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Abstract: Principal–assistant agent teams are often employed to solve tasks in multiagent collab-
oration systems. Assistant agents attached to the principal agents are more flexible for task exe-
cution and can assist them to complete tasks with complex constraints. However, how to employ
principal–assistant agent teams to execute time-critical tasks considering the dependency between
agents and the constraints among tasks is still a challenge so far. In this paper, we investigate
the principal–assistant collaboration problem with deadlines, which is to allocate tasks to suitable
principal–assistant teams and construct routes satisfying the temporal constraints. Two cases are
considered in this paper, including single principal–assistant teams and multiple principal–assistant
teams. The former is formally formulated in an arc-based integer linear programming model. We
develop a hybrid combination algorithm for adapting larger scales, the idea of which is to find an
optimal combination of partial routes generated by heuristic methods. The latter is defined in a
path-based integer linear programming model, and a branch-and-price-based (BP-based) algorithm
is proposed that introduces the number of assistant-accessible tasks surrounding a task to guide the
route construction. Experimental results validate that the hybrid combination algorithm and the
BP-based algorithm are superior to the benchmarks in terms of the number of served tasks and the
running time.

Keywords: multi-agent collaboration; time-critical tasks; heuristic approach

1. Introduction

The hybrid principal–assistant collaboration architecture is often employed to improve
the efficiency of task execution in a multiagent system [1,2], where the principal agents in a
team are assisted by the assistant agents to complete the arrival tasks. Each assistant agent
attaches to one principal agent, and is often more flexible for task execution (e.g., intelligent
agents (robots) may be capable of executing tasks with special requirements that can hardly
be achieved by humans). The introduction of assistant agents improves the flexibility
of collaboration of agents in multiagent systems [1,3]. Actually, the principal–assistant
collaboration problem can be considered as a new variety of the traveling salesman problem,
concerning the cooperation of the principal agent routing and the assistant agent routing
for tasks [4,5]. The principal–assistant systems are also employed in time-sensitive task
scenarios [6], where the violation of temporal constraints will result in great losses in
these missions.

Unfortunately, recent works [7–9] seldom address this issue. In this paper, we inves-
tigate the principal–assistant collaboration problem with deadlines, where each task is
associated with an independent deadline and the principal–assistant teams need to find
valid routes with temporal constraints. The problem is NP-hard because each deadline-
TSP can be reduced to an instance of the principal–assistant collaboration problem with
deadlines, where the endurance of assistant agents is zero. If and only if the optimal
solution of the deadline-TSP can be found in polynomial time, the optimal solution of the
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principal–assistant collaboration problem with deadlines can be found in polynomial time.
However, Farbstein and Levin [10] proved that the deadline-TSP is NP-hard in the graph
metrics or tree metrics, and thus the principal–assistant collaboration problem with dead-
lines is NP-hard. The challenges of the principal–assistant collaboration problem with
deadlines involve routing and cooperation [4,7]. First, the principal agent and the assistant
agent need to cooperate to serve more vertices within the temporal constraints. Second,
the combination of several principal–assistant routes is involved in complex allocations
of tasks.

To investigate the problem thoroughly, we consider two scenarios involving different
principal–assistant agent teams: the 1-principal-1-assistant scenario and the m-principal-
u-assistant scenario. In the 1-principal-1-assistant scenario, the principal–assistant team
is composed of a principal agent and an assistant agent. We pay attention to the inner
coordination between the principal agent and the assistant agent. In the m-principal-u-
assistant scenario, there are m > 1 principal–assistant teams, each of which is composed
of one principal agent and u > 1 assistant agents. We focus on studying the source
allocation and the cooperation among different team routes. Existing algorithms [4,7–9]
cannot be directly employed in these scenarios because their objective is to serve all tasks
and minimize the time cost of the entire route, and the arrival time cannot be restricted
to each vertex in the routes, so that the arrival time to each vertex may violate certain
deadlines. The unmodified application of those algorithms will result in delays, which
are not allowed in real-time systems. For the 1-principal-1-assistant scenario, a hybrid
combination algorithm is proposed, which finds the optimal combination of partial routes
generated by three methods, including a heuristic subroutine, an iterated local search
subroutine, and a simulated annealing subroutine. The partial routes prefer to insert the
vertex with a smaller deadline and higher profit available per unit time cost in the subsets,
which are divided by the time cost of each vertex to the initial vertex. For the m-principal-u-
assistant scenario, a BP-based algorithm is proposed. The outline of this algorithm is to use
the branch-and-price algorithm [11,12] to search for the optimal combination on the current
principal–assistant route set and use the proposed density-based construction to enlarge
the principal–assistant route set. The density-based construction evaluates the density of a
vertex based on the number of residual assistant agent-accessible vertices surrounding it
and the time cost between them and then inserts the vertex with the higher density and
smaller deadline as the preference.

In the performance validation, the number of served vertices and the running time
of algorithms are regarded as the evaluation criteria. In the 1-principal-1-assistant sce-
nario, the hybrid combination algorithm is compared with an exact integer programming
method, two adaptations based on the algorithms in [7,13], and some combinations of
inner procedures. The hybrid combination algorithm proposed in this paper is only inferior
to the exact method, and its running time is far less than that of the exact method when
the graph size is less than 15. When the graph size ranges from 20 to 100, the hybrid
combination algorithm serves the most vertices and costs a reasonable running time among
the compared algorithms. In the m-principal-u-assistant scenario, the BP-based algorithm
embedded with the density-based construction method is compared with two greedy
algorithms that employ the line route construction method [14] or a local iterated search
method [15] as the route construction and two BP-based algorithms embedded with the line
route construction and local iterated search method. The BP-based algorithm embedded
with the density-based construction method outperforms the other benchmark algorithms
in terms of the number of served vertices and the running time.

The rest of this paper is organized as follows. In Section 2, the related work on the
subject is reviewed. In Section 3, the 1-principal-1-assistant scenario is modeled and the hy-
brid combination algorithm is described. In Section 4, the m-principal-u-assistant scenario
is modeled and the BP-based algorithm embedded with the density-based construction
method is described. In Section 5, the experimental results of evaluating these algorithms
are presented. In Section 6, the conclusions and future work are described.
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2. Related Work
2.1. The Fundamental Principal–Assistant Systems

The fundamental hybrid principal–assistant systems proposed by Murray and Chu [7]
introduce the Flying Sidekick TSP (FSTSP) model which is closely related to the model
proposed in this paper, where the principal agent travels on the graph and repeatedly
releases and retrieves the assistant agent. The basic idea of the algorithm in [7] for the
FSTSP is to construct an initial principal agent path first by some classic TSP algorithms,
and then select a vertex in the route and insert it into another place, or command the
assistant agent to serve it so that the reduction on the total time cost is at the maximum.
The algorithm then proposed by Agatz et al. [4] constructs a principal agent-only path by
the TSP algorithm and then uses a dynamic programming algorithm to split the principal
agent path into a principal agent route and an assistant agent route. Moreover, Ha et al. [8]
propose a Greedy Randomized Adaptive Search Procedure (GRASP) for the principal–
assistant to find a min-cost team route. Overall, these studies ignore the crucial deadlines factor
in the principal–assistant systems, and thus, the task executing time cannot be ensured.

