
algorithms

Article

Matheuristics and Column Generation for a Basic Technician
Routing Problem

Nicolas Dupin 1,* , Rémi Parize 2 and El-Ghazali Talbi 3

����������
�������

Citation: Dupin, N.; Parize, R.; Talbi,

E.-G. Matheuristics and Column

Generation for a Basic Technician

Routing Problem. Algorithms 2021, 14,

313. https://doi.org/10.3390/

a14110313

Academic Editor: Frank Werner

Received: 1 September 2021

Accepted: 25 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Université Paris-Saclay, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN),
91405 Orsay, France

2 Independent Researcher, 75509 Paris, France; remi.parize@polytechnique.org
3 CNRS UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille,

Université Lille, F-59000 Lille, France; el-ghazali.talbi@univ-lille.fr
* Correspondence: nicolas.dupin@universite-paris-saclay.fr

Abstract: This paper considers a variant of the Vehicle Routing Problem with Time Windows, with
site dependencies, multiple depots and outsourcing costs. This problem is the basis for many
technician routing problems. Having both site-dependency and time window constraints lresults
in difficulties in finding feasible solutions and induces highly constrained instances. Matheuristics
based on Mixed Integer Linear Programming compact formulations are firstly designed. Column
Generation matheuristics are then described by using previous matheuristics and machine learning
techniques to stabilize and speed up the convergence of the Column Generation algorithm. The
computational experiments are analyzed on public instances with graduated difficulties in order to
analyze the accuracy of algorithms for ensuring feasibility and the quality of solutions for weakly to
highly constrained instances. The results emphasize the interest of the multiple types of hybridization
between mathematical programming, machine learning and heuristics inside the Column Generation
framework. This work offers perspectives for many extensions of technician routing problems.

Keywords: optimization; operations research; mathematical programming; mixed integer linear
programming; Dantzig–Wolfe decomposition; column generation; matheuristics; hybrid heuristics;
parallel algorithms; workforce scheduling and routing; vehicle routing problems

1. Introduction

If mathematical programming and especially Mixed Integer Linear Programming
(MILP) are powerful frameworks for modeling a vast diversity of NP-hard combinatorial
optimization problems, including complex real-world optimization problems, the resolu-
tion with exact methods such as the Branch and Bound (B&B) algorithm is limited in prac-
tice for large instances of real-world applications [1]. Metaheuristics find good solutions
of large optimization problems without optimality or quality proofs. Highly constrained
instances of optimization problems are a major bottleneck of metaheuristics. Metaheuristics
and mathematical programming approaches have complementary advantages and draw-
backs, and it results in their hybridization, called matheuristics [2,3]. Some matheuristics
use exact methods to solve large neighborhoods of an exponential size, which tends to have
fewer local minimums of a better quality than by using small neighborhoods [2,4]. Solving
the exact neighborhoods allows studying the quality of implied local minimums; such
intermediate results are of interest for selecting which types of neighborhoods have to be
carefully implemented in a local search heuristic [4]. Matheuristics allow designing many
variants of heuristic operators; it takes profit of parallel implementation techniques [5].
Having also other complementary advantages and drawbacks, machine learning (ML)
techniques are also recently considered in such hybridization schemes [6,7]. Note that such
hybridization can also provide dual bounds for large instances of optimization problems,
using aggregation or decomposition techniques to compute dual bounds for heuristically

Algorithms 2021, 14, 313. https://doi.org/10.3390/a14110313 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3775-5629
https://orcid.org/0000-0003-4549-1010
https://doi.org/10.3390/a14110313
https://doi.org/10.3390/a14110313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14110313
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14110313?type=check_update&version=2

Algorithms 2021, 14, 313 2 of 39

reduced or decomposed problems with a proof that a dual bound of the original problem
is computed despite the heuristic reduction [8,9]. ML techniques are useful in this context
for selecting the promising dual bound among many alternatives [9].

Such methodology is investigated for a variant of the Vehicle Routing Problem with
Time Window (VRPTW), seeking to service customers in defined time windows with a fleet
of vehicles. VRPTW is a widely studied problem in the operations research literature due
to its numerous applications in transportation, distribution and logistics, with significant
academic works in MILP formulations and metaheuristics [10]. Among the exact methods,
Column Generation (CG) approaches are efficient for a large class of vehicle routing
problems and are actively studied nowadays [11,12]. CG approaches can be extended to
CG heuristics or used in any hybrid heuristic to tackle large instances of vehicle routing
problems [13–15]. Recently, the contribution of ML techniques for solving CG sub-problems
is studied for some vehicle routing problems [16,17].

This paper considers a variant of the VRPTW which is a common basis for many tech-
nician routing problems, as in [18,19]. Site-dependency constraints model that customers
can be served by only a subset of vehicles, which is related to the skills of technicians to
engage in interventions. Contrary to VRPTW problems where each request must be served,
we consider the possibility of realizing a subset of interventions by considering outsourcing
costs. We consider, furthermore, multi-depot constraints: Technicians are starting and
finishing their tours in different depots. Matheuristics are investigated and compared to
local search and exact approaches. New instances are proposed with relations between
subsets of instances to analyze the impact of highly to weakly constrained instances in the
solving capabilities of different optimization algorithms. This paper investigates how to
design hybrid algorithms to solve this optimization problem efficiently.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the problem statement and its state of the art. Section 3 presents two types of compact
MILP formulations for the problem. Section 4 designs constructive and local search
matheuristics by using compact MILP formulations. Section 5 investigates the hybridization
of matheuristics with CG techniques for an extended MILP formulation. The computational
results are analyzed in Section 6. In Section 7, the conclusions of this works are highlighted,
drawing the perspectives raised by our contributions.

2. Problem Statement and Related Work

This section defines our technician routing problem, situates the closest problems
from the literature and presents state of the art methods for these related problems, fo-
cusing particularly on mathematical programming and meta-heuristic approaches and
their hybridization.

2.1. Problem Statement and Notation

The variant of VRPTW considered in this paper, namely TRPTW for Technician Rout-
ing Problem with Time Windows, is described by using the terminology from [18]. The
routing optimization concerns a set of I vehicles with J requests and denoted jobs or in-
terventions, in different locations of customers. Interventions require the specific skills of
technicians and have time window constraints on the arrival time of the technicians. In
the following developments, a technician denotes equivalently a vehicle, as if each vehicle
is driven by a single technician, and interventions require only one technician with the
required qualifications. One may consider equivalently a technician team, which is defined
a priori in the optimization, sharing the same vehicle and working together in the interven-
tions, and there is no splitting of a technician team for realizing different interventions at
the same time. The resulting skills of the technician team are mathematically equivalent
to a skill set and a subset of interventions that can be realized, as if we have a fictive
single technician with these resulting skills. For the sake of simplifying the presentation,
the following developments consider one technician by vehicle, with skills associated to

Algorithms 2021, 14, 313 3 of 39

this technician. Furthermore, technicians are starting and finishing their tour in defined
depots, with time-window constraints for leaving and going back to the depot.

