planar regions bordered by the curves that represent the edges in the planar embedding,
that is, in drawing the graph in the plane). Thus, this special case requires that, beyond the
planarity of the extended graph, the terminators are concentrated in a constant number of
regions (independent of the graph size), rather than spreading over the graph.

Broder, Frieze, Suen and Upfal [6] consider the case of random graphs and provide a
randomized algorithm that, under some technical conditions, finds a solution with high
probability in time O(nm?) for a random graph of 1 vertices and m edges.

Algorithms 2021, 14, 48

30f11

A deep theoretical result, due to Robertson and Seymour [7], is that for general
undirected graphs the problem can be solved in polynomial time if the number k of paths
to be found is constant (i.e., cannot grow with the size of the graph). This is important from
the theoretical point of view, but does not lead to a practical algorithm, as analyzed by
Bienstock and Langston [8]. On the other hand, for directed graphs the problem becomes
NP-complete already for the smallest nontrivial case of k = 2, as proven by Even, Itai,
and Shamir [9].

Another line of research aims at finding approximations to the optimization version.
An algorithm is said to be an f(n)-approximation if it can connect a subset of the terminator
pairs by disjoint paths such that this subset is at most f (1) times smaller than the optimum
in a graph of n vertices. For example, in this terminology a 2-approximation algorithm
always reaches at least the half of the optimum, or an O(log n)-approximation reaches at
least a ¢/ log n fraction of the optimum, for n > ny with some constants c, ng.

Various approximations have been presented in the literature. For example, Garg,
Vazirani and Yannakakis [4] provide a 2-approximation for trees with parallel edges.
Aumann and Rabani [10] gives an O(log n)-approximation for the 2-dimensional mesh.
Kleinberg and Tardos [11] present an O(log n)-approximation for a larger subclass of planar
graphs, they call “nearly Eulerian, uniformly high-diameter planar graphs.”

On the other hand, finding a constant factor, or at least a logarithmic factor approxima-
tion for general directed graphs is hopeless—Guruswami, Khanna, Rajaraman, Shepherd,
and Yannakakis [12] showed that on directed graphs it is NP-hard to obtain an O(n!/27€)
approximation for n-vertex graphs for any € > 0.

For the general case the approximation factor of min{+/m, m/opt} = O(y/m) is known
to be achievable (Srinivasan [13]), where m is the number of edges and opt is the optimum,
that is, the maximum number of disjoint connecting paths between the source-destination
pairs. Similar bounds apply for the Unsplittable Flow problem, as well. Bounds have
been also found in terms of special (less trivial) graph parameters. For example, Kolman
and Scheideler [14] proves that an efficient O(F) approximation exists, where F is the so
called flow number of the graph. Although the flow number can be computed in polynomial
time [14], it is a rather indirect characterization of the graph. Numerous further related
results are reviewed in the Handbook of Approximation Algorithms and Metaheuristics [15].

It is worth noting that in the capacitated version (Unsplittable Flow problem) the
approximation does not mean approximating the total carried flow. It is meant with
respect to the number of source-destination pairs connected, such that for each pair their
entire demand is carried. For example, if there are 30 source-destination pairs, each with
flow demand four units, then a 2-approximation means routing at least 15 of these flows,
each path carrying four units of flow. In other words, not only the paths are unsplittable,
but also the flow demands. That is, if we connect all 30 source-destination pairs, but each
route can carry only two units of flow, it would not count as a 2-approximation.

In summary, the landscape of the Disjoint Connecting Path and the Unsplittable Flow
problems can be characterized by the following facts:

® The decision problems are NP-complete for the general case.

e The approximation versions are NP-hard for the general case, even within a large
approximation factor.

* Polynomial time solutions or better approximations exist only for special cases.

e Even in those cases when a polynomial time solution exists, it is either far from
practical, or else it applies to a graph class that is too special to satisfy the demands of
network design applications.

3. The Method of Safe Approximation

The various above referenced solutions tend to be rather complicated, which is cer-
tainly not helpful for real-life applications, in particular for large, complex networks.
Our approach for providing a more practical solution to the unsplittable flow problem
based on the following idea. We “cut down” a small part of the solution space by slightly re-

Algorithms 2021, 14, 48

40f11

ducing the edge capacities. In other words, we exclude solutions that are close to saturating
some edges, as explained below.

