
algorithms

Article

An FPTAS for Dynamic Multiobjective Shortest Path Problems

Pedro Maristany de las Casas 1,* , Ralf Borndörfer 1 , Luitgard Kraus 1 and Antonio Sedeño-Noda 2

����������
�������

Citation: Maristany de las Casas, P.;

Borndörfer, R.; Kraus, L.;

Sedeño-Noda, A. An FPTAS for

Dynamic Multiobjective Shortest Path

Problems. Algorithms 2021, 14, 43.

https://doi.org/10.3390/a14020043

Academic Editor: Frank Werner

Received: 30 November 2020

Accepted: 22 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Network Optimization Department, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany;
borndoerfer@zib.de (R.B.); kraus@zib.de (L.K.)

2 Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna,
38271 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain; asedeno@ull.edu.es

* Correspondence: maristany@zib.de

Abstract: The Dynamic Multiobjective Shortest Path problem features multidimensional costs that
can depend on several variables and not only on time; this setting is motivated by flight planning
applications and the routing of electric vehicles. We give an exact algorithm for the FIFO case and
derive from it an FPTAS for both, the static Multiobjective Shortest Path (MOSP) problems and, under
mild assumptions, for the dynamic problem variant. The resulting FPTAS is computationally efficient
and beats the known complexity bounds of other FPTAS for MOSP problems.

Keywords: multiobjective shortest paths; time dependent shortest paths; multiobjective approxima-
tion algorithms; flight planning problem

1. Introduction

We consider in this paper the solution of the Dynamic Multiobjective Shortest Path
(Dyn-MOSP) problem that generalizes the standard shortest path problem in two ways.
First, each arc of the graph bears more than one attribute (e.g., length, duration, consump-
tion...); this produces the (static) Multiobjective Shortest Path (MOSP) problem. Second,
generalizing arc attributes to functions gives rise to the Dyn-MOSP problem. In it, each
arc function is evaluated along a path in a dynamic (programming) fashion, i.e., a time
dependent function is evaluated based on passed time, a consumption dependent function
based on resource consumption etc. We will refer to all arc and path attributes simply as
cost. The goal in MOSP problems and Dyn-MOSP problems is then to find paths from a
source node to all other nodes in the input graph that are minimal w.r.t. their costs.

Our setting is motivated by Flight Planning Problems (FPP), in which optimal aircraft
routes have to be determined in an airway network, considering multiple and dynamic
optimization criteria. The most important scenario is the simultaneous minimization of
flight time and fuel consumption. The flight time depends on the weather, in particular,
the wind, which changes over time and hence depends on the flight time itself. Similarly,
the fuel consumption depends on the weight of the aircraft and hence, again, on the
consumption so far. Another application with similar dynamics is the routing of electric
vehicles through mountainous terrains with varying traffic congestion. Here, the traffic
depends on the time of day, and the battery’s state of (dis)charge is non-linear.

In multiobjective optimization it is common to refer to optimal solutions using the
terms efficient or Pareto optimal. Already the static MOSP problem is known to be in-
tractable because of the possibly exponential cardinality of the solution set that, in this
case, contains so called efficient paths (cf. Hansen [1]). This intrinsic difficulty of all
multiobjective optimization problems can be circumvented by restricting attention to a
polynomially sized subset of efficient solutions with an a priori bound on the quality loss
w.r.t. the complete solution set. This idea lead to the development of Fully Polynomial
Time Approximation Schemes (FPTAS) for MOSP problems in recent years (cf. Tsaggouris
and Zaroliagis [2], Breugem et al. [3], or Bökler and Chimani [4]).

Algorithms 2021, 14, 43. https://doi.org/10.3390/a14020043 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4197-0893
https://orcid.org/0000-0001-7223-9174
https://orcid.org/0000-0002-5735-9415
https://orcid.org/0000-0003-0681-4585
https://doi.org/10.3390/a14020043
https://doi.org/10.3390/a14020043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020043
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/43?type=check_update&version=3

Algorithms 2021, 14, 43 2 of 22

Our aim in this paper is to show that recently developed exact algorithms for MOSP
problems can be generalized to also solve Dyn-MOSP instances, given that the arc cost
functions fulfill the First In First Out (FIFO) property, i.e., a worse arrival at an arc’s
tail node never turns out to be beneficial. We then introduce a new FPTAS for MOSP
problems. For ease of exposition, we first consider the static case for which—to the best of
our knowledge—it features the currently best asymptotic run time. Afterwards, we show
that our results carry over to Dyn-MOSP problems if a certain (realistic) assumption on
the arc cost functions is made. As usual in the FIFO setting, the asymptotic run time is the
same as that of the static version. We finally provide extensive computational evidence of
the efficiency of our approach. Indeed, our FPTAS is faster than existing ones for MOSP
problems. Moreover and contrary to what was observed in the computational experiments
presented in recent publications about FPTAS for static MOSP problems, the new FPTAS
avoids the computation of a considerable number of paths in the dynamic costs setting.

1.1. Literature Review

Multiobjective optimization problems and, in particular, MOSP problems, have been
extensively investigated in the literature. Very good general introductions are provided
by, e.g., Emmrich and Deutz [5], Ehrgott [6], or Ehrgott and Gandibleux [7]. The theo-
retical foundation and the algorithmic development of MOSP problems are reviewed in
Ulungu and Teghem [8], Current and Marsh [9], Skriver [10], Tarapata [11], or Clímaco and
Pascoal [12].

In the 1970s, Vincke [13] considered the MOSP problem for the first time, studying
two objective functions. This Biobjective Shortest Path problem was also considered by
Hansen [1], who came up with the first label-setting algorithm. Serafini [14] showed that the
MOSP problem is NP-complete and Martins [15] generalized Hansen’s algorithm for the
general multiobjective case. Since then, Martins’s algorithm has served as the benchmark
for solving MOSP problems. Recently, Sedeño and Colebrook [16] and Maristany et. al. [17]
devised the Biobjective and Multiobjective Dijkstra algorithms (B/MD-A): new label setting
algorithms for MOSP problems that have not only superior computational complexity, but
are also efficient in practice.

Turning to approximation, Papadimitriou and Yannakakis [18] set a milestone in the
field of approximation algorithms for multiobjective optimization problems. They proved
that for a multiobjective optimization problem with d objectives and an ε > 0, a (1 + ε)
Pareto curve of size O(4B

ε)d−1 exists. Here, B is the number of bits required to represent
the values that the objective functions can take (B is assumed to be polynomially bounded).
They also constructed the first general FPTAS for MOSP problems. It was superseded
by the method of Tsaggouris and Zaroliagis [2], who presented an FPTAS for the MOSP
problem inspired by the classical Bellman Ford algorithm for Shortest Path problems. Their
main idea is to subdivide the space of possible path costs into polynomially (in the size
of the input and 1/ε) many cells and admit just one path per cell. The right choice of the
subdivision guarantees that if a path is rejected because its cell is occupied, the quality
loss remains bounded. This produces a (1 + ε)-cover of the exact set of efficient paths.
The idea was picked up by Breugem et al. [3] who managed to pair Martins’s algorithm
with the subdivision of the outcome space introduced in [2]. The result was an FPTAS
for MOSP problems that is worse regarding the theoretical running time, but performs
better in computation. Based on this work, Bökler and Chimani [4] recently published an
extensive comparison of different label ordering and selecting strategies.

The literature considering MOSP instances with dynamic, also called time-dependent,
cost functions is scarce. Kostreva and Lancaster [19] presented an algorithm for non-
monotone increasing arc cost functions that does not reduce to Dynamic Programming.
Disser et al [20] mention the necessity to tackle this kind of problems on train networks
and use Martins’s algorithm to solve them without going into details. Our label setting
algorithm for Dyn-MOSP problems considers only arc cost functions that fulfill the FIFO

Algorithms 2021, 14, 43 3 of 22

property. An extensive analysis of the implications of this condition on the solvability of
single-objective Time-Dependent Shortest Path problems is given by Foschini et al. [21].

1.2. Outline

In Section 2, we formulate the Dyn-MOSP problem, and in Section 3, we explain how
the Multiobjective Dijkstra Algorithm can be used to solve Dyn-MOSP instances if the arc
cost functions fulfill the FIFO property. The analysis of the algorithm’s asymptotic run
time is done using a black-box dominance check whose complexity varies depending on
the number of objectives and the partial order used to define minimality of paths. We use
this abstract representation in Section 4 to introduce the new MD-FPTAS. It divides the
outcome space of MOSP and Dyn-MOSP instances into polynomially many buckets, each
of them allowing the storage of at most one path. The correctness of the resulting FPTAS is
first proven for the case of static arc costs. Then, we derive a condition on dynamic arc cost
functions that ensures that the MD-FPTAS also works for Dyn-MOSP instances. Finally, in
Section 5 we test our algorithms against a state of the art FPTAS for the MOSP problem.

2. Multiobjective Shortest Path Problems

We start this section with a combinatorial definition of the Dyn-MOSP problem. Its
components will be explained immediately afterwards.

Definition 1 (Dynamic Multiobjective Shortest Path Problem). Given a directed graph G =
(V, A), a start node s ∈ V, an initial cost vector τ0 ∈ Rd

≥0, a dimension d ∈ N, and an arc cost
function c : A→ Fd (see Equation (1)), the d dimensional Dynamic Multiobjective Shortest Path
Problem is to find either a minimum or a maximum complete set of efficient (s, v)-paths in G for
all v ∈ V (which type of set is output depends on the partial order used to define the minimality
of paths).

Graph terminology

We refer to the end-nodes of an arc a ∈ A as the tail and the head nodes of a. Given
two nodes u, v ∈ V, a (u, v)-path in G is a sequence (a1, . . . , ak), k ∈ N, of arcs such that u is
the tail node of a1 and v is the head node of ak. Additionally, the head node of ai coincides
with the tail node of ai+1 for any i ∈ {1, . . . , k− 1}. We denote by p|l for any l ∈ {1, . . . , k}
the leading subpath of p consisting of the first l arcs of p.