It is possible to plan only a subset of interventions; a penalty in the objective function
is associated for each request that is not served. The objective function to minimize is the
total length of vehicles’ routes, adding penalties for the interventions that are not realized.
Such objective function may be observed as a weighted sum optimization, considering
the bi-objective minimization of routing costs and unserved requests. Here, a weighted
sum optimization makes sense with relevant values of penalties. Some interventions may
be outsourced and realized by other companies, and penalties correspond to outsourcing
costs. Some interventions may be urgent, and they are preferred be realized within the
time horizon with high penalty, whereas other interventions can be postponed for another
day and have low penalties. Having high and equal penalties for jobs is equivalent to
a hierarchical optimization that firstly maximizes the number of jobs that are planned
and then minimizing the route lengths. Mathematically, it is feasible for the optimization
problem to have empty routes and only penalization. However, finding routes that serve
all the requests is a NP-hard decision problem.

The notation for sets, indexes and input parameters is gathered in Table 1. The
jobs are indexed with j ∈ J = [[1, J]]. The intervention of job j has to begin in time
window [Tmin

j , Tmax
j], its duration is Lj and its outsourcing cost is Pj. For the sake of

unifying notation, we indexed technicians with i ∈ I = [[J + 1, J + I]] and defined nodes
n ∈ N = I ∪J = [[1, J + I]] to index the different locations of jobs and depots for departure
and arrival of technicians’ routes. Dn,n′ and Tn,n′ denote, respectively, the kilometric
distance and transportation time from the location of node n to its of node n′. Note
that distances are calculated with Euclidean rules so that we have triangle inequalities
Dn,n′ + Dn′ ,n′′ > Dn,n′′ and Tn,n′ + Tn′ ,n′′ > Tn,n′′ . Technician i ∈ I starts from his depot
after Tstart

i and must be back at his depot before Tend
i . Ji denotes the subset of jobs that

technician i can complete.

Table 1. Notation, sets, indexes and input parameters.

I Number of technicians (or equivalently vehicles).

J Number of jobs (or equivalently customers, requests, or request location).

n ∈ N = [[1, J + I]] Index and set for nodes, a node is a technician depot or a job location.

j ∈ J = [[1, J]] Index and set for customers, the jobs for the technicians.

i ∈ I = [[J + 1, J + I]] Index and set for technicians.

Ji Subset of jobs that technician i ∈ I can complete with skill constraints.

Ni = Ji ∪ {i + J} Subset of nodes that technician i ∈ I can visit (depot and skill constraints).

Lj Duration (amount of time) of job j ∈ J .

Pj Cost penalization if job j ∈ J is not planned (or outsourcing cost).

Ki Upper bound for the number of jobs that technician i ∈ I can process.

Dn,n′ Distance from the location of node n ∈ N to the location of node n′ ∈ N .

Tn,n′ Transportation time from the location of node n ∈ N to the location of node n′ ∈ N .

[Tstart
i , Tend

i] Working time window for technician i ∈ I , to leave and come back to the depot.

[Tmin
j , Tmax

j] Time window for the beginning of job j ∈ J .

N.B: [[a, b]] = [a, b] ∩Z denotes integer intervals in this table.

2.2. Related Problems in the Literature
2.2.1. Related Vehicle Routing Problems

Some classical variants of VRPTW are sub-cases of TRPTW. In the instances of the
literature, the VRPTW considers complete graphs: Each vehicle can visit each city [20]. The
simplest variant of VRPTW considering that some jobs can be realized by only a subset

Algorithms 2021, 14, 313 4 of 39

of vehicles is the Site-dependent VRPTW (SDVRPTW) [21]. The extension of the VRPTW
considering several depots is known as Multi-depot VRPTW (MDVRPTW) [22]. There is one
major difference between TRPTW and a site dependent MDVRPTW: contrary to VRPTW
extensions, it is feasible to serve any subset of the requests for TRPTW by considering
outsourcing costs, i.e., penalties for interventions that are not realized. MDVRPTW and
SDVRPTW are sub-problems of TRPTW considering the same transportation graph, high
and equal outsourcing costs for jobs and upper bounds of any route visiting each customer
(which can be calculated easily): If the optimal cost of such TRPTW is greater than the
upper bound, the original MDVRPTW or SDVRPTW is not feasible; otherwise, we have an
optimal solution visiting each customer. We note that such outsourcing costs or equivalently
fictive vehicles with the penalization cost are used by CG approaches for VRPTW problems
to ensure feasibility for CG iterations [23].

Skill VRPTW is another variant of the VRPTW inspired by technician routing applica-
tions [24,25]. Skills model the ability of vehicles (or technicians) to proceed to specific loca-
tions (or intervention with specific qualification). Skills are equivalent to site-dependencies,
and skills VRPTW and SDVRPTW have the same set of feasible solutions. Skill VRPTW is
an extension of SDVRPTW, and costs of vehicle usage are increasing with skills, whereas
costs depend only on traveled distance for SDVRPTW. Note that Heterogeneous Fleet
VRPTW (HFVRPTW), where vehicles are differentiated in the travel time and costs, is a
common extension for skills VRPTW and SDVRPTW [26]. Indeed, site-dependent con-
straints can be considered with infinite costs (or a trivial upper bound of any feasible
solution) in a HFVRPTW. For the sake of having realistic solutions with real-world ap-
plication, optimal routes in skill VRPTW can be unbalanced; some works consider load
balancing in the objective function [27]. This results in a multi-objective extension and
minimizing routing costs conjointly with the maximization of route balance for better
equity and robustness relative to uncertainty [28]. Recently, an extension of skill VRPTW
was proposed by taking into account that intervention time depends on the skill levels [29].

2.2.2. Related Technician Routing Problems

TRPTW can be observed as a simple case of many technician routing problems. A large
diversity of technician routing problems was studied, with many variants of additional
constraints [30]. The technician routing and scheduling problem (TRSP) and workforce
scheduling and routing problem (WSRP) denote such extensions of TRPTW [31,32].

A rich technician routing problem was proposed for the ROADEF Challenge 2007,
organized by the French Operations Research society (ROADEF) [18]. This technician
routing problem optimizes the daily assignment of technicians into teams, of teams to tasks
and of teams to daily routes in a multi-period problem; site-dependency is implied by
the teams composition. There are also precedence constraints among interventions; for
instance, some interventions must be preceded by the delivery of some equipment. The
TRSP considered by [31,32] considers a single period version of the ROADEF Challenge
2007 by analyzing the impact of team building optimization. Recently, the VeRoLog Solver
Challenge (VSC) 2018–2019 proposed a rich technician routing and scheduling problem
with truck routing and team building optimization [19]. VSC differs from the ROADEF
Challenge 2007 with additional scheduling constraints for technicians. For instance, a single
technician may perform at most one tour per day and must not perform tours on more
than five consecutive days.

