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Abstract: Network creation games have been extensively used as mathematical models to capture the
key aspects of the decentralized process that leads to the formation of interconnected communication
networks by selfish agents. In these games, each user of the network is identified by a node and
selects which link to activate by strategically balancing his/her building cost with his/her usage cost
(which is a function of the distances towards the other player in the network to be built). In these
games, a widespread assumption is that players have a common and complete information about the
evolving network topology. This is only realistic for small-scale networks as, when the network size
grows, it quickly becomes impractical for the single users to gather such a global and fine-grained
knowledge of the network in which they are embedded. In this work, we weaken this assumption,
by only allowing players to have a partial view of the network. To this aim, we borrow three popular
traceroute-based knowledge models used in network discovery: (i) distance vector, (ii) shortest-path tree
view, and (iii) layered view. We settle many of the classical game theoretic questions in all of the
above models. More precisely, we introduce a suitable (and unifying) equilibrium concept which
we then use to study the convergence of improving and best response dynamics, the computational
complexity of computing a best response, and to provide matching upper and lower bounds to the
price of anarchy.

Keywords: network creation games; local-knowledge equilibrium; convergence dynamics;
price of anarchy

1. Introduction

The construction of large communication networks involves the interaction of many
independent and selfish agents with competing interests and, in such a decentralized
setting, the problem of understanding the formation process of a network arises naturally.
More formally, we model the agents (i.e., players) as a set of n vertices in a graph, each
controlled by a player that wants to connect itself to all of the other participants of the
network. This can happen either directly, by the unilateral and costly activation of a
corresponding logical or physical communication channel (i.e., a link), or indirectly by
routing messages over (a subset of the) existing (bidirectional) links that were activated
by other agents. Quite naturally, players prefer low-latency communication paths over
longer paths and will therefore always route messages along a shortest path. It is then clear
how tension stems from the desire of a player for efficient communication, and his/her
interest in minimizing the number of activated links. The study of such a trade-off between
a player’s building cost (which is proportional to the number of links she decides to activate)
and her usage cost (some function that depends on the distance between the player and
the remaining agents in the resulting network) results in the corresponding study of a
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communication network creation game, also known as network connection game (simply NCG
in the following).

1.1. The Standard Model for NCGs

A first NCG model that received considerable attention in the algorithmic game theory
area is due to Fabrikant et al. [1]. In this model, which we will call SUMNCG in the sequel,
each player u pays α for each link she activates as his/her building cost, and the sum of
all distances from u to all other vertices in the resulting network as her usage cost. More
formally, if V is a set of n agents, the set of the possible strategies of player u ∈ V is 2V\{u}

(Given a set X, 2X denotes the power set of X). Given a strategy σu for each agent u ∈ V, we
will call the vector σ = (σu)u∈V a strategy profile, and we will denote by G(σ) the resulting
network, i.e., a graph containing a vertex for each player in V, and such that its edge set
E(σ) contains an edge (u, v) if and only if u ∈ σv or v ∈ σu. To easy the notation, we will
sometimes use G instead of G(σ) if no ambiguity arises. Moreover, we will say that u ∈ V
owns the edges in {u} × σu (Notice that, according to the above definition, an edge can be
owned by both its endpoints). The goal of each agent u ∈ V is that of minimizing her cost
cost Cu(σ) in the resulting strategy profile σ, which is defined as

Cu(σ) = α · |σu|+ ∑
v∈V

dG(σ)(u, v), (1)

where dG(σ)(u, v) is the distance between player u and player v in G(σ). Quite naturally,
we define the social cost of σ as the sum of the costs Cu(σ) incurred by all players u ∈ V.

Notice that in the above description, we are implicitly assuming that each player u has
a complete knowledge of the current network G(σ). This means that u can evaluate both
his/her current cost Cu(σ), and the cost Cu(σ−u, σ′u) that he/she would incur if he/she
were to change her strategy from σu to σ′u, as he/she is aware that—following her change—
the current network will transit to G(σ−u, σ′u) (The notation (σ−u, σ′u) denotes the vector
obtained from σ by replacing component σu with σ′u). Therefore, a (pure strategy) Nash
Equilibrium (NE) for the game is a strategy profile σ̄ where, for every player u and every
strategy σu, we have that Cu(σ̄) ≤ Cu(σ̄−u, σu). A vast body of literature deals with the
problem of characterizing the space of NE in order to bound the Price of Anarchy (PoA)
as a function of the parameter α. Here, the PoA is defined as the ratio between the social
cost of the worst NE (i.e., any NE σ maximizing its social cost ∑u Cu(σ)), and the social
cost of an optimal strategy profile (i.e., a strategy profile σ∗ minimizing its social cost
∑u Cu(σ∗)) [2–8]. Intuitively, the PoA provides an upper bound on the loss of efficiency
(measured in terms of the social cost) between the stable networks that can be reached as
a result of the uncoordinated selfish behavior of the agents and that of any optimal (but
not necessarily stable) network that minimizes the social cost. Large values of the PoA
show that the distributed network formation process might converge to costly networks
when compared to a “centralized” design. Conversely, small values of the PoA show that
even if the network arises from a combination of selfish strategies, its quality will not be
significantly worse than the best possible design. It follows from the best-known results
that the PoA of SUMNCG is constant whenever α ≥ n1−ε, for any ε ≥ 1/ log n (see in [3,4])
or when α ≤ (1 + ε′)n for any constant ε′ ≥ 0 (see in [6]). For the remaining (small) range