Let V; be the given flow demand of the i connecting path. We normalize these
demands such that V; < 1 for every i. Let C; be the capacity of edge j. The graph is
assumed directed and the edges are numbered from 1 through m. Recall that a feasible
solution of the problem is a set of s; — t; (directed) paths, one for each i, satisfying the edge
capacity constraints. The latter means that on each edge j the sum of the V; values of those
paths that traverse the edge does not exceed C;. As mentioned earlier, deciding whether a
feasible solution exist at all is a hard (NP-complete) problem.

On the other hand, not all feasible solutions are equally good from a practical view-
point. For example, if a route system in a network saturates or nearly saturates some
links, then it is not preferable because it is close to being overloaded. For this reason,
let us assign a parameter 0 < p; < 1 to each edge j, such that p; will act as a safety margin
for the edge. More precisely, let us call a feasible solution a safe solution with parameters
pj, j=1,..., m, where m is the number of edges, if it uses at most éj = p;C; capacity on
edge j. The parameter p; will be close to 1 in the cases that are interesting to us.

Now, the appealing thing is that if we restrict ourselves to only those cases when a
safe solution exists, then the hard algorithmic problem becomes solvable by a relatively
simple randomized polynomial time algorithm. With very high probability, the algorithm
finds the exact optimum in polynomial time, whenever there exists a safe solution. We call
this approach safe approximation.

The price is that we exclude those cases when a feasible solution might still possibly
exists, but there is no safe solution. This means, in these cases all feasible solutions are
undesirable, because they all make some edges nearly saturated. In these marginal cases
the algorithm may find no solution at all. Our approach constitutes a new avenue to
approximation, in the sense that instead of giving up finding an exact solution, we rather
restrict the search space to a (slightly) smaller one. When, however, the algorithm finds any
solution, then it provides the exact (not just approximate) optimum.

Let us choose the safety margin p; for edge j in a graph of m edges as

In2m In2m
=1—(e—1 ~1-171

M

where C; is the capacity of edge j, In denotes the natural logarithm log,, and e ~ 2.718....
is Euler’s number (the base of the natural logarithm). Note that p; tends to 1 with growing
Cj, even if the graph also grows, but C; grows faster than the logarithm of the graph size,
which is very reasonable (note that doubling the number of edges will only increase the
natural logarithm by less than 1). For example, if an edge has capacity C; = 1000 units
(measured in relative units, such that the maximum path flow demand is 1), and the graph
has m = 200 edges, then p; ~ 0.87.

Now, we outline how the algorithm works. First, we describe a continuous multicom-
modity flow relaxation.

Continuous multicommodity flow relaxation Let V; be the given flow demand of
the i connecting path, with source node s; and target node t;. We refer to i as the type
of the flow. For each such type, and for each edge j, assign a non-negative variable x;'.,
representing the amount of type-i flow on edge j. The flow model is then expressed by the
following constraints:

1. Capacity constraints For every edge j
Y%} < 0;Cj.)
1

The meaning of (2) is that the flow on edge j, summed over all types, cannot be more
than the capacity of the edge, reduced by the safety margin.

Algorithms 2021, 14, 48

50f11

Flow conservation For every node v, let In(v) denote the set of incoming edges of v.
Similarly, let Out(v) be the set of outgoing edges of v. Then write for every flow type
i and for every node v, except s; and t;:

2 x; = Z x;;. 3)

j€ln(v) keOut(v)

The meaning of (3) is that for every flow type i, the type-i flow is conserved at every
node, except its source s; and destination t;. By conservation we mean that the total
incoming type-i flow to v is equal to the total outgoing type-i flow from v.
Source constraints For every flow type i (which has its source at node s;):

Y, d=v (4)

j€Out(s;)

The meaning of (4) is that source s; should emit V; amount of type-i flow.

Now we can describe our algorithm. The used notations are summarized in Table 1.

Table 1. Notations and Definitions.

Notations Definitions
m Number of edges
n Number of verticies
Vi Given flow demand of the ith connecting path
S Source node
t; Target node
Pj Safety margin of edge j
v Node
In (v) Set of incoming edges of v
Out (v) Set of outgoing edges of v
E Flow (=expected load) on edge j
X; A random variable
i Type of the flow
ik Edge
x; Non-negative variable representing the amount of type-i flow on edge j
G Capacity of edge j
k Path
Procedure

Step 1 Multicommodity flow relaxation
Solve the following linear program:

min 2 2 xj- (5)
i

Subject to
Zx; < G (V)
1
Y x; = Y Xl (Vi, Yo # s;, t;)
j€In(v) keOut(v)
Y. 5 o=V (Vi)
jEOut(si)
x> 0 (Vi,).