2.2. The Principal–Assistant Systems with Time Windows

There are only a small number of studies on hybrid principal–assistant systems with
time windows. Sawadsitang et al. [9] improve the PDSTSP by introducing uncertainty
regarding the takeoff and breakdown of assistant agents and time windows of tasks
(GADOP). However, the time windows are coarse-grained, concretely. They provide a
decomposition method to solve the problem. Differing from the GADOP problem, each
task in this paper has an independent deadline. If the method for GADOP is applied
directly, independent deadlines need to be clustered into a constant number of demands,
which may give rise to a service delay duration execution, which is impermissible in our
hard real-time system. To sum up, the collaborative relationship between the principal agent and
the assistant agent is not well characterized, causing inefficiencies in the system; in their scenarios,
the assistant agent starts from the initial vertex and returns to it, so the principal agent cannot
make use of the assistant agent to improve the performance of the task execution.

2.3. The Deadline-TSPs

The deadline-TSP is a different kind of problem from the principal–assistant collab-
oration problem with deadlines. In deadline-TSPs, a single principal agent attempts to
serve the vertices before their deadlines and returns to the initial vertex. Bansal et al. [13]
propose an O(log n)-approximation algorithm for the deadline-TSP. The time complexity
of this approximation algorithm is O(D2

maxβn10), where Dmax is the maximum deadline, β
is the total price of the graph, and n is the number of vertices. Farbstein et al. [10] solve the
deadline-TSP with contiguous deadlines. They propose anO

(
1 + ε, α

1+ε

)
-approximation al-

gorithm. The algorithm discretizes contiguous deadlines and uses an O(α)-approximation
algorithm to solve the resulting KDTSP, which is a deadline-TSP with k deadlines. The
algorithm ensures that the principal agent exceeds the deadlines by a factor of 1 + ε with
0 < ε < 1 and serves at least α/(1 + ε) of the number of tasks in the optimum. Its
time complexity is O(n2k∆k), where ∆ is the maximum distance in the metric space. Al-
though these approximation algorithms run in polynomial time, they cost too much time
in practice. In summary, the existing algorithms cannot be applied in the principal–assistant
collaboration problem with deadlines. In this paper, a hybrid combination algorithm and a BP-based
algorithm are proposed to address two scenarios, including the 1-principal-1-assistant scenario and
the m-principal-u-assistant scenario.

3. 1-Principal-1-Assistant Scenario

In this section, the principal–assistant collaboration problem with deadlines, where
one principal agent is equipped with one assistant agent, is defined formally, and a heuristic
algorithm is proposed.
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3.1. Problem Formalization

Let V = {vi | 0 ≤ i ≤ n} be the set of vertices, where v0 is the location of the initial
vertex, and the others denote the locations of tasks, each of which contains only one task.
Each vertex can be visited several times, but the task at the vertex can be served at most
once. The task at vertex vi ∈ V\{v0} has an independent deadline di, which means that
the task at vi needs to be served before di. Additionally, the initial vertex at v0 is associated
with a deadline d0, which means that the principal–assistant team must return to the initial
vertex before d0. Let D = {di | vi ∈ V, di ≤ d0} be the set of deadlines.

In such a principal–assistant collaboration system, the principal agent equipped with
an assistant agent starts from the initial vertex and returns to it before d0, releasing and
retrieving the assistant agent to serve other tasks repeatedly. The principal agent works
in a connected undirected graph G1 = (V, M1), where M1 denotes the set of the edges
between the vertices in V. Let m1(vi, vj) represent the minimum time cost between vi ∈ V
and vj ∈ V in G1. Without loss of generality, it is assumed that di ≥ m1(v0, vi), and the
assistant agent is often assumed to move freely from a vertex to another and spend less
time than the principal agent [4]. Meanwhile, it works in a fully connected undirected
graph G2 = (V, M2), where M2 denotes the set of edges between the vertices in V. Let
m2(vi, vj) ∈ M2 denote the minimum time cost between vi ∈ V and vj ∈ V in graph G2
and m2(vi, vj) ≤ m1(vi, vj). The other assumptions about the assistant agent are as follows:
(1) the assistant agent has limited endurance η; (2) the assistant agent needs to be released
and retrieved at a different vertex, except when the assistant agent is released and retrieved
at the initial vertex v0; and the assistant agent cannot reach other places except the location
of the tasks being served; (3) the assistant agent needs to reach the vertex where it is
retrieved before the principal agent arrives.

The principal–assistant route is denoted by a route r = {principalr, assistantr}, where
principalr is the principal agent route and assistantr is the assistant agent route. Let N(r)
denote the number of served vertices in the route r. The principal agent route is denoted by
principalr = {pi}, where the principal agent departs from p0 = v0, moves from pi to pi+1,
and serves pi. The number of vertices in principalr is denoted by |principalr| = g, and the
number of the served vertices in principalr is g− 1. The assistant agent route is denoted
by assistantr = {(pi, pk, pj)}, where a tuple (pi, pj, pk) indicates that the assistant agent is
released at pi ∈ principalr (called the released vertex) and retrieved at pj ∈ principalr (called
the retrieved vertex), serving pk /∈ principalr.

The problem can be then modeled as follows, and Table 1 provides the summaries of
the parameters and variable notations.

Table 1. Parameters and variables for the 1-principal-1-assistant scenario.

Notation Description

xi,t
Binary decision variable equals to one if the principal agent arrives vi at time t; zero
otherwise.

yi,k,j
Binary decision variable equals to one if the assistant agent is released at vi,
retrieved at vj, and serves vk; zero otherwise.

zi,j
Binary decision variable equals to one if the principal agent moves from vi to vj;
zero otherwise.

bi,t
Binary decision variable equals to one if t is equal or greater than the released time
and less than the retrieved time in the sortie serving vi; zero otherwise.

si Integer intermediate variables representing the principal agent leaving time from vi.
ei Integer intermediate variables representing the principal agent arrival time to vi.
t The time step.
M A very large number.
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max ∑
vi∈V

∑
0≤t≤d0

xi,t + ∑
vi∈V

∑
vk∈V

∑
vj∈V

yi,k,j (1)

s.t. s0 = 0 (2)

si = ∑
0≤t≤d0

xi,tt, vi 6= v0 (3)

ei = ∑
0≤t≤d0

xi,tt, ∀vi ∈ V (4)

∑
1≤t≤d0

x0,t = 1 (5)

x0,0 = 1 (6)

∑
0≤t≤d0

x0,tt ≥ ∑
0≤t≤d0

xi,tt, vi 6= v0 (7)

∑
0≤t≤d0

xi,t ≤ 1, vi 6= v0 (8)

∑
vi∈V

xi,t ≤ 1, 0 ≤ t ≤ d0 (9)

xj,t′ t
′ − xi,tt ≥ (xj,t′ + xi,t − 1)m1(vi, vj)

+ (xj,t′ + xi,t − 2)M, ∀vi, vj ∈ V, 0 ≤ t < t′ ≤ d0 (10)

zi,j ≤ 1 + (dj − ∑
0≤t≤d0

xj,tt)/M, ∀vi, vj ∈ V (11)

∑
vj∈V

zi,j = ∑
1≤t≤d0

xi,t, ∀vi ∈ V (12)

∑
vi∈V

zi,j = ∑
1≤t≤d0

xj,t, ∀vj ∈ V (13)

ej − si ≥ m1(vi, vj) + (zi,j − 1)M, ∀vi, vj ∈ V (14)

yi,k,j ≤ 1− ∑
vi′∈V

zi′ ,k, ∀vi, vk, vj ∈ V (15)

yi,k,j ≤ zi,j, ∀vi, vk, vj ∈ V (16)

yi,k,j(m2(vi, vk) + m2(vk, vj)) ≤ η, ∀vi, vk, vj ∈ V (17)

∑
vi∈V

∑
vj∈V

yi,k,j ≤ 1, ∀vk ∈ V (18)