of values of α, the PoA is upper bounded by 2O(
√

log n) [7].
In [7], the authors introduced a variant of SUMNCG named MAXNCG. In MAXNCG,

the usage cost of a player u is his/her eccentricity in the current network G(σ), so that u’s
cost function becomes

Cu(σ) = α · |σu|+ max{dG(σ)(u, v) : v ∈ V}. (2)

MAXNCG was further considered in [3], where it was shown that the PoA of the game is
constant whenever α ≤ 129 or α = O(1/

√
n).
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1.2. Other Models for NCGs

Several variants of these two basic models have been defined, with the goal of better
characterizing specific aspects of the network formation process. These variants range
from limiting the modifications that players are allowed to perform on their current
strategies (see in [9–11]), to budgeting either the number of edges a player can activate
or her eccentricity (see in [12–14]), and finally to considering generalized versions of
the basic models on edge-weighted graphs (see in [15,16]). Generally speaking, all the
aforementioned models exhibit a substantial asymptotic increase in their PoAs compared
to that of corresponding basic models introduced above.

Observe that all these models, except for those given in [10,11], share a severe restric-
tion with the basic model, namely, the NP-hardness for a player to select a best-response
strategy. Besides that, they also all assume that players have a common and complete in-
formation about the ongoing network. While this is feasible for small-size instances of
the game, this becomes unrealistic for large-size networks. This is rather problematic,
given the growing size of the inputs in the practice. Moreover, quite paradoxically, the full-
knowledge assumption is not simplifying at all: it makes it computationally unfeasible for
a player to select a best-response strategy, as said before, or even to check whether she is
actually in a NE! To address these delicate issues, a new model which limits a player’s full
knowledge of the network structure up to a given radius k from herself has been introduced
in [17]. In such a setting, players do not even know the size n of the network (in distributed
computing terminology, the system is uniform). The authors provided a comprehensive
set of upper and lower bounds to the Price of Anarchy (PoA) for the entire range of values
of k, which have been confirmed by a further experimental evaluation in [18]. Critically,
these bounds to the PoA refer to a new suitable equilibrium concept that accounts for the
limited knowledge of the players. More precisely, as a player has a partial (defective) view
of the network, before changing her strategy she has to evaluate whether such a choice is
convenient in every realizable network which is compatible with her current view. Then,
let σu be the strategy played by player u, and define Σ|σu to be the set of strategy profiles
σ = (σ−u, σu) of the players such that the network G(σ) is realizable according to player
u’s view. Let

∆(σu, σ′u) = max
σ∈Σ|σu

{Cu(σ−u, σ′u)− Cu(σ)} (3)

denote the worst possible cost difference u would have in switching from σu to σ′u. This
means that if ∆(σu, σ′u) > 0, then there is some strategy profile σ compatible with u’s
current view for which switching from σ to (σ−u, σ′u) would increase u’s cost. Conversely,
if ∆(σu, σ′u) < 0, player u can safely change her strategy from σu to σ′u as this will decrease
her cost by at least |∆(σu, σ′u)| > 0 in all of the conceivable networks G(σ) that are com-
patible with u’s view. Then, the Local Knowledge Equilibrium (LKE) is defined as a strategy
profile σ̄ such that for every player u and every strategy σu, we have ∆(σ̄u, σu) ≥ 0. Notice
that our equilibrium concept is actually weaker than the classical NE concept as we have
that every NE is also a LKE.

1.3. Our New Local-View Models for NCGs

In this work, we continue the study of NCGs in which players have only a partial
information about the current network. Along this direction, we focus on the most promi-
nent local-knowledge models used in the area of network discovery (see in [19,20]) in which
the structure of a large unknown network need to be fully identified using a small num-
ber of queries on the network’s vertices (where the considered local-knowledge model
determines which information are returned by a query). In details, we study the following
traceroute-based view models, which all find motivations in the practice of probing the
topology of a network by tracing the route of packets (According to the spirit of the game,
we assume that in all the models, the players initially sit on a connected network):
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(M1) Distance vector: in addition to his/her incident edges, each player u knows only
the distances in G(σ) between u and all the agents (this is the minimal knowledge
needed by a player in order to compute her current cost).

(M2) Shortest-Path Tree (SPT) view: each player u knows the edges of some SPT of G(σ)
rooted at u.

(M3) Layered view: each player u knows the set of edges belonging to at least one SPT of
G(σ) rooted at u.