In the TRSP considered by [33], vehicles are equivalent to technicians with no team
building optimization, which defines site-dependencies. This TRSP includes additional
request requirements for spare parts and tools that can be seen as non-renewable resources.
Technicians collect tools and spare parts from a central depot at any time during the
execution of their routes. Recently, an extension was provided considering a mix of
conventional and electric vehicles, which requires considering recharging constraints [34].

Multi-period and dynamic technician routing problems consider many variants of
scheduling constraints. The technician routing problem with experience-based service

Algorithms 2021, 14, 313 5 of 39

times addresses the possibility that technicians learn and improve their skills with an
impact on performance [35]. Dynamic versions correspond to realistic situations where
new requests, including emergency interventions, arise during the intervention tour and
requires re-optimization [36,37]. Urgent interventions may induce considering the min-
imization of service disruption over a time horizon, which is different from standard
VRPTW objective function [38].

2.3. Algorithms for Solving Related Problems
2.3.1. Solving Related Vehicle Routing Problems

Vehicle routing problems such as SDVRPTW and MDVRPTW are known to be effi-
ciently solved by optimality using CG techniques and Branch and Price (B&P) or Branch,
Cut and Price (B&C&P) [11]. Recent trends solve a large class of vehicle routing problems
in a generic way [12]. A crucial point is to solve CG sub-problems as efficiently as possible,
with significant works solving the shortest path problems with resource constraints with
labelling algorithms [39,40]. However, very few specific works concerned the application
of the CG algorithm for the SDVRPTW variant. SDVRPTW was recently studied in uni-
fied B&C&P applying for HFVRPTW [26]. Specific works in mathematical programming
concerned HFVRP [41]. A unified and efficient approach was provided with the dual
ascent method with Lagrangian bounds for HFVRP, SDVRP and MDVRP [42]. A B&C&P
algorithm for the multi-depot HFVRPTW was provided by [43].

Metaheuristics are widely used to solve vehicle routing problems [44]. As with exact
methods, recent trends develop generic heuristics for a unified formulation of several
extensions of VRPTW. A unified formulation of MDVRPTW and SDVRPTW is given
by [20]. Such unified extension was solved efficiently firstly with tabu search [20], secondly
with Adaptive Large Neighborhood Search (ALNS) [45] and lastly with a hybrid Genetic
Algorithm (GA) with adaptive diversity management [46]. Ant Colony Optimization
(ACO) is another population metaheuristic that was proven efficient for some vehicle
routing problems related to technician routing [47].

Additional constraints in rich VRPTW induce difficulties for metaheuristics, and
matheuristics are widely used in such contexts, especially CG matheuristics [14]. The
authors of [15] provide a taxonomy of matheuristics for vehicle routing problems: Decom-
position approaches are constructive heuristics solving iteratively sub-problems as in [48];
improvement heuristics apply local search heuristics with large MILP neighborhoods as
in [49]; and CG-based heuristics derive primal heuristics from Lagrangian relaxations or CG
and B&P algorithms as in [13,50]. The hybridization of ML techniques with CG algorithm
was proven efficient for some vehicle routing problems [16,17].

2.3.2. Solving Technician Routing Problems

Efficient algorithms for solving technician routing problems are similar to the ones
for VRPTW extensions. Since recently, technician routing problems were mostly solved
by heuristics. An ALNS algorithm was proposed to solve a TRSP as a SDVRPTW exten-
sion [31]. A simple Iterated Local Search (ILS) has been proposed for the same problem
and showed excellent results in short solving time [32]. Population meta-heuristics showed
also excellent results for technician routing problems. Multi-attribute VRPTW is an ex-
tension that is also a basis for technician routing problems; hybrid GAs were shown to
be efficient [51]. A Particle Swarm Optimization (PSO) algorithm was proven efficient for
solving a TRSP [52]. An ACO heuristic was designed to solve efficiently a multi-period
workforce scheduling and routing problem with dependent tasks [53].

Recent progresses in MILP solving allow considering exact methods for technician
routing problems with CG algorithms, B&P and B&C&P approaches [54–56]. In the previ-
ously mentioned TRP with site-dependencies, two approaches considered a matheuristic
using an MILP set covering formulations [33,57]. In such cases, an MILP computation
selects routes among routes that are calculated by heuristics, similarly with the master
problem of the CG algorithm. In such cases, the columns are generated by using only

Algorithms 2021, 14, 313 6 of 39

heuristics and without using reduced costs, a parallel ALNS for [33] and an hybridization
of ALNS and Variable Neighborhood Descent (VND) for [57].

Due to the large diversity of specific technician routing problems that were stud-
ied [30], we focus in the following on algorithms solving VSC 2018–2019 [19] and the
ROADEF Challenge 2007 [18]. For such problems, several studies deal with exactly the
same optimization problem and public instances; it allows relevant comparisons. The
winner of VSC 2018–2019 used a trajectory local search heuristic, which is a hybridization
of ALNS and Variable Neighborhood Search (VNS) [58]. A similar quality of results was
obtained with a set partitioning matheuristic “Columnwise neighborhood search” [59].
Competitive results were also obtained with a population hyper-heuristic [60] and by using
an iterated local search using several neighborhood search operators and destroy/repair
heuristics [61].

The winner of the ROADEF Challenge 2007 considered a three phase matheuristic [48].
A preprocessing phase estimates the number of technicians required in each team through
the first MILP. Then, a second MILP computes a lower bound allowing job preemption.
Multiple solutions are constructed by iteratively solving a third MILP by matching formu-
lation with different parameter values but without introducing randomness. This approach
was improved after by [62]. Another two-step decomposition matheuristic provided
good results and is ranked fifth [63]. Trajectory heuristics provided also excellent results,
with ranks 2, 3 and 4, local search with multiple neighborhoods and operators for [64],
ALNS for [65] and Greedy randomized adaptive search procedure (GRASP) for [66].

3. MILP Compact Formulations

In this section, two alternative MILP formulations are provided for TRPTW, with cuts
to improve the quality of the Linear Programming (LP) relaxation for a better efficiency of
B&B tree search.

3.1. First MILP Formulations

We define binary variables ui,n,n′ ∈ {0, 1} for each technician i ∈ I and each pair
of nodes (n, n′) ∈ N 2, where ui,n,n′ = 1 if and only if technician i proceeds to node n′

immediately after node n. For each technician i, such definition unifies routes between
jobs locations ui,j,j′ for each pair of jobs (j, j′) ∈ J 2, a route between depot and job location,
respectively, ui,i,j = 1 and ui,j,i = 1, is defined to perform intervention j ∈ J as the first
or last job of the day and ui,i,i = 1 is the case where technician i has no job in his working
day. With such a definition, we need only to consider variables ui,n,n′ for each technician
i ∈ I and each pair of nodes (n, n′) ∈ (Ji ∪ {i})2 = N 2

i , and the other variables are zeros
with skill constraints and definition of departure and arrival depots. Furthermore, we
introduce continuous variables tj by representing the start time for job j, bounded with the
time-windows constraints.

