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Abstract

:

The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve video compression standards to minimize the necessary bandwidth while retaining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has been analyzing new video coding technologies to improve the compression efficiency with respect to the HEVC video coding standard. A software package known as the Joint Exploration Test Model has been proposed to implement and evaluate new video coding tools. In this work, we present parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and can significantly reduce its huge computational complexity. The proposed parallel algorithms are shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the best of our proposed parallel versions achieves an average efficiency value of 93.4%. They also had high levels of scalability, as shown by the inclusion of an automatic load balancing mechanism.
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1. Introduction


The High Efficiency Video Coding (HEVC) standard [1] was developed by the Joint Collaborative Team on Video Coding (JCT-VC) in 2013, and replaced the previous H.264/Advanced Video Coding (AVC) standard [2]. The HEVC standard obtains savings in terms of bit rate of almost 50%, with the same visual quality as the previous H.264/AVC standard. However, this reduction is obtained at the expense of a huge increase in the computational complexity of the encoding process [3].



Recently, Cisco released a report called “Forecast and Trends: 2017–2022 White Paper” [4], in which they state that IP video traffic will form 82% of all IP traffic by 2022, representing a four-fold increase between 2017 and 2022. This represents a situation where each second, a million minutes of video content travel through the network. The report also predicts a constant increase in novel services such as video-on-demand (VoD), live internet video, virtual reality (VR) and augmented reality (AR). VoD traffic is expected to double by 2022, mainly due to the increasing numbers of consumers and higher video resolution (4 K and 8 K), bringing the amount of VoD traffic to the equivalent of 10 billion DVDs per month. The impact of user devices on global traffic is even more important when we consider popular services such as ultra-high-definition (UHD) video streaming. We need to take into account the fact that the bit rate for 4 K video is about 15 to 18 Mbps, more than double the bit rate for HD video and nine times more than standard definition (SD) video. The Cisco report estimates that by 2022, nearly 62% of the flat-panel TV sets installed will be UHD.



In order to deal with this increase in IP video traffic, new video coding techniques are required to obtain higher compression rates. Since the release of HEVC, both the ITU-T Video Coding Expert Group (VCEG) and the ISO/IEC Moving Picture Expert Group (MPEG) have been studying and analyzing new video coding technologies in order to improve the compression capability compared to that obtained by HEVC. To achieve this, a framework of collaboration has been created called the Joint Video Exploration Team (JVET).



The compression enhancements studied by the JVET have been implemented in a software package known as the Joint Exploration test Model (JEM) [5]. Its main purpose is to explore new coding tools that can provide significant improvements at the video coding layer. Following an analysis of the new coding tools that have been proposed within the last few years, JVET has begun developing a future video coding standard called Versatile Video Coding (VVC) [6]. The main goal of this coding standard is to achieve bit rate savings of between 25% and 30% compared to HEVC [7,8].



Preliminary results obtained with the new model (JEM 3.0) show an 18% reduction in bit rate using the All Intra (AI) coding mode configuration [9]. However, this is achieved at the expense of an extremely large increase in computational complexity (60x) with respect to HEVC.



This increase requires the introduction of acceleration techniques that leverage hardware architectures to reduce encoding time. Since JEM is an exploration model, only a few articles have been published on the subject, and most of them are focused on rate distortion (R/D) comparisons between JEM, HEVC and AV1 codecs [10]. Recently, the authors of [11] proposed a pre-analysis algorithm that was designed to extract motion information from a frame in order to accelerate the motion estimation (ME) stage. Their proposal showed that around 27% of the reference frames could be skipped, and that a time saving of more than 62% was achieved on the integer ME operation, with a negligible impact of 0.11% on the Bjøntegaard delta rate (BD rate) [12]. The authors in [13] proposed parallel algorithms based on the group of pictures (GOP) structure, increasing the BD rate when temporal redundancy is exploited.



In this paper, we present two JEM parallel encoder versions that are specifically designed for shared memory platforms, in order to speed up the encoding process for the All Intra (AI) coding mode, as this coding mode is especially useful for video editing. We performed several experimental tests to illustrate the behavior of the parallel versions in terms of their parallel efficiency and scalability. In the first parallel algorithm, a synchronous algorithm named JEM-SP-Sync, a domain decomposition is performed, in which the computational load is not balanced, although the data are almost equally distributed. The second parallel algorithm, named JEM-SP-ASync, is an asynchronous algorithm, also based on a domain decomposition but able to balance the load automatically.



The rest of this paper is organized as follows. In Section 2, we present a brief description of the coding tools introduced in the new JEM video coding standard. Section 3 describes the parallel algorithms developed for the AI coding mode of the JEM standard. Experimental numerical results are presented in Section 4, and in Section 5, some conclusions are drawn.




2. Description of the New Characteristics of the Joint Exploration Test Model (JEM)


The JEM codec is based on the HEVC reference software, called HM, meaning that the overall architecture of both codecs is quite similar since they share a hybrid video codec design. However, some of the coding stages are modified in the JEM implementation in order to improve the previous standard [14,15]. The R/D performance of JEM is better than in HEVC due to the use of these techniques, but this is achieved at the expense of an increased computational cost for the intra-prediction stage. This section describes the main improvements offered by JEM in comparison to the previous standards, as these could lead to a load imbalance when using parallel algorithms such as those proposed in this work.



2.1. Picture Partitioning


The way in which a video frame is split into a set of non-overlapping blocks is called picture partitioning. These non-overlapping blocks are arranged into a quadtree structure, where the root is called a coding tree unit (CTU) [16], and each CTU is further partitioned into smaller blocks. Figure 1 shows the division of a   1280 × 720   pixel frame into 240 CTUs, split into 20 columns by 12 rows, where the last row is composed of incomplete CTUs. The complete CTUs are composed of   64 × 64   pixels.



Two of the major differences between HEVC and JEM are the way in which a CTU is further partitioned and the size of the CTU itself. In HEVC, the maximum CTU size is   64 × 64   pixels, and there is the option to further recursively partition it into four square coding units (CU) whose sizes range from   64 × 64   pixels (i.e., no partitioning) to   8 × 8   pixels. The leaf blocks in a CU quadtree form the roots of two independent trees that contain prediction units (PUs) and transform units (TUs).



A PU can have the same size as the CU, or can be further split into smaller PUs of up to   8 × 8   pixels. The PUs store the prediction information in the form of motion vectors (MVs). In intra-prediction mode, HEVC uses a quadtree structure with only square PUs, while in inter prediction mode, asymmetric splitting of PUs is possible, giving up to eight possible partitions for each PU block: 2N × 2N, 2N × N, N × 2N, N × N, 2N × nU, 2N × nD, nL × 2N and nR × 2N. 1,0,0 Figure 2 shows an example of a CTU partition in HEVC and the relationship between CU partitioning, PU partitioning and TU partitioning.



The picture partitioning schema is modified in JEM in order to simplify the prediction and transform stages, and further partitions of CUs to form PU and TU trees are avoided. The JEM partitioning schema, called quadtree plus binary tree (QTBT), offers a better match with the local characteristics of each frame [17]. The highest level is a CTU, as in HEVC, but the main change is that block splitting below each branch is a binary partition giving the leaves.



The size of the CTU is larger than in HEVC, with a maximum of   256 × 256   pixels, and only the first partition needs to be square partitioned. Lower partitions can be partitioned further in a quadtree schema, but at the desired level the binary tree ends the partitioning schema. There are two types of splitting in the binary tree: symmetric horizontal and symmetric vertical. The binary tree leaf node is the CU, which is used for prediction and transformation with no further partitioning. Hence, in most cases, the CU, PU and TU have the same size. An example of QTBT is shown in Figure 3; here, the quadtree has two levels (continuous line), after which the binary tree starts (dotted lines).



In JEM, a CU can have either a square or a rectangular shape, and consists of coding blocks (CBs) of different color components; for example, a CU may contain one luma CB and two chroma CBs in the YUV420 chroma format.



In HEVC, inter prediction for small blocks is restricted in order to reduce memory accesses for motion compensation, i.e., bi-directional prediction for   4 × 8   and   8 × 4   blocks is not allowed, and   4 × 4   inter-prediction is also disabled. In QTBT, these restrictions are removed, which increases the computational cost of the JEM codec.



The CUs are not partitioned further for transforming or prediction unless the CU is too large for the maximum transform size. The maximum transform size is   128 × 128   pixels, which improves the coding efficiency for higher resolution video, e.g., 1080 p and 4 K sequences.