The arc cost function c

In a d-dimensional Dyn-MOSP instance I , each arc a ∈ A bears d independent
real valued cost functions ca,i : R≥0 → R≥0, i ∈ {1, . . . , d}; these will be used to prop-
agate costs along the paths. The propagation can be described conveniently in terms
of cost propagation functions ĉa,i := id + ca,i : R≥0 → R≥0, i ∈ {1, . . . , d}. Then,
given a cost vector τ ∈ Rd

≥0, its cost component τi is propagated along arc a to be-
come ĉa,i(τi) := τi + ca,i(τi), i ∈ {1, . . . , d}, and along path p = (a1, . . . , ak) to become
ci(p, τi) = ĉak ,i(ĉak−1,i(· · · ĉa2,i(ĉa1,i(τi)))), i ∈ {1, . . . , d}. Throughout this paper, we will
consider paths starting at a source node s with arbitrary, but fixed, starting costs τ0,i,
i ∈ {1, . . . , d}; for such paths let us omit the starting costs τ0,i from the notation and
abbreviate ci(p, τ0,i) by ci(p).

Arc costs of this type arise in applications where multidimensional “state flows”
evolve through a graph. For example, in the Flight Planning problem that we will discuss
in Section 5.1, the costs τv at a node v of a path p are interpreted as the aircraft state, i.e., a
tuple consisting of the flight time, the fuel consumption, the distance etc. from the source
node until v, and ĉv,w(τv) = τv + c(v,w)(τv) are the costs (in this example, the aircraft state)
at the successor node w of v in p. We use τ to denote the costs because one of the costs
is typically time. Note also that in the static case, the arc cost functions are constant and
hence, we can write ca,i instead of ca,i(τ).

Algorithms 2021, 14, 43 4 of 22

If we denote by F the set of functions from R≥0 to R≥0, we can denote the arc cost
function c and the arc cost propagation function ĉ of I in vector and function notation by

c : A→ Fd

a 7→ ca := [ca,i]
d
i=1.

ĉ : A→ Fd

a 7→ ĉa := [id + ca,i]
d
i=1.

(1)

Then, given a cost vector τ ∈ Rd
≥0, the costs for traversing an arc a starting with costs

τ at a’s tail node are ca(τ) := [ca,i(τi)]
d
i=1 ∈ Rd

≥0, and costs τ are propagated along arc a
to become ĉa(τ) = [τi + ca,i(τi)]

d
i=1 ∈ Rd

≥0. Let p be a (u, v)-path with k arcs that starts at
u with costs τ ∈ Rd

≥0. Then the costs of any leading subpath p|l , l ∈ {2, . . . , k}, of p are
recursively given by

c
(

p|1, τ
)

:= ĉa1(τ) = τ + ca1(τ) ∈ R
d
≥0,

c
(

p|l , τ
)

:= ĉal

(
c
(

p|l−1, τ
))

= cal

(
c
(

p|l−1, τ
))

+ c
(

p|l−1, τ
)
∈ Rd

≥0.
(2)

Finally, using p = p|k, the d-dimensional costs of path p starting with cost τ are
denoted by c(p, τ), or, if the starting state τ is clear, by c(p). In the static case, the costs of p
are c(p) := ∑k

j=1 caj , where aj denotes the jth arc of p.

Efficiency of paths

In Multiobjective Optimization, optimal feasible solutions are called efficient solutions
(cf. [6]). The feasible solutions to any MOSP instance are paths and hence, we seek
to find efficient (s, v)-paths with initial costs τ0 ∈ Rd

≥0 for every v ∈ V. Efficiency is
defined in terms of a (strict) partial order on Rd

≥0 (cf. [5]). For our exact Multiobjective
Dijkstra algorithm discussed in Section 3, we will use the following notion of efficiency
and dominance:

Definition 2 (Dominance). Given two cost vectors x, y ∈ Rd
≥0, x is said to dominate y (x �D y),

if and only if xi ≤ yi for all i ∈ {1, . . . d}. Moreover, x is called efficient, if there is no other cost
vector x′ ∈ Rd

≥0 such that x′ �D x.

This definition carries over to the set of feasible paths in a natural way: given two
(s, v)-paths p and q, p is said to �D-dominate q (p �D q) if and only if c(p) �D c(q). An
(s, v)-path is called �D -efficient if it is not �D -dominated by any other (s, v)-path. Note
that the set of efficient cost vectors of a Dyn-MOSP instance I is unique. However, for
every such point in Rd

≥0, there might be multiple efficient paths. The maximum complete
set of efficient paths is the set that contains all paths whose cost vector is efficient, i.e., the
set may contain paths with identical costs. If the widely used strict partial Pareto order is
used to define dominance, the output of a Dyn-MOSP instance would be the maximum
complete set. This order is the same as the one in Definition 2 but enforces that at least one
of the inequalities is strict, hence not allowing x to dominate y if x = y. In this paper we
compute the minimum complete set of efficient paths that is induced by �D and allows
exactly one efficient path per efficient cost vector.

Example 1. Figures 1 and 2 show an example of a biobjective Dyn-MOSP instance and how the
costs of two paths evolve through the corresponding graph. We assume that at the nodes u and v
there are paths (red and green) ending with costs τ = (τ1, τ2) and τ′ = (τ′1, τ′2), respectively, and
that these paths are now extended towards node x via node w. The plots to the left and in the middle
show the costs for traversing the corresponding arc starting with costs τ and τ′, respectively. After
the extension along the arcs (u, w) and (v, w) both paths meet at node w with costs τw = ĉa1(τ)
and τ′w = ĉa2(τ

′). The plots on the right show the arc cost functions corresponding to the arc
a3 = (w, x). Furthermore, on the same diagram, the dominance relationship between both paths at

Algorithms 2021, 14, 43 5 of 22

w becomes clear since τ′w,1 < τw,1 and τ′w,2 > τw,2. This means that none of the paths ending at w
dominates the other one.

uτ v τ ′

w τ ′ + ca2 (τ
′) = τ ′wτw = τ + ca1 (τ)

x τ ′w + ca3 (τ
′
w)τw + ca3 (τw)

ca1 ca2

ca3

Figure 1. Graph corresponding to the Dyn-MOSP instance discussed in Examples 1 and 2. The
corresponding arc cost functions are shown in Figure 2.

ca1,1

ca1,2

ca1,1(τ1)

τ1

ca1,2(τ2)

τ2

ca2,1

ca2,2

ca2,1(τ
′
1)

τ ′1

ca1,2(τ
′
2)

τ ′2

ca3,1

ca3,2

ca3,1(τ
′
w,1)

τ ′w,1

ca3,2(τ
′
w,2)

τ ′w,2

ca3,1(τw,1)

τw,1

ca3,2(τw,2)

τw,2

Figure 2. These plots show the two arc cost functions corresponding to the three arcs of the graph in
Figure 1: the leftmost functions correspond to the arc a1 = (u, w); the functions in the middle to the
arc a2 = (v, w); the rightmost functions to the arc a3 = (w, x).

3. The Multiobjective Dijkstra Algorithm for Dynamic MOSP Problems

In this section, we discuss Algorithm 1, an adaptation of the Multiobjective Dijkstra
Algorithm (MD-A) presented in [16,17] that is extended here to work with dynamic costs.
We will see that for the dynamics discussed in this paper, the solvability of MOSP and Dyn-
MOSP instances mirrors the well known relationship from the single objective case: if a
path p dominates a path p′ at a node v, their extensions inherit this dominance relationship.
This characteristic of the cost functions is known as the FIFO property and defined formally
in Section 3.2.

3.1. Description of the Algorithm

Whenever we use arrays in our algorithms, we will use an operator [·] to access its
elements. To be able to do this on arrays that are indexed according to the nodes or the
arcs of G, we assume that these have unique ids from 0 to |V| − 1 and from 0 to |A| − 1,
respectively. Then, if for example ∆ is an array with one entry per arc in G, ∆[a] denotes
the content of ∆ at the position specified by the id of the arc a ∈ A.

Paths and Labels

In Algorithm 1, paths are considered according to the lexicographically increasing
costs. A point x ∈ Rd

≥0 is said to be lexicographically smaller than a point y ∈ Rd
≥0

(x <lex y) if and only if xi < yi in the first dimension i ∈ {1, . . . , d} in which xi 6= yi, and
we say that a path p is lexicographically smaller than another path p′ if c(p) <lex c(p′).
We will store paths using labels, i.e., by an implicit representation. Let p be an (s, v)-path
(starting at s with costs τ0) whose last arc is (u, v) ∈ A. The label corresponding to p is
a tuple ` = (v, c` := c(p), `u), where `u is a pointer to the label representing the (s, u)-
subpath of p. Note that c` = ĉ(u,v)(c`u), which, incurring in an abuse of notation that
increases the readability, can be put as c` = ĉ(u,v)(`u). For every node v ∈ V the set Lv

Algorithms 2021, 14, 43 6 of 22

contains the labels corresponding to the efficient (s, v)-paths found during the algorithm.
We will see that the label sets Lv will only increase; a label ` ∈ Lv is therefore also called a
permanent label. Additionally, a lexicographically sorted priority queue Q stores at most
one tentative label per node. Tentative labels correspond to paths that have been explored
during the algorithm but are not yet known to be efficient. For a node v, the label stored
in Q corresponds to the lexicographically minimal (s, v)-path that has not yet been made
permanent and is not dominated by any label in Lv (we write Lv �D `v).

Algorithm 1: Multiobjective Dijkstra Algorithm (MD-A)
Blue code only for the MD-FPTAS described in Section 4.

Input : Digraph G = (V, A), Arc Costs c : A→ Fd, Node s ∈ V, Initial costs τ0 ∈ Rd
≥0.

Additional FPTAS Input : Vector of approximation ratios ε ∈ Rd−1
≥0 .

// The output is a minimum complete set in the exact scenario and a (1 + ε)-cover (see Section 4) if the algorithm is used as an

FPTAS.