It results in the following MILP compact formulation below. The objective (1) for
minimizing is composed of two linear expressions of variables ui,n,n′ , the total length of
the routes and the penalties for postponed or outsourced jobs j having zero values for
variables ui,n,j for all i ∈ I and n ∈ N . Constraints (3) are implied by the definition of
variables, ui,j,j = 0 for each technician i ∈ I and each job j ∈ J . Constraints (2) are
elementary constraints: Each intervention is realized at most one; it can be postponed or
outsourced if variables ui,n,j are zeros for i ∈ I and n ∈ N . With triangle inequality, it is
sub-optimal to visit a customer twice or more times. Indeed, having triangle inequalities
Dn,n′ + Dn′ ,n′′ > Dn,n′′ and Tn,n′ + Tn′ ,n′′ > Tn,n′′ , removing jobs planned twice, is still
a feasible solution, and it decreases the objective function; there is an optimal solution
allocating exactly one technician per job. Elementarity constraints are necessary here in
the MILP model as multiple visits induce a negative penalization and, thus, a high bonus
in the objective function. Constraints (4) are flow conservation constraints for modelling
routes for technicians: the flow leaving and the flow arriving to a node for technician i
is the same flow that is leaving from the node. Constraints (5) initialize flow constraints;

Algorithms 2021, 14, 313 7 of 39

there is exactly one arc leaving from a depot, and it can be ui,i,i = 1 in the case of an
empty route for technician i so that, in any case, the leaving flow is exactly one. Note that
constraints (4) and (5) imply that ∑n∈Ni

ui,n,i = 1 for all technician i, which is a one value
flow for going back to the depot; such constraints are not necessary. Constraints (2) can be
seen as flow capacity constraints. Constraints (6)–(8) express time windows constraints,
respectively, between two consecutive jobs and for the starting and finishing time of techni-
cians. With constraints (6)–(8), the formulation does not require any sub-tour constraints.
Coefficients M1

j,j′ , M2
i,j and M3

i,j can be chosen as follows: M1
j,j′ = Tmax

j + Lj + Tj,j′ − t̃min
j′ ,

M2
i,j = Tstart

i + Ti,j − t̃min
j and M3

i,j = Tmax
j + Lj + Ti,j − Tend

i .

min
ui,n,n′ ,tj

∑
i∈I

∑
n,n′∈Ni

Dn,n′ui,n,n′ + ∑
j∈J

Pj

(
1−∑

i∈I
∑

n∈Ni

ui,j,n

)
(1)

∀n ∈ Ni, ∑
i∈I

∑
n′∈Ni

ui,n,n′ 6 1 (2)

∀i ∈ I , ∀j ∈ Ji, ui,j,j 6 0 (3)

∀i ∈ I , ∀n ∈ Ni, ∑
n′∈Ni

ui,n,n′ = ∑
n′∈Ni

ui,n′ ,n (4)

∀i ∈ I , ∑
n∈Ni

ui,i,n = 1 (5)

∀j, j′ ∈ J , tj + Lj + Tj,j′ 6 tj′ +

(
1−∑

i∈I
ui,j,j′

)
·M1

j,j′ (6)

∀i ∈ I , ∀j ∈ Ji, Tstart
i + Ti,j 6 tj +

(
1− ui,i,j

)
·M2

i,j (7)

∀i ∈ I , ∀j ∈ Ji, tj + Lj + Ti,j 6 Tend
i +

(
1− ui,j,i

)
·M3

i,j (8)

∀i ∈ I , ∀n, n′ ∈ Ni ui,n,n′ ∈ {0, 1}, tj ∈ [Tmin
j , Tmax

j] (9)

Infeasibilities due to time windows can written directly on variables ui,j,j′ for j, j′ ∈ Ji
by following rules allowing the removal of variables that could be non zeros in the LP
relaxation. If Tmin

j + Tj,j′ + Lj > Tmax
j , then ui,j,j′ = 0; it is not possible to reach intervention

j′ on time after having realized intervention j. If Tstart
i + Ti,j > Tmax

j , it is not possible to

reach location j on time by starting from depot i, then ui,i,j = 0. If Tmin
j + Ti,j + Lj > Tend

i ,
then ui,j,i = 0; it is not possible to reach depot i on time if j is realized by technician i. For
both previous cases, it is actually unfeasible with triangle inequalities that technician i
realizes intervention j; all the variables ui,j,n and ui,n,j can be removed.

If constraints (6)–(8) define integer solutions, such constraints are known to induce
LP relaxations of a poor quality [67]. In the following, cuts are provided to improve
significantly dual bounds without increasing too much the computation time for the dual
bounds. Sub-tour cuts, such as in the Traveling Salesman Problem (TSP), can cut continuous
solutions induced by the "big M" constraints. One can forbid firstly the sub-tours between
two jobs j and j′ with constraints ui,j,j′ + ui,j′ ,j 6 1. Such cuts can be lifted, observing
that cases ui,j,j′ = ui,j′ ,j = 0 are feasible here when the vehicle is not leaving the depot. It
induces tighter cuts.

∀i ∈ I , ∀j < j′ ∈ Ji, ui,j,j′ + ui,j′ ,j 6 1− ui,i,i (10)

Note that it is possible to have ui,j,i = ui,i,j = 1 when a technician does a single
intervention in the route, and previous cuts cannot be extended for j, j′ ∈ Ni.

3.2. Four-Index MILP Formulation with Ordinality

Many alternative MILP formulations can be designed with the formulation variants of
sub-tours in TSP as analyzed in [68]. Similarly to the formulation of Fox–Gavish–Graves

Algorithms 2021, 14, 313 8 of 39

(FGG) [69], variables can be modeled with 4-index variables zi,j,n,k ∈ {0, 1}, such that
zi,j,n,k = 1 if and only if the k-th job (k ∈ [[1, Ki]]) that is operated by technician i is job
j ∈ Ji and then the job (of depot) n ∈ Ni is reached after intervention j. Without time
window constraints and without Ki upper bound on the number of intervention per route,
this would induce a number of variables in O(I × J 3) instead of O(I × J 2) for the last
MILP formulation. A first, the issue will be to analyze if the better quality LP relaxation
compensates the increasing size of the model. The maximum number of interventions in a
day Ki allows having O(K× I × J 2) variables, with K = maxi Ki. With the variables of
the previous formulation, there is the following relation.