The following parameters are defined in order to obtain efficient partitioning in a QTBT tree:




	
CTU size: The root node size of a quadtree; the same concept as in HEVC.



	
MinQTSize: The minimum allowed size of the leaf node in the quadtree.



	
MaxBTSize: The maximum allowed size of the root node in the binary tree.



	
MaxBTDepth: The maximum allowed depth of the binary tree.



	
MinBTSize: The minimum allowed size of the leaf node in the binary tree.








MaxBTSize and minQTSize are two factors that are critical to the R/D performance and the encoding time. In JEM, these two parameters of the current slice are set adaptively larger when the average CU size of the previous encoded picture is larger, and vice versa for only the P and B slices [17].



At the transform stage, only the lower-frequency coefficients are maintained for transform blocks with sizes (width or height) larger than or equal to 64. For example, for an M × N transform block (where M is the width and N the height), when M is larger than or equal to 64, only the left M/2 columns of transform coefficients are retained. Similarly, when N is larger than or equal to 64, only the top N/2 rows of the transform coefficients are retained. This behavior can be skipped using skip mode for large blocks.



The proposed QTBT approach in JEM uses more partition types than HEVC in order to adapt the resulting partition tree to the contents of the scene. It is guided in this task by a trade-off between rate reduction and distortion reduction, and as we will see in the next section, this is a computationally expensive task. The whole video frame is first partitioned into equally sized (up to   256 × 256  ) CTUs, and each CTU is then further partitioned into CUs based on the scene contents, i.e., the time needed to process a whole CTU depends on the complexity of the underlying scene in each CTU. A summary of the main differences between HEVC and JEM related to picture partitioning is shown in Table 1.




2.2. Spatial Prediction


In order to be able to capture the finer edge directions presented in natural videos, the directional intra-modes in JEM have been extended from 33, as defined in HEVC, to 65. The addition of planar and DC modes gives a total of 67 different prediction modes for JEM. These denser directional intra-prediction modes (see Figure 4) are applied to all PU sizes and both luma and chroma intra-predictions.



The partitioning schema described in the previous section is directed by a rate-distortion optimization (RDO) algorithm that recursively searches for the best possible partitioning schema in terms of an R/D estimation. This algorithm tries all directional intra-modes for each of the possible partitions, (i.e., no partitioning, vertical partitions, horizontal partitions and quadtree partitions), at each recursion level, to find the one with the lowest cost. For a CTU in which the underlying scene is smooth, this recursion ends rapidly, and the number of trials for the 67 directional modes is therefore much lower than if the CTU belongs to a highly textured area within the scene. Thus, the computational effort is not evenly distributed over the CTUs in a video frame, and depends on the content of the scene.



In JEM, the list of most probable modes (MPMs) is extended from the three used in HEVC to six, and the selection procedure for these modes is also changed. In HEVC, the method proposed in [18] was adopted in the standard for building the MPMs list. The 35 intra-modes are divided into two groups: three MPMs and 32 remaining modes. The three MPMs are derived based on the modes of the PUs to the left of and above the current PU. The new procedure followed in JEM [19] uses five neighbors of the current PU: left, above, above left, below left and above right, as shown in Figure 5 [19].



The improvements in JEM described in the following paragraphs, which increase the complexity of the encoder, can also lead to a load imbalance when parallel processing the slices of a frame.



In addition to the changes in the JEM encoder mentioned above, there are also differences in the entropy coding of the MPM list between HEVC and JEM, as explained in [17,19], which lead to a reduction of the contexts used in the entropic encoder to signal the MPM index from nine to three, corresponding to the vertical, horizontal or non-angular class MPM modes.



The interpolation filters are also changed in JEM with respect to HEVC [15]. In HEVC, a two-tap linear interpolation filter is used to generate the intra-prediction block in the directional prediction modes (i.e., excluding the planar and DC predictors). In the JEM, four-tap intra-interpolation filters are used for directional intra-prediction filtering. Cubic interpolation filters are used for blocks smaller than or equal to 64 samples, and Gaussian interpolation filters are used for larger blocks. The filter parameters are set based on the block size, and the same filter is used for all modes.



Another improvement to JEM is made in the boundary prediction filters [15]. In HEVC, after the prediction block has been generated for the vertical or horizontal intra-modes, the leftmost column or the top row of the predicted block are adjusted further using the values of the boundary samples. In JEM, the number of boundary samples is increased from one to four (rows or columns) in order to obtain the predicted value using a two-tap filter (for the first and last angular modes, corresponding to intra-modes 2 and 34 in HEVC) or a three-tap filter (for modes between intra-modes 3–6 and 30–33 in HEVC), as shown in the example in Figure 6.



In JEM, the results of the intra-prediction planar mode are also improved by including a position-dependent intra-prediction component (PDPC) method that processes a specific combination of the unfiltered boundary reference samples with the filtered ones, thus improving the perceived quality of the predicted block when the planar mode is used. This process uses different weights and filter sizes (three-tap, five-tap, seven-tap) based on the block size.



To reduce some of the redundancy that remains after the prediction process between the luma and chroma components, JEM uses cross-component linear model (CCLM) prediction. In this process, the chroma samples are predicted based on the reconstructed down-sampled luma samples of the same CU, using a linear model for square blocks. For non-square blocks, additional down-sampling is needed to match the shorter boundary. There are two CCLM modes: single- and multiple-model CCLM modes (MMLM). In the single-model CCLM mode, JEM employs only one linear model to predict the chroma samples, while in MMLM, there can be two models. In MMLM, the models are built based on two groups of boundary samples that serve as a training set for deriving the linear models [15]. A summary of the main differences between HEVC and JEM related to spatial prediction is shown in Table 2.





3. Parallel Approaches


Slices are fragments of a frame formed by correlative (in raster scan order) CTUs (see Figure 7). These are regions of the same frame that can be decoded (and also encoded) independently, which offers a valid parallelization approach for video encoding and decoding processes. However, slice independence has a drawback in that the existing redundancy between data belonging to different slices cannot be exploited, and thus the coding efficiency in terms of the R/D performance decreases. Moreover, slices are composed of a header and data, and although this is useful in terms of providing an encoded video sequence with error resilience features (since the loss of a single slice does not prevent the rest of the slices in the same frame from being properly decoded), the inclusion of a header in each slice also causes a decrease in the R/D performance.



Based on the slice partitioning of the JEM video encoder, each video frame is divided into as many slices as threads to be spawned. The number of threads in the parallel region can be set as a parameter or can be obtained depending on the current state of the computer system. Hence, the number of threads (and consequently the number of slices), and the slice size are computed before starting the encoding process. In this work, we have developed two algorithms, the first of which requires synchronization processes while the second is a completely asynchronous algorithm.



3.1. Synchronous Algorithm: JEM-SP-Sync


Algorithm 1 shows the parallel algorithm, called JEM-SP-Sync, which includes synchronization processes. In Algorithm 1, the size of the slice is first computed in numbers of CTUs. To do this, we initially compute the number of horizontal (  F r W i d t h  ) and vertical (  F r H e i g h t  ) CTUs, and the total number of CTUs (  N o C T U s  ) available in a frame, which will depend on the video resolution. It is worth noting that both the right-hand and bottom CTUs in the frame may be incomplete (see lines 4 and 8). Furthermore, since the slices may not have the same number of CTUs, the algorithm sets the size of the last slice as equal to or smaller than the size of the rest of the slices in order to achieve a better load balance (lines 13–18).



Before starting the encoding process of the whole video sequence, each thread computes the CTUs of the slice assigned to that thread, which always remains the same throughout the encoding process (lines 20–26). The encoding process starts by reading the frame to be encoded and storing it in memory. This initial process is performed by a single thread, and a synchronization point is therefore needed to ensure that the process waits until the frame is available (line 30). In a similar way, the reconstructed frame is also stored in the shared memory. This task is carried out by each individual thread after encoding the assigned slice, meaning that another synchronization point is required before applying the “loop filter” process (line 32). The encoded video data stream (i.e., the bit stream) is organized into network abstraction layer units (NALUs), where each NALU is a packet containing an integer number of bytes. To finish the encoding process, the NALUs corresponding to each slice must be written in the correct order to form the final bit stream (line 35). It is worth mentioning that the slice-based parallel strategy for HEVC proposed in [20] obtained good speed-ups when all slices had the same number of CTUs, or differed by a maximum of a single CTU. However, this behavior changes greatly when the JEM encoder is used. As explained in Section 2, changes to the coding procedure introduced in the JEM with respect to HEVC result in significant differences in computational cost when encoding different CTUs. Note that this load imbalance is mainly due to the intrinsic characteristics of the video content.