Output : Labels L :=
⋃

v∈V Lv.
1 Prio. Queue Q← ∅;
2 for v ∈ V do Permanent labels Lv ← ∅ ;
3 for a ∈ A do lastProcessedLabel[a]← 0;
4 Label linit ← (s, τ0, NULL); /* Only for MD-A. */

Label linit ← (s, τ0, NULL, pos (τ0)); /* Only for MD-FPTAS. */

5 Q← Q ∪ {linit};
6 Ls ← Ls ∪ {linit};
7 while Q 6= ∅ do
8 Label `∗v ≡ (v, c`∗v , `pred)← Label with lexicographically minimal costs in Q;
9 Lv ← Lv ∪ {`∗v} ; /* Make `∗v permanent. */

10 `new
v ← nextCandidateLabel(v, lastProcessedLabel,∪u∈δ−(v)Lu) ; /* Only for MD-A. */

`new
v ← nextCandidateLabel(v, lastProcessedLabel,∪u∈δ−(v)Lu, ε); /* Only for MD-FPTAS. */

11 if `new
v 6= NULL then Q← Q ∪ {`new

v } ;
12 for w ∈ δ+(v) do
13 Q← propagate(`∗v , w, Q, Lw) ; /* Only for MD-A. */

Q← propagate(`∗v , w, Q, Lw, ε); /* Only for MD-FPTAS. */

14 return Lv for all v ∈ V;

We present the pseudocode of Algorithm 1 in an abstract way, i.e., without specifying
the partial order used to define dominance. Instead, we call a function BLACK_BOX_DOM that
returns TRUE only if a newly found candidate path is dominated by the set of permanent
paths at a node, i.e., if this set contains a path that dominates the candidate path. This
allows us to use the same pseudocode for the exact algorithm presented in this section
and for the MD-FPTAS presented in Section 4. Algorithms 2 and 3 show the function
BLACK_BOX_DOM used for the exact MD-A.

Algorithm 2: BLACK_BOX_DOM(Lv, `v) for MD algorithm, d = 2.

1 return Lv[|Lv| − 1] �D `v

Algorithm 3: BLACK_BOX_DOM(Lv, `v) for MD algorithm, d ≥ 3.

1 for ` ∈ Lv do
2 if ` �D lv then return TRUE;
3 return FALSE

Iterations

At the beginning, a tentative label `init = (s, τ0, NULL) is inserted into Q. The main
loop of the algorithm retrieves labels from Q; makes them permanent, possibly inserting
new labels into Q for the node for which a label was retrieved; propagates their costs,
possibly inserting new labels into Q for the successors of this node, and ends once Q
becomes empty. Iterations start with the extraction of the lexicographically minimal label

Algorithms 2021, 14, 43 7 of 22

`∗v from Q, which is added to the end of Lv since it is guaranteed to correspond to an
efficient path. Since this is the only way labels are added to the lists Lv, these sets are also
sorted in lexicographically increasing order. The main trick in the algorithm is that the
queue Q stores at any time at most one label for any node, namely, a lexicographically
minimal one that is not dominated by any permanent label at the corresponding node. This
makes the algorithm efficient by eliminating any search for non-dominated labels in Q–a
tedious task that so far was common to all label setting MOSP algorithms in the literature.

After making `∗v permanent, each iteration pursues two main tasks. The first task is to
find a new tentative label for v. This is necessary since the priority queue Q stores at most
one label for node v at any time. If such a label exists,

lnew
v := arglexmin `u∈Lu ,

u∈δ−(v)

{
` =

(
v, ĉ(u,v)(`u), `u

)
| Lv �D `

}
(3)

is not dominated by any label in Lv and is lexicographically minimal among the labels
gained from the extension of labels in Lu, u ∈ δ−(v), along the arc (u, v) (see nextCan-
didateLabel). This label lnew

v has to be built every time a label for v is extracted from
Q; this is the price for storing at most one label per node. However, it is not necessary
to traverse the entirety of the lists Lu every time. Instead, labels in Lu whose extension
along (u, v) were already dominated at Lv the last time a new label for v was built, do
not have to be considered. To take advantage of this observation, we store the indices
lastProcessedLabel(u, v) for any arc (u, v). These refer to the last checked position in
Lu when looking for a label for v and define where a search for v’s next candidate label
has to start. If a new label lnew

v for v is found, it is added to Q. The second task in each
iteration is the propagation of `∗v along the outgoing arcs of v. The algorithm builds the
labels `w = (w, ĉ(v,w)(`

∗
v), `∗v) for every w ∈ δ+(v) and adds them to Q only if Lw �D `w. If

`w is lexicographically smaller than w’s current label in Q, the latter is replaced by `w. In
case there is no label for w in Q, `w is just inserted into Q (see propagate).

Procedure nextCandidateLabel
Blue lines only for the MD-FPTAS described in Section 4.

Input :Node v, Indices lastProcessedLabel, Permanent labels L.
Additional FPTAS Input :Vector of approximation ratios ε ∈ Rd−1

≥0 .
Output :New lex. min., non-dominated label for v, if one exists.

1 Label `new
v ← (v, (∞, . . . , ∞), NULL);

2 for u ∈ δ+(v) do
3 for k = lastProcessedLabel[(u, v)] to |Lu| do
4 Label `u ← Lu[k]; ; /* kth label in Lu */

5 Cost cnew ← ĉ(u,v)(`u);
6 Label `← (v, cnew, `u)); /* Only for MD-A. */

Label `← (v, cnew, `u, pos ε(cnew))); /* Only for MD-FPTAS. */

// Next time a label for v is searched in Lu, the search starts where the current one ends.

7 lastProcessedLabel[(u, v)]← k;
8 if !BLACK_BOX_DOM(Lv, `) then

// ` is non-dominated. Additionally, it has to be lex. minimal.

9 if ` ≺lex `new
v then `new

v ← `;
10 break;
11 if c`new

v
6= ∞ then return `new

v ;
12 return NULL;

Algorithms 2021, 14, 43 8 of 22

Procedure propagate
Blue lines only for the MD-FPTAS described in Section 4.

Input :Label `v, Node v ∈ δ+(u), Prio. Queue Q, Permanent labels L.
Additional FPTAS Input :Vector of approximation ratios ε ∈ Rd−1

≥0 .
Output :Updated Prio. Queue Q.

// Cost propagation: the cost functions of the arc (v, w) are evaluated at the costs of the (s, v)-path represented by `v. The

resulting (s, w)-path has costs cnew.

1 Cost cnew ← c`v + c(v,w)(c`v);
2 Label `w ← (w, cnew, `v); /* Only for MD-A. */

Label `w ← (w, cnew, `v, pos ε(cnew)); /* Only for MD-FPTAS. */

3 if !BLACK_BOX_DOM(Lw, `w) then
4 if there is no label for w in Q then
5 Q← Q ∪ {`w};
6 else if `w is lex. smaller than w’s heap label then
7 Replace w’s label in Q with `w; ; /* This is a decrease_key operation on Q. */

8 return Q;

Example 2. Going back to the example shown in Figure 2, assume that the labels ` with costs τ at
u and `′ with costs τ′ at v are in the queue Q and τ <lex τ′. Then, ` is extracted earlier from Q and
in the same iteration, Procedure propagate is called to extend ` along the arc a1 = (u, w) and obtain
the tentative label `w = (w, τw = ĉ(u,w)(τ), `). We assume that no label for w exists, neither
in Q nor in Lw, and hence, `w is added to Q. Suppose that in the next iteration of Algorithm 1,
the label `′ with costs τ′ at v is extracted. During its extension towards w in propagate, the
label `′w = (w, τ′w = ĉ(v,w)(τ

′), `′) is created. As we can see in the rightmost plot in Figure 2,
τ′w,1 < τw,1 and hence, τ′w <lex τw. Since the conditions in Lines 3 and 6 of propagate are fulfilled,
the label `w is replaced by `′w, which becomes the new label for w in Q. This however does not discard
`w! Some iterations later, `′w is extracted from Q and in the same iteration, nextCandidateLabel
is called to build a new tentative label for w in Q out of the permanent labels of the predecessor
nodes of w. It is in this search where `w is found again and since it is not dominated (Line 8 of
nextCandidateLabel) by any permanent label at w (currently Lw only contains `′), it is added to Q.
Indeed, as shown in the rightmost plot in Figure 2, τw �D τ′w and τ′w �D τw meaning that both
labels have to be added to Lw. Later, the label with costs τw is extracted from Q and finally made
permanent. The extension of both labels towards x along (w, x) works in the same way.

3.2. Correctness

As noted in the beginning of the section, we require the arc cost functions ca,i, to fulfill
the FIFO property:

Definition 3 (First-In-First-Out Property). The ith cost function ca,i of an arc a ∈ A ful-
fills the FIFO property if and only if for two cost components τi, τ′i with τi < τ′i , there holds
ĉa,i(τi) ≤ ĉa,i(τ

′
i).

The correctness of Algorithm 1 relies on the Bellman-Principle [22] of optimality. In
the context of MOSP problems, it states that an efficient (s, v)-path contains only efficient
subpaths. Given that the arc cost functions are FIFO, Bellman’s principle holds for efficient
paths of the Dyn-MOSP problem. In particular, the following statement holds.

Lemma 1. Given a Dyn-MOSP instance with FIFO arc cost functions, consider two (s, v)-paths
p, p′ such that c(p) �D c(p′). Then, for the extensions of p and p′ along a (v, w)-path q in G
there holds c(p ◦ q) �D c(p′ ◦ q).

Algorithms 2021, 14, 43 9 of 22

Proof. Since c(p) �D c(p′), we know that cj(p) ≤ cj(p′) for any j ∈ {1, . . . , d}. Due to
the FIFO property of the arc cost functions, this implies that after q’s first arc, say a ∈ A,
there holds

c(p ◦ a) = ĉa(c(p)) ≤ ĉa(c(p′)) = c(p′ ◦ a).