∀i ∈ I , ∀j ∈ Ji, ∀n ∈ Ni, ui,j,n =
Ki

∑
k=1

zi,j,n,k (11)

The following MILP formulation models TRPTW with variables zi,j,n,k is as follows.

min
z,t ∑

i∈I
∑

j∈Ji

∑
n∈Ni

Ki

∑
k=1

Dj,nzi,j,n,k + ∑
i∈I

∑
j∈Ji

∑
n∈Ni

Di,jzi,j,n,1 + ∑
j∈J

Pj

1− ∑
i,j′ ,k

zi,j,n,k

 (12)

∀j ∈ J , ∑
n∈Ni

Ki

∑
k=1

∑
i∈I

zi,j,n,k 6 1 (13)

∀i ∈ I , ∀j ∈ Ji,
Ki

∑
k=1

zi,j,j,k 6 0 (14)

∀i ∈ I , ∑
j∈Ji

∑
n∈Ni

zi,j,n,1 6 1 (15)

∀i ∈ I , ∀j ∈ Ji, ∀k ∈ [[1, Ki − 1]], ∑
j′∈Ji

zi,j′ ,j,k = ∑
n∈Ni

zi,j,n,k+1 (16)

∀j, j′ ∈ J , tj + Lj + Tj,j′ 6 tj′ +

(
1−

Ki

∑
k=1

∑
i∈I :j∈Ji

zi,j,j′ ,k)

)
·M1

j,j′ (17)

∀i ∈ I , ∀j ∈ Ji, Tstart
i + Ti,j 6 tj +

(
1− ∑

n∈Ni

zi,j,n,1

)
·M2

i,j (18)

∀i ∈ I , ∀j ∈ Ji, tj + Lj + Ti,j 6 Tend
i +

(
1−

Ki

∑
k=1

zi,j,i,k

)
·M3

i,j (19)

∀j ∈ J , tj ∈ [Tmin
j , Tmax

j] (20)

Note that the objective function is in three parts, and Dj,nzi,j,n,k terms do not count
the distance from the depot to the first jobs of technicians. Constraints (13) are straight-
forwardly equivalent to the previous elementarity constraints (2). Constraints (14) are
implied by the definition of variables, zi,j,j,k = 0 for each technician i ∈ I , j ∈ Ji and
k ∈ [[1, Ki]]. Constraints (15) initialize flow constraints, as in (5); the difference is that flow
initialization is written after the first job, and this flow is not anymore equal to one as there
are no variables indicating straightforwardly if an empty route is chosen. In such case,
all the variables related to the technician are zeros. Constraints (16) are the equivalent
of previous flow constraints (4) for modeling routes for technician; the balance of flow is
here considered regarding the ordinality k. Constraints (17)–(19) express time windows
constraints, respectively, between two consecutive jobs and for starting and finishing time
of technicians, similarly with constraints (6)–(8). Constraint (17) is the same constraint set
as (6) by using relations (11). Constraint (18) is equivalent with (7), observing that j is the
first intervention of technician i if and only if there exist n ∈ Ni such that zi,j,n,1 = 1, which

is equivalent to ∑Ki
k=1 zi,j,i,k = 1. Constraint (19) is equivalent with (8), observing that j is

Algorithms 2021, 14, 313 9 of 39

the last intervention of technician i if and only if there exist k such that zi,j,i,k = 1, which is

equivalent to ∑Ki
k=1 zi,j,i,k = 1.

As in the previous MILP formulation, time window constraints may induce impos-
sible transitions. Relations (11) allows considering the same preprocessing rules than
in the previous MILP formulation. A question is to analyze whether such formula-
tion avoids sub-tours. Actually, feasible continuous sub-tours may occur, for example,
zi,1,2,1 = zi,2,1,2 = zi,1,2,3 = zi,2,i,4 = 0, 5. This configuration avoids paying a distance from 1
to 2, with a sub-tour of size 1. The following cuts can also be added to avoid such situations,
similarly to previous subtour cuts ui,j,j′ + ui,j′ ,j 6 1− ui,i,i.

∀i ∈ I , ∀j ∈ Ji, ∀j′ ∈ Ji,
Ki

∑
k=1

zi,j′ ,j,k +
Ki

∑
k=1

zi,j,j′ ,k 6 1−
Ki

∑
k=1

∑
j′′∈Ji

zi,j′′ ,i,k (21)

Note that ∑Ki
k=1 ∑j′′∈Ji

zi,j′′ ,i,k ∈ {0, 1} is the flow arriving at the arrival depot. It is
zero if and only if technician i has an empty route; it is the equivalent of ui,i,i in the first
MILP formulation.

4. Matheuristics Based on Compact MILP Formulations

In this section, the previous work on MILP compact formulations is applied in order
to design constructive and local search matheuristics.

4.1. MILP Neighborhoods for Local Optimizations

Neighborhoods and heuristic operators can be designed generically from an MILP
formulation defining a sub MILP of reduced size (that can be parametric) and imposing
values relative to some variables. Such local optimization solving sub-MILP are used in
“variable fixing" heuristics (as in [5]) or in Fix-and-Optimize (FO) (as in [70]). In special
cases, heuristic operators and local optimization can be implemented without using MILP
computations; the computational experiments aim to provide results with respect to
designing operators for the TRPTW problem and to select the promising operators that
require careful implementation.

Commonly to the two last MILP formulations, different variable fixing strategies are
processed on assignments xi,j ∈ {0, 1} for i ∈ I , with xi,j = 1 if and only if job j is realized
by technician i. xi,j is binary and a linear expression of previous variables ui,j,n and zi,j,n′ ,k.

∀i ∈ I , ∀j ∈ Ji, xi,j = ∑
n∈Ni

ui,j,n =
Ki

∑
k=1

∑
n′∈Ni

zi,j,n′ ,k ∈ {0, 1} (22)

A constraint xi,j = 0 for a given i ∈ I and j ∈ J imposes that variables ui,j,n, ui,n,j
or zi,j,n,k are zeros for all k and n ∈ N . A constraint xi,j = 1 for a given i ∈ I and
j ∈ J imposes that variables ui′ ,j,n, ui′ ,n,j or zi′ ,j,n,k are zeros for all j′, k and i′ 6= i with
elementarity constraints (2) and (13). Such choices of fixing variables allow having balanced
sub-problems as in divide-and-conquer strategies instead of the straightforward fixing
on original variables ui,j,n and zi,j,n′ ,k, which results in unbalanced sub-problems. This is
denoted with the fixing operator F assign,=.

F assign,=
i,j (b) : xi,j = b, ∀i ∈ I , ∀j ∈ J , ∀b ∈ {0, 1} (23)

A variant is the fixing operator Fassign,6 with inequality constraints. A constraint
xi,j 6 0 is equivalent to xi,j = 0 such as previously described, and a constraint xi,j 6 1
allows another technician to realize job j.

F assign,6
i,j (b) : xi,j 6 b, ∀i ∈ I , ∀j ∈ J , ∀b ∈ {0, 1} (24)

Algorithms 2021, 14, 313 10 of 39

Previous strategies limit the assignments between jobs and technicians. One may wish
to impose some orders in the interventions processed by a given technician. Additional
constraints tj 6 tj′ are little nterest as they are almost always non active in the B&B search
because of the weakness of big M constraints. Hence, a fixing strategy is based on the
implications on the ui,n,n′ or zi,n,n′ ,k variables.

F order
i,j,j′ : ui,j,j′ =

Ki

∑
k=1

zi,j,j′ ,k = 0, ∀i ∈ I , ∀(j, j′) ∈ J 2
i (25)

With many constraints F order
i,j,j′ , it breaks possibilities of sub-tours, which has positive

impacts for the LP relaxation quality and the B&B solving capacities of such reduced MILP.