∑
vk∈V

∑
vj∈V

yi,k,j ≤ 1, ∀vi ∈ V (19)

∑
vi∈V

∑
vk∈V

yi,k,j ≤ 1, ∀vj ∈ V (20)

(1− ∑
vi′∈V

zi′ ,i)M/3 + (1− ∑
vj′∈V

zj′ ,j)M/3

+ si + m2(vi, vk) + m2(vk, vj)

≤ ej + (1− yi,k,j)M, ∀vi, vk, vj ∈ V (21)

(1− ∑
vi′∈V

zi′ ,i)M/3 + si + m2(vi, vk) ≤ dk

+ (1− yi,k,j)M, ∀vi, vk, vj ∈ V (22)

∑
vi∈V

bi,t ≤ 1, 0 ≤ t ≤ d0 (23)

bk,t ≤ ∑
vi∈V

∑
vj∈V

yi,k,j, ∀vk ∈ V (24)

bk,t ≤ 1 + (t− si)/M + (1− yi,k,j)M,
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∀vi, vk, vj ∈ V, 0 ≤ t ≤ d0 (25)

bk,t ≤ 1 + (ej − 1− t)/M + (1− yi,k,j)M,

∀vi, vk, vj ∈ V, 0 ≤ t ≤ d0 (26)

∑
0≤t≤d0

bk,t ≥ ej − si + (yi,k,j − 1)M, ∀vk ∈ V (27)

∑
vi∈V

∑
vj∈V

yi,k,j + ∑
1≤t≤d0

xk,t ≤ 1, ∀vk ∈ V (28)

The objective function (1) seeks to maximize the number of served tasks. Constraints (2)–(4)
establish the relationship between si, ei, and xi,t. Explicitly, except initial vertex v0, for other
vi, si = ei.

Constraints on the principal agent routes. The principal agent travels in the graph,
holding constraints (5)–(14). Constraints (5)–(7) ensure that the principal agent departs
from the initial vertex v0 at time 0 and finally returns to it before d0. Constraint (8) indicates
that the principal agent serves at most one vertex at any time, and constraint (9) indicates
that the principal agent serves a task at a vertex except initial vertex v0 at most one time.
Constraint (10) states that the moving distance of the principal agent from vi to vj is not
less than the minimum distance between them. Constraints (11)–(14) link zi,j and xi,t, xj,t.
Constraint (11) ensures zi,j cannot be 1 if the principal agent visits vj after its deadline.
Constraints (12) and (13) ensure that the principal agent serves any tasks at most once.
Constraint (14) ensures that if zi,j = 1, the moving distance between any two vertices is not
less than the minimum distance between them.

Constraints on the assistant agent routes. Constraints (15)–(27) are the constraints
on the assistant agent routes. Constraint (15) ensures the assistant agent serves tasks that
are not served by the principal agent. Constraint (16) guarantees that the assistant agent
will be retrieved by the principal agent and Constraint (17) guarantees that the assistant
agent moves in the range. Constraints (18)–(20) ensure the assistant agent serves any task
at a vertex at most once. Constraints (21) and (22) ensure that the assistant agent serves
the task vertex vk before its deadline and arrives at retrieved vertex vj before the principal
agent arrives. Constraints (23)–(27) link bk,t and yi,k,j. Constraint (23) requires the assistant
agent executes at most one task at any time. Constraint (24) ensures bk,t = 0, 0 ≤ t ≤ d0
for unserved vertex vk. Constraints (25)–(27) ensure that if the assistant agent serves
vk, departing from the principal agent at vi and returning to the principal agent at vj,
bk,t = 1, si ≤ t < ej; otherwise, bk,t = 0. Constraint (28) indicates that vi can only be served
by the principal agent and the assistant agent once.

3.2. Hybrid Combination Algorithm

The principal–assistant collaboration problem with deadlines in the 1-principal-1-
assistant scenario is NP-hard, and the proof is described as follows.

Theorem 1. The principal–assistant collaboration problem with deadlines in the 1-principal-1-
assistant scenario is NP-hard.

Proof of Theorem 1. Let SP denote the principal–assistant collaboration problem with
deadlines in the 1-principal-1-assistant scenario. If a principal–assistant route is r for SP,
the number of served vertices in route r is in polynomial time; hence, SP is clearly in NP .

Let CP denote the deadline-TSP [10]. Then, a reduction from the CP to an instance of
the SP is provided. Each CP can be reduced to a corresponding instance of the SP with
η = 0. If and only if the optimum of the CP can be found in polynomial time can the
optimum of the corresponding SP with η = 0 be found in polynomial time. However, the
CP is proved to be NP-hard [10]. Therefore, the principal–assistant collaboration problem
with deadlines in the 1-principal-1-assistant scenario is NP-hard.
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According to the computational complexity analyzed in Theorem 1, this is an NP-
hard problem, so we cannot obtain an optimal solution in polynomial time [16]. To obtain a
suitable result in a reasonable time, we propose a heuristic algorithm. The basic idea of the
algorithm is to divide the vertices into different subsets and find the optimal combination of
the partial routes based on the subsets. The division will classify the vertices into different
subsets based on their minimum time cost to the initial vertex v0. The valid partial routes
are constructed by the process CADROUTES, which includes three procedures, namely
a heuristic method CONSTRUCT, an iterated local search ITERLOCALSERACH and a
simulated annealing procedure SIMANNEAL.

The division and combination are described in Section 3.3 and the construction of the
partial route is described in Section 3.4 and Section 3.5. The time complexity of the hybrid
combination algorithm is analyzed in Section 3.6.

3.3. Division and Combination

The process employs a fact that, in a principal agent route principalr, there exists
at least one vertex called the turn vertex pturn = arg maxpi∈principalr m1(pi, v0), and the
principal agent route principalr can be split into two sequences at the turn vertex, including
the {p0, p1, ..., pturn} and the {pturn, ..., pg−2, pg−1}. In Figure 1, p5 is the turn vertex and the
principal agent route is split into {p0, p1, p2, p3, p4, p5} and {p5, p6, p7, p8, p9}. The partial
routes contain monotonic parts and wavy parts [17]. The vertices of the monotonic parts are
sorted in some order and the vertices of the wavy parts are disordered. Most of the vertices
of the former are in monotonic parts, sorted in the non-decreasing order of the time cost to
v0, e.g., {p2, p3, p4, p5}. However, there exist some vertices in wavy parts, where a vertex
may be closer to v0 than its previous vertex, e.g., {p1, p2}. In general, the former sequence
of the principal agent route {p0, p1, p2, p3, p4, p5} is the process of leaving from the initial
vertex. Similarly, the latter sequence of the principal agent route {p5, p6, p7, p8, p9} also has
monotonic parts and wavy parts, but it is a return process, where the principal–assistant
team returns to the initial vertex. The divisions and combinations are designed based on
the feature, which is detailed in Algorithm 1.

Figure 1. A demonstration of a principal agent route principalr = {pi | 0 ≤ i ≤ 9}. Let
bi = m1(p0, pi), pi be sorted in the non-decreasing order based on bi, b0(b9) ≤ b2 ≤ b8 ≤ b1 ≤ b3 ≤
b6 ≤ b4 ≤ b7 ≤ b5.

In the division step, the turn vertex and the arrival time to it are selected first. In line 2,
each vertex except the initial vertex can be regarded as the turn vertex vturn. Ut = {vi |
m1(vi, v0) ≤ m1(vturn, v0), vi ∈ U} denotes the set of candidate vertices for the principal
agent. In line 6, each time t between tmin and tmax will be regarded as the arrival time to
vturn, the time budget of the leave process is t and the time budget of the return process
is d0 − t. Given the different subsets and time budgets, the leave processes and return
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processes are generated by CADROUTES. The LR and RR represent the set of candidate
leave processes and the set of candidate return processes, respectively. In line 11, the
optimal principal–assistant route is found. In line 13, the optimal combination of a leaving
process from LR and a return process from RR is selected as the output.