This argument can be repeated along every arc of q until we reach the paths’ end point,
implying that c(p ◦ q) �D c(p′ ◦ q).

The consequence of Lemma 1 is that during Algorithm 1, dominated labels/paths can
be neglected since they will not become efficient later on. Hence, for a Dyn-MOSP instance
whose arc cost function has the FIFO property in every dimension, Algorithm 1 computes
a minimal complete set of efficient paths. The rest of the correctness proof proceeds along
standard lines as in the static case (cf. [16,17]).

3.3. Complexity

The running time of Algorithm 1 is dominated by the running time of nextCandidate-
Label and propagate, that both depend on the complexity of the oracle BLACK_BOX_DOM. It
implements the dominance checks that are applied in the different versions of the MD-A
that we discuss throughout the paper. In the exact biobjective algorithm, the dominance
check (see Algorithm 2) can be implemented in constant time. The reason is that the sets Lv
are sorted in lexicographically increasing order and contain only efficient labels. Indeed,
the first cost component is sorted in increasing order, while the second cost component is
sorted in decreasing order. Thus, a new tentative label that is lexicographically greater than
all elements of Lv must only be compared with the last element. This observation seems
to be not very widespread in the literature, but given the possibly exponential number
of efficient paths at any node, the possibility of checking dominance in constant time has
a big impact in theory and practice (cf. [16,17,23]). For d ≥ 3 the complexity is linear in
the number of labels contained in Lv, since in the worst case, the tentative label has to be
compared with all existing ones (see Algorithm 3). In our analysis, we will denote the
complexity of the dominance check, i.e., of the function BLACK_BOX_DOM, by C. We assume
that Q is a Fibonacci–Heap [24] to get constant time complexity for the update and the
insertion of labels. The label extraction is performed in O(log n), since the size of Q is at
most n. We setNmax := maxv∈V |Lv| to be the maximal number of labels at a single node at
the end of the algorithm. N := ∑v∈V |Lv| is the total number of computed efficient labels.

Remark 1. Note that we assume that the evaluation of the arc cost functions can be done in
constant time. This is for example the case, when the functions are piecewise linear/constant and
the breakpoints are distributed equidistantly. This assumption is common in the literature on
Time-Dependent Shortest Paths problems. However, note that logarithmic running times have to
be assumed if the breakpoints are spaced without regularity (binary search to find the neighboring
breakpoints), or even worse complexities if the functions cannot be easily parametrized. Additionally,
we assume that the dimension d of the problem is a constant.

Complexity of nextCandidateLabel

For a node v ∈ V nextCandidateLabel is called every time a label for v is made
permanent, i.e., |Lv|+ 1 times. The use of the lastProcessedLabel pointers for every arc
(u, v) ∈ A guarantees that the list Lu of permanent labels at each predecessor node u of v is
traversed exactly once. During each call, a dominance check between the extension along
(u, v) of the considered predecessor labels and Lv is performed. This results in a running
time of

O

 ∑
u∈δ−(v)

|Lu|+ |Lv|+ 1

C
,

which summing over all nodes v ∈ V, can be put as O(mNmaxC).
Complexity of propagate

Algorithms 2021, 14, 43 10 of 22

In total, |Lu| labels are propagated along an arc (u, v) ∈ A. Every time a label is
propagated from u along (u, v), we have to check if the resulting label is dominated by any
label in Lv. Summing over all nodes, we get an overall complexity of

O
(

∑
u∈V
|δ+(u)||Lu|C

)
= O(mNmaxC).

Note that since Q contains at most one label per node, we can have constant time
access (e.g., via a pointer) to a node’s heap label. We make use of it in Lines 4 and 6
of propagate.

Algorithm 1 performs one iteration per permanent label, i.e., N iterations in total. In
addition to nextCandidateLabel and propagate, a label is extracted in every iteration. All
in all, the running time of Algorithm 1 is

O(N log n + 2mNmaxC) = O(N log n + mNmaxC) ⊆ O(Nmax(nlog(n) + mC)). (4)

In Table 1, we list the complexity C of the dominance check for the different variants
of the MD-A that we consider during the paper. It is clear that the space consumption of
Algorithm 1 is O(N + m) if we assume that d is fixed. More in depth discussions of these
running time bounds for the exact versions of Algorithm 1 can be found in [16,17].

Table 1. Complexity C of the dominance checks.

Exact MD-A (Section 3.3) MD-FPTAS (Section 4.2) MD-FPTAS_T (Section 4.2.1)

d = 2 O(1) O(1) O(1)
d ≥ 3 O(Lv) ⊆ O(Nmax) O(T) O(1)

4. A New FPTAS for the Multiobjective Shortest Path Problem

In this section, we introduce the MD-FPTAS, a new FPTAS for MOSP problems.
Basically the MD-FPTAS is Algorithm 1 with a new partial order on the cost vectors, i.e.,
with a new notion of efficiency. As used for the first time in [2], the main idea is to divide
the outcome space into a polynomial number of cells, each of them holding at most one
path. The correspondence of a path to a cell is defined via the path’s cost vector. For ease
of exposition, we will focus on the static version first. In Section 4.1, we show that the
FPTAS also works on Dyn-MOSP instances if some extra assumptions are made about the
arc cost functions.

Consider an α ∈ Rd
≥1 and two (s, v)-paths p, q. Then, p α-covers q if cj(p) ≤ αjcj(q)

for all j ∈ {1, . . . , d}. Let X be the set of all feasible paths of a (Dyn-)MOSP instance. A
subset X̃ ⊆ X is an α-cover of X if and only if for any x ∈ X there is a x̃ ∈ X̃ that α-covers
x. If we denote the all-ones vector (initially in d dimensions) by 1, a Fully Polynomial Time
Approximation Scheme (FPTAS) for the (Dyn)-MOSP problem is a family of algorithms
that computes, for any ε > 0, a (1+ ε1)-cover of X . Furthermore, its space requirements
and running time are polynomial in the size of the used instance as well as in 1

ε (note that
we could define ε as a vector and get different approximation ratios for every component.
However, this would not give deeper insights into the used techniques and is also not
used in the experiments presented in Section 5). Additionally, we assume that ε ≤ 1 such

that ln (1 + ε) = Θ(ε) and set cmin
i := mina∈A ca,i, cmax

i := maxa∈A ca,i, and Ci =
cmax

i
cmin

i
for

i ∈ {1, . . . , d}.
As in the FPTAS presented in [2,3], ours is exact in one dimension. In our case, we

choose the first cost component to be exact meaning that we compute a (1, 1+ ε1)-cover of
X , with 1 ∈ Rd−1. The MD-FPTAS assigns a (d− 1)-dimensional tensor Tv to each node
v ∈ V. The entries of each tensor in the (j− 1)th dimension, j ∈ {2, . . . d}, are indexed
from 0 to blog r(nCj)c, for an approximation factor r = (1 + ε)

1
n−1 ∈ R≥1. At most, one

Algorithms 2021, 14, 43 11 of 22

(s, v)-path is stored in each entry of Tv. With our choice of r, this guarantees the desired
polynomial running time and space consumption.

The bound on the space consumption can be derived from the size of Tv: the length
of Tv,j becomes

⌊ n
ε log(nCj)

⌋
for any node v ∈ V and j ∈ {2, . . . , d} such that, in total, Tv

stores at most ∏d
i=2 |Tv,i|, a term that is polynomial in the size of the graph and in 1

ε . If we
allow our FPTAS to only store one (simple) path per entry in the vector, we guarantee the
polynomial space consumption of the MD-FPTAS. The position of a (s, v)-path p ∈ X in Tv
is computed using the function pos : Rd

≥0 → Nd−1
0 which is defined componentwise as

pos j(c(p)) :=

0 , if cj(p) = 0

1 +
⌊

logr
cj(p)
cmin

j

⌋
, else

, j ∈ {2, . . . d}. (5)

This justifies the size of the tensors since efficient (simple) paths have at most (n− 1)
arcs and hence, cj(p) ≤ (n− 1)cmax

j .
We incorporate the subdivision of the outcome space into Algorithm 1 and, in par-

ticular, into the dominance checks made therein. To do so, we consider the blue parts
in the pseudocodes from Section 3. In the MD-FPTAS any label ` representing a path p
additionally stores pos(c(p)) = pos (c`). For ease of exposition, we will write pos(p) and
pos(`) from now on. Labels continue to be sorted lexicographically in the priority queue
Q but the dominance checks are done using the labels’ pos values: if two distinct labels
`, `′ at a node v ∈ V fulfill c`,1 ≤ c`′ ,1 and pos j(`) ≤ pos j(`

′) for j ∈ {2, . . . d}, we say that
` pos -dominates `′ and write ` �pos `′. The new checks are shown in Algorithms 4 and 5.
No further modifications w.r.t. Algorithm 1 are needed to obtain the MD-FPTAS from the
MD-A. Hence, the MD-FPTAS makes labels permanent after extracting them from the heap.
It is guaranteed that at the moment of extraction of a label `v at a node v ∈ V, there is no
label `′v in Lv such that `′v �pos `v and thus, no two labels with the same pos values will
be stored, i.e., nextCandidateLabel and propagate.

Algorithm 4: BLACK_BOX_DOM(Lv, `v) for MD-FPTAS, d = 2
1 return Lv[|Lv| − 1] �pos lv

Algorithm 5: BLACK_BOX_DOM(Lv, `v) for MD-FPTAS, d ≥ 3
1 for ` ∈ Lv do
2 if ` �pos `v then return TRUE;
3 return FALSE

The following example shows how efficient labels can be rejected by the MD-FPTAS if
they are pos -dominated by permanent labels.

Example 3. Figure 3 visualizes the situation at the end of each of three subsequent iterations of
MD-FPTAS. As in Examples 1 and 2, the illustrated graph is a subgraph of a larger graph with
n = 10 nodes and we set ε = 0.5. To illustrate how our FPTAS works, dynamic arc cost functions
are not needed. Instead, each arc has d = 2 static cost components. Labels are represented only
by their cost vector; their correspondence to nodes is made clear by their positioning. The example
starts with a permanent label with costs (80, 131) at node x and tentative labels for u and v in Q
with costs (100, 100) and (100, 101), respectively.