	Algorithm 1 JEM-SP-Sync: Slice-based parallel algorithm with synchronization processes.



	
	  1:

	
Set   N o T   to the number of threads (equal to the number of slices)




	  2:

	
procedure Compute the number of CTUs per frame




	  3:

	
      N o H z C T U s = F r W i d t h / C T U S i z e  




	  4:

	
    if   F r W i d t h % C T U S i z e ! = 0   then




	  5:

	
          N o H z C T U s + +  




	  6:

	
    end if




	  7:

	
      N o V r C T U s = F r H e i g h t / C T U S i z e  




	  8:

	
    if   F r H e i g h t % C T U S i z e ! = 0   then




	  9:

	
          N o V r C T U s + +  




	10:

	
    end if




	11:

	
      N o C T U s = N o H z C T U s ∗ N o V r C T U s  




	12:

	
end procedure




	13:

	
procedure Compute the number of CTUs per slice




	14:

	
      N o C T U s S l i c e = N o C T U s / N o T h r e a d s  




	15:

	
    if   N o C T U s % N o T h r e a d s ! = 0   then




	16:

	
          N o C T U s S l i c e + +  




	17:

	
    end if




	18:

	
end procedure




	19:

	
IN PARALLEL (NoT):




	20:

	
procedure Assign the dimms of the slice(  T i d  )




	21:

	
      i n i C T  U  T i d   = T i d ∗ N o C T U s S l i c e  




	22:

	
      e n d C T  U  T i d   = i n i C  U  T i d   + N o C T U s S l i c e  




	23:

	
    if   T i d = = ( N o T − 1 )   then




	24:

	
          e n d C T  U  T i d   = N o C T U s − 1  




	25:

	
    end if




	26:

	
end procedure




	27:

	
for  i = 1   to   N u m F r a m e s I n S e q u e n c e   do




	28:

	
    Single thread:




	29:

	
        Read frame i it in global memory.




	30:

	
    Synchronization point #1




	31:

	
    Encode Slice (  i n i C T  U  T i d     to   e n d C T  U  T i d    )




	32:

	
    Synchronization point #2




	33:

	
    Apply the loop filter process to whole frame




	34:

	
    Generate NALUs




	35:

	
    Ordered:




	36:

	
        Write NALUS to bitstream.




	37:

	
end for












Figure 8 shows graphically the structure of the synchronous parallel algorithm JEM-SP-Sync. As explained in Algorithm 1, each thread (  T x  ) always processes the same slice (  S x  ) in all frames. Before starting the processing of a new frame, the threads must synchronize (Sync) to compose the bitstream of the last frame (line 35 of Algorithm 1).




3.2. Asynchronous Algorithm: JEM-SP-ASync


To solve the load imbalance drawback, we designed a parallel algorithm called JEM-SP-ASync, as shown in Algorithm 2, which does not use any type of synchronization during the overall encoding process. The calculation of both the number of CTUs per frame and the number of CTUs per slice (line 3) is identical to that in Algorithm 1 (lines 2–18). Before starting the parallel region, the dimensions of all slices are calculated (lines 3–10) and stored in memory, which will be configured as shared memory (the iniCTUs and endCTUs arrays) since these values will be used by all threads. At the beginning of the parallel region, the first slice to be encoded by every thread is set (line 12) based on the thread identifier (  T i d  ). However, the mapping of slices to threads will change for every new frame, following a round-robin-like scheduling (lines 24–27). For this reason, each thread must update the CTUs to be encoded when starting the encoding of a new frame (lines 15 and 16). Since there are no synchronization points, the encoded NALUs must be stored in shared memory.



When the encoding process for the slice is complete, each thread checks whether there is a frame for which all of the slices are encoded; if so, this thread stores the complete encoded frame in the bit stream. This procedure should be performed within a parallel critical region (lines 20–23). The proposed mapping of slices to threads included in Algorithm 2 provides an automatic load balancing mechanism without the need for synchronization points or a coordinating process. By alternating the coding slice for each thread from one frame to another, the computational cost per thread tends to balance, with a greater probability as the number of frames to be encoded increases.



In the asynchronous algorithm, shown in Figure 9, there are no synchronization points; to compose the bit stream, each thread after processing a slice checks if all the slices of the frame following the last fully encoded one are already encoded, and in that case the thread will compose that frame and remove the stored data. This process (line 17 in Algorithm 2) does not involve any synchronization point. Furthermore, each thread (  T x  ) processes a different slice (  S x  ) in each frame.








	Algorithm 2 JEM-SP-ASync: Slice-based parallel algorithm without synchronization processes.



	
	  1:

	
Set   N o T   to the number of threads (equal to the number of slices)




	  2:

	
  N o C T U s   and   N o C T U s S l i c e   computed as in Algorithm JEM-SP-Sync




	  3:

	
procedure Compute dimmensions of all slices




	  4:

	
    for   i = 0   to   ( N o T − 2 )   do




	  5:

	
            i n i C T U s [ i ] = i ∗ N o C T U s S l i c e  




	  6:

	
            e n d C T U s [ i ] = ( i + 1 ) ∗ N o C T U s S l i c e − 1  




	  7:

	
    end for




	  8:

	
      i n i C T U s [ N o T − 1 ] = ( N o T − 1 ) ∗ N o C T U s S l i c e  




	  9:

	
      e n d C T U s [ N o T − 1 ] = N o C T U s − 1  




	10:

	
end procedure




	11:

	
IN PARALLEL (NoT):




	12:

	
   i d S l i c e = = T i d   




	13:

	
for   i = 1   to   N u m F r a m e s I n S e q u e n c e   do




	14:

	
    Read slice   i d S l i c e   from frame i in private memory.




	15:

	
      c u r r e n t I n i C T U = i n i C T U s [ i d S l i c e ]  




	16:

	
      c u r r e n t E n d C T U = e n d C T U s [ i d S l i c e ]  




	17:

	
    Encode Slice (  c u r r e n t I n i C T U   to   c u r r e n t E n d C T U  )




	18:

	
    Apply the loop filter process to own slice




	19:

	
    Store NALU(s) in global memory




	20:

	
    critical:




	21:

	
    if there are any fully encoded frames then




	22:

	
            Write all NALUS of that frame to bitstream.




	23:

	
    end if




	24:

	
      i d S l i c e + +  




	25:

	
    if   i d S l i c e > ( N o T − 1 )   then




	26:

	
          i d S l i c e = 0  




	27:

	
    end if




	28:

	
end for














4. Experimental Results


The reference software used in our experiments was JEM-7.0rc1 [21], and the parallel algorithms were developed and tested using the GCC v.4.8.5 compiler [22] and OpenMP [23]. The shared memory platform used consisted of two Intel XEON X5660 hexacores, with up to 2.8 GHz and 12 MB cache per processor, and 48 GB of RAM. The operating system used as CentOS Linux 5.6 for x86/64-bit systems.



The proposed algorithms were tested for the video sequences listed in Table 3, each of which had a different resolution and a different frame rate. In all of the experiments, we used the same number of frames to be encoded (120) for all video sequences. Hence, the number of seconds to be encoded varied depending on the frame rate of the video sequence tested. We used a small number of frames for encoding in order to evaluate the load balancing capability of the JEM-SP-ASync algorithm (Algorithm 2). Note that as the number of frames to be encoded increases, the automatic load balancing method of Algorithm 2 is expected to improve, since it is statistically more likely that the computational cost per thread will be balanced. The values of the quantization parameter (QP) used were 37, 32, 27 and 22.



Before addressing the efficiency of the parallel algorithms described in Section 3, we analyze the theoretical load balance index, which will depend on both the resolution of the video sequence and the number of slices (i.e., the number of threads). In all of the experiments, the CTU size was set to 128, based on common testing conditions [24]. Table 4 shows the dimensions of the different video resolutions tested, in numbers of CTUs of   128 × 128   pixels. As mentioned above, there may be incomplete CTUs at the right-hand and bottom edges of the video sequence. This occurs when the number of horizontal/vertical CTUs is not an integer, as shown in Table 4. This is the primary source of potential load imbalance, even if the computational costs associated with different CTUs are similar.