Algorithm 1: Hybrid Combination Algorithm

Input: Graphs G1 = (V, M1), G2 = (V, M2), deadline set D
Output: A principal–assistant route r = {principalr, assistantr}

1 U ← V − {v0}, r ← {};
2 for vturn ∈ U do
3 Ut = {vi | m1(vi, v0) ≤ m1(vturn, v0), vi ∈ U};
4 tmin ← m1(v0, vturn);
5 tmax ← min{dturn, d0 −m1(v0, vturn)};
6 for t ∈ [tmin, tmax] do
7 LR← CADROUTES(U, Ut, v0, vturn, 0, t);
8 U′ ← {vi | vi ∈ U, vi /∈ lr, lr ∈ LR};
9 U′t ← {vi | vi ∈ Ut, vi /∈ lr, lr ∈ LR};

10 RR← CADROUTES(U′, U′t , vturn, v0, t, d0 − t);

11 rmax ← arg maxr′∈LR∪RR N(r′);
12 if N(rmax) > N(r) then
13 r ← rmax;

14 return r;
15 Function CADROUTES(U, Ut, vs, ve, st, bdg)
16 HP← CONSTRUCT(U, Ut, vs, ve, st, bdg);
17 ILS← ITERLOCALSEARCH(HP, U −HP);
18 SA← SIMANNEAL(U, Ut, vs, ve, st, bdg);
19 return HP, ILS, SA;
20 End Function

3.4. Heuristic Construction

The procedure CADROUTES is the core of the algorithm. It provides three partial
routes, i.e., HP, ILS, and SA, which are generated by three methods, including the heuristic
CONSTRUCT, an iterated local search ITERLOCALSERACH, and a simulated annealing
procedure, respectively.

Heuristics are effective methods to address routing problems [18], so that the pro-
cedure CONSTRUCT is designed to find a valid solution. Before describing the method,
the features of the routes for the principal–assistant team are provided first. The route
r = {principalr, assistantr} can be merged into one structure, as in Figure 2, and the route
can be rewritten as r = {ri}, where ri is a partial route. The partial routes can be classi-
fied into three types of components, including short line segments, simple triangles, and
complex triangles. As Figure 2 shows, in a short line segment, the principal agent moves
from one vertex to the other directly, serving one vertex, such as the principal agent route
{v0, v6} and {v3, v9} without the assistant agent route. In a simple triangle such as the
principal agent route {v6, v3} with the assistant agent route {v6, v5, v3}, the principal agent
departs from the released vertex, releasing the assistant agent, and moves to retrieved
vertex directly, retrieving the assistant agent. The principal–assistant serves two vertices.
In a complex triangle, the principal agent moves from the released vertex to the retrieved
vertex through other vertices, such as the principal agent route {v8, v1, v2, v4} with the
assistant agent route {v8, v7, v4}. It is intuitive to select the partial route that serves the
most tasks locally, but a smaller time cost may improve the opportunity to serve more tasks
in the future. To balance these two factors, the profit per unit time cost φ(r) is defined in
Definition 1 to help select the partial routes. At every iteration, the heuristic selects a valid
partial route with the highest profit available per unit cost.
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Figure 2. The structure of a principal–assistant route r: The principal agent serves circle and square
vertices. The assistant agent serves triangle vertices. The principal agent releases or retrieves the
assistant agent at square vertices.

Definition 1. The profit available per unit cost can be then defined as follows:

φ(r) =
N(r)

cost(principalr)
(29)

where cost(principalr) is the traveling time of the principal agent in principalr , and N(r) is the
number of tasks served by route r.

It can be derived that at each iteration, there are O(n) short line segments, O(n2)
simple triangles, andO(nn) complex triangles to be selected. The solution space of complex
triangles is too large to search quickly. However, a complex triangle {principalr, assistantr}
can be approximated by a corresponding long line segment {principalr, {}}. It can be
derived that

φ({principalr, {}}) + ε = φ({principalr, assistantr})
g− 1

cost(principalr)
+ ε =

g
cost(principalr)

(30)

where ε > 0 is a real number. A larger cost(principalr) indicates a smaller gap between
{principalr, assistantr} and {principalr, {}}. Because a long line segment can be split into
several short line segments, to accelerate the search process, the heuristic only selects
partial routes from short line segments and simple triangles.

The procedure CONSTRUCT is outlined in Algorithm 2. Based on the above obser-
vation, it searches for the partial routes r′ with the highest φ(r′) from the short lines and
simple triangles and inserts them into the original routes iteratively, until there are no valid
partial routes. In line 6, all the short line segments and simple triangles are found and
inserted into the set R. From line 8 to line 11, the algorithm selects the partial route r′ with
the maximum φ(r′). If more than one partial route has the same φ(·), the partial route with
the minimum di, which is the deadline of the end vertex of the partial route, is selected.

Theorem 2. The Construct Algorithm proposed in Algorithm 2 is an O( lmin
2·lmax

)-approximation
algorithm, where lmin is the minimum distance between any two vertices in G1 and lmax is the
maximum distance between any two vertices in G1.

Proof of Theorem 2. To prove the approximation ratio, the upper bound of the optimum
and the lower bound of the Construct Algorithm need to be provided firstly. Assume that
the optimum r? serves q? tasks and the route r′ pair created by Construct Algorithm serves
q′ tasks. In the optimal case, r? is totally constituted by simple triangles, each of which
serves two tasks and costs lmin. Hence, for the optimum,

q?

cost(q?)
≤ 2

lmin
. (31)
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On the other hand, there exists a lower bound of its profit per unit cost. Assume
r′ = (r0, r1, · · · ) and each component ri serves qi vertices and costs cost(ri) time steps. It
can be derived that

q′

cost(r′)
=

∑ri∈r′ qi

∑ri∈r′ cost(ri)
≥ min

ri∈r′

qi
cost(ri)

(32)

q′

cost(r′) is greater than or equal to the minimum local profit per unit cost. In the worst case,
the component departs from the start vertex and directly moves to serve the farthest vertex
and returns, costing lmax. Thus,

q′

cost(r′)
≥ min

ri∈r′

qi
cost(ri)

=
1

lmax
. (33)

The approximate ratio can be calculated by

q′/cost(r′)
q?/cost(r?)

≥ 1/lmax

2/(lmin)
=

lmin
2 · lmax

. (34)

Thus, the Construct Algorithm proposed in Algorithm 2 is anO( lmin
2·lmax

)-approximation
algorithm.