Observe that, in all the above games, each player only has a defective (partial) view
of the current network, and therefore the LKE fits perfectly as solution concept. However,
unlike the models in [18], our players are always able to compute their current cost Cu(σ)
as they are aware of their distances towards all the other vertices in the network (i.e.,
Cu(σ) is constant for all σ ∈ Σ|σu ). For all our models, we study the iterated version of the
game and we analyze whether improving and best-response dynamics always converge
to a LKE. In these dynamics, we will also assume that the players not only myopic but
also oblivious, i.e., they only compute their responses as a function of their current view,
without using any information about their previous views. In addition, we study how the
computational difficulty of computing a best response strategy changes according to the
partial-knowledge model at hand. Finally, we provide matching upper and lower bounds
to the PoA in all of the studied models. See Table 1 for a summary of our results.

Table 1. Summary of our results (and open problems). In the first column, convergence (and
divergence) are reported w.r.t. either improving or best-response dynamics (improving response
dynamics (IRD) and best response dynamics (BRD), resp.). In the second column, we report the time
complexity of selecting a best-response strategy.

Convergence Best-Response
Complexity PoA

M1 SUM: Yes (∀ improving
response dynamics (IRD))
MAX: Yes (∀ IRD)

SUM: Open
MAX: Polynomial

SUM: Θ(min{1 + α, n})
MAX: Θ(n) if α = Ω(1)

Θ(1 + αn) if α = O(1)

M2 SUM: No (∃ best response
dynamics (BRD) cycle)
MAX: No (∃ BRD cycle)

SUM: Polynomial
MAX: Polynomial

SUM: Θ(min{1 + α, n})
MAX: Θ(n) if α = Ω(1)

Θ(1 + αn) if α = O(1)

M3 SUM: No (∃ BRD cycle)
MAX: No (∃ BRD cycle)

SUM: NP-hard
MAX: NP-hard

SUM: Θ(min{1 + α, n})
MAX: Θ(n) if α = Ω(1)

Θ(1 + αn) if
1

n−1 ≤ α = O(1)

The paper is organized as follows. In Section 2, we focus on convergence issues, while
in Section 3 we analyze the computational complexity of finding a best-response. Finally,
in Section 4 we study the PoA. All the sections are structured in subsections, according to
the various view models. A preliminary version of this work appeared in [21].

2. Convergence
2.1. Model M1

We start by observing that inM1 a player u can only infer the existence of the edges
(x, y) for which dG(u, y) = dG(u, x) + 1 and no other vertex x′ 6= x satisfies dG(u, x) =
dG(u, x′) (this captures all the edges incident to u as the special case x = u).

As a consequence, whenever u has at least two neighbors, swapping (i.e., replacing an
owned edge with another one) any of his/her edges will never be an improving response as
(in u’s view) this might cause the resulting network to become disconnected. We summarize
this property in the next Lemma.
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Lemma 1. In both SUMNCG and MAXNCG inM1, any player u that has an improving response
involving edge swaps must have degree 1 (and u must own its sole incident edge).

Theorem 1. In M1, any improving response dynamics for SUMNCG must converge to
an equilibrium.

Proof. Consider any strategy profile in which no edge is owned by both endpoints, which
can be safely assumed as this can only happen in the starting network.

Notice that, in such a configuration, no edge can be removed by any player (as
otherwise the network could become disconnected in the player’s view). As the maximum
number of edges is upper bounded by O(n2), it suffices to show that any dynamics in
which only swap moves are allowed must converge.

Consider a network G and player u that changes her strategy from σu to σ′u (with
|σu| = |σ′u|) in order to improve her (worst-case) cost. As the cost of player u in the resulting
network G′ must be lower than her corresponding cost in G, and since the building cost of
u is unchanged, we know that the usage cost of u decreases when moving from G to G′.

In the rest of the proof we will argue that the function Φ(G) = ∑x∈V ∑v∈V dG(x, v) is
a potential function for this game, i.e., the value of Φ decreases whenever any improving
response is played. The claim will immediately follow by noticing that Φ has a finite
domain. As the degree of u in G is 1, as shown by Lemma 1, we can write

Φ(G)−Φ(G′) = ∑
x∈V

∑
v∈V

dG(x, v)− ∑
x∈V

∑
v∈V

dG′(x, v)

= ∑
x∈V\{u}

∑
v∈V\{u}

dG(x, v) + 2 ∑
v∈V

dG(u, v)− ∑
x∈V\{u}

∑
v∈V\{u}

dG′(x, v)− 2 ∑
v∈V

dG′(u, v)

= 2

(
∑

v∈V
dG(u, v)− ∑

v∈V
dG′(u, v)

)
> 0.

where the fact that u has degree 1 in both G and G′ implies that dG(x, v) = dG′(x, v) for
every x, v ∈ V \ {u}.

A similar result can be shown for MAXNCG in modelM1:

Theorem 2. In M1, any improving response dynamics for MAXNCG must converge to
an equilibrium.