In the first iteration, the label for u is extracted from Q and no new candidate label for u is
found. Then, during the propagation of the label (100, 100), the resulting label with costs (120, 120)
at node w is inserted into Q. In the second iteration, the label with costs (101, 100) is extracted
from the heap and no new candidate label for v is found. This label is then propagated to node w,
where the resulting tentative label with costs (140, 119) is rejected, as w’s current heap label has
costs (120, 120) and is lexicographically smaller. So far, the MD-A and the MD-FPTAS would
have done exactly the same. In the third iteration, the label with costs (120, 120) at node w is

Algorithms 2021, 14, 43 12 of 22

extracted from the heap. When nextCandidateLabel is called, the extension of v’s permanent label
towards w yields costs (140, 119). Hence, it would not be dominated by the new permanent label
with costs (120, 120) at w in the exact scenario. However, in the MD-FPTAS, it is rejected since
120 < 140 and pos(120) = 107 = pos(119). The iteration continues and considers the tentative
label with costs (130, 130) at node x. It is also rejected despite it would be made permanent in the
exact scenario, since 80 < 130 and pos(130) = 109 = pos(131).

u

(100, 100)

v

(100, 101)

w

(120, 120)

x

(80, 131)

(20, 20)

(4
0,
18
)

10|10

u

(100, 100)

v

(100, 101)

w

(120, 120)

(140, 119)

x

(80, 131)

(20, 20)

(4
0,
18
)

(10, 10)

u

(100, 100)

v

(100, 101)

w

(120, 120)

(140, 119)

x

(80, 131)

(130, 130)

(20, 20)

(4
0,
18
)

(10, 10)

Figure 3. Three consecutive iterations of the MD-FPTAS. The extracted label `∗ in every iteration
is marked in red, the permanent labels ` ∈ Lv in black, and the tentative labels generated in
nextCandidateLabel or propagate in grey.

The following Lemma holds for any version of Algorithm 1 presented so far. We need
it to prove the correctness of the MD-FPTAS. We denote the set of permanent labels at node
v found until iteration i ∈ {1, . . . ,N} (including the ith iteration) by Li

v. Thus, Lv ≡ LNv is
used only to denote the final set of permanent labels at v.

Lemma 2. A label `v for a node v ∈ V is considered at most |Lv|+ 1 times before it is made permanent
or finally discarded. If it is discarded, there is a permanent label in Lv that (pos-)dominates `v.

Proof. Let `u be the permanent predecessor label of `v at node u ∈ δ−(v). `v is considered
for the first time during a call to propagate in the iteration i ∈ {1, . . . ,N} in which
`u is extracted from H and added to Li

u. Let k ∈ {i + 1, . . . ,N} be the next iteration
wherein a label `′v for node v is extracted from Q. If `′v = `v, we are done since `v
was considered just once before it is made permanent. In case `′v 6= `v, `v was either
rejected in iteration i because a lex. smaller label for v existed in Q or `v was replaced
in Q by a lex. smaller label for v (Line 7 of propagate) that was not (pos -)dominated by
any permanent label at v. Note that multiple such updates to v’s heap label could have
happened until `′v is extracted and made permanent. The kth iteration proceeds with a
call to nextCandidateLabel, where at least one permanent label per predecessor node of
v is considered. Since the current iteration is the first time that nextCandidateLabel is
called for v since lu’s insertion, lastProcessedLabel(u, v) points at a label in Lk

u that is not
after lu. We want to prove an upper bound on the number of times that `v is considered,
so we assume w.l.o.g. that `u is considered during the current search for v’s new label
in Q, i.e., lastProcessedLabel(u, v) advances at least until `u’s position in Lk

u. Hence,
`u is extended along the arc (u, v), generating `v as a candidate to enter Q in iteration k.
According to Line 8 in nextCandidateLabel, lastProcessedLabel(u, v) is increased if there
is a label in Lk

v that (pos-)dominates `v. If this happens, later searches for a new tentative
label for v no longer consider `u as a possible predecessor label and hence, ignore `v. In
case Lk

v �D `v, lastProcessedLabel(u, v) will not be altered and the next search for a
new tentative label for v will consider `v again. Since such searches only happen when
a label for v is made permanent, `v will be considered at most |Lv| times during calls to
nextCandidateLabel.

The following theorem proves the correctness of the MD-FPTAS for the static case. Its
proof is similar to the one given in [3]. Recall that efficient paths can have at most n− 1
arcs since the arc cost functions are positive.

Algorithms 2021, 14, 43 13 of 22

Theorem 1. Consider a node v ∈ V and an efficient (s, v)-path p∗ = (a1, . . . , ak). Then, the
MD-FPTAS finds an (s, v)-path p̃ s.t.

c(p̃) ≤ rkc(p∗).

Proof. We prove the statement by induction over k, the number of arcs of p∗. W.l.o.g. we
assume that no parallel arcs exist in G. In the base case, we consider an efficient single-arc
path p∗ = ((s, v)). In the first iteration of Algorithm 1, the label `∗ corresponding to p∗ will
be added to Q during propagate. Consider the first iteration in which a label ` for node v is
extracted from Q. If ` = `∗, we are done since `∗ itself is made permanent. In case ` 6= `∗,
Lemma 2 implies that `∗ will be made permanent later or be discarded. If it is discarded,
Algorithms 4 and 5 guarantee the existence of a permanent label ˜̀ ∈ Lv corresponding to
an (s, v)-path p̃ such that

c1(p̃) ≤ c1(p∗) (6a)

and
pos(p̃) ≤ pos(p∗). (6b)

For j ∈ {2, . . . , d}, we can derive logr(cj(p̃))− 1 ≤ logr(cj(p∗)) from (6b) and this in
turn can be restated as cj(p̃) ≤ rcj(p∗), which, coupled with (6a), proves the statement. In
the induction hypothesis, we assume that

c(p̃) ≤ rk−1c(p∗), (7)

holds for any k ∈ {2, . . . n− 1} and efficient paths p∗ with k− 1 arcs.
Induction Step: Let p∗ be an efficient (s, v)-path with k arcs and let (u, v) be its last arc.

Due to subpath efficiency, the (s, u)-subpath p∗u of p∗ is efficient. In addition, the induction
hypothesis guarantees the existence of a path p̃u with corresponding permanent label ˜̀u
such that (7) holds for p̃u and p∗u. When ˜̀u is extracted and made permanent, the label
˜̀ := (v, c ˜̀u

+ c(u,v), ˜̀u) is analyzed in propagate. For the (s, v)-path p̃ corresponding to ˜̀,
we have

c(p̃) = c(p̃u) + c(u,v)

Equation(7)
≤ rk−1c(p∗u) + c(u,v) ≤ rk−1c(p∗). (8)

From the proof of the base case and from Lemma 2, we know that ˜̀ is going to either
be made permanent in a later iteration or be discarded. In case ˜̀ is made permanent,
we have c(p̃) ≤ rk−1c(p∗) ≤ rkc(p∗) and we are done. If ˜̀ is discarded, there exists a
permanent label ` ∈ Lv corresponding to an (s, v)-path p such that c1(p) ≤ c1(p̃) and
pos(p) ≤ pos(p̃). The latter inequality implies cj(p) ≤ rcj(p̃) for j ∈ {2, . . . , d} and, for
j = 1, c1(p) ≤ rc1(p̃) is trivially given. Combining this with Euqation (8), we get

1
r

c(p) ≤ c(p̃) ≤ rk−1c(p∗)⇐⇒ c(p) ≤ rkc(p∗),

which finishes the proof.

4.1. FPTAS for Dyn-MOSP Problems

From now on we restrict the set F of arc cost functions in Dyn-MOSP instances
to contain only continuous, piecewise linear FIFO functions. In this case, the proof of
Theorem 1 works if the intercepts of the affine functions describing the pieces of the arc
cost functions are non-negative. Note that in the proof of Theorem 1 we needed the arc
cost vectors only in Equation (8).

Using the notation for dynamic cost, what needs to hold is

c(p̃) = c(p̃u) + c(u,v)(p̃u)
!
≤ rk−1c(p∗u) + rk−1c(u,v)(p∗u) = rk−1c(p∗). (9)

Algorithms 2021, 14, 43 14 of 22

To prove the following Lemma, we consider a function f ∈ F with k ∈ N breakpoints
and describe the affine functions that build the pieces of f by aff i(x) := aix + bi, i ∈
{1, . . . , k− 1}.

Lemma 3. Let f ∈ F be a piecewise affine function with k ∈ N breakpoints and α ∈ R>1 a
constant. Then, for points x, y ∈ R≥0 with x ≤ αy there holds x + f (x) ≤ α(y + f (y)) if the
intercepts bi of the affine functions building f are non-negative for all i ∈ {1, . . . , k− 1}.

Proof. We consider three different cases to prove the statement.
Case 1: f (x) ≤ f (y). Since α > 1, we have f (x) ≤ α f (y). Together with x ≤ αy this

proves the statement.
Case 2: x < y and f (x) ≥ f (y). In this case, the FIFO property and α > 1 can be used

to get:
x + f (x) ≤ y + f (y) ≤ αy + α f (y).

Case 3: y < x and f (x) > f (y). Let aff i be the affine function with aff i(y) = f (y) and
aff j the one with aff j(x) = f (x). There holds i ≤ j and we define aff l , l ∈ {i, . . . , j}, to be
the affine function corresponding to the steepest piece of f between y and x, i.e., the one
with the biggest al . This choice implies f (x) ≤ aff l(x) and aff l(y) ≤ f (y). Additionally, as
for any affine function with positive intercept we have aff l(αy) ≤ α(aly + bl) = α aff l(y).
All in all, we can conclude

f (x) ≤ aff l(x) ≤ aff l(αy) ≤ α aff l(y) ≤ α f (y).