Algorithm 2: Construct Algorithm

1 Function CONSTRUCT(U, Ut, vs, ve, st, bdg)
2 principalr ← {vs, ve};
3 assistantr ← {};
4 pcur ← vs;
5 while cost(principalr) ≤ budget do
6 R← {r′ | principalr′ ← {pcur, vi}, assistantagentr′ ← {(pcur, vj, vi)}, vj ∈

Ut, vi ∈ U, vi /∈ vj};
7 maxval ← 0, d← d0, rmax ← ∅;
8 for r′ ∈ R do
9 if r′ is valid then

10 if φ(r′) > maxval then
11 maxval¸φ(r′), d← di, rmax ← r′;

12 if rmax 6= ∅ then
13 principalr ← {vs, ..., pcur, vi, ve};
14 assistantr ← assistantr ∪ assistantagentrmax ;
15 U ← U − {vi, vj}, Ut ← Ut − {vi};
16 pcur ← vi;

17 else
18 break;

19 return r = {principalr, assistantr};
20 End Function

3.5. Iterated Local Search and Simulated Annealing

It is possible for the procedure CONSTRUCT to be trapped in local optimum; thus, the
iterated local search [15] and the simulated annealing [19,20] are incorporated to improve
the opportunity of escaping from local optimum. The two methods contain some basic
operations on the principal–assistant routes. There are six basic operations that refer to the
operations mentioned by Guanwan et al. [21], as shown in Table 2. The operation Swap
and Replace ensures that the new principal–assistant route serves at least as many tasks as
the old one does. The operation Insert inserts an unserved task into the principal agent
route and deletes the resulting infeasible partial routes of the assistant agent. The operation
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Subjoin inserts the partial assistant agent route with the minimum time cost. If more than
one assistant agent route has the same time cost, it selects the assistant agent route with the
minimum di, which is the deadline of the served vertex vi. The operation Removet deletes
one vertex in the principal agent route and the resulting invalid assistant agent routes. The
operation Removeu is a safe operation and decreases the quality of the current solution but
may lead to a better solution in the following process.

Table 2. Basic operations.

Operations Description

Swap Exchange two vertices in the principal agent route.
Replace Replace a served vertex in the principal agent route with an unserved one.
Insert Insert one unserved vertex into the principal agent route.

Subjoin Plan partial assistant agent routes on the current principal agent route, and
adopt the partial routes with the shortest time.

Removet Remove a vertex from the principal agent route.
Removeu Remove a triad from the assistant agent route.

The procedure ITERLOCALSERACH proposed in Algorithm 3 is a metaheuristic
algorithm, which starts from the initial solution HP created by the CONSTRUCT and
adopts four operations, i.e., Swap, Replace, Insert and Subjoin, to orderly search the
neighbor solutions. The operations will be used iteratively. At Step 1, Swap is used to
operate two vertices in the principal agent route, except the start vertex and end vertex.
If the Swap operation reduces the time cost, it is adopted to update the route. At Step 2,
Replace is used to operate any vertex except the start vertex and end vertex. If it is valid, the
operation will be accepted, and the replaced position will not be operated again. Replace is
similar to Swap, as it also updates the route and terminates when there is no valid operation.
At Step 3, Insert is used to fully utilize the budget. One valid vertex is inserted into the
first available position, and the principal agent route is updated. Then, Insert continues
to be used in the new route. At Step 4, Subjoin is used to plan new partial routes for the
assistant agent. The valid simple or complex triangles that serve other tasks are sorted in
the increasing order of their time cost. The triangle with the smaller time cost is subjoined
preferentially. The ITERLOCALSERACH will execute until the principal–assistant route
cannot be improved or the number of iterations reaches the upper limit cntlimit.

Algorithm 3: ITERLOCALSEARCH

1 Function ITERLOCALSEARCH(route, U, Ut, budget)
2 Swap;
3 Replace;
4 Insert;
5 Subjoin;
6 return ILS;
7 End Function

The route ILS generated by the ITERLOCALSERACH is not necessarily better than the
HP but provides another possible partial principal–assistant route that can be combined
with others to generate a better entire partial route.

Simulated annealing can converge to the global optimum in some probabilistic
sense [19] and has been applied in many optimization problems [18]. Simulated annealing
is different from the iterated local search. It has an environment temperature which will
decrease as the procedure runs; when the temperature is smaller than a minimum tempera-
ture, the procedure terminates. At the temperature decreasing moment, it generates a new
partial route; the new one will be accepted and will replace the current principal–assistant
route if the new one is better; otherwise, the new one will be accepted as the current one
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with a certain probability, which is related to the current temperature. Simulated annealing
includes the following three components: neighbor generation, acceptance probability,
and cooling schedule. The neighbor generation is used to generate a neighbor principal–
assistant route based on the current partial route. In every generation, a valid operation is
selected randomly from all six basic operations, and a new route is created by applying the
operation on the current solution. After the generation of the new route, the method needs
to decide to accept one route between the original one and the new one. Assume that the
gap λ is the number tasks served by the new route minus the number of tasks served by the
original route. If λ is greater than 0, the new route will be accepted and is regarded as the
current solution. Otherwise, the new route will be accepted with an acceptance probability.
The acceptance probability adopts the Metropolis principle [22] and is set as follows:

AP = exp(−λ/Temp) (35)

where Temp denotes the current temperature. The procedure will terminate once the
temperature is less than the minimum temperature Tempmin. The Temp is decreased by
multiplying a positive factor α < 1 at each iteration. In some previous papers, α retains a
certain value for different instances, but it is not suitable in its own scenario. For example,
to create a route r1 with a larger budget and another route r2 with a smaller budget, if
simulated annealing uses the same α, they will have similar time costs. However, a smaller
budget indicates less valid combinations of routes, and many iterations in the construction
of r2 are in vain. To accelerate the route construction with different budgets, let

α = const · (bdg/d0) (36)

where 0 < const < 1 is a constant real value, and bdg is the rest of the budget. Temp
decreases faster if the budget is small.

3.6. Analysis of Time Complexity

In the hybrid combination algorithm, the division process selects the turn vertices
and their arrival time; the combination assembles a constant number of partial routes. The
CADROUTES subroutine generates new partial principal–assistant routes.

Theorem 3. The time complexity of the hybrid combination algorithm proposed here is O(Kd0n4),
where K = max

{
cntlimit, logα

(
Temp

Tempmin

)}
.

Proof of Theorem 3. According to Algorithm 1, the number of combinations of the turn
vertices and their arrival time is O(d0n). The CADROUTES executes three procedures
in order. The procedure CONSTRUCT scans the O(n2) components every iteration and
it at most executes d0 iterations. The complexity of the CONSTRUCT is O(d0n2). These
operations at most run in O(n3). The time complexity of the procedure ITERLOCALSER-
ACH is O(cntlimit · n3). The number of simulated annealing iterations is no more than
k = logα(

Temp
Tempmin

). The time complexity of the SIMANNEAL is O(kn3). The total time

complexity is denoted by O(Kd0n4), where K = max
{

cntlimit, logα

(
Temp

Tempmin

)}
.

4. m-Principal-u-Assistant Scenario
4.1. Assumption and Model

The m-principal-u-assistant scenario, where each of m principal agents is equipped
with u assistant agents, is defined in this section. Most of the assumptions held in this
problem are the same as the descriptions in Section 3, except that there are m principal–
assistant teams to complete the tasks. Each principal–assistant team has one principal
agent and u assistant agents.

Due to the introduction of multiple assistant agents, the arc-based model becomes
overly complicated. For conciseness, the problem is modeled as a path-based integer linear
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programming based on [14]. The notations of the parameters and variables are displayed
in Table 3. The problem can be modeled as follows.

Table 3. Parameters and variables for the m-principal-u-assistant scenario.

Notation Description

r A principal–assistant route.
Ω The set of all available routes.
cr Parameter that indicates the number of tasks served in the route r.
ai,r Parameter that equals one when one task vi is served in route r, and zero otherwise.
wr Binary decision variable equal to one if route r is used, and zero otherwise.

max ∑
r∈Ω

cr · wr (37)

s.t. ∑
r∈Ω

ai,r · wr ≤ 1 ∀vi ∈ V\{v0} (38)

∑
r∈Ω

wr ≤ m (39)

wr ∈ {0, 1}, ∀r ∈ Ω (40)

The objective (37) seeks an optimal combination of routes that serves the most tasks.
Constraint (38) requires that each task is served at most once. Constraint (39) requires
the number of principal–assistant teams to be less than the maximum capacity m. Con-
straint (40) is the definition of the decision variables wr.