Proof. Similarly to the proof of Theorem 1, it will suffice to prove that every dynamics
involving only swap moves converges to an equilibrium. We will show that this holds
true using similar argument to those in [22]. Consider a graph G corresponding to some
profile of strategies and look at the n-dimensional vector εG in which the i-th entry is the
eccentricity of the i-th vertex of G. Now, consider the sorted version of εG in which entries
appear in non-increasing order. We will assume that comparisons among n-dimensional
vectors be performed in lexicographic order and we will consider the function that maps
each strategy profile the corresponding sorted vector εG. We will prove that the value of
such a function can only decrease following an improving response.

As show in Lemma 1, all players that are able to change their strategy to an improving
response must have degree 1 in the current network G. Consider a player u changing her
strategy to an improving response and let G′ be the resulting network and denote by εH(x)
the eccentricity of vertex x ∈ V(H) in H. As the number edges of edges owned by u cannot
decrease, we must have εG(u) > εG′(u).

We now prove that if the eccentricity a player x 6= u increases between G and G′ (as
a consequence of u’s strategy change), then εG′(x) < εG′(u). Consider a vertex x such
that εG(x) < εG′(x) and notice that, as u has degree 1 in both G and G′, it must hold that
εG′(x) = dG′(x, u) ≤ εG′(u), which concludes the proof.
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2.2. Models M2 andM3

Here, we show that, by contrast to model M1, a best-response dynamics is not
guaranteed to converge in models inM2 andM3, i.e., best responses cycles can arise. Even
thought we are dealing with undirected graphs (i.e., each edge can be traversed in both
directions no matter which of its endpoints is the buyer), we will draw some edges as
arrows directed away from the buyer in order to stress edge ownership. The next vertex
to change her strategy to a best response is shown in dark gray and the set of edges that
belong to her current view are depicted using bold lines/arrows.

We start by consideringM2:

Theorem 3. Best-response cycles are possible in both SUMNCG and MAXNCG inM2.

Proof. As far as MAXNCG is concerned, a best-response cycle for α ≥ 6 is depicted in
Figure 1. The current player in graphs (a) to (d) always replaces his/her current strategy
with an best response decreasing her cost. The graph in Figure 1d is isomorphic to that in
Figure 1a, where the roles of the vertices labeled a and b are swapped. By mirroring the
previous best-responses moves, the configuration in graph (a) will be reached again, thus
completing the cycle for MAXNCG.

Figure 2 shows a best-response cycle for SUMNCG when α ≥ 6, which concludes
the proof.

We also have similar results in modelM3.

Theorem 4. Best-response cycles are possible in both SUMNCG and MAXNCG inM3.

Proof. A best-response cycle for SUMNCG inM3 when α = 15 is shown in Figure 3. Graphs
(a) and (d) are isomorphic and, in particular, the roles of vertices a and c are exchanged.

Figure 4 shows a best-response cycle for MAXNCG when α = 2− ε, for a sufficiently
small value of ε > 0.

a

b c

a

b c

a

b c

a

b c

(a) (b)

(d)(c)

Figure 1. Cycle of best responses for MAXNCG in M2 for α ≥ 6. The cycle is obtained by first
traversing the configurations (a), (b), (c), and (d), in order, and then traversing the configurations
obtained from (b), (c), and (d) by exchanging the roles of vertices a and b.
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(a) (b)

(c) (d)

Figure 2. Cycle of best responses for SUMNCG inM2 for α ≥ 6. The cycle traverses configurations
(a), (b), (c), (d), and (a), in this order.

a c

b

a c

b

a c

b

a c

b

(a) (b)

(c) (d)

Figure 3. Cycle of best responses for SUMNCG inM3 for α = 15. The cycle is obtained by first
traversing the configurations (a), (b), (c), and (d), in order, and then traversing the configurations
obtained from (b), (c), and (d) by exchanging the roles of vertices a and c.

a

b

a

b

a

b

a

b

(a) (b)

(d)(c)

Figure 4. Cycle of best responses for MAXNCG inM3 for α = 2− ε. The cycle traverses configura-
tions (a), (b), (c), (d), and (a), in this order.
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3. Complexity of Computing a Best Response

We now consider the computational complexity of the problem of computing a best
response strategy in our models. ForM1 we will show that it is possible to compute a best
response strategy for MAXNCG in polynomial time. The corresponding problem form
SUMNCG remains open, although we conjecture that a polynomial-time algorithm exists
for this game as well.

ConcerningM2, we prove that a best response strategy can be efficiently computed
for SUMNCG as well as MAXNCG. If we considerM3 instead, then the problem becomes
NP-hard for both games.