Together with x ≤ αy this proves the statement.

Now we set c(u,v),j = f , cj(p̃) = x, cj(p∗) = y, and rk−1 = α to get that Equation (9)
holds under the given assumptions. This enables us to formulate our main Theorem:

Theorem 2 (FPTAS for Dyn-MOSP problems). Let I be a Dyn-MOSP instance with continuous
piecewise linear and positive arc cost functions that fulfill the FIFO property. Additionally, for
any arc a ∈ A let the functions ca,j, j ∈ {2, . . . , d} have only non-negative intercepts. Then, the
MD-FPTAS computes a (1+ ε)-cover of the minimum complete set of efficient paths for I computed
by the MD-A.

Proof. The proof is analogous to that of Theorem 1 using Equation (9) instead of Equation (8)
in the induction step.

4.2. Complexity of the MD-FPTAS

In this section, we set C := maxj∈{2,...,d} Cj. Then, each tensor Tv can store at most
T := (

⌊ n
ε log(nC)

⌋
)d−1 paths and when analyzing the MD-FPTAS in terms of Nmax and

N as in Section 3, we get

Nmax =
(⌊n

ε
log(nC)

⌋)d−1
and N ≤ n

(⌊n
ε

log(nC)
⌋)d−1

.

Recall that the lists Lv contain permanent labels that are sorted in lexicographically
increasing order. In the biobjective case this implies that they will be sorted increasingly
according to the first cost component and simultaneously, decreasingly w.r.t. their pos
value (Note that for d = 2, pos(·) maps toR≥0 so it is well defined to talk about a label’s pos
value). There are two reasons for this. On one hand we have the monotonicity of the log
function and on the other hand, the already discussed fact that for d = 2 efficient labels that
are sorted lexicographically have an increasing second cost component. Hence, as in the
exact case, the complexity C of the pos -dominance checks (Algorithms 4 and 5) is constant
in the biobjective case and linear (O(T)) for d ≥ 3. Table 2 shows the time complexity of
the different FPTAS for the MOSP problem that we are discussing in this paper.

Algorithms 2021, 14, 43 15 of 22

Table 2. Complexities of the different state of the art FPTAS for MOSP problems. Recall that

C := maxj∈{2,...,d}
cmax

j

cmin
j

, and T denotes the size of the tensors Tv, i.e., the max. number of paths to be

stored at each node.

TZ [2] Martins-FPTAS [3] MD-FPTAS MD-FPTAS_Tv
(Section 4.2.1)

d = 2 O
(

n2m
ε log (nC)

)
O
(
n3T 2) O((n log n + m)T) O((n log n + m)T)

d ≥ 3 O(nmT) O
(
n3T 2) O((n log n + mT)T) O((n log n + m)T)

4.2.1. Storing Tensors Explicitly

While the complexity of the MD-FPTAS is lower than that of the Martins-FPTAS, the
FPTAS presented in [2] (TZ-FPTAS) is yet to be undercut. This algorithm works similar
to the well known Bellman Ford algorithm for the One-to-All Shortest Path Problem and
stores the tensor Tv for every node v ∈ V. In iteration i ∈ {1, . . . , n− 1}, the algorithm
computes (s, v)-paths with at most i edges and does no proper dominance check. Instead,
for a newly found path p, the entry pos (p) in Tv is checked: if it is empty, p is added; if
a path already exists, only the one with the lowest costs in the exact dimension (in [2]
it is the dth one) is kept. Since the dominance checks are costly, storing the tensors Tv
and checking only the current position yields a great advantage when it comes to the
algorithmic complexity.

We can adapt the MD-FPTAS such that at every node a tensor Tv is stored. The entries
of Tv are 0 or 1 depending on whether a path with the corresponding pos value has already
been stored in Lv. Let `v be a tentative label for a node v computed in Line 6 of nextCan-
didateLabel or in Line 2 of propagate. Instead of calling the function BLACK_BOX_DOM, we
check if Tv[pos (`v)] == 0. In case the tensor entry is indeed set to 0, we add `v to Lv and
set Tv[pos (`v)] = 1. If the tensor entry is set to 1, we neglect `v since there is a lex. smaller
label in Lv with the same pos than `v, hence pos -dominating `v.

The suggested adaption increases the space complexity of the MD-FPTAS. Moreover,
in general, it will compute more labels than before since checking dominance using �pos is
more restrictive than checking pos -equality. However, as in the TZ-FPTAS, the construction
of the tensors Tv still guarantees that the number of paths and iterations stays polynomially
bounded. As a consequence, the running time of this variant of the MD-FPTAS for d ≥ 3
objectives becomes

O((nlogn + m)T).

As shown in Table 2, this is the best known running time bound for an FPTAS for
MOSP problems.

5. Computational Results

In this section we provide evince the computational efficiency of the MD-FPTAS in
comparison to Martins-FPTAS as presented in [3]; the latter turned out to be faster than
the TZ-FPTAS of [2]. Martins-FPTAS is based on the classical label setting algorithm for
the MOSP problem by Martins [15]. The data structures are similar to those of the MD-
FPTAS. Instead of having at most one label per node in the priority queue, it stores all
tentative labels therein until they are extracted or deleted because a label entering the
queue dominates them. This iteration through the queue to possibly delete labels is more
costly than the searches for a node’s next candidate label performed in the MD-FPTAS.
Table 2 shows the complexity of Martins-FPTAS.

5.1. Test Instances

We perform experiments considering 2 and 3 objective functions. In the biobjective
static case we use the same instances that were used in [3]. The first group of such instances
consists of graphs that contain only efficient paths. These graphs were first described in [1]
and are suitable to check the impact of the used approximation techniques (see Figure 4).

Algorithms 2021, 14, 43 16 of 22

v1 v2 v3 vn−2 vn−1 vn0|1 0|0 0|2bn−2
2

c 0|0

1|0 2b
n−2
2

c|0

. . .
Figure 4. General EXP instance. Every path is efficient.

We call these instances EXP; the corresponding graphs have 3 to 51 nodes. The second
group of instances, denoted by GRID, are 33 undirected grid graphs of varying size. All
instances within GRID have a number of nodes that varies between 1202 and 40,002 and a
number of arcs that varies between 4720 and 159,600. The search starts at an artificial node
connected to all nodes in the first column of the grid. The costs on the arcs are generated
randomly between 0 and 10. The third group of instances are 15 so called NetMaker graphs.
They have 3000 nodes and between 30,000 and 80,000 arcs. The source node is always the
node with id 0. Both the GRID and NET instances were first used in [25].

In the 3-dimensional case, we consider a subset of the instances used in [17]. The first
set of instances are again NetMaker graphs with an extra cost component. These NET3D

instances have 5000 to 15,000 nodes and 40,045 to 344,189 arcs. In total, we consider 35 such
graphs. Again, the source node is always the one with id 0. We also consider grids with 3
objectives. The undirected 100× 100 grid graph remains unchanged among all instances;
we consider 10 different 3-dimensional arc cost functions. These instances are the only
ones for which we consider a One-to-One scenario. Trying to solve the One-to-All MOSP
problem on these grids was not possible without violating the time limit. Hence, we added
the pruning techniques for One-to-One MOSP instances described in [17] to Algorithm 1.
It is easy to see that they are compatible with the approximation techniques used in this
paper. In total, the GRID− 3D instance set contains 300 One-to-One MOSP instances with
varying L1 norm between the source and the target node.

The last test instance is a Dyn-MOSP instance motivated by the Horizontal Flight
Planning Problem (HFPP) introduced in [26,27]. The directed graph in this instance has
410, 387 nodes and 878, 902 arcs and is called an airway network. The arcs are the direct
connections between pre-defined coordinates (the graph’s nodes) along which commercial
aircraft are allowed to fly (on www.skyvector.com Sky-Vector an airway network can be
displayed). We define two cost functions on each arc. The first one encodes the duration of
the traversal of an arc depending on the time point at which the tail of the arc is reached.
The duration is influenced by weather conditions and we evaluate the weather information
we have every 3h to get 10 data points per arc. The second function models the aircraft is
fuel consumption along an arc depending on the aircraft is weight at the arc’s tail node.
In our model we get 171 initial weights per arc and the corresponding consumption for
each weight. The difference between two consecutive weights is 500 kg. In both functions,
datapoints are interpolated linearly, hence obtaining two continuous piecewise linear
functions. The single pieces of the duration function can have positive or negative slopes
depending on the wind but the FIFO property still holds as shown in [26]. The consumption
function yields an always positive slope since clearly, a higher initial weight will cause
a higher consumption. It is therefore also FIFO and, more importantly, the intercepts of
its affine pieces are positive, hence fulfilling the requirements from Lemma 3. In total, we
have randomly chosen 380 airports as the initial nodes s and compute the (pos)-efficient
paths to all nodes reachable with the full tank of a long-haul aircraft.

5.2. Results

The experiments were ran on a machine with an Intel Xeon CPU E5-2670 v2 @ 2.50 GHz
processor. It has two CPUs per node and 10 cores per CPU. The available RAM was 128 GB.
All algorithms were implemented in C and compiled with the version 7.5 of the GCC
compiler with compiler optimization level set at 03. For the priority queues, we used our
own implementation of a binary heap. The only difference between the heaps used for the
implementations of Martins’s algorithm and those used in the implementations of the MD
algorithms is that in the former we took extra care of guaranteeing fast access to a node’s

www.skyvector.com

Algorithms 2021, 14, 43 17 of 22

heap labels. This is needed because every time a label for a node v is added to Q, labels for
v in Q that are dominated by the new one have to be removed. All lists of permanent labels
are modelled as arrays, allowing all algorithms to share the code used for the dominance
checks. We set a time limit of 5400 s for all algorithms. Whenever we report averages, we
consider instances that were solved by all algorithms involved in the comparison. The min
and max values consider only the results obtained by single algorithms.