In case there is no feasible solution, then declare “no safe solution exists” and HALT.

Algorithms 2021, 14, 48

60f 11

Step 2 Path Creation via Random Walk

For each source-destination pair s;, t; find a path via the following randomized pro-
cedure. Start at the source s; and take the next node such that it is drawn randomly
among the successor neighbors of the source, with probabilities proportional to the it
commodity flow values on the edges from s; to the successor neighbors in the directed
graph. Continue this in a similar manner—at each node choose the next one among
its successor neighbors randomly, with probabilities that are proportional to the it
commodity flow values. Finally, upon arrival at ¢;, we store the found (s;, t;) path.

Step 3 Feasibility Check and Repetition

Having found a system of paths in the previous step, check whether it is a feasible
solution (i.e., it can carry the flow demand for each path within the capacity bounds).
If so, then HALT, else repeat from Step 2.

If after repeating r times (r is a fixed parameter) none of the runs are successful then
declare “No solution is found” and HALT.

It is clear from the above description that the algorithm has practically feasible com-
plexity, since the most complex part is the linear programming. Note that while Step 2 is
repeated r times, the linear program in Step 1 needs to be solved only once. The correctness
of the algorithm is shown in the following theorem.

Theorem 1. If a safe solution exists, then the algorithm finds a feasible solution with probability at
least1 —27".

Proof. Since a safe solution is also a feasible solution of the multicommodity flow relax-
ation, therefore, if there is no flow solution in Step 1, then no safe solution can exist either.

Step 2 transforms the flow solution into paths. To see that they are indeed paths,
observe that looping cannot occur in the randomized branching procedure, because if a
circle arises on the way, that would mean a circle with all positive flow values for a given
commodity, which could be canceled from the flow of that commodity, thus contradicting
to the fact that the linear program finds a flow in which the sum of edge flows is minimum,
according to the objective function (5). Furthermore, since looping cannot occur, we must
reach the destination via the procedure in at most n steps, where 7 is the number of nodes.

Now a key observation is that if we build the paths with the described randomization
between the i source-destination pair, then the expected value of the load that is put on any
given edge by these paths will be exactly the value of the i" commodity flow on the link.
This follows from the fact that the branching probabilities are flow-proportional.

From the above we know that the total expected load of an edge, arising form the
randomly chosen paths, is equal to the total flow value on the edge. What we have to
bound is the deviation of the actual load from this expected value. Let F; be the flow
(=expected load) on edge j. This arises in the randomized procedure as

F=E(LViXi), ©

where X; is a random variable that takes the value 1 if the i path (i.e., the type-i flow)
contributes to the edge load, otherwise it is 0. The construction implies that these ran-
dom variables are independent, whenever j is a fixed edge and i runs over the different
flow types.

Now consider the random variable

¥ =) ViX:
1

Algorithms 2021, 14, 48

7of 11

By (6), we have E(Y;) = F;. The probability that the actual random value ¥; deviates form
its expected value by F; by more than a factor of 6 can be bounded by the tail inequality
found in [16], which is a variant of the Chernoff-Hoeffding bound:

F:

Pr (‘I’] > (1 +5)Fj) < ((14_2?(1%5))].

It can be calculated from this [16] that if we want to guarantee that the bound does not
exceed a given value € > 0, then it is sufficient to satisfy

In(1/¢€)

Fj

< (e—1)

Let us choose € = 1/(2m). Then we have

In(1/¢€) 1
Pr ‘I’]><1+(e—1) F)l—"] < 5

)

Since the bound that we do not want to exceed is the edge capacity C;, therefore, if
C > (1+(e—1) ,/(1n2m)/Fj)Pj @)

1
PI‘(‘P]' > C]) < %

is satisfied, then we have

If this holds for all edges, it yields

m
Pr(EIj: "P] > C]) < PI‘(‘P]' > C])
j=1
< mo=
2m
_ 1
= 3

Thus, the probability that the found path system is not feasible is less than 1/2. Repeating
the procedure r times with independent randomness, the probability that none of the trials
provide a feasible solution is bounded by 1/2', that is, the failure probability becomes very
small, already for moderate values of r.

Finally, expressing F; form (7) we obtain

In2m
F < Cj<1—(e—1) <) = piCjr

which shows that the safety margin is correctly chosen, thus completing the proof. [

4. Simulation Experiments

We have carried out simulation experiments to demonstrate how our approach per-
forms in practice. Below we summarize the experimental results.