3.1. Model M1

In this section, we design a polynomial-time dynamic programming algorithm that
computes a best response of a player for MAXNCG inM1. Fix a strategy profile σ and
a player u, and let ` be the eccentricity of u in G(σ). We will use G to refer to the set of
all graphs that are compatible with u’s view in σ. Furthermore, we will use the set G ′
consisting of all graphs that can be obtained by removing the edges incident to u from
some graph in G. For i = 0, . . . , `, let Li be the set of vertices at distance exactly i from
u in G(σ). Finally, for X, Y ⊆ V and a graph G having V as its vertex set, we define
dG(X, Y) = maxy∈Y minx∈X dG(x, y) and δ(X, Y) = maxG∈G ′ dG(X, Y). With a slight abuse
of notation we will write δ(X, y) in place of δ(X, {y}) whenever y ∈ V.

Our dynamic programming algorithm will exploit the structural properties of best-
response strategies in the worst-case graph that are summarized in the following lemmata.

Lemma 2. Let ∅ ( L′i ( Li and y ∈ Lj, with i, j > 0. If there exists an index 0 < t ≤ min{i, j}
such that |Lt| = 1, then let h be the maximum such index t; otherwise, let h = ⊥. Then,

δ(L′i, y) =

{
j + i− 2h if h 6= ⊥;
+∞ if h = ⊥.

Proof. We start by considering the case h 6= ⊥. Let the sole vertex in Lh be z. It is not
hard to see that δ(L′i, y) ≤ j + i− 2h as any G ∈ G ′ must contain (i) some path of length
i− h from z to each of the vertices in Li, and (ii) a path from z to y having a length of j− h.
Consider now any tree T ∈ G in which the lowest common ancestor between y and each
vertex in L′i is z (notice that it is always possible to find such a tree T). For every x ∈ L′i we
have dT(x, y) = j + i− 2h, implying δ(x, y) ≥ dT(x, y) = i + i− 2h.

We now turn our attention to the case h = ⊥. Pick any graph G ∈ G ′ such that (i) G
is disconnected, (ii) all the vertices in Li belong to the same connected component C of G,
and (iii) y is not among the vertices in C (again, it is always possible to find that such a
graph G). Then, δ(L′i, y) = ∞.

Lemma 3. Let y ∈ Lj, with j > 0. If there exists an index 0 < t ≤ j such that |Lt| = 1, then let h
be the maximum such index; otherwise, let h = ⊥. Then, the following holds ∀i = 1, . . . , `,

δ(Li, y) =


j− i if i ≤ j;
j + i− 2h if h 6= ⊥ and i > j;
+∞ if h = ⊥ and i > j;

Proof. The case h =⊥ and i > j has already been handled in the proof of Lemma 2, we
therefore focus on the two remaining cases.

When i ≤ j, we have that dG(Li, y) = j− i for all graphs G ∈ G, thus δ(Li, y) = j− i.
When i > j and h 6= ⊥, we can consider any tree T ∈ G in which the lowest common
ancestor between x ∈ Li and y is the solve vertex z in Lh. Then we have dT(x, y) = j+ i− 2h
for every x ∈ Li, which implies that δ(x, y) = j + i− 2h.
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Define S = {v ∈ L1 : u ∈ σv} as the set of players v that have bought the edge (v, u)
towards u in the strategy profile σ. We can show the following.

Lemma 4. There exists a best-response strategy σ∗u for u such that, for every i = 2, . . . , `, either
Li ∩ σ∗u = ∅ or Li ⊆ σ∗u . Moreover, at least one of the following two conditions holds: |L1| = 1 or
L1 ⊆ (σ∗u ∪ S).

Proof. We start by noticing that when |L1| ≥ 2 and L1 6⊆ (σ∗u ∪ S) we can find a network
G ∈ G that becomes disconnected when player u changes her strategy from σ to σ∗. This
implies that σ∗u cannot be a best response for u and proves the second part of our claim.

Given a possible strategy σ′u for u, define f (σ′u) = |{i ∈ {2, . . . , `} s.t. σ′u ∩ Li 6=
∅ and Li 6⊆ σ′u}|. In other words, f (σ′u) is the number of levels Li with i ≥ 2 for which u is
buying some but not all edges towards the vertices in Li, according to strategy σ′u.

We prove that if σ′u is a strategy for which f (σ′u) > 0, then there exists another strategy
σ′′u for u such that f (σ′′u ) < f (σ′u) and ∆(σu, σ′u) ≥ ∆(σu, σ′′u ). As f (σ′u) > 0 we are always
able to find an index i for which neither Li ∩ σ′u = ∅ nor Li ⊆ σ′u. Define L′i = Li ∩ σ′u and
let j ∈ {1, 2, . . . , i− 1} be the maximum index for which |Lj| = 1, if any. If such an index
exists, we let σ′′u = (σ′u \ L′i) ∪ Lj; otherwise (if j does not exist), we let σ′′u = σ′u \ L′i. By
our choice of σ′′u , we must have both f (σ′′u ) < f (σ′u) and |σ′′u | ≤ |σ′u|. Moreover, invoking
Lemmas 2 and 3, we obtain δ(Lj, V) ≤ δ(L′i, V). It follows that δ(σ′′u , V) ≤ δ(σ′u, V) and
hence, for every G ∈ G:

Cu((σ−u, σ′′u ), G) = α · |σ′′u |+ δ(σ′′u , V) ≤ α · |σ′u|+ δ(σ′u, V) = Cu((σ−u, σ′u), G),

thus showing that ∆(σu, σ′u) ≥ ∆(σu, σ′′u ).