5.2.1. Static Biobjective Results

Table 3 summarizes the results of the biobjective MOSP instances. On average, the
BDA is 3450 times faster than Martins’s algorithm in the EXP instance set. The average
number of permanent labels on these instances is 338, 611 and the maximum is 1, 572, 862.
We computed (1+ ε)-covers for the EXP instances with different values for ε and the average
speedup decreases steadily as ε grows: ×30 for ε = 0.05, ×2.4 for ε = 0.5, and ×1, 84 for
ε = 1. This is because 1.10%, 0.17%, and 0.11% of the labels from the exact solution sets are
computed for the mentioned ε values.

Table 3. Results from one to all runs of biobjective Martins-FPTAS and MD-FPTAS.

Martins BDA

N Exact t[s] FPTAS t[s] Exact t[s] FPTAS t[s]

ε = 0.05 0.5 1 0.05 0.5 1

EXP
avg 338,611 524.5146 0.3062 0.0077 0.0046 0.1545 0.0109 0.0032 0.0025
min 4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
max 1,572,862 4213.4131 8.1309 0.1652 0.0658 36.6369 0.0811 0.0229 0.0176

GRID
avg 872,717 0.9005 1.0308 1.0323 1.0030 0.6181 0.9846 0.9891 0.9534
min 8189 0.0009 0.0024 0.0011 0.0038 0.0015 0.0013 0.0038 0.0034
max 5,381,078 6.8469 7.7819 7.8717 7.8638 4.2258 6.8425 6.8795 6.7666

NET
avg 597,998 2.3356 2.7183 2.7106 2.6828 0.7214 1.3948 1.3723 1.3597
min 185,894 0.3399 0.4359 0.4480 0.4217 0.1407 0.3527 0.3260 0.3395
max 1,260,412 5.6329 6.6300 6.6990 6.6252 1.7005 3.8076 3.7614 3.7924

Figure 5 gives a visual impression of the running times: on the left hand side we
compare the BDA with the FPTAS-BDA and notice how the solution time of the exact
algorithm grows exponentially with the number of computed paths. The FPTAS is not
faster than the exact algorithms when the number of labels is similar, but on the bigger EXP
graphs it saves a lot of labels. On the right hand side we compare the Martins-FPTAS and
the BDA-FPTAS. We can see that the running time growth of the BDA is much slower.

101 102 103 104 105 106 107 108

0

5

10

15

20

25

30

35

tim
e

[s
]

EXP | 2D | BD | Exact vs FPTAS

0 20,000 40,000 60,000 80,000 100,000 120,000

0

1

2

3

4

5

6

7

8

tim
e

[s
]

EXP | 2D | MARTINS/BD | FPTAS vs FPTAS

Figure 5. BDA exact (green), BD-FPTAS (yellow) and Martins-FPTAS (blue) on exponential instances. ε = 0.05.

Algorithms 2021, 14, 43 18 of 22

The biobjective GRID and NET instances unveil the major drawback of the used ap-
proximation techniques: on graphs with a realistic/practical amount of nodes, the value

of r = (1 + ε)
1

n−1 is very close to 1 and the pos values of any two different paths are
almost always distinct. Hence, the exact algorithms are faster than the FPTAS since the
computation time of pos is non negligible in practice and no labels are saved. In [3] the
authors overcome this problem by choosing huge values for ε. Then, they compute an a
posteriori approximation that always turns out to be much better than ε but there is no
guarantee for it. Instead, we focus on values for ε that are consistent with the assumption
ε ≤ 1 that we made in Section 4. The consequence is indeed that the average FPTAS
speedup for ε = 0.05 on GRID is ×1.66 and on NET instances it is ×3.23, i.e., in both cases a
slowdown. On both instance sets the FPTAS solutions contained almost all exact solutions
and even increasing ε up to 1 did not have a noteworthy impact. All algorithms were able
to solve all instances in these two sets within the time limit. Figure 6 compares both FPTAS
and consolidate the impression gained from the EXP instances: the running time advantage
of the MD-FPTAS gets bigger as the number of efficient paths grows.

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

0

1

2

3

4

5

6

7

8

tim
e

[s
]

GRID | 2D | Martins/BD | FPTAS vs FPTAS

200,000 400,000 600,000 800,000 1,000,000 1,200,000

1

2

3

4

5

6

tim
e

[s
]

NET | 2D | Martins/BD | FPTAS vs FPTAS

Figure 6. BD-FPTAS (yellow) and Martins-FPTAS (blue) on grid instances (left) and netmaker instances (right).

5.2.2. Static Three Objective Results

Instances with three objectives are much harder to solve. In Table 4, we summarize
the results obtained from the One-to-One queries ran on GRID3D instances and from the
One-to-All queries ran on NET3D instances. We observe the same behavior as in the 2D
instances: a solid running time advantage for the MD-FPTAS on average (×1.70 on GRID3D

instances and ×1.46 on NET3D instances) for ε = 0.05 but slower running times than in the
exact counterparts. In these experiments all algorithms always computed always the same
amount of labels per instance. Figure 7 shows the comparison of both FPTAS’ running
times depending on the number of computed paths. In both instance sets the Martins-
FPTAS failed to solve bigger instances within the time limit. The overall trend mirrors the
biobjective results as the running time of the MD-FPTAS grows considerably slower than
that of the Martins-FPTAS.

Algorithms 2021, 14, 43 19 of 22

Table 4. Results obtained by 3-dimensional Martins-FPTAS and MD-FPTAS.

Martins MDA

N t(o2o)/
N (o2a)

Exact t[s] FPTAS t[s] Exact t[s] FPTAS t[s]

ε = 0.05 1 0.05 1

GRID 3D
One-to-One

avg 8307 647.5844 772.9468 757.3884 439.4622 452.7110 452.4130
min 4 0.0255 0.0200 0.0255 0.0251 0.0232 0.0261
max 30,041 4258.0670 5027.8374 5015.9595 3338.0901 3375.1526 3408.5612

NET 3D
One-to-All

avg 13,308,684 1136.8950 1271.7758 1227.7586 823.6826 872.3511 844.0173
min 1,170,703 8.8158 43.9947 10.3916 4.0682 18.8914 5.5458
max 38,647,047 4288.9419 4626.8179 4636.0591 4394.0124 4486.7231 4468.3011

0 5,000 10,000 15,000 20,000 25,000 30,000
t

0

1000

2000

3000

4000

5000

tim
e

[s
]

NET | 3D | Martins/MD | FPTAS vs FPTAS

107 2×107 3×107 4×107

0

1000

2000

3000

4000

tim
e

[s
]

NET | 3D | Martins/MD | FPTAS vs FPTAS

Figure 7. MD-FPTAS (yellow) and Martins-FPTAS (blue) on grid instances (left) and netmaker instances (right).

5.2.3. Our Implementation of Martins’s Algorithm

Note that our implementation of Martins’s (exact) Algorithm and of the Martins-
FPTAS is competitive compared to other relevant publications. For example, our biobjective
implementation is up to×105 faster than the one used in [3] when solving EXP instances. We
believe that the reason is that-as already mentioned-we are using a constant time dominance
check in the biobjective case. However, an in depth comparison of the performance of
both implementations is not possible: we restricted ourselves to instances that use an
approximation factor ε ≤ 1. This matches the assumption that we made in Section 4 to
ensure that (1 + ε) = Θ(ε).

The direct comparison of our implementation of Martins’s algorithm with the one
used in [4] is even harder because the used instances do not coincide. However, the authors
try to use C++ vectors whenever possible and use a lexicographically sorted binary heap
to store the tentative labels. These choices are similar to ours (we use C arrays) and the
reported running times on instances with three cost components are comparable to ours.

5.2.4. Results on Dyn-MOSP Instances

Figure 8 contains histograms showing how the labels (left) and running time (right)
savings of the MD-FPTAS are distributed among the 380 considered Dyn-MOSP instances.
On average, 21% of the time and 35% of the exact labels can be saved already for ε = 0.5.

Algorithms 2021, 14, 43 20 of 22

0.2 0.3 0.4 0.5 0.6 0.7
1

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es

Labels Saved by Dyn-FPTAS on FPP instances

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1 tFPTAS/tex

0

10

20

30

40

Nu
m

be
r o

f i
ns

ta
nc

es

Time saved by MD-FPTAS on FPP instances

Figure 8. Distribution of percentage of labels saved by the MD-FPTAS in comparison to the exact MD-A on FPP instances.

In Table 5, we depicted some geographically distant departure airports and show
the impact of the FPTAS when computing routes to all reachable nodes. We finish our
computational experiments showing the least consumption and fastest routes from Berlin
to Yekaterinburg in Figure 9. Even though consumption and time are correlated objectives,
this example shows that both have to be considered since the routes vary considerably.

Table 5. Running times and computed permanent labels on FPP instances.

Out-Airport Exact ε = 0.5 ε = 1

t[s] N t[s] N t[s] N
Cape Town 1.3288 1,537,645 1.0757 917,327 1.0246 817,945

Los Angeles 11.1541 12,854,272 8.5292 8,260,426 8.4359 7,961,418
Moscow 15.8314 19,385,407 11.4957 11,458,971 11.2693 10,819,170

Berlin-Tegel 14.6621 16,815,977 12.8159 12,724,498 12.6338 12,126,247
Tenerife 6.4615 9,182,417 5.4099 6,247,958 5.2085 5,739,303

Figure 9. Least consumption (left) and fastest (right) routes from Berlin to Yekaterinburg. Source: www.skyvector.com.

6. Conclusions

We have proven that Dynamic Multiobjective Shortest Path (Dyn-MOSP) problems
can be solved by a generalization of the static Multiobjective Dijkstra Algorithm (MD-A)
if the arc cost functions are FIFO and have independent dynamics (e.g., weight and time;
time and state of charge). Our main contribution was to adapt the techniques used in the
seminal work by Tsaggouris and Zaroliagis [2] to derive a new FPTAS for MOSP problems
that is based on the label setting MD-A. The running time of the resulting MD-FPTAS is
the number of computed paths multiplied by the running time of the classical Dijkstra
algorithm and is thus—to the best of our knowledge—the most efficient FPTAS for MOSP
problems in the literature. Even better, it also works for Dyn-MOSP instances if the arc

www.skyvector.com

Algorithms 2021, 14, 43 21 of 22

cost functions are FIFO, continuous, and piecewise linear, having only positive intercepts.
These requirements are not very restrictive in practice.