The calculation of the safety margin p for the edges is based on formula (1). Note that
the safety margin is determined by the number of edges and the edge capacities, and the
meaning of the safety margin is the fraction of the maximum edge capacity that can be used
by our algorithm. This is shown in Table 2, for edge numbers running from 20 through 800,

Algorithms 2021, 14, 48

8of 11

and with edge capacities 1000 and 2000. For example, the second line in the table shows
that for 20 edges and capacities of 2000 units the resulting safety margin is 0.926 (92.6%),
which allows the usage of 1852 units of capacity, out of 2000 units. The content of Table 2 is
represented graphically in Figure 1.

Table 2. Capacity constraints of edges with different safety margin.

Capacity of Safety Margin

No. of Edges m Edges for Edges Capacity Constraints
20 1000 0.896 896
20 2000 0.926 1852
200 1000 0.867 867
200 2000 0.906 1812
400 1000 0.86 860
400 2000 0.901 1802
600 1000 0.856 856
600 2000 0.898 1796
800 1000 0.853 853
800 2000 0.896 1792
000 2000 2000 2000 2000
e 1852 1812 1802 1796 1792
1800 | m .
1600
1400
1200
1000 1000 1000 1000 1000
1000 B3 867 BED 856 853
800
60
600
40 40
4m
i i
200
96 26 7 & 13 9B 3 5
! 2 3 4 5 & 7 8 g 10
MMNo.of Edges mCapacity of Edges W Safety Margin for Edges Capacity Corstraints

Figure 1. Safety margin and capacity constraints for edges.

In our simulation experiments, the number of nodes ranges from 5 to 40, while the
number of edges ranges from 7 through 62. The actual graph (network topology) is chosen
randomly. An example is shown in Figure 2. For each number of edges we ran the
simulation with two different edge capacities: C = 1000 and C = 2000 units. As the safety
margin increases with higher capacities, the network can be better utilized, since the safety
margin determines what percentage of the maximum capacity is utilized.

Algorithms 2021, 14, 48

9o0f11

Figure 2. A sample network topology.

We ran the simulation with two different traffic types (two commodities in the multi-
commodity flow); they represent two source-terminal pairs, which were chosen randomly.
Furthermore, the number of nodes and edges were varied: the nodes between 5 and 40,
the edges between 7 and 62. The results are shown in Table 3. The table contains that
for various numbers of nodes and edges, how many iterations were needed to find the
optimum, and what was the optimum objective function value in terms of total carried
traffic. The same results are represented graphically in Figure 3. The results allowed us to
make some observations:

. As the number of nodes and edges increase, that is, the network becomes larger,
the algorithm tends to require more iterations to find the optimum, which, of course,
is not surprising.

* By setting the repetition parameter to r = 8, the algorithm returned an optimal
solution in 100% of the cases, which is very encouraging. It shows that one does not
need an astronomical number of iterations to guarantee the optimum.

e Insome cases (actually 25% the of all cases we tried) already the first iteration achieved
the optimum. Furthermore, in 75% of cases at most 5 iterations were sufficient to reach
the optimum, and we never needed more than 8. Of course, these are relatively small
examples, but it reinforces the observation that a limited number of iterations suffice.

Table 3. Simulation results.

No. of Nodes n No. of Edges m Solved in Iteration r Optimal Objective
5 7 2 550 x 10°
10 15 1 1.100 x 10°
15 22 1 1.650 x 10°
20 30 4 2.200 x 10°
25 39 5 2.750 x 10°
30 46 5 3.300 x 10°
35 54 6 3.850 x 10°
40 62 8 4.400 x 10°

Algorithms 2021, 14, 48 10 of 11

OPTIMAL FLOWS

4,400,000

3,850,000 y
3,300,000 P
4,500,000
2,750,000 y
4,000,000
2,200,000
3,500,000
1,650,000 y
3,000,000
1,100,000 y
12,500,000 [
S EET 550,000 - y
4,
1 1 4 5

1,500,000

1,000,000 Optimal Objective Result

2 5 & =
7 2 30 Solved in fteration
Sl 5 10 g i 3~ > i No. of Edges
s 20 25 30 35 0
0 AN At 4 No. of Nodes
: g - @ 5 6 7 8

’ ® No. of Nodes = No. of Edges Solved in Iteration Optimal Objective Result

Figure 3. Optimal flows of packet traffic.