Table 5 shows the theoretical size of the slices, in number of CTUs, required to obtain a balanced load. As previously explained for Algorithm 1, when the number of CTUs per dimension is not an integer, the size is rounded up to the next integer value; otherwise, the number of slices would not match the number of threads.



Table 6 shows the size differences, in numbers of CTUs, between the last slice and the other slices in the same frame. As can be seen, when 12 slices are used in the HD video sequence, the difference reaches nine CTUs. This is the second source of potential load imbalance, and as in the previous case, this holds even if the computational costs associated with different CTUs are similar. In addition, the use of a given number of threads is not recommended in certain cases. For example, when 11 threads are used in the   1280 × 720   video sequence (60 CTUs in Table 6), all slices have six CTUs while the last has none, meaning that it will remain idle throughout the encoding process.



The third and final source of potential load imbalance depends on the encoding complexity of JEM, which does not depend on the number of CTUs but on the intrinsic characteristics of the intra-prediction, which may be affected by the CTU contents. As explained in Section 2, this load imbalance cannot be predicted, as it depends on the intrinsic characteristics of the video content to be encoded, which modifies the amount of processing required to encode each CTU.



To show that domain decomposition using slices does not ensure that the load is balanced, we experimentally obtained the computational cost of each slice for the sequences listed in Table 3. Table 7, Table 8, Table 9 and Table 10, show the experimental percentages of the computational cost assigned to each slice for the Park Scene, Four People, Party Scene and BQ Square video sequences, respectively. These tables include different numbers of slices per frame setup for each video sequence, and show the relative computation time required by each slice at different compression rates (QPs). As can be observed, none of these schemes achieve correct load balancing, regardless of whether or not the volume of data assigned to each process is balanced.



Table 11 shows the computation times (in seconds) needed to encode 120 frames using the AI coding mode for all video sequences tested, and the average computation time per frame for all QPs tested. As can be seen, the sequential algorithm required an average of 14 min to encode a frame of the Park Scene video sequence, meaning that 28.2 h would be needed to encode the 120 frames of the video sequence (five seconds of video).



Table 12 and Table 13 show the parallel efficiency and the computational times, respectively, of the JEM-SP-Sync algorithm for the BQ Square, Party Scene, Four People and Park Scene video sequences encoded at four QP values (22, 27, 32, 37). The computation times were obtained using OpenMP functions and the parallel efficiency, in percentage, was calculated according to Equation (1).


  E f f i c i e n c y =   S e q u e n t i a l _ t i m e   P a r a l l e l _ t i m e ∗ N o T   ∗ 100  



(1)







The JEM-SP-Sync algorithm, which includes synchronization points, generally obtains good parallel efficiency when few threads are used (set by NoT value), but does not have good scalability, meaning that its efficiency degrades as the number of threads increases. The high computational cost of the JEM video encoder means that if the load is not perfectly balanced, the parallel performance is strongly affected. In this case, and as mentioned above, the load imbalance may be caused by differences in slice sizes, by some slices having incomplete CTUs, or by the difference in the intrinsic complexity of the CTUs in the coding process in JEM. As shown in Table 7, Table 8, Table 9 and Table 10, the computational cost is not balanced despite the quasi-balanced domain decomposition according to the volume of data assigned to each processor. The load imbalance is due to the nature of the data, i.e., the content of each CTU. Since the JEM-SP-Sync algorithm is synchronous, when a thread has completed the processing of the assigned CTUs of one frame, it must wait in an idle state until the rest of threads also complete the assigned CTUs, which in turn decreases parallel efficiency, as shown in Table 12.



The second algorithm, JEM-SP-ASync, was developed to avoid the use of synchronization processes, and can improve the parallel efficiency if load balancing is achieved. The process implemented in this algorithm to balance the load assigns a different slice to each thread depending on the frame to be encoded, thus providing automatic load balancing. Table 14 and Table 15 show the parallel efficiency and the computational times obtained by the JEM-SP-ASync algorithm for all video sequences tested here. The results confirm that the automatic load balancing process implemented in the JEM-SP-ASync algorithm works correctly and shows very good scalability, especially compared to the JEM-SP-Sync algorithm (Table 12).



It should be noted that in order to develop both algorithms, several procedures of the reference software had to be modified. The number of modified processes is greater in JEM-SP-ASync than in JEM-SP-Sync. However, none of these changes affect the encoding processes implemented in the reference software. Obviously, in the reference software, the encoded slices are totally independent, which is necessary in order to develop parallel algorithms without modifying the standard encoding process. We detected that slice encoding depends on the order in which it is encoded. That is, when the slices are independently encoded in a disordered way, there is a small change in the reference software. In any case, regardless of the order of encoding of the slices, the slices are totally independent. Table 16 and Table 17 show the bit rate and PSNR values for the sequential and parallel algorithms, respectively. As can be seen, the differences between the two types of algorithm are almost negligible, although the bit rate is slightly lower and the PSNR slightly better in the parallel algorithm. This is because in the reference software, the initial values of some of the variables that slightly modify the intra-prediction procedure vary from one slice to the next, whereas in our parallel algorithms, these variables have the same initial values for all slices.




5. Conclusions


Some of the most important features of the JEM video encoder in relation to intra-prediction have been briefly described here. These features focus on reducing the bitrate in order to minimize the bandwidth required for transmission. These new features cause a dramatic increase in the computational cost of encoding compared with previous video encoder standards, including HEVC. The parallel algorithms developed here make use of slices to implement domain decomposition; however, if the domain decomposition does not allow the volume of data assigned to each process to be perfectly balanced, the high computational cost causes significant cost imbalances. Moreover, a perfect balance of the data to be encoded by each process also does not ensure load balancing, unlike in the case of the HEVC encoder. In the JEM approach, it is not guaranteed that perfect domain decomposition gives rise to a perfect computational load balance. The JEM-SP-Async parallel algorithm was proposed to solve these drawbacks, which, as explained above, did not arise in previous standards. The automatic computational cost balancing system included in the design of the proposed parallel algorithms was validated based on the experimental results. These results show that the average value of efficiency rose from 71.3% to 93.4% when the JEM-SP-ASync algorithm was used instead of the JEM-SP-Sync algorithm. This significantly improved the parallel scalability, e.g., average efficiency, by coding the FOUR video sequence using 12 processes, which increased from 51.6% to 88.8%. These results were obtained by encoding only 120 frames (corresponding to 2.4 or 5 s, depending on the frame rate of the video sequence), and demonstrate correct load balancing even for short video sequences.




List of Acronyms
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	–

	
AVC—Advanced Video Coding




	–

	
CB—Coding Blocks




	–
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	–
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	–
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Figure 1. Division of a 1280 × 720 pixel frame into CTUs: 240 (20 × 12). 
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Figure 2. HEVC QT partition schema and the relationship between CU, PU and TU partitioning. 
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Figure 3. JEM QTBT partition schema. 
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Figure 4. Extended (red) prediction modes in JEM [17]. 
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Figure 5. MPMs: neighbors of the current PU in JEM. 






Figure 5. MPMs: neighbors of the current PU in JEM.



[image: Algorithms 14 00320 g005]







[image: Algorithms 14 00320 g006 550] 





Figure 6. Examples of limit prediction filters for intra-modes corresponding to modes 30–34 in HEVC [15]. 
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Figure 7. Division of a full-HD frame (1920 × 1080 pixels) into 10 slices of 51 CTUs each. 
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Figure 8. JEM-SP-Sync: Graphical scheme of the slice-based synchronous parallel algorithm. 
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Figure 9. JEM-SP-ASync: Graphical scheme of the slice-based asynchronous parallel algorithm. 
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Table 1. Differences between HEVC and JEM with respect to picture partitioning.






Table 1. Differences between HEVC and JEM with respect to picture partitioning.





	Characteristics
	HEVC
	JEM





	CTU size
	   64 × 64   
	   256 × 256   



	CTU partition
	Quad-Tree with separate

tress for CU, PU and TU
	Quad-Tree+Binary-Tree

QTBT (shared by CU, PU, TU)



	Inter-Prediction
	No bi-directional
	Bi-directional allowed

for   4 × 8   and   8 × 4   sizes



	Max transform unit size
	   32 × 32   
	   128 × 128   
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Table 2. Differences between HEVC and JEM with respect to the spatial prediction.






Table 2. Differences between HEVC and JEM with respect to the spatial prediction.