We can now design a polynomial-time algorithm to compute a best-response inM1:

Theorem 5. InM1 the best response of a player can be computed in polynomial time for MAXNCG.

Proof. We will design a dynamic programming algorithm that computes a best-response
strategy satisfying the conditions of Lemma 4.

For i = 0, . . . , ` and η = 0, . . . , n− 2, we denote by A[i, η] the minimum criminality of
a set of vertices X such that Li ⊆ X and δ

(
X,
⋃

h=1,...,i Lh
)
≤ η − 2. The idea is that A[i, η]

will be (proportional to) the minimum building cost needed to ensure that the distance
between u and all the vertices in

⋃
h=1,...,i Lh will not exceed η + 1 with the restriction that

u can only buy edges towards sets of vertices X for which Li ⊆ X ⊆ ⋃h=1,...,i Lh.
For technical simplicity (and with a small abuse of notation) we will consider L0 to be

the empty set. Moreover, we define g(i, η) as the smallest index for which 0 ≤ g(i, η) ≤ i
and δ(Lg(i,η) ∪ Li,

⋃
h=g(i,η),...,i Lh) ≤ η. According to the above discussion, the cost of a

best-response strategy will be equal to:

1 + min
η=0,...,n−2

{η + α · min
max{1,g(`,η)}≤j≤`

A[j, η]}.

For every η = 0, . . . , n − 1, we have A[0, η] = 0 and A[1, η] = |σu ∩ L1| as each
edge (u, v) between u and v ∈ L1 \ σu is bought by v. Moreover, for i = 1, . . . , ` and
η = 0, . . . , n− 2, we can efficiently compute A[i, η] using the following identity,

A[i, η] = |Li|+ min
g(i,η)≤j<i

A[j, η].

After the cost of a best-response strategy σ∗u for u has been found, one can easily find
the strategy σ∗u itself by retracing the dynamic-programming choices backwards.
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3.2. Model M2

In modelM2, we are able to design polynomial-time algorithms to compute a best-
response strategy for a player for both SUMNCG and MAXNCG, as the following theo-
rem shows.

Theorem 6. InM2, the best response of a player can be computed in polynomial time for both
SUMNCG and MAXNCG.

Proof. Let σ be a strategy profile, where σu denotes the current strategy of some player u,
and let T(u) be the shortest-path tree (rooted in u) corresponding to u’s view of the network
G(σ). We now design a dynamic programming algorithm computing a best response σx

u for
u (in polynomial-time). For SUMNCG and MAXNCG, our algorithm will respectively solve
a variant of the k-median and the k-center problem on trees. The input of the k-median (resp.,
k-center) problem is a graph H, and the goal is that of finding a set S of exactly k vertices in
H in order to minimize the sum of distances (resp. the maximum distances) between each
node in H and the closest node in S (Actually, the k-median problem asks to minimize the
average distance between the vertices of H and the closest vertex in S. However, it is easy
to see that this is equivalent to minimizing the sum of the above distances).

By deleting u from T(u) we are left with a some forest F. Let T1, . . . , Th be the trees in
F and let ri be the root of Ti. Let z = |σu|. We can assume (w.l.o.g.) that the trees Ti with
i ≤ z (for some value of z) are those for which u owns the edge (u, ri) and that all edges
(u, rj) for j > z are owned by rj.

For i ≤ z and 0 ≤ k < n, we let A[i, k] be the cost of an optimal solution the instance
of the k-median (resp. k-center) problem in which H = Ti. Similarly, for z < i ≤ h and
0 ≤ k < n, we let A[i, k] be the cost of an optimal solution to the instance of a constrained
version of the k-median (resp. k-center) problem in which H = T and we additionally
require the solution to contain vertex ri. Whenever there is no feasible solution to the above
instances (e.g., when k ≥ |V(Ti)|) we let A[i, k] = +∞. It is well known both the k-median
and the k-center problem can be solved in polynomial time when the input graph H is a
trees (and it is easy to see that this is still true for their constrained variants).

We now consider the first i trees and, for each value of j, we compute the minimum
aggregate cost B[i, j] that can be obtained by solving i (possibly constrained) instances of
k-median (resp. k-center) on the trees T1, . . . , Ti while selecting exactly j vertices across all
such instances. More formally, for the k-median problem, we define

B[i, j] = min
j1,j2,...,ji∈N

j1+j2+···+ji=j

i

∑
`=1

A[`, j`],

while, for the k-center problem we define

B[i, j] = min
j1,j2,...,ji∈N

j1+j2+···+ji=j

max
{

A[`, j`] : 1 ≤ ` ≤ i
}

.