4.2. Greedy Heuristics Iterating along Technicians

Greedy algorithms for TRPTW can be designed by iterating technician by technician.
For a given technician, a local optimization can minimize the distances and the waiting
times, avoiding holes that can induce scheduling a few number of jobs. Algorithm 1
implements such strategy iterating along technicians with a generic FO strategy where
solutions are encoded as the assignment matrix (xi,j).

Algorithm 1 Greedy FO heuristics iterating along technicians
Input: O an order to iterate among technicians, F a fixing strategy
Initialization: x[i][j] = 0
for each technician i following O :

define the following sub MILP of (1)–(8):
- removing technicians after i in O
- and applying variable fixing strategy F to technicians before i in O with x[i][j]

values
Solve the MILP and update assignment matrix in x

end for
return assignment matrix in x and the solution cost

Variable fixing strategy in the local optimization is a crucial input parameter in
Algorithm 1. Applying F assign,= on the current solution for the previous technicians,
the assignments are kept, and the optimization for the current technician i focus on the
jobs that were not planned previously. In order to not seek to reoptimize a solution that
was previously defined, one may completely remove this optimization and consider only
technician i and the remaining jobs.

By applying F assign,6 on the current solution for the previous technicians, the current
technician can take previously assigned interventions; such situations occur if it improves
the distance cost and it is not possible to assign another job to the current technician that is
still unplanned. To avoid reoptimization of the previous technicians, one may consider the
F order constraints to keep the previous sequence of interventions of the previous technicians
and only reinserting some jobs in the planning of the current technician.

In Algorithm 1, one also defines the order to iterate among the technicians. One may
iterate the following a randomized order. To take into account the multi-skilled technicians,
we iterate following the increasing number of jobs among technicians; the technician can
process with skill constraints so that specialized technicians can process the few jobs they
have the qualification for, and multi-skilled technicians at the end of the heuristic focus
on the jobs that were not previously assigned. This sort of iteration aims to maximize the
chances to realize the maximal number of jobs.

Algorithms 2021, 14, 313 11 of 39

4.3. Greedy Heuristics Iterating among Jobs

Another idea to process a greedy algorithm for the TRPTW is to process jobs by jobs.
Algorithm 2 implements such FO strategy, where parameters include the order to iterate
among jobs and an insertion operator with a maximum number of jobs for the insertion.

Algorithm 2 Greedy FO heuristic iterating along jobs
Input:
- O an order to iterate among jobs,
- n a maximal number of jobs for the insertion,
- Insert, an insertion operator defined with variable fixing strategies F
Initialisation: x[i][j] = 0, jobToPlan = J ,
while jobs are iterated following O :

select J0 ⊂ J , the n next jobs in jobToPlan following O
Insert optimally the jobs from J0 in x calling Insert
remove the n first jobs in jobToPlan following O

end while
return assignment matrix in x and the solution cost

Several insertion operators can be defined:

• K-insertion with order reoptimization: Inserting k chosen jobs in the current plan-
ning MILP and allowing reoptimizing of the order of jobs of a given technician are
equivalent to considering the variable fixing procedure F assign,=

i,j for all the jobs j in
the current planning;

• K-insertion without order reoptimization: By fixing current orders, k chosen jobs can
be inserted in the current planning MILP with the previous variable fixing procedure
and F order

i,j,j′ applying for the jobs and technicians of the current planning;

• 1-insertion without order reoptimization: The previous strategy with special case
k = 1 can be iterated easily without MILP computations. Indeed, considering the best
insertion of a given job in the current planning makes at most I + J possible insertions.
Checking the feasibility of a sequence of job is an earliest date scheduling that applies
only for improving costs in theses I + J possibilities.

Another parameter concerns the sorting rules to consider jobs. The following strategies
can be considered:

• Sorting the jobs by increasing the number of technicians that can process job j with
skill constraints;

• Sorting the jobs by increasing value of the summed time windows where the techni-
cians can process job j;

• Random sorting of jobs can be used to derive GRASP heuristics. We note that we can
hybridize deterministic and random strategies with weighted sums to derive GRASP
strategies from the deterministic order.

4.4. Local Branching Insertions of Jobs

In the previous FO strategy, the insertion order is fixed a priori. Another alternative
is to consider the best insertion among the remaining jobs. Algorithm 3 implements such
a strategy.

With n = 1, the insertion operator can try to insert each job in the current planning
without modifying the order among the previously planned jobs. Enumerating all the
possibilities remains polynomial. MILP optimization can be used at each iteration for
any value of n, fixing the assignments out of jobToPlan and considering the following
constraints, analogously to Local Branching [71].

∀j 6= j0, ∑
i:x̃i,j=0

(1− xi,j) + ∑
i:x̃i,j=1

xi,j 6 n (26)

Algorithms 2021, 14, 313 12 of 39

Additional fixations for variables with MILP optimization can be the order constraints
among the already planned jobs.

Algorithm 3 Best local insertion constructive heuristic
Input:
- n a maximal number of jobs for the insertion,
- F an optional and additional fixing strategy
Initialization: x[i][j] = 0, jobToPlan = J ,
for iter from 1 to

⌈
J
n

⌉
:

insert optimally n jobs of jobToPlan in x
remove the inserted jobs from jobToPlan

end for
return assignment matrix in x and the solution cost

4.5. VND Local Search Matheuristic

Once a feasible solution is built with previous constructive matheuristics; this section
improves the current solution in a local search procedure.

4.5.1. General Algorithm

We present here the general local search algorithm described in Algorithm 4, similarly
to [4]. The neighborhoods are defined here using MILP definitions. MILP neighborhoods
allow exploring large neighborhoods, using recent progresses of MILP solvers, having
fewer and better local optimums than small neighborhoods approaches. Many MILP
neighborhoods can be defined; Algorithm 4 changes systematically the choice of the neigh-
borhood within the local search, similarly with multi neighborhood search approaches.
It induces that a local optimum for the entire local search is a local optimum for all the
neighborhoods considered in Algorithm 4. It ensures having less and better local optimums
than classical local search approaches. The stopping criterion could be a maximal time
limit or a maximal number of iterations or being in a local extremum for all neighborhoods.

Algorithm 4 VND with MILP neighborhoods
Input: an initial solutions, a set and order of neighborhoods to explore
Initialization: currentSol = initSolution, N = initial neighborhood.
while the stopping criterion is not met

define the MILP with incumbent currentSol and the neighborhood N)
define currentSol as warmstart
currentSol = solveMILP(MILP,timeLimit(N))
N = nextNeighborhood(N)

end while
return CurrentSolution

Usually, MILP neighborhoods are defined for small sub-problems where exact B&B
converges quickly to optimality. MILP neighborhoods are defined with three characteristics,
for an efficient MILP neighborhood search includes small time limits without the optimality
guarantee. Parameterization is empirical for a good trade-off between solution quality
and time spent in MILP solving. The current solution is the primal solution given by
the last B&B resolution, and it is also defined as warmstart for the next B&B resolution
to improve the efficiency of B&B primal heuristics, enabling RINS or Local Branching
heuristics from the beginning. This ensures that the solution given by the MILP resolution
is at least as good as the current solution at each iteration. This algorithm is, thus, a steepest
descent algorithm.