	Characteristics
	HEVC
	JEM





	Intra-modes
	33
	67



	List MPMs
	3
	6



	N° of Neighbors for MPMs derivation
	2
	5



	Interpolation filters
	2-tap Linear
	4-tap Cubic or Gaussian



	Boundary filter samples
	1
	4
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Table 3. Video sequences.






Table 3. Video sequences.





	Video Seq.
	Acronym
	Resolution
	Rate (Hz)
	N. Frames
	Time (s)





	Park Scene
	PARK
	1920 × 1080
	24
	120
	5



	Four People
	FOUR
	1280 × 720
	60
	120
	2



	Party Scene
	PART
	832 × 480
	50
	120
	2.4



	BQ Square
	BQSQ
	416 × 240
	60
	120
	2










[image: Table] 





Table 4. Number of 128 × 128 CTUs for each video sequence resolution.
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Resolution

	
Horizontal CTUs

	
Vertical CTUs

	
Number of CTUs






	
1920 × 1080

	
15

	
15

	
8.4

	
9

	
135




	
1280 × 720

	
10

	
10

	
5.6

	
6

	
60




	
832 × 480

	
6.5

	
7

	
3.8

	
4

	
28




	
416 × 240

	
3.25

	
4

	
1.9

	
2

	
8
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Table 5. Number of CTUs per slice.






Table 5. Number of CTUs per slice.





	

	
Number of Slices (and Threads)




	
N. CTUs

	
2

	
4

	
5

	
7

	
8

	
10

	
11

	
12






	

	
Slice size (in CTUs)




	
135

	
67.5

	
33.8

	
27.0

	
19.3

	
16.9

	
13.5

	
12.3

	
11.3




	
60

	
30.0

	
15.0

	
12.0

	
8.6

	
7.5

	
6.0

	
5.5

	
5.0




	
28

	
14.0

	
7.0

	
5.6

	
4.0

	
3.5

	
2.8

	
2.5

	
2.3




	
8

	
4.0

	
2.0

	
1.6

	
1.1

	
1.0

	
0.8

	
0.7

	
0.7




	

	
Slice size (in CTUs) rounded up




	
135

	
68

	
34

	
27

	
20

	
17

	
14

	
13

	
12




	
60

	
30

	
15

	
12

	
9

	
8

	
6

	
6

	
5




	
28

	
14

	
7

	
6

	
4

	
4

	
3

	
3

	
3




	
8

	
4

	
2

	
2

	
2

	
1

	
1

	
1

	
1
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Table 6. Difference in size of the last slice (in CTUs).
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Number of Slices (and Threads)






	
Number of CTUs

	
2

	
4

	
5

	
7

	
8

	
10

	
11

	
12




	

	
Diff. in Size of the Last Slice




	
135

	
−1

	
−1

	
0

	
−5

	
−1

	
−5

	
−8

	
−9




	
60

	
0

	
0

	
0

	
−3

	
−4

	
0

	
−6

	
0




	
28

	
0

	
0

	
−2

	
0

	
−4

	
−2

	
−5

	
−8




	
8

	
0

	
0

	
−2

	
−6

	
0

	
−2

	
-3

	
−4
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Table 7. Computational cost per slice for Park Scene video sequence.
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Slice

	

	

	

	

	

	

	

	

	

	






	
size

	
QP

	
(0–68)

	
(68–135)

	

	

	

	

	

	

	




	
68

	
22

	
53%

	
47%

	

	

	

	

	

	

	




	
27

	
53%

	
47%

	

	

	

	

	

	

	




	
32

	
53%

	
47%

	

	

	

	

	

	

	




	
37

	
53%

	
47%

	

	

	

	

	

	

	




	

	

	
(0–45)

	
(45–90)

	
(90–135)

	

	

	

	

	

	




	
45

	
22

	
37%

	
36%

	
28%

	

	

	

	

	

	




	
27

	
37%

	
36%

	
28%

	

	

	

	

	

	




	
32

	
37%

	
35%

	
27%

	

	

	

	

	

	




	
37

	
37%

	
36%

	
27%

	

	

	

	

	

	




	

	

	
(0–34)

	
(34–68)

	
(68–102)

	
(102–135)

	

	

	

	

	




	
34

	
22

	
27%

	
27%

	
29%

	
18%

	

	

	

	

	




	
27

	
27%

	
26%

	
29%

	
17%

	

	

	

	

	




	
32

	
27%

	
26%

	
30%

	
16%

	

	

	

	

	




	
37

	
28%

	
25%

	
31%

	
16%

	

	

	

	

	




	

	

	
(0–27)

	
(27–54)

	
(54–81)

	
(81–108)

	
(108–135)

	

	

	

	




	
27

	
22

	
22%

	
21%

	
22%

	
23%

	
13%

	

	

	

	




	
27

	
22%

	
21%

	
22%

	
23%

	
12%

	

	

	

	




	
32

	
22%

	
21%

	
22%

	
24%

	
11%

	

	

	

	




	
37

	
23%

	
19%

	
23%

	
26%

	
10%

	

	

	

	




	

	

	
(0–23)

	
(23–46)

	
(46–69)

	
(69–92)

	
(92–115)

	
(115–135)

	

	

	




	
23

	
22

	
18%

	
20%

	
17%

	
19%

	
18%

	
7%

	

	

	




	
27

	
17%

	
21%

	
17%

	
20%

	
19%

	
6%

	

	

	




	
32

	
18%

	
21%

	
16%

	
21%

	
19%

	
6%

	

	

	




	
37

	
18%

	
20%

	
16%

	
22%

	
19%

	
5%

	

	

	




	

	

	
(0–20)

	
(20–40)

	
(40–60)

	
(60–80)

	
(80–100)

	
(100–120)

	
(120–135)

	

	




	
20

	
22

	
15%

	
17%

	
17%

	
15%

	
17%

	
16%

	
4%

	

	




	
27

	
15%

	
17%

	
17%

	
15%

	
17%

	
15%

	
4%

	

	




	
32

	
15%

	
17%

	
17%

	
15%

	
18%

	
15%

	
3%

	

	




	
37

	
16%

	
17%

	
16%

	
16%

	
18%

	
14%

	
3%

	

	




	

	

	
(0–17)

	
(17–34)

	
(34–51)

	
(51–68)

	
(68–85)

	
(85–102)

	
(102–119)

	
(119–135)

	




	
17

	
22

	
14%

	
14%

	
13%

	
14%

	
14%

	
15%

	
13%

	
4%

	




	
27

	
13%

	
14%

	
13%

	
14%

	
14%

	
16%

	
13%

	
4%

	




	
32

	
14%

	
14%

	
12%

	
14%

	
14%

	
16%

	
12%

	
4%

	




	
37

	
14%

	
14%

	
12%

	
13%

	
14%

	
17%

	
12%

	
3%

	




	

	

	
(0–15)

	
(15–30)

	
(30–45)

	
(45–60)

	
(60–75)

	
(75–90)

	
(90–105)

	
(105–120)

	
(120–135)




	
15

	
22

	
12%

	
13%

	
12%

	
12%

	
11%

	
12%

	
13%

	
11%

	
4%




	
27

	
12%

	
13%

	
12%

	
12%

	
11%

	
12%

	
13%

	
11%

	
4%




	
32

	
12%

	
13%

	
12%

	
12%

	
11%

	
13%

	
13%

	
10%

	
3%




	
37

	
12%

	
14%

	
12%

	
11%

	
11%

	
13%

	
14%

	
10%

	
3%
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Table 8. Computational cost per slice for Four People video sequence.
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Slice

	

	

	

	

	

	

	

	

	






	
size

	
QP

	
(0–30)

	
(30–60)

	

	

	

	

	

	




	
30

	
22

	
56%

	
44%

	

	

	

	

	

	




	
27

	
56%

	
44%

	

	

	

	

	

	




	
32

	
56%

	
44%

	

	

	

	

	

	




	
37

	
57%

	
43%

	

	

	

	

	

	




	

	

	
(0–20)

	
(20–40)

	
(40–60)

	

	

	

	

	




	
20

	
22

	
31%

	
52%

	
17%

	

	

	

	

	




	
27

	
30%

	
54%

	
15%

	

	

	

	

	




	
32

	
31%

	
54%

	
15%

	

	

	

	

	




	
37

	
32%

	
54%

	
14%

	

	

	

	

	




	

	

	
(0–15)

	
(15–30)

	
(30–45)

	
(45–60)

	

	

	

	




	
15

	
22

	
25%

	
31%

	
32%

	
11%

	

	

	

	