4.2. Branch-and-Price Algorithm

The master problem (37) is hard to solve, because the set Ω is an exceptionally large
set. The branch-and-price algorithm [11,12] is a practical method to decompose such a
problem, which embeds column generation into the branch-and-bound algorithm.

4.2.1. Linear Relaxation and Decomposition

In the branch-and-price algorithm, the master problem is converted from a 0–1 integer
linear problem into a general linear problem, as follows:

max ∑
r∈Ω

cr · wr (41)

s.t. (38)− (39)

0 ≤ wr ≤ 1, ∀r ∈ Ω (42)

After the linear relaxation, the difficulty of solving the objective (37) has been decreased
slightly, but the set Ω is still too large to enumerate completely. However, a fact should be
exploited, i.e., that the ratio of the number of actually used routes to the number of all valid
routes is exceedingly small, so the final solution can be constructed from a smaller route
set Ω′ ⊆ Ω. The column generation formulates a restricted master problem by replacing
the set Ω with the set Ω′ as follows:

max ∑
r∈Ω

cr · wr (43)

s.t. ∑
r∈Ω

ai,r · wr ≤ 1 ∀vi ∈ V\{v0} (44)

∑
r∈Ω

wr ≤ m (45)

0 ≤ wr ≤ 1, ∀r ∈ Ω (46)

The initial set Ω′ can be enlarged by adding new routes. According to the duality
theory, a better route r satisfies the following condition:
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ĉr = cr − ∑
vi∈V\{v0}

ai,r · δi − γ > 0 (47)

where δi is the dual variable of the current optimal solution for each constraint in Con-
straint (44), and γ is the dual variable for Constraint (45). Furthermore, if no route with
ĉr > 0 exists, the global optimum is found. The following process is to find and price an
undiscovered route r? with ĉr? = maxr∈Ω−Ω′ ĉr, which is called the pricing subproblem
and is detailed in the next section.

4.2.2. Pricing Subproblem

The pricing subproblem seeks better valid routes. The previous studies proposed
many exact or heuristic algorithms to solve the routing problems [12,14,23].

Based on the definition of cr, it can be rewritten as follows:

cr = ∑
vi∈V\{v0}

ai,r (48)

Associated with Equation (47), the following can be deduced:

ĉr = ∑
vi∈V\{v0}

ai,r · (1− δi)− γ > 0 (49)

Assume that Vc denotes the set of vertices involved in Ω′ and Vu = V − Vc. From
the analysis of the restricted master problem, it is deduced that δi = 0, ∀vi ∈ Vu and
δi > 0,∀vi ∈ Vc. The route that serves the most vi ∈ Vu vertices is the optimal choice in
terms of the mathematical formulation. However, temporal constraints restrict the number
of vertices in Vu. Additionally, the original allocation of the vertices may not be optimal;
the new routes can include some involved vertices so that to replace the old one creates a
better entire result. The routing process concerns vertices in the set Vc and Vu.

4.3. Principal–Assistant Route Construction

The outline of the routing algorithm is selecting different subsets of the vertices and
constructing partial routes on them, which includes the randomized selection procedure
described in Section 4.3.1, the principal agent route construction described in Section 4.3.2,
and the assistant agent route construction described in Section 4.3.3. The entire algorithm
is described in Section 4.3.4.

4.3.1. Randomized Selection

The randomized selection of vertices is described in Algorithm 4. The vertex vi is
selected with a probability probi, assuming that Ωvi ∈ Ω′ denotes the set of routes that
contain vi ∈ V. For vertex vi ∈ Vc, a higher ratio |Ωvi |/|Ω′| indicates that we know more
about vertex vi than the other vertices in Vc. To obtain more information about the whole
problem, vi ∈ Vc with a lower |Ωvi |/|Ω′| should be selected with a higher probability. The
vertex vi ∈ Vc is selected with the following probability:

probi = 1− |Ωvi |
|Ω′| , vi ∈ Vc (50)

For the vertices in Vu, each of them is selected with a probability as follows:

probi =
1
|Vu|

, vi ∈ Vu (51)

which indicates that before being explored, they all have equal values. Additionally, the
expectation of the number of vertices to be selected is equal to 1, which ensures that all the
uninvolved vertices will be included after several selections.
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Algorithm 4: Random Selection Algorithm
Input: Vc, Vu
Output: Vt

1 Vt ← ∅;
2 for vi ∈ Vc do
3 Execute Vt ← Vt ∪ {vi} with probability probi;

4 for vi ∈ Vu do
5 Execute Vt ← Vt ∪ {vi} with probability probi;

6 return Vt;

4.3.2. Principal Agent Route Construction

The construction of the principal agent routes with temporal constraints is a classic
problem, called the orienteering problem with time windows (OPTW) [21,24], where a
traveler needs to serve vertices during their time windows and then return to the initial
vertex. Two efficient algorithms can be used in the principal agent route construction,
including the line construction [21] and an iterated local search algorithm [15].

The outline of the line construction is to insert an unserved vertex between two
vertices in a valid route iteratively and ensure that the resulting route is also valid until no
vertex can be inserted. If there is more than one option, the operation adding the minimum
time cost will be selected. The iterated local search algorithm (ILS) is a two-step process.
First, it creates a valid route by line construction, and then the perturbation and local
search techniques are used to improve the route within a certain iteration. Two algorithms
will be embedded into our integrated algorithm individually, and their performances will
be evaluated.

The above two methods outperform the other routing algorithms [23] in the principal
agent route construction, but in the construction of the principal–assistant routes, they
ignore the influence of the assistant agent routes and result in poor performance in some
situations. An example is displayed in Figure 3. In Figure 3, the line construction creates
principalr = {v0, v3, v0}, and the assistant agent routes assistant1

r , assistant2
r are empty.

However, there is an obvious better principal–assistant route, principalr = {v0, v2, v0},
assistant1

r = {(v2, v1, v0)}, and assistant2
r = ∅. It demonstrates a phenomenon that if a

principal agent travels to a vertex surrounded by some assistant agent-accessible tasks,
it is possible to serve tasks then directly move to a task costing less time. Inspired by
the influence of the assistant agents, the density of the vertex is defined in Definition 2.
The densityi of vi is influenced by the number of assistant agent-accessible tasks and their
distances to vi in graph G2. The distances are squared to improve their weight; the vertex
with the most assistant agent-accessible tasks located in an adjacent area is preferred.

Definition 2. The density of the task vi is as follows:

density S
i =

1
u
·

η

∑
dur=1

∣∣Vi
dur

∣∣
(0.5 · dur)2 (52)

where Vi
dur =

{
vj ∈ S | 2 ∗m2

(
vi, vj

)
= dur

}
.

The density-based construction algorithm is designed based on the line construction
and the concept of the density of a task, which is shown in Algorithm 5. Before using line
construction, all the provided tasks are sorted in ascending order based on the density
of each task, and a factor 0.0 < ζ < 1.0 decides how many tasks have high priority to
be inserted in the principal agent route. Assume that V′ is the sorted set of tasks; first,
d|V′| · ζe tasks in V′ have high priority. The tasks with high priority will be stored in
order in list H, and the rest of the tasks with low priority will be stored in order in L. The
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tasks in H will be inserted into principal agent route principalr by the line construction
lineInsert(principal, S), until there is no vertex that can be inserted.