We corroborated the theoretical efficiency of our algorithms computationally. On a
test set of standard bidimensional and 3-dimensional instances, our MD-FPTAS was faster
than the Martins-FPTAS introduced by Breugem et al. [3]. In the static case, we faced the
same problem as the authors in [2,3]: the FPTAS does not avoid the computation of paths
unless ε is chosen very large. The reason is that, so far, most instances used in the literature
to test MOSP algorithms have integer costs, causing efficient cost vectors to lie at least
one cost unit apart from each other. In Dyn-MOSP instances the evaluation of continuous,
piecewise linear functions is likely to generate labels with rational cost. This is the case
in the Flight Planning instances that we considered. Furthermore, indeed, using realistic
values for ε, we computed (1 + ε)-covers for these instances and saved 21% in terms of
running time and 35% in terms of labels.

Author Contributions: Conceptualization: P.M.d.l.C., R.B., and A.S.-N.; methodology, P.M.d.l.C.,
R.B., and A.S.-N.; software, P.M.d.l.C. and L.K.; validation, P.M.d.l.C. and L.K.; formal analysis,
P.M.d.l.C., R.B., L.K., and A.S.-N.; investigation, P.M.d.l.C. and L.K.; resources, P.M.d.l.C., R.B., L.K.,
and A.S.-N.; data curation, P.M.d.l.C. and L.K.; writing–original draft preparation, P.M.d.l.C.; writing–
review and editing, P.M.d.l.C., R.B., L.K., and A.S.-N.; visualization, L.K.; supervision, P.M.d.l.C.,
R.B., and A.S.-N.; project administration, P.M.d.l.C., R.B., and A.S.-N.; funding acquisition, R.B. and
A.S.-N. All authors have read and agreed to the published version of the manuscript.

Funding: The researches affiliated to the Zuse Institute Berlin conducted this work within the
Research Campus MODAL-Mathematical Optimization and Data Analysis Laboratories-, funded
by the German Federal Ministry of Education and Research (BMBF) (fund number 05M20ZBM).
Antonio Sedeño-Noda was partially supported by the grant MTM2016-74877-P from the Ministerio
de Economía y Competitividad.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We thank Lufthansa Systems GmbH & Co. KG for providing us with the data
used to build our Dyn-MOSP test instances. We also thank Arno Kühner for the helpful and fruitful
discussions related proofs and the implementations concerning Dyn-MOSP problems. The authors
from [3] provided us with the biobjective Grid and Netmaker instances used in their paper, so we
could compare our results with existing data. They got their instances from Andrea Raith, who we
also want to thank for providing us with the 3-dimensional instances we used for our computations.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hansen, P. Bicriterion Path Problems. In Multiple Criteria Decision Making Theory and Application; Fandel, G., Gal, T., Eds.; Springer:

Berlin/Heidelberg, Germany, 1980; pp. 109–127.
2. Tsaggouris, G.; Zaroliagis, C. Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with

Applications. In Algorithms and Computation; Asano, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 389–398.
3. Breugem, T.; Dollevoet, T.; van den Heuvel, W. Analysis of FPTASes for the multi-objective shortest path problem. Comput. Oper.

Res. 2017, 78, 44–58. [CrossRef]
4. Bökler, F.; Chimani, M. Approximating Multiobjective Shortest Path in Practice. In 2020 Proceedings of the Symposium on Algorithm

Engineering and Experiments (ALENEX); Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2020; pp. 120–133.
[CrossRef]

5. Emmerich, M.; Deutz, A. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput.
2018, 17, 585–609,

6. Ehrgott, M.; Gandibleux, X. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys; International Series in
Operations Research & Management Science; Springer: New York, NY, USA, 2006.

7. Ehrgott, M.; Gandibleux, X. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum
2000, 22, 425–460. [CrossRef]

8. Ulungu, E.; Teghem, J. Multi-objective shortest path problem: A survey. In Proceedings of the International Workshop on Multicriteria
Decision Making: Methods-Algorithms-Applications at Liblice, Czechoslovakia; Glückaufova, D., Loula, D., Cerny, M., Eds.; Institute of
Economics, Czechoslovak Academy of Sciences: Prague, Czech Republic, 1991; pp. 176–188.

9. Current, J.; Marsh, M. Multiobjective transportation network design and routing problems: Taxonomy and annotation. Eur. J.
Oper. Res. 1993, 65, 4–19. [CrossRef]

http://doi.org/10.1016/j.cor.2016.06.022
http://dx.doi.org/10.1137/1.9781611976007.10
http://dx.doi.org/10.1007/s002910000046
http://dx.doi.org/10.1016/0377-2217(93)90140-I

Algorithms 2021, 14, 43 22 of 22

10. Skriver, A. A classification of Bicriterion Shortest Path (BSP) algorithms. Asia Pac. J. Oper. Res. 2000, 17, 199–212.
11. Tarapata, Z. Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard

algorithms. Int. J. Appl. Math. Comput. Sci. 2007, 17, 269–287. [CrossRef]
12. Clímaco, J.; Pascoal, M. Multicriteria path and tree problems: Discussion on exact algorithms and applications. Int. Trans.

Oper. Res. 2012, 19, 63–98. [CrossRef]
13. Vincke, P. Problemes multicriteres. Cah. Centre d’ Etudes de Rech. Oper. 1974, 16, 425–439.
14. Serafini, P. Some considerations about computational complexity for multiobjective combinatorial problems. Recent Adv. Hist.

Dev. Vector Optim. 1986, 294, 222–232.
15. Martins, E.Q.V. On a multicriteria shortest path problem. Eur. J. Oper. Res. 1984, 16, 236–245. [CrossRef]
16. Sedeño-noda, A.; Colebrook, M. A biobjective Dijkstra algorithm. Eur. J. Oper. Res. 2019, 276, 106–118. [CrossRef]
17. de las Casas, P.M.; Sedeno-Noda, A.; Borndörfer, R. An Asymptotically and Computationally Improved Multiobjective Shortest Path

Algorithm; Technical Report 20–26. ZIB; Takustr: Berlin, Germany, 2020.
18. Papadimitriou, C.; Yannakakis, M. On the approximability of trade-offs and optimal access of Web sources. In Proceedings of the

41st Annual Symposium on Foundations of Computer Science, Washington, DC, USA, 12–14 November 2000. [CrossRef]
19. Kostreva, M.M.; Lancaster, L. Multiple Objective Path Optimization for Time Dependent Objective Functions. In Multiple

Objective and Goal Programming; Trzaskalik, T., Michnik, J., Eds.; Physica-Verlag HD: Heidelberg, Germany, 2002; pp. 127–142.
20. Disser, Y.; Müller-Hannemann, M.; Schnee, M. Multi-criteria Shortest Paths in Time-Dependent Train Networks. Exp. Algorithms

Lect. Notes Comput. Sci. 2008, 5038, 347–361. [CrossRef]
21. Foschini, L.; Hershberger, J.; Suri, S. On the Complexity of Time-Dependent Shortest Paths. In Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA,
2011; SODA’ 11, pp. 327–341.

22. Bellman, R. The theory of dynamic programming. Bull. Am. Math. Soc. 1954, 60, 503–515. [CrossRef]
23. Captivo, M.; Clímaco, J.; Figueira, J.; Martins, E.; Santos, J. Solving bicriteria 0-1 knapsack problems using a labeling algorithm.

Comput. Oper. Res. 2003, 30, 1865–1886. [CrossRef]
24. Fredman, M.L.; Tarjan, R.E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 1987,

34, 596–615. [CrossRef]
25. Raith, A.; Ehrgott, M. A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 2009,

36, 1299–1331. [CrossRef]
26. Blanco, M.; Borndörfer, R.; Hoang, N.D.; Kaier, A.; Schienle, A.; Schlechte, T.; Schlobach, S. Solving Time Dependent Shortest

Path Problems on Airway Networks Using Super-Optimal Wind. In 16th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2016); Goerigk, M., Werneck, R., Eds.; OpenAccess Series in Informatics (OASIcs);
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2016; Volume 54, pp. 12:1–12:15. [CrossRef]

27. Blanco, M.; Borndörfer, R.; Hoàng, N.D.; Kaier, A.; Casas, P.M.; Schlechte, T.; Schlobach, S. Cost Projection Methods for the
Shortest Path Problem with Crossing Costs. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2017); D’Angelo, G., Dollevoet, T., Eds.; OpenAccess Series in Informatics (OASIcs); Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2017; Volume 59, pp. 15:1–15:14. [CrossRef]

http://dx.doi.org/10.2478/v10006-007-0023-2
http://dx.doi.org/10.1111/j.1475-3995.2011.00815.x
http://dx.doi.org/10.1016/0377-2217(84)90077-8
http://dx.doi.org/10.1016/j.ejor.2019.01.007
http://dx.doi.org/10.1109/sfcs.2000.892068
http://dx.doi.org/10.1007/978-3-540-68552-4_26
http://dx.doi.org/10.1090/S0002-9904-1954-09848-8
http://dx.doi.org/10.1016/S0305-0548(02)00112-0
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.15

	Introduction
	Literature Review
	Outline

	Multiobjective Shortest Path Problems
	The Multiobjective Dijkstra Algorithm for Dynamic MOSP Problems
	Description of the Algorithm
	Correctness
	Complexity

	A New FPTAS for the Multiobjective Shortest Path Problem
	FPTAS for Dyn-MOSP Problems
	Complexity of the MD-FPTAS
	Storing Tensors Explicitly

	Computational Results
	Test Instances
	Results
	Static Biobjective Results
	Static Three Objective Results
	Our Implementation of Martins's Algorithm
	Results on Dyn-MOSP Instances

	Conclusions
	References