	
27

	
25%

	
31%

	
34%

	
10%

	

	

	

	




	
32

	
26%

	
31%

	
34%

	
9%

	

	

	

	




	
37

	
27%

	
31%

	
33%

	
9%

	

	

	

	




	

	

	
(0–12)

	
(12–24)

	
(24–36)

	
(36–48)

	
(48–60)

	

	

	




	
12

	
22

	
19%

	
24%

	
29%

	
19%

	
8%

	

	

	




	
27

	
18%

	
25%

	
30%

	
20%

	
8%

	

	

	




	
32

	
18%

	
26%

	
29%

	
19%

	
7%

	

	

	




	
37

	
19%

	
26%

	
29%

	
19%

	
7%

	

	

	




	

	

	
(0–10)

	
(10–20)

	
(20–30)

	
(30–40)

	
(40–50)

	
(50–60)

	

	




	
10

	
22

	
14%

	
18%

	
24%

	
27%

	
11%

	
5%

	

	




	
27

	
13%

	
18%

	
25%

	
28%

	
10%

	
5%

	

	




	
32

	
13%

	
18%

	
26%

	
29%

	
10%

	
5%

	

	




	
37

	
14%

	
18%

	
25%

	
28%

	
10%

	
5%

	

	




	

	

	
(0–9)

	
(9–18)

	
(18–27)

	
(27–36)

	
(36–45)

	
(45–54)

	
(54–60)

	




	
9

	
22

	
12%

	
16%

	
22%

	
22%

	
17%

	
8%

	
3%

	




	
27

	
12%

	
16%

	
23%

	
22%

	
17%

	
7%

	
3%

	




	
32

	
12%

	
16%

	
23%

	
22%

	
17%

	
7%

	
3%

	




	
37

	
13%

	
16%

	
23%

	
22%

	
17%

	
7%

	
2%

	




	

	

	
(0–8)

	
(8–16)

	
(16–24)

	
(24–32)

	
(32–40)

	
(40–48)

	
(48–56)

	
(56–60)




	
8

	
22

	
11%

	
15%

	
16%

	
19%

	
22%

	
8%

	
6%

	
2%




	
27

	
11%

	
15%

	
17%

	
19%

	
23%

	
8%

	
6%

	
2%




	
32

	
12%

	
15%

	
17%

	
18%

	
23%

	
7%

	
5%

	
2%
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Table 9. Computational cost per slice for Party Scene video sequence.






Table 9. Computational cost per slice for Party Scene video sequence.





	
Slice

	

	

	

	

	

	

	

	






	
size

	
QP

	
(0–14)

	
(14–28)

	

	

	

	

	




	
14

	
22

	
52%

	
48%

	

	

	

	

	




	
27

	
51%

	
49%

	

	

	

	

	




	
32

	
51%

	
49%

	

	

	

	

	




	
37

	
51%

	
49%

	

	

	

	

	




	

	

	
(0–10)

	
(10–20)

	
(20–28)

	

	

	

	




	
10

	
22

	
36%

	
40%

	
24%

	

	

	

	




	
27

	
35%

	
41%

	
23%

	

	

	

	




	
32

	
35%

	
42%

	
22%

	

	

	

	




	
37

	
35%

	
43%

	
22%

	

	

	

	




	

	

	
(0–7)

	
(7–14)

	
(14–21)

	
(21–28)

	

	

	




	
7

	
22

	
25%

	
27%

	
27%

	
21%

	

	

	




	
27

	
24%

	
27%

	
28%

	
21%

	

	

	




	
32

	
24%

	
27%

	
29%

	
19%

	

	

	




	
37

	
25%

	
26%

	
30%

	
19%

	

	

	




	

	

	
(0–6)

	
(6–12)

	
(12–18)

	
(18–24)

	
(24–28)

	

	




	
6

	
22

	
22%

	
22%

	
23%

	
20%

	
12%

	

	




	
27

	
22%

	
22%

	
24%

	
20%

	
12%

	

	




	
32

	
21%

	
21%

	
25%

	
20%

	
12%

	

	




	
37

	
21%

	
21%

	
25%

	
20%

	
13%

	

	




	

	

	
(0–5)

	
(5–10)

	
(10–15)

	
(15–20)

	
(20–25)

	
(25–28)

	




	
5

	
22

	
18%

	
19%

	
19%

	
21%

	
15%

	
8%

	




	
27

	
17%

	
19%

	
19%

	
23%

	
14%

	
8%

	




	
32

	
17%

	
19%

	
19%

	
24%

	
13%

	
9%

	




	
37

	
17%

	
19%

	
18%

	
24%

	
13%

	
9%

	




	

	

	
(0–4)

	
(4–8)

	
(8–12)

	
(12–16)

	
(16–20)

	
(20–24)

	
(24–28)




	
4

	
22

	
15%

	
14%

	
16%

	
15%

	
18%

	
11%

	
12%




	
27

	
14%

	
14%

	
15%

	
15%

	
19%

	
11%

	
12%




	
32

	
14%

	
15%

	
14%

	
15%

	
20%

	
10%

	
12%




	
37

	
14%

	
15%

	
13%

	
15%

	
21%

	
9%

	
12%
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Table 10. Computational cost per slice for BQ Square video sequence.






Table 10. Computational cost per slice for BQ Square video sequence.





	
Slice Size

	
QP

	
(0–4)

	
(4–8)

	

	

	

	

	

	






	
4

	
22

	
56%

	
44%

	

	

	

	

	

	




	
27

	
57%

	
43%

	

	

	

	

	

	




	
32

	
58%

	
42%

	

	

	

	

	

	




	
37

	
61%

	
39%

	

	

	

	

	

	




	

	

	
(0–3)

	
(3–6)

	
(6–8)

	

	

	

	

	




	
3

	
22

	
51%

	
31%

	
18%

	

	

	

	

	




	
27

	
51%

	
31%

	
18%

	

	

	

	

	




	
32

	
53%

	
29%

	
18%

	

	

	

	

	




	
37

	
56%

	
27%

	
17%

	

	

	

	

	




	

	

	
(0–2)

	
(2–4)

	
(4–6)

	
(6–8)

	

	

	

	




	
2

	
22

	
35%

	
21%

	
26%

	
18%

	

	

	

	




	
27

	
36%

	
20%

	
25%

	
18%

	

	

	

	




	
32

	
38%

	
20%

	
24%

	
18%

	

	

	

	




	
37

	
40%

	
21%

	
22%

	
17%

	

	

	

	




	

	

	
(0–1)

	
(1–2)

	
(2–3)

	
(3–4)

	
(4–5)

	
(5–6)

	
(6–7)

	
(7–8)




	
1

	
22

	
18%

	
18%

	
16%

	
5%

	
13%

	
13%

	
14%

	
4%




	
27

	
20%

	
17%

	
15%

	
5%

	
13%

	
12%

	
14%

	
4%




	
32

	
22%

	
17%

	
15%

	
5%

	
12%

	
12%

	
14%

	
4%




	
37

	
22%

	
17%

	
16%

	
5%

	
11%

	
11%

	
13%

	
4%
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Table 11. Sequential computational times.






Table 11. Sequential computational times.





	

	

	
Time (s.)

	
Time per Frame (s.)






	
Video

seq.

	
Reso-

lution

	
QP

22

	
QP

27

	
QP

32

	
QP

37

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
PARK

	
1920 × 1080

	
163,395

	
114,688

	
78,010

	
50,474

	
1362

	
956

	
650

	
421




	
FOUR

	
1280 × 720

	
46,805

	
33,763

	
24,928

	
18,272

	
390

	
281

	
208

	
152




	
PART

	
832 × 480

	
43,844

	
36,796

	
29,754

	
22,121

	
365

	
307

	
248

	
184




	
BQSQ

	
416 × 240

	
9896

	
8099

	
6265

	
5010

	
82

	
67

	
52

	
42
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Table 12. Parallel efficiency for Algorithm JEM-SP-Sync.






Table 12. Parallel efficiency for Algorithm JEM-SP-Sync.