Notice that, by definition, B[1, j] = A[1, j] for both problems. For i > 1, we can
efficiently compute B[i, j] using the following recursive formulas. For the k-median problem
we have

B[i, j] = min
1≤t≤j−i+1

{A[i, t] + B[i− 1, j− t]},

while, for the k-center problem,

B[i, j] = min
1≤t≤j−i+1

max{A[i, t], B[i− 1, j− t]}.
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To find the cost of u’s best response σ∗u in SUMNCG, we observe that n− 1 + B[h, j] is
exactly the smallest usage cost incurred by u if she decides to buy exactly j− (h− z) edges
(as h− z edges are already owned by the vertices ri with z + 1 ≤ i ≤ h). We therefore know
that, in SUMNCG,

Cu((σ−u, σ∗u ), G) = n− 1 + min
h−z≤j<n

{
B[h, j] + α(j− h + z)

}
.

Similarly, 1 + B[h, j] is the smallest usage cost for u when he/she constructs exactly
j− (h− z) edges in MAXNCG, therefore

Cu((σ−u, σ∗u ), G) = 1 + min
h−z≤j<n

{
B[h, j] + α(j− h + z)

}
.

In both cases, the number of edges |σ∗u | that u buys in a best response is
arg minh−z≤j<n

{
B[h, j] + α(j− h + z)

}
. Retracing the dynamic programming choices back-

wards, it is possible to compute (in polynomial time) the optimal number j∗i of edges to be
bought towards the vertices in each tree Ti. The actual edges to activate in SUMNCG (resp.
MAXNCG) can be found by inspecting the optimal solutions for the (possibly constrained)
k-median (reps. k-center) instances associated with each A[i, j∗i ].

3.3. Model M3

As far as modelM3 is concerned, the problem of computing a best response is NP-hard
for both SUMNCG and MAXNCG, as shown by the following results:

Theorem 7. Computing a best response for a player inM3 for SUMNCG is NP-hard.

Proof. We probe the claim by providing a polynomial-time reduction from the (decision
version of) the Minimum Dominating Set problem (MDSP) on bipartite graphs to the problem
of computing a best response inM3, similarly to that used in [1].

An instance of MDSP is a pair 〈G, k〉 where G is a graph and k is a positive integer.
The problem is that of deciding whether there exists a subset D of vertices of H such that
(i) each vertex v ∈ V′ is either in D or is adjacent to a vertex in D, and (ii) |D| ≤ k. It is
well-known that MDSP is hard even when H is bipartite [23].

Let 〈H, k〉 be an instance of MDSP where H = (U′ ∪V′, E′) is a bipartite graph. Fix
any value of α ∈ (1, 2) and let G be the graph obtained from H by adding an additional
vertex (player) u along with all the edges in {u} ×U′. Consider any strategy profile σ
such that G(σ) = G and all edges incident to u are bought solely by u. Notice that each
edge e ∈ E′ belongs to at least one shortest path from u in G and therefore the view of u
coincides with G itself.

Let σ∗u be a best response strategy for u and notice that the eccentricity of u in
G(σ−u, σ∗u ) must be at most 2. Indeed, if a vertex v was at a distance of at least 3 from
u in G(σ−u, σ∗u ), then u could improve her cost by playing σ∗u ∪ {u} instead of σ∗u (thus
decreasing the distance to v by at least 2 while increasing her building cost by α < 2). It
follows that σ∗u must be a dominating set of H.

We now argue that σ∗u must be a minimum dominating set of H. Indeed, given any
strategy σ′u of player u for which the eccentricity of u in G(σ−u, σu) is at most 2, we have that

Cu(σ−u, σ′u) = α|σ′u|+ ∑
v∈V′

dG((σ−u ,σ′u))(u, v)

= α|σ′u|+ ∑
v∈σ′u

dG((σ−u ,σ′u))(u, v) + ∑
v∈V′\σ′u

dG((σ−u ,σ′u))(u, v)

= α|σ′u|+ |σ′u|+ 2(|V′| − |σ′u|) = (α− 1)|σ′u|+ 2|V′|,

which is minimized when |σ′u| is minimized.
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The above discussion implies that H admits a dominating set D with |D| ≤ k vertices
if |σ∗| ≤ k and concludes the proof.

Theorem 8. Computing a best response for a player inM3 for MAXNCG is NP-hard.

Proof. As in the proof of Theorem 7, we prove the claim through a reduction (similar to
than in [3]), from the Minimum Dominating Set problem (MDSP) on bipartite graphs [23].
Given an instance 〈H, k〉 of (the decision version) of MDSP on bipartite graphs, we further
assume w.l.o.g. that H = (U′ ∪ V′, E′) admits a dominating set D∗ of size smaller than
|U′∪V′ |

2 (If this is not the case, then it suffices to consider the graph H obtained from the
disjoint union of H with a star on |U′ ∪ V′| + 2 vertices centered in some vertex v. H′

has 2|U′ ∪V′|+ 2 vertices and admits a minimum dominating set of cardinality at most
|U′ ∪V′|+ 1. Moreover, D ⊆ U′ ∪V′ is a dominating set for H iff D ∪ {v} is a dominating
set of H).