Algorithms 2021, 14, 313 13 of 39

4.5.2. MILP Neighborhoods

Multiple types of large neighborhoods can be defined with the variable fixing strategies
previously defined. We consider three main types of neighborhoods:

• N tec
i : For a given technician i, the neighborhood reoptimizes the routing of technician

i considering any job j, even those that were planned in other routes. In other words,
F assign,6

i′ ,j (x) and F order
i,j,j′ (x) are applied on the current solution x for all i′ 6= i and for

all j, j′ ∈ J .
• N pair

i,i′ : For a given pair of technicians i, i′, the neighborhood reoptimizes only the
routing of technicians i and i′ considering only the jobs j planned in the current
solution for i and i′ and the jobs that are not assigned. In other words, the planning of
the other technicians i′′ is not changed, and F assign,=

i,j (x) and F order
i,j,j′ (x) are applied on

the current solution x for all i′′ /∈ {i, i′} and for all j, j′ ∈ J .
• N jobs

J : For J a subset of jobs, planning is reoptimized fixing the assignments and the

order of the jobs in J − J. In other words, F assign,6
i,j (x) and F order

i,j,j′ (x) are applied on
the current solution x for all i and for all j, j′ ∈ J − J.

We note that classical neighborhoods are extended with previous MILP neighbor-
hoods. The 2-opt and k-opt neighborhoods are included in neighborhoods N jobs

J . Insertion
neighborhood, moving a job from one technician route to another, can be provided by N tec

i

or N pair
i,i′ neighborhoods.

4.5.3. Sequence of MILP Neighborhoods

A key point in Algorithm 4 is the sequence of neighborhoods. Applying Algorithm 4
with a single type of neighborhoods allows analyzing the impact of neighborhoods in the
quality and number of local extrema. In this case, different neighborhoods are compared
starting with the same initial solutions and analyzing the different qualities of the local
minimum where the steepest descent local search converges. A traditional idea with
VND is to increase the size of the neighborhoods when a local minimum is reached
for a better compromise between computation time and the local minimum reached.
Having many types of neighborhoods, the stopping criterion is firstly to reach a local
minimum for all the types of neighborhoods. The choice of neighborhoods is nested,
alternating deterministically the order of neighborhoods and stopping the resolution when
no neighborhood can improve the current best solution.

Using neighborhoods N tec
i or N pair

i,i′ , the computations with the single technicians and
the pairs are computed successively in a loop. After such a loop without improvement,
all the classical insertions and 2-opt neighborhoods were tried so that the local minimum
provided is a local minimum for all these classical neighborhoods. Using neighborhoods
N jobs

J , many partitions of jobs can be designed, similarly with POPMUSIC (Partial op-
timization meta-heuristic under special intensification conditions, see [72]). A partition
induces successive computations of N jobs

J along the partition, and several partitions are
computed successively.

4.6. Parallel Heuristics

Parallelization is a key issue for the efficiency of these heuristics. The MILP-VND
local search can be naturally parallelized, exploring several (many) neighborhoods in
parallel. This is particularly interesting in advanced phases of the VND when very few
neighborhoods give improvements and in the last iteration in a local minimum for all
the neighborhoods. The MILP-VND is a pure intensification strategy of local search,
without any diversification. One of the advantage of matheuristic construction of solution is
that many strategies can be designed or parametrized, as in [5]. Combining the matheuristic
of this section is natural in a multi-start heuristic, starting from one solution given by one
of the many constructive matheuristics and improving the solutions with MILP-VND local

Algorithms 2021, 14, 313 14 of 39

search, similarly to [73]. In this case, parallelization is more useful for parallelizing the
multi-start heuristic in a high level team-work parallelization.

5. Dantzig–Wolfe Reformulation and CG Matheuristics

We investigate now the extended reformulation of Danzig–Wolfe derived from the
previous compact formulation and how to derive heuristics.

5.1. Extended Formulation and Column Generation

Similarly to [11], we have an extended MILP formulation by enumerating all possible
(and non empty) routes Pi for each technician i. The cost of a route p ∈ Pi is denoted Li,p.
The variables of the MILP formulation are zi,p ∈ {0, 1} such that zi,p = 1 if route p ∈ Pi is
chosen, and yj ∈ {0, 1} with yj = 1 if job j is not planned. For all j ∈ J and p ∈ Pi, we
used the characteristics function 11j∈p ∈ {0, 1} defined with 11j∈p = 1 if and only if job j is
realized in route p. TRPTW can be written as the following extended MILP.

min
y,z ∑

i∈I
∑

p∈Pi

Li,pzi,p + ∑
j∈J

Pjyj (27)

s.t : ∑
i∈I

∑
p∈Pi

11j∈pzi,p + yj > 1 ∀j ∈ J , (28)

∑
p∈Pi

zi,p 6 1 ∀i ∈ I , (29)

zi,p, yj ∈ {0, 1} (30)

Contraints (28) express that a job j is either postponed in the case yj = 1 or at least
in one of the selected routes. Note that, here, elementarity is not a necessary condition; it
is implied by the optimality with triangle inequality and not necessary for the validity of
the MILP formulation contrary to previous compact MILP formulations. Constraints (29)
enforce that at most one route is chosen for each technician, and it is possible to have only
zeros for technicians that are not leaving their depots.

The difficulty is that Pi cannot be enumerated. The LP relaxation of this extended
MILP formulation is solved by the CG algorithm, adding iteratively new routes. By having
a subset of routes Ci ⊂ Pi, the Restricted Master Problem (RMP) denotes the previous LP
relaxation applied to a subset of variables.

RMP(Ci) = min
zi,p ,yj>0

∑
i∈I

∑
p∈Ci

Li,pzi,p + ∑
j∈J

Pjyj

s.t : ∑
i∈I

∑
p∈Ci

11j∈pzi,p + yj > 1 (π) ∀j ∈ J ,

∑
k∈Ci

zi,p 6 1 (σ) ∀i ∈ I ,

(31)

π and σ denote, respectively, the dual variables associated with the constraints (28)
and (29). The RMP is always feasible as it contains a solution with empty routes for
technicians and the maximal number of penalization. Using strong duality, the dual
problem of continuous RMP (31) is feasible and has the same value as the primal problem.

RMP(Ci) = max
π,σ>0

∑
j∈J

πj −∑
i∈I

σi (32)

∀i ∈ I , ∀p ∈ Ci, −σi + ∑
j∈J

11j∈pπj 6 Li,p (zi,p) (33)

∀j ∈ J , πj 6 Pj (yj) (34)

In the dual areas, cuts have to be added until there is no violation of constraints (33).
The reduced cost associated to a route (i, p) appears; RCi,p = Li,p + σi −∑j∈J 11j∈pπj. Vari-
ables must be added in the RMP if their reduced cost is strictly negative. If the remaining
variables have a positive reduced cost, the RMP gives the LP relaxation of (27)–(29). This

Algorithms 2021, 14, 313 15 of 39

negativity question among a non-enumerable set is formulated as an optimization problem,
minimizing the reduced costs of the columns that are not in ∪iCi. These negativity ques-
tions are decomposed for all technicians, RC∗ = mini RC∗i , where RC∗i is the minimization
problem over the possible routes for technician i, and RC∗ > 0 ensures that the RMP gives
the LP relaxation of (27)–(29). The computations of RC∗i are independent for the technicians
and can be formulated using MILP formulations of Section 4.