	

	

	
Parallel Efficiency






	
Video

sequence

	
NoT

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
85.0%

	
85.2%

	
82.6%

	
79.1%




	
3

	
61.5%

	
61.3%

	
59.4%

	
57.2%




	
4

	
67.6%

	
65.2%

	
62.5%

	
60.3%




	
8

	
61.7%

	
56.7%

	
52.2%

	
51.1%




	
PART

	
2

	
94.1%

	
96.1%

	
96.9%

	
94.1%




	
3

	
77.3%

	
76.3%

	
76.0%

	
75.5%




	
4

	
86.1%

	
83.1%

	
82.4%

	
78.9%




	
5

	
79.6%

	
78.7%

	
75.6%

	
74.2%




	
6

	
73.1%

	
69.0%

	
66.0%

	
64.6%




	
7

	
74.2%

	
70.9%

	
67.8%

	
64.7%




	
8

	
65.4%

	
61.8%

	
59.2%

	
56.8%




	
10

	
72.5%

	
70.4%

	
68.4%

	
67.1%




	
FOUR

	
2

	
88.4%

	
88.1%

	
86.3%

	
85.3%




	
3

	
62.2%

	
60.1%

	
57.9%

	
60.1%




	
4

	
74.5%

	
70.9%

	
70.7%

	
71.5%




	
5

	
65.0%

	
62.9%

	
63.8%

	
65.3%




	
6

	
59.6%

	
56.1%

	
55.1%

	
55.5%




	
7

	
61.0%

	
57.8%

	
57.8%

	
58.3%




	
8

	
55.5%

	
50.2%

	
50.1%

	
51.2%




	
9

	
59.6%

	
56.8%

	
57.0%

	
57.8%




	
10

	
59.5%

	
54.5%

	
54.7%

	
56.3%




	
11

	
53.8%

	
50.1%

	
49.9%

	
50.8%




	
12

	
55.7%

	
51.7%

	
49.5%

	
49.3%




	
PARK

	
2

	
91.7%

	
92.9%

	
92.1%

	
93.9%




	
3

	
87.9%

	
89.0%

	
89.8%

	
91.0%




	
4

	
88.6%

	
88.3%

	
84.3%

	
81.6%




	
5

	
89.8%

	
87.0%

	
84.3%

	
80.1%




	
6

	
82.1%

	
80.0%

	
78.8%

	
78.6%




	
7

	
83.6%

	
82.4%

	
78.0%

	
78.1%




	
8

	
84.5%

	
80.8%

	
77.0%

	
73.1%




	
9

	
86.3%

	
84.1%

	
79.3%

	
78.2%




	
10

	
81.9%

	
77.9%

	
73.3%

	
69.4%




	
11

	
78.5%

	
75.5%

	
72.6%

	
70.2%




	
12

	
77.0%

	
73.2%

	
66.9%

	
63.7%
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Table 13. Computational times (s.) for Algorithm JEM-SP-Sync.






Table 13. Computational times (s.) for Algorithm JEM-SP-Sync.





	

	

	
Computational Time (s.)






	
Video

sequence

	
NoT

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
5882

	
4751

	
3857

	
3215




	
3

	
5415

	
4402

	
3577

	
2964




	
4

	
3694

	
3694

	
3694

	
3694




	
8

	
2026

	
2026

	
2026

	
2026




	
PART

	
2

	
23,305

	
19,153

	
15,346

	
11,753




	
3

	
18,911

	
16,069

	
13,053

	
9763




	
4

	
12,733

	
11,070

	
9030

	
7007




	
5

	
11,012

	
9347

	
7867

	
5964




	
6

	
9991

	
8887

	
7518

	
5703




	
7

	
8445

	
7412

	
6266

	
4882




	
8

	
8384

	
7444

	
6287

	
4864




	
10

	
6051

	
5224

	
4349

	
3295




	
FOUR

	
2

	
26,479

	
19,172

	
14,441

	
10,709




	
3

	
25,103

	
18,716

	
14,362

	
10,141




	
4

	
15,705

	
11,898

	
8809

	
6385




	
5

	
14,407

	
10,732

	
7818

	
5595




	
6

	
13,085

	
10,034

	
7547

	
5484




	
7

	
10,960

	
8348

	
6158

	
4476




	
8

	
10,545

	
8410

	
6218

	
4464




	
9

	
8727

	
6606

	
4860

	
3512




	
10

	
7861

	
6200

	
4558

	
3244




	
11

	
7909

	
6128

	
4546

	
3269




	
12

	
7007

	
5440

	
4194

	
3089




	
PARK

	
2

	
95,117

	
66,946

	
45,846

	
29,237




	
3

	
66,202

	
46,565

	
31,348

	
20,128




	
4

	
49,218

	
35,234

	
25,017

	
16,821




	
5

	
38,857

	
28,583

	
20,025

	
13,708




	
6

	
35,411

	
25,915

	
17,845

	
11,654




	
7

	
29,830

	
21,576

	
15,453

	
10,048




	
8

	
25,811

	
19,243

	
13,695

	
9396




	
9

	
22,458

	
16,426

	
11,831

	
7804




	
10

	
21,319

	
15,965

	
11,511

	
7916




	
11

	
20,207

	
14,978

	
10,567

	
7110




	
12

	
18,894

	
14,159

	
10,507

	
7188
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Table 14. Parallel efficiency for Algorithm JEM-SP-ASync.
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Parallel Efficiency






	
Video

sequence

	
NoT

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
93.1%

	
96.1%

	
95.0%

	
96.7%




	
3

	
93.7%

	
92.6%

	
94.6%

	
95.2%




	
4

	
92.7%

	
92.7%

	
94.8%

	
95.7%




	
8

	
86.2%

	
88.3%

	
88.8%

	
88.9%




	
PART

	
2

	
98.3%

	
98.6%

	
99.4%

	
99.0%




	
3

	
95.3%

	
96.3%

	
97.1%

	
97.9%




	
4

	
94.4%

	
95.1%

	
96.7%

	
96.4%




	
5

	
93.3%

	
95.2%

	
94.6%

	
93.2%




	
6

	
92.6%

	
93.4%

	
93.0%

	
92.2%




	
7

	
92.0%

	
91.2%

	
94.2%

	
93.3%




	
8

	
91.3%

	
91.3%

	
92.1%

	
92.5%




	
10

	
91.9%

	
90.0%

	
93.7%

	
90.8%




	
FOUR

	
2

	
97.9%

	
98.9%

	
97.2%

	
98.8%




	
3

	
95.2%

	
94.5%

	
94.3%

	
95.2%




	
4

	
95.0%

	
92.3%

	
94.1%

	
94.9%




	
5

	
97.8%

	
93.9%

	
94.7%

	
94.6%




	
6

	
93.9%

	
93.1%

	
92.7%

	
91.6%




	
7

	
95.3%

	
93.8%

	
93.3%

	
93.5%




	
8

	
94.1%

	
92.2%

	
92.6%

	
91.0%




	
9

	
95.0%

	
93.8%

	
92.9%

	
93.0%




	
10

	
92.6%

	
91.2%

	
91.8%

	
90.0%




	
12

	
89.9%

	
89.5%

	
87.6%

	
88.4%




	
PARK

	
2

	
98.5%

	
98.2%

	
97.4%

	
98.1%




	
3

	
95.4%

	
95.1%

	
93.1%

	
94.7%




	
4

	
94.0%

	
94.2%

	
90.5%

	
94.6%




	
5

	
94.2%

	
95.7%

	
92.9%

	
93.1%




	
6

	
94.7%

	
93.6%

	
89.9%

	
93.4%




	
7

	
93.6%

	
91.2%

	
93.2%

	
94.2%




	
8

	
93.7%

	
93.4%

	
91.8%

	
92.7%




	
9

	
94.2%

	
92.6%

	
91.2%

	
92.9%




	
10

	
93.3%

	
92.4%

	
91.8%

	
89.1%




	
11

	
92.4%

	
92.2%

	
87.9%

	
89.9%




	
12

	
89.5%

	
89.4%

	
88.5%

	
88.5%
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Table 15. Computational times (s.) for Algorithm JEM-SP-ASync.
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Computational Time (s.)