Algorithm 5: Density-Based Algorithm

Input: The set of vertices V′ ⊆ V, the set of deadlines D, a parameter
0.0 < ζ < 1.0, the start vertex vs, the end vertex ve

Output: A principal agent route principalr
1 principalr ← {vs, ve};
2 Sort vertices in V′ in the descending order based on the densityV′

i , vertices with
the same density are sorted in the ascending order based on the deadline di,
obtain V′ = {pi};

3 H ← {pi | pi ∈ V′, i ≤ d|V′| · ζe};
4 L← V′ − H;
5 lineInsert(principalr, H);
6 lineInsert(principalr, L);
7 return principalr;

(a) (b)

Figure 3. The influence of the density: Subfigure (a) shows the tasks V in graph G1 and Subfigure
(b) shows the tasks V in graph G2. The principal–assistant team has 1 principal agent and 2 assistant
agents, the duration of which is 2.

Then, the tasks in L will be considered. In the experiments, a suitable ζ can improve
the performance, and 0.3 is the best value in our experiments. For example, in Figure 3,
density 1 = 2

12·2 + 0
22·2 = 1.0, density 2 = 3

12·2 + 0
22·2 = 1.5, density 3 = 1

12·2 + 0
22·2 =

0.5, and if ζ = 0.3, then H = {v2}, L = {v1, v3}, and the principal–assistant route is
principalr = {v0, v2, v0}, assistant1

r = {(v2, v1, v0)}, assistant2
r = ∅, which is the optimum.

4.3.3. Assistant Agent Route Construction

The assistant agent route construction algorithm is displayed in Algorithm 6. In the
beginning, all the valid partial assistant agent routes are collected from Line 2 to Line 5.
In Line 6, the partial assistant agent route (vi, vk, vj) in set Cand is sorted in descending
order based on the time cost cost(vi, vj), and the routes with the same time cost are sorted
in ascending order based on the deadline dk. The partial assistant agent routes are inserted
into the suitable places of the initial assistant agent routes in order.

4.3.4. Integrated BP-Based Algorithm

The integrated BP-based algorithm is detailed in Algorithm 7. The main parts of
it are described in the previous sections. The framework of the column generation is
described in Section 4.2.1, and the principal agent route construction and assistant agent
route construction are described in Section 4.3.2 and Section 4.3.3, respectively.
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Algorithm 6: Assistant Agent Ranking Algorithm
Input: A principal agent route principalr, Vu
Output: u assistant agent routes

1 Cand← ∅;
2 for vi, vj ∈ principalr do
3 for vk ∈ Vu do
4 if (vi, vk, vj) is valid then
5 Cand← Cand ∪ {(vi, vk, vj)};

6 Sort (vi, vk, vj) in the set Cand in the descending order based on the time cost
cost(vi, vj), the routes with the same time cost are sorted in ascending order
based on the deadline dk;

7 cnt← 0;
8 while cnt < u do
9 assistantcnt

r ← ∅;
10 for e ∈ Cand do
11 if assistantcnt

r ∪ e is valid then
12 assistantcnt

r ← assistantcnt
r ∪ e;

13 Cand← Cand− {e};

14 cnt← cnt + 1;

15 return u assistant agent routes;

Additionally, the actual moving distance of the assistant agent in the sortie is an important
element. As prescribed, the duration of the assistant agent is η. In previous studies, the
assistant agent is assumed to take full use of its power and serve all accessible tasks. However,
it is not a suitable policy in practice. An example is displayed in Figure 4. In Figure 4, the
line construction creates principal agent route principal1 = {v0, v3, v0}, and if the full
duration is used, the assistant agent routes will be assistantagent1

1 = {(v3, v2, v0)} and
assistantagent2

1 = ∅. The other principal–assistant team cannot serve any other vertices.
However, if the actual duration is reduced to 2, two principal–assistant routes can be
created, including a principal agent route principal1 = {v0, v3, v0} and two empty assistant
agent routes assistantagent1

1 = ∅, assistantagent2
1 = ∅, and another principal agent route

principal2 = {v0, v2, v0} and two assistant agent routes assistantagent1
2 = {(v2, v1, v0)},

assistantagent2
2 = ∅. The latter solution is better than the former one. To search for better

principal–assistant routes, in Line 2 to Line 9, different actual distances are used to construct
principal–assistant routes, and in Line 16, a random actual duration is generated for each
principal–assistant route construction.

(a) (b)

Figure 4. The influence of the duration: subfigure (a) shows the tasks V in graph G1 and subfigure
(b) shows the tasks V in graph G2. The principal–assistant team has 2 principal agents and each is
equipped with 2 assistant agents, the duration of which is 4.
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All the principal–assistant routes will be examined in the ideal environment, but an
overly long execution time is impractical. Hence, an iteration upper bound cntlimit is
provided to control the execution time.

Algorithm 7: BP-Based Algorithm
Input: Vertex set V, deadline set D, parameters 0.0 < ζ < 1.0, cntlimit
Output: the set of principal–assistant routes Ω̂

1 Ω′ ← ∅, Ω̂′ ← ∅, best← 0;
2 for dur ∈ [1, η] do
3 V′ ← V, c← 0;
4 while c < m do
5 vs ← v0, ve ← v0;
6 principalr ← density_based(V′, D, ζ, vs, ve);
7 assistantr ← randkedassistantagent(principalr, V′ − principalr);
8 Ω′ ← Ω′ ∪ {r};
9 Update V′, c← c + 1;

10 Solve integer linear programming based on the set Ω′, obtain dual variables δi,γ,
current optimum set Ωl ⊆ Ω′ and the number of served vertices score;

11 Ω̂← Ωl , best← score;
12 cnt← 1;
13 while cnt < cntlimit do
14 Vc, Vu ← obtainVers(V, Ω′);
15 V′ ← Random_selection(Vc, Vu);
16 dur ← randomInt(1, η);
17 principalr ← density_based(V′, D, η);
18 assistantr ← randkedassistantagent(principalr, V′ − principalr);
19 if ĉr > 0 then
20 Ω′ ← Ω′ ∪ {r};
21 Solve integer linear programming based on the set Ω′, obtain dual

variables δi,γ, current optimum set Ωl ⊆ Ω′ and the number of served
vertices score;

22 if score > best then
23 Ω̂← Ωl , best← score;

24 cnt← cnt + 1;

25 return Ω̂;

5. Experiments
5.1. Experimental Setup and Evaluation Criteria

The computations are performed on a PC with a Windows 10 OS, 16 GB RAM, and
i7-7700 4.2 GHz CPU in Python 3.6. CPLEX (version 12.6) is used to solve all the integer
linear programming.

The experiments are conducted on random graphs generated based on the Erdos–
Rényi model [25], where all the distance and time costs are discretized into integer numbers.
The random graphs ensure that the distance between two adjacent vertices varies from
1 to 10 randomly. In G1, each vertex is connected to the other with the probability 6/|V|.
The d0 is twice the diameter of the graph and di, vi 6= v0 is a random variable greater than
m1(vi, v0) and less than d0. In G2, let m2(vi, vj) be a random variable less than or equal to
m1(vi, vj) and greater than 1. The endurance of the assistant agent η is twice the median of
the distances between the vertices in G2.

The evaluation criteria include the number of served vertices and the running time of
algorithms. For each graph size n, 100 instances are generated; the average values of the
results will be regarded as the performance of algorithms.
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5.2. Results in the 1-Principal-1-Assistant Scenario
5.2.1. Compared Algorithms

The hybrid combination algorithm is denoted by HC, and in the simulated annealing,
const = 0.96, Temp = 10,000, and Tempmin = 100 according to the preliminary finding.