5. Conclusions

We have presented an efficient solution for the NP-complete Unsplittable Flow prob-
lem in directed graphs. The efficiency is achieved by sacrificing a small part of the solution
space. The sacrificed part only contains scenarios where some edges are close to saturation,
which is undesired in practical applications, anyway. The solutions that exclude such
nearly saturated edges are called safe solutions.

The approach constitutes a new avenue to approximation, which we call safe approxi-
mation. It means that instead of giving up the exact solution, we rather restrict the search
space to a (slightly) smaller one. When, however, the algorithm finds any solution, which
happens with very high probability, then it is an exact (not just an approximate) solution.

Author Contributions: Writing—original draft, A.F.; writing—review and editing, creating the
simulation and drawing figures, Z.R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Karp, R.M. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations; Miller, R.E., Thatcher,] W., Eds.;
Plenum Press: New York, NY, USA, 1972.

Kramer, M.E.; van Leeuwen, J. The Complexity of Wire Routing and Finding the Minimum Area Layouts for Arbitrary VLSI
Circuits. In Advances in Computing Research 2: VLSI Theory; Preparata, F., Ed.; JAI Press: London, UK, 1984.

Middendorf, M.; Pfeiffer, F. On the Complexity of the Disjoint Paths Problem. In Polyhedral Combinatorics; Cook, W., Seymour, P.D.,
Eds.; DIMACS Series in Discrete Mathematics and Theoretical Computer Science; American Mathematical Society: Providence,
RI, USA,1990.

Garg, N.; Vazirani, V.; Yannakakis, M. Primal-Dual Approximation Algorithms for Integral Flow and Multicuts in Trees,
with Applications to Matching and Set Cover. In International Colloquium on Automata, Languages, and Programming; Springer:
Berlin/Heidelberg, Germany, 1993; pp. 64-75.

Farago, A. Algorithmic Problems in Graph Theory. In Conference of Program Designers; E6tvos Lorand University of Sciences:
Budapest, Hungary, 1985; pp. 61-66.

Broder, A.A ; Frieze, AM.; Suen, S.; Upfal, E. Optimal Construction of Edge-Disjoint Paths in Random Graphs. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington, VA, USA, 23-25 January 1994; pp. 603-612.
Robertson, N.; Seymour, P.D. Graph Minors-XIII: The Disjoint Paths Problem. J. Comb. 1995, 63, 65-110. [CrossRef]

Bienstock, D.; Langston, M. A. Algorithmic implications of the Graph Minor Theorem. In Handbook in Operations Research and
Management Science 7: Network Models; Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L., Eds.; North-Hollandhl:
Amsterdam, The Netherlands, 1995.

http://doi.org/10.1006/jctb.1995.1006

Algorithms 2021, 14, 48 11 of 11

10.

11.

12.

13.

14.

15.
16.

Even, S.; Itai, A.; Shamir, A. On the complexity of timetable and multicommodity flow problems. SIAM]. Comput. 1976, 5, 691-703.
[CrossRef]

Aumann, Y.; Rabani, Y. Improved Bounds for All-Optical Routing. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), San Francisco, CA, USA, 22-24 January 1995; pp. 567-576.

Kleinberg, J.; Tardos, E. Approximations for the Disjoint Paths Problem in High-Diameter Planar Networks. In Proceedings of the
ACM Symposium on Theory of Computing (STOC’95), Las Vegas, NV, USA, 29 May-1 June 1995; pp. 26-35.

Guruswami, V,; Khanna, S.; Rajaraman, R.; Shepherd, B.; Yannakakis, M. Near-optimal hardness results and approximation
algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 2003, 67, 473-496. [CrossRef]

Srinivasan, A. Improved Approximations for Edge-disjoint Paths, Unsplittable Flow, and Related Routing Problems. In Proceed-
ings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS’97), Miami Beach, FL, USA, 19-22 October 1997;
pp- 416-425.

Kolman, P; Scheideler, C. Improved Bounds for the Unsplittable Flow Problem. . Algorithms 2006, 61, 20—44. [CrossRef]
Gonzales, T. (Ed.) Handbook of Approximation Algorithms and Metaheuristics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020.
Raghavan, P. Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Programs. J. Comput. Syst.
Sci. 1988, 37, 130-143. [CrossRef]

http://dx.doi.org/10.1137/0205048
http://dx.doi.org/10.1016/S0022-0000(03)00066-7
http://dx.doi.org/10.1016/j.jalgor.2004.07.006
http://dx.doi.org/10.1016/0022-0000(88)90003-7

	Introduction
	Previous Results
	The Method of Safe Approximation
	Simulation Experiments
	Conclusions
	References