	
Video

sequence

	
NoT

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
5368

	
4215

	
3354

	
2629




	
3

	
3556

	
2915

	
2244

	
1781




	
4

	
2695

	
2695

	
2695

	
2695




	
8

	
1449

	
1449

	
1449

	
1449




	
PART

	
2

	
22,302

	
18,668

	
14,968

	
11,172




	
3

	
15,343

	
12,730

	
10,216

	
7532




	
4

	
11,613

	
9677

	
7693

	
5737




	
5

	
9403

	
7729

	
6288

	
4748




	
6

	
7891

	
6568

	
5332

	
3997




	
7

	
6807

	
5761

	
4513

	
3386




	
8

	
6000

	
5039

	
4040

	
2990




	
10

	
4769

	
4087

	
3176

	
2435




	
FOUR

	
2

	
23,893

	
17,072

	
12,822

	
9247




	
3

	
16,392

	
11,909

	
8811

	
6401




	
4

	
12,311

	
9143

	
6624

	
4811




	
5

	
9569

	
7195

	
5263

	
3862




	
6

	
8306

	
6046

	
4482

	
3325




	
7

	
7019

	
5140

	
3818

	
2791




	
8

	
6220

	
4578

	
3367

	
2509




	
9

	
5473

	
4000

	
2983

	
2182




	
10

	
5057

	
3703

	
2714

	
2029




	
12

	
4341

	
3144

	
2370

	
1723




	
PARK

	
2

	
82,978

	
58,401

	
40,028

	
25,722




	
3

	
57,119

	
40,202

	
27,935

	
17,760




	
4

	
43,445

	
30,449

	
21,543

	
13,332




	
5

	
34,683

	
23,956

	
16,803

	
10,840




	
6

	
28,754

	
20,416

	
14,461

	
9007




	
7

	
24,939

	
17,967

	
11,961

	
7656




	
8

	
21,809

	
15,356

	
10,624

	
6805




	
9

	
19,275

	
13,767

	
9508

	
6034




	
10

	
17,512

	
12,408

	
8499

	
5666




	
11

	
16,084

	
11,304

	
8064

	
5105




	
12

	
15,207

	
10,695

	
7347

	
4750
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Table 16. Comparison of bitrate.






Table 16. Comparison of bitrate.





	

	

	

	
Bitrate (Kbps)

	






	
Video

sequence

	
NoT and

sequence

	
Slice

size

	

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
4

	
Seq.

	
13,024

	
8652

	
5578

	
3474




	
Par.

	
12,579

	
8361

	
5356

	
3370




	
Diff.

	
−3.4%

	
−3.4%

	
−4.0%

	
−3.0%




	
4

	
2

	
Seq.

	
13,366

	
8855

	
5736

	
3563




	
Par.

	
12,640

	
8410

	
5393

	
3398




	
Diff.

	
−5.4%

	
−5.0%

	
−6.0%

	
−4.6%




	
8

	
1

	
Seq.

	
13,508

	
9113

	
5898

	
3644




	
Par.

	
12,826

	
8548

	
5495

	
3483




	
Diff.

	
−5.0%

	
−6.2%

	
−6.8%

	
−4.4%




	
PART

	
2

	
14

	
Seq.

	
45,454

	
28,760

	
17,506

	
9660




	
Par.

	
45,291

	
28,643

	
17,362

	
9675




	
Diff.

	
−0.4%

	
−0.4%

	
−0.8%

	
0.2%




	
4

	
7

	
Seq.

	
46,018

	
29,001

	
17,678

	
9736




	
Par.

	
45,499

	
28,794

	
17,468

	
9750




	
Diff.

	
−1.1%

	
−0.7%

	
−1.2%

	
0.1%




	
8

	
4

	
Seq.

	
46,559

	
29,558

	
17,833

	
9810




	
Par.

	
45,689

	
28,919

	
17,552

	
9814




	
Diff.

	
−1.9%

	
−2.2%

	
−1.6%

	
0.0%




	
FOUR

	
2

	
30

	
Seq.

	
27,225

	
16,817

	
10,498

	
6513




	
Par.

	
26,866

	
16,631

	
10,398

	
6464




	
Diff.

	
−1.3%

	
−1.1%

	
−1.0%

	
−0.8%




	
4

	
15

	
Seq.

	
27,717

	
17,160

	
10,738

	
6671




	
Par.

	
27,182

	
16,871

	
10,575

	
6595




	
Diff.

	
−1.9%

	
−1.7%

	
−1.5%

	
−1.1%




	
8

	
8

	
Seq.

	
28,180

	
17,397

	
10,960

	
6831




	
Par.

	
27,506

	
17,106

	
10,746

	
6719




	
Diff.

	
−2.4%

	
−1.7%

	
−1.9%

	
−1.6%




	
PARK

	
2

	
68

	
Seq.

	
49,209

	
26,911

	
14,227

	
7118




	
Par.

	
49,084

	
26,873

	
14,222

	
7132




	
Diff.

	
−0.3%

	
−0.1%

	
0.0%

	
0.2%




	
4

	
34

	
Seq.

	
49,288

	
26,987

	
14,284

	
7154




	
Par.

	
49,218

	
26,983

	
14,301

	
7182




	
Diff.

	
−0.1%

	
0.0%

	
0.1%

	
0.4%




	
8

	
17

	
Seq.

	
49,452

	
27,135

	
14,395

	
7232




	
Par.

	
49,468

	
27,166

	
14,436

	
7271




	
Diff.

	
0.0%

	
0.1%

	
0.3%

	
0.5%
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Table 17. Comparison of PSNR.






Table 17. Comparison of PSNR.





	

	

	

	
PSNR (dB)

	






	
Video

sequence

	
NoT and

slices

	
Slice

size

	

	
QP

22

	
QP

27

	
QP

32

	
QP

37




	
BQSQ

	
2

	
4

	
Seq.

	
42.7616

	
38.6735

	
34.9935

	
31.4817




	
Par.

	
42.9435

	
38.8538

	
35.2465

	
31.7929




	
Diff.

	
0.4%

	
0.5%

	
0.7%

	
1.0%




	
4

	
2

	
Seq.

	
42.6559

	
38.5985

	
34.9282

	
31.3503




	
Par.

	
42.9435

	
38.8538

	
35.2465

	
31.7929




	
Diff.

	
0.7%

	
0.7%

	
0.9%

	
1.4%




	
8

	
1

	
Seq.

	
42.6338

	
38.4881

	
34.7934

	
31.2209




	
Par.

	
42.9312

	
38.8410

	
35.2348

	
31.7715




	
Diff.

	
0.7%

	
0.9%

	
1.3%

	
1.8%




	
PART

	
2

	
14

	
Seq.

	
42.1050

	
38.0071

	
34.2767

	
30.7610




	
Par.

	
42.1459

	
38.0528

	
34.4646

	
30.9932




	
Diff.

	
0.1%

	
0.1%

	
0.5%

	
0.8%




	
4

	
7

	
Seq.

	
42.0037

	
37.9629

	
34.188

	
30.6701




	
Par.

	
42.1434

	
38.0467

	
34.455

	
30.9788




	
Diff.

	
0.3%

	
0.2%

	
0.8%

	
1.0%




	
8

	
4

	
Seq.

	
41.8932

	
37.7962

	
34.1187

	
30.5650




	
Par.

	
42.1409

	
38.0440

	
34.4525

	
30.9748




	
Diff.

	
0.6%

	
0.7%

	
1.0%

	
1.3%




	
FOUR

	
2

	
30

	
Seq.

	
45.1104

	
42.6808

	
39.9899

	
37.1100




	
Par.

	
45.1828

	
42.7848

	
40.1469

	
37.3029




	
Diff.

	
0.2%

	
0.2%

	
0.4%

	
0.5%




	
4

	
15

	
Seq.

	
45.0631

	
42.6244

	
39.9007

	
36.9927




	
Par.

	
45.1802

	
42.7800

	
40.1387

	
37.2943




	
Diff.

	
0.3%

	
0.4%

	
0.6%

	
0.8%




	
8

	
8

	
Seq.

	
45.0372

	
42.6250

	
39.8448

	
36.9191




	
Par.

	
45.1785

	
42.7756

	
40.1334

	
37.2841




	
Diff.

	
0.3%

	
0.4%

	
0.7%

	
1.0%




	
PARK

	
2

	
68

	
Seq.

	
42.4621

	
39.5641

	
36.8565

	
34.2881




	
Par.

	
42.5295

	
39.6277

	
36.9372

	
34.3736




	
Diff.

	
0.2%

	
0.2%

	
0.2%

	
0.2%




	
4

	
34

	
Seq.

	
42.4194

	
39.5221

	
36.8147

	
34.2439




	
Par.

	
42.5264

	
39.6253

	
36.9344

	
34.3672




	
Diff.

	
0.3%

	
0.3%

	
0.3%

	
0.4%




	
8

	
17

	
Seq.

	
42.3886

	
39.4936

	
36.7939

	
34.2173




	
Par.

	
42.5215

	
39.6188

	
36.9288

	
34.3554




	
Diff.

	
0.3%

	
0.3%

	
0.4%

	
0.4%
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