The HC is compared to seven algorithms. The ILP denotes the method that solves the
integer linear programming method by CPLEX directly. C1 denotes an adaptation of the
algorithm proposed by Murray and Chu [7]. The outline of C1 is to construct an initial
principal agent route serving all tasks by the saving heuristic proposed by Clarke [26]
and then take out a vertex from the principal agent route, which saves the most time, and
insert it into other principal agent route or let the assistant agent serve it iteratively until
there is no valid vertex to select. C2 is the approximation algorithm for the deadline-TSP
without assistant agent proposed by Bansal et al. [13]. The C2+Subjoin uses the operation
Subjoin to append the assistant agent route to the principal agent route generated by C2.
The CST employs the procedure CONSTURCT on the whole problem directly. CST+CB
combines the procedure CONSTURCT and the process of division and combination. The
CSC combines the procedure CONSTURCT and the operation Subjoin.

5.2.2. Computational Performance

The number of served vertices and the running time of algorithms are displayed in
Figure 5. In Figure 5a,b, until the graph size n = 15, the ILP is the optimal method, but its
running time exceeds 790 seconds. Because the running time of ILP will grow exponentially
as the graph size n grows larger, the ILP is not a suitable method when n > 15. When the
graph size n ranges from 16 to 20, except for C1 and C2, the other five algorithms are close
to each other. However, the running times of C2 and C2+Subjoin exceed 500 s when n = 19.
As abovementioned, the time complexities of C2 and C2+Subjoin are greater than O(n10),
and their actual running times are also extremely large as the graph size n > 19. Hence,
ILP and C2+Subjoin can be applied in small graphs but are not suitable in the larger graphs
due to their running time. Additionally, HC, CST, CST+CB and CSC need to be employed in
larger graphs to evaluate their performances. As shown in Figure 5a, the HC serves the most
vertices, the CSC is only inferior to the HC, and the CST and the CST+CB serve far fewer
vertices than they do. In Figure 5c, the HC costs the most time in each graph size, and
when n = 100, its running time approaches 900 s. The CSC, CST and CST+CB cost less
time, even if n = 100, their running time is less than 10 seconds. As a whole, when the
graph size ranges from 30 to 100, the HC is the optimal choice, which although costs the
most time, serves most vertices.

5.3. Results in the m-Principal-u-Assistant Scenario
5.3.1. Compared Algorithms

The proposed algorithm, called IP-D, combines the BP-based algorithm and the
density-based construction. The IP-D is compared with four algorithms. The GL denotes
a greedy adaption of line construction [27], which iteratively constructs the principal–
assistant routes by line construction and the operation Subjoin based on the residual
vertices. The GI denotes a greedy adaption of the line construction [15], which iteratively
constructs the principal–assistant routes by the iterated local search construction and the
operation Subjoin based on residual vertices. The IP-L combines the BP-based algorithm
and the line construction, and the IP-I combines the BP-based algorithm and the iterated
local search construction.

5.3.2. Computational Performance

There are three concrete scenarios, including the 3-principal-2-assistant scenario, the
3-principal-3-assistant scenario, and the 4-principal-2-assistant scenario. The results are
shown in Figure 6.
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(a) (b) (c)

Figure 5. The performance of our approach and baseline algorithms in the 1-principal-1-assistant scenario. Test of the
Number of Served Vertices: (a); Test of the Running Time: (b,c).

In the 3-principal-2-assistant scenario, as shown in Figure 6a,c, GL, IP-L, IP-I, and
IP-D share similar numbers of served vertices, but GI serves far less vertices than they do.
The GL, GI, IP-L, and IP-D cost time less than 40 seconds, even if n = 20, but the IP-I costs
more time, and exceeds 800 seconds when n = 20. The running time of IP-I is too large to
be employed in larger graphs. Figure 6b,d shows the algorithm performances in the larger
graphs, the size of which ranges from 30 to 100. Except when n = 30, the IP-D serves the
most vertices. The gap between the number of vertices served by the IP-D and the others
grows larger as the sizes of graphs grow larger. With respect to the running time, the IP-D
costs the most time among all the algorithms, but its maximum running time is less than 600 s.
In the 3-principal-3-assistant scenario shown in Figure 6e–h, and the 4-principal-2-assistant
scenario shown in Figure 6i–l, the IP-D has a similar performance. As a whole, the number
of vertices served by the IP-D is the largest among all the algorithms, and the running time
of the IP-D is the largest among the others but is reasonable in practice.

There is a strange phenomenon where IP-L and IP-D expend more time when n = 30
than n = 100. The main time cost comes from the integer programming, which isNP-hard.
More columns in the integer programming indicate a longer CPU time. Based on the
experimental data, when the number of columns that denote the principal–assistant routes
in the paper reaches 400, the IP-L and IP-D will expend more time to solve their integer
programming problems. Because the d0 is twice the diameter of the graph, when n = 30,
one principal–assistant route cannot serve many tasks surrounding the initial vertex, so the
new route r, which serves more unserved tasks far from the initial vertex, can be added to
Ω′. However, when n = 100, the d0 is very large and the principal–assistant routes seek to
serve the vertices surrounding the initial vertex; many generated routes are the same or
cannot coexist, and the actual size of the route set Ω′ when n = 100 is less than the size
when n = 30.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. The performance of our approach and baseline algorithms in the m-principal-u-assistant
scenario. Test of the Number of Served Vertices in the 3-principal-2-assistant scenario: (a,b); Test of
the Running Time in the 3-principal-2-assistant scenario: (c,d); Test of the Number of Served Vertices
in the 3-principal-3-assistant scenario: (e,f); Test of the Running Time in the 3-principal-3-assistant
scenario: (g,h); Test of the Number of Served Vertices in the 4-principal-2-assistant scenario: (i,j); Test
of the Running Time in the 4-principal-2-assistant scenario: (k,l).

In general, the number of vertices served by the IP-D is largest among all the algo-
rithms, although the running time of the IP-D is also largest among them; however, this is
reasonable in practice.
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6. Conclusions and Future Research

The principal–assistant collaboration problem with deadlines is investigated in this
paper. Two scenarios are systemically discussed here, including the 1-principal-1-assistant
scenario and the m-principal-u-assistant scenario. The hybrid combination algorithm is
proposed to solve the 1-principal-1-assistant scenario, which combines different partial
routes generated by three methods. Through comprehensive experiments, we validate the
performance of the hybrid combination algorithm by comparing to several benchmark ap-
proaches. It can find a better route than the other algorithms compared except for the exact
integer linear programming, but costs far less time than the integer linear programming.
Therefore, this method can be feasible in 1-principal-1-assistant collaboration applications.
A BP-based algorithm embedded with a density-based construction is proposed for the
m-principal-u-assistant scenario. It uses the branch-and-price algorithm to find the optimal
combination of the current route set and uses the density-based construction to enlarge
the route set. Through comprehensive experiments, we compare the performance of the
proposed algorithm with several benchmark approaches. In most cases, the proposed algo-
rithm can serve the most vertices, although it takes more running time but is still reasonable.
Therefore, the algorithm is practical in m-principal-u-assistant collaboration scenarios.

In the future, we will mainly explore the adaptation of hybrid principal–assistant
collaboration systems from two directions: (1) There are often multiple initial locations
of agents in real applications, and multiple tasks may be in the same location; hence, one
direction is to consider multiple initial vertices and more than one task in a vertex in the
principal–assistant collaboration problem. (2) There are various collaborative relationships
between principal agents and assistant agents in different environments; hence, the other
direction is to improve the locomotion of the principal–assistant teams by considering
appropriate collaboration pattern selection.
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