Pick α = 2
|U′∪V′ | and let G be the graph obtained from H by adding an additional

vertex (player) u along with all the edges in {u} ×U′. Consider any strategy profile σ such
that G(σ) = G and all edges incident to u are bought solely by u, so that the view of u
coincides with G itself.

Let σ∗u be a best response strategy for u and let E be the eccentricity of u in G(σ−u, σ∗u ).
Clearly, σ∗ 6= ∅. If E > 2, then u could buy an edge towards every vertex in G increasing
her building cost by at most α|(U′ ∪V′) \ σ∗| < 2 and reducing her usage cost by E − 1 ≥ 2.
If E = 1, then |σ∗| = |U′ ∪V′| and u could delete all the edges towards vertices that are
not in D∗, thus saving at least α |U

′∪V′ |
2 = 2 on his/her building cost, while increasing the

usage cost by 1. We can therefore conclude that E = 2, i.e., σ∗ must be a dominating set of
H.

As each dominating sets D of H is also a strategy for u such that u has cost α|D|+ 2
in G(σ−u, D), we have that H admits a dominating set D with |D| ≤ k vertices iff
|σ∗| ≤ k.

4. Price of Anarchy

ModelsM1,M2 andM3 are equivalent with respect to the PoA, as shown by the
following two Theorems.

Theorem 9. The PoA for SUMNCG inM1,M2, andM3 is Θ(min{1 + α, n}) for every α.

Proof. Notice that each network that is compatible with the view of u in modelM2 (resp.
M3) must also be compatible with the view of u inM1 (resp. M2). This shows that the
PoA can only decrease when we considerM1,M2, andM3 in this order. We will prove the
claim by showing that O(min{1 + α, n}) is an upper bound forM1 and Ω(min{1 + α, n})
a lower bound inM3.

We start by proving our lower bound inM3. To this aim, consider the complete graph
and notice that it is an equilibrium since the only SPT rooted in each vertex (player) is a
star, and no edge can be removed. The corresponding social cost is Ω(αn2 + n2), while the
cost of an optimal network is upper bounded by that of a star, i.e., O(αn + n2). It follows
that the PoA must be Ω(min{n, 1 + α}).

We now turn our attention to the upper bound inM1. We start by showing that the
diameter of an equilibrium graph G can be at most O(1 +

√
α). Let u and v be two players

such that the eccentricity D of u in G is equal to d(u, v) ≥ 4 (we can assume that such a
pair exists as otherwise the diameter of G would be at most 3). If player u were to buy
the edge (u, v), he/she would decrease her distances towards at least D

4 vertices, namely,
those on the shortest path between u and v, by at least 3

4 D− 1
4 D− 1 = 1

2 D− 1. This would
decrease her usage cost by at least Ω(D2). Notice that this reasoning is compatible with
the local view of u in modelM1, since u only needs to know d(u, v) (while no knowledge
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of the internal vertices of π is necessary). As the edge (u, v) is not in G, we can infer that
α = Ω(D2), which implies D = O(1 +

√
α).

The PoA can then be upper bounded as follows,

O
(

αn2 + n2(1 +
√

α)

αn + n2

)
= O(min{n, 1 + α}).

Theorem 10. The PoA for MAXNCG inM1,M2, andM3 is Θ(n) for α = Ω(1), and Θ(1 +
αn) if α = O(1).

Proof. By similar arguments as the ones used in the proof of Theorem 9, we only need to
show an upper bound to the PoA in modelM1 and a lower bound to the PoA in modelM3.

Once again, we can consider a complete graph H to obtain our lower bound. The same
discussion in the proof of Theorem 9 also applies to MAXNCG, and shows that H is an
equilibrium network in M1. The social cost of H is Ω(αn2 + n), while that of a star is
O(αn + n). As a consequence, we obtain a lower bound on the PoA of Ω

(
αn2+n
αn+n

)
, which

reduces to Ω(n) for α = Ω(1), and to Ω(1 + αn) for α = O(1).
To prove our upper bound onM3 we show that, in any equilibrium graph G, the di-

ameter of G must be at most O(1 + αn). Let u be a player having eccentricity D ≥ 4
in G, define X as the set of vertices at distance bD/2c from u in G. If u were to buy all
edges in {u} × X, his/her eccentricity would decrease by Ω(D). As G is an equilibrium,
we know that the building cost must exceed Ω(D), in formulas: αn ≥ α · |X| = Ω(D),
i.e., D = O(1 + αn). This shows that the social cost of G must be at most O(αn2 + n + n2)

and we can upper bound the PoA as O(αn2+n+n2)
Ω(αn+n) , which yields the sought bounds when

instantiated with α = Ω(1) and α = O(1).
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