RC∗i = minu σi + ∑
n,n′∈Ni

(Dn,n′ − πj)un,n′

s.t : ∀j ∈ J , ∑
n∈Ni

un,j = ∑
n′∈Ni

uj,n′ 6 1

∑
j∈Ji

ui,j = 1

∀j ∈ Ji, uj,j 6 0

∀j, j′ ∈ Ji, tj + Lj + Tj,j′ 6 tj′ +
(

1− uj,j′
)
·M3

i,j
j ∈ J , Tstart

i + Ti,j 6 tj +
(
1− ui,j

)
·M2

i,j
j ∈ J , tj + Lj + Ti,j 6 Tend

i +
(
1− uj,i

)
·M1

j,j′

∀j ∈ J tj ∈ [Tmin
j , Tmax

j]

∀n, n′ ∈ Ni un,n′ ∈ {0, 1}

(35)

LP relaxation of (27)–(29) is calculated by Algorithm 5, with an initial set of columns
as input. The initial set of columns can be empty, and RMP is always feasible thanks
to the penalty costs. Matheuristics can initialize the CG algorithm adding the columns
corresponding to primal solutions.

Algorithm 5 Standard column generation algorithm
Input:
C set of initial columns.

do:
solve RMP (31) with columns defined in C
store dual variables σ and π and optimal cost from (31)
for each technician i ∈ I :

solve (35) to optimality with last (σ, π) values
if CR∗i < 0 then add the optimal column to C

end for
while: columns are added in C
return the last cost of the RMP (31)

Remark 1. Constraints (28) are written with inequalities, and the MILP model is still valid with
equalities instead. One could also have equalities in (29), defining explicitly empty routes. Using
inequalities induces a better stability of the column generation algorithm, with signed dual variables
π, σ [11].

5.2. POPMUSIC-CG Decomposition

Dual variables associated with jobs can be interpreted as marginal costs to realize such
jobs. When continuous RMP does not use any variable visiting a job j, we have πj = Pj.
When the dual variables are not stabilized, it induces sub-problems generating columns
with jobs with the highest values πj in (35). Hence, independent computations of (35) are
likely to visit the same jobs, with the highest values of πj. These generated columns are
likely to be redundant in the recombination induced by the next RMP computation. It
suggests incorporating diversification in the CG algorithm. We investigate combined sub-
problems for a subset of technicians I0 ⊂ I (typically two or three technicians), imposing a
total diversification in these sub-problems with the following MILP formulation.

Algorithms 2021, 14, 313 16 of 39

RC∗I0
= min

u,t ∑
i∈I0

(
σi + ∑

n,n′∈Ni

(Dn,n′ − πj)ui,n,n′

)
s.t : ∀j ∈ J ∑

i∈I0

∑
n∈Ni

ui,j,n 6 1

∀i ∈ I0, ∀j ∈ J , ∑
n∈Ni

ui,n,j = ∑
n′∈Ni

ui,j,n′

∀i ∈ I0, ∀n ∈ Ni, ∑
n′∈Ni

ui,n,n′ = 1

∀i ∈ I0, ∀j ∈ J , ui,j,j 6 0

∀i ∈ I0, ∀(j, j′) ∈ J 2, tj + Lj + Tj,j′ 6 tj′ +
(

1− ui,j,j′
)
·M3

i,j
∀i ∈ I0, ∀j ∈ J , Tstart

i + Ti,j 6 tj +
(
1− ui,i,j

)
·M2

i,j
∀i ∈ I0, ∀j ∈ J , tj + Lj + Ti,j 6 Tend

i +
(
1− ui,j,i

)
·M1

j,j′

∀j ∈ J tj ∈ [Tmin
j , Tmax

j]

∀i ∈ I0, ∀n ∈ Ni, ∀n′ ∈ Ni, ui,n,n′ ∈ {0, 1}

(36)

Sup-problem (36) can be seen as a concatenation of the technician sub-problems (35)
in I0 ⊂ I . The first constraint enforces that each job can be affected with respect to at
least one technician in I0 for a total diversity among the new columns. One may consider
a multi-objective extension and generate columns for I0 ⊂ I and consider the partial
diversity in another objective.

The process gives rise to Algorithm 6, where the partitions of technicians vary each
iterations, similarly to POPMUSIC heuristics (Partial optimization metaheuristic under
special intensification conditions [72]). Note than POPMUSIC matheuristics are efficient as
primal heuristics without computations of dual bounds for vehicle routing problems [74].

Algorithm 6 POPMUSIC column generation algorithm
Input:
C set of initial columns.

do:
solve RMP (31) with columns defined in C
store dual variables σ and π and optimal cost from (31)
compute PI a partition of I in small subsets
for each subset I0 ∈ PI :

solve (36) with a matheuristic with last (σ, π) values
for each column c with a negative reduced cost

add the column to C
end for

end for
while: columns are added in C
return the last cost of the RMP (31) and updated set of columns C

5.3. Solving CG Sub-Problems

To solve sub-problems (35) with respect to optimality, note that the CG sub-problem
related to i is exactly the same as the VRPTW sub-problems with the jobs Ji. Constraint (35)
can be formulated as an elementary shortest path problem with resource constraints
(ESPPRC). If ESPPRC is a NP-complete problem, it is solved efficiently for reasonable
instance sizes for VRP problems with labeling algorithms [23,40]. With several technicians
in sub-problems (36), the nature of sub-problem changes and exact labeling algorithms will
be even more difficult. In this study, generic MILP solvers are used to solve exactly such
sub-problems and to validate the contribution of such a decomposition scheme.

Algorithms 2021, 14, 313 17 of 39

However, the computations to optimality are required only to prove the optimality of
the RMP at the last iteration. For the first CG iterations, we only need to generate negative
reduced cost solutions. The exact computations are time consuming in Algorithm 5; it
can be replaced by heuristics to generate quickly negative reduced cost solutions. The
choice of algorithm at each iteration seeks for the good trade-off between computation time
and quality (negativity) of the generated columns. This trade-off is dealt using different
heuristics with different computation times. For instance, the heuristics of Section 4 apply.
In Algorithm 2, specific sorts of jobs can be processed for CG sub-problems: One may
consider firstly the jobs with the highest dual values πj, especially with the non-assigned
jobs in the RMP with a maximal dual value πj = Pj, rather than the jobs with a low dual
value. Hence, one may iterate in Algorithm 2 the decreasing values of πj. One may also
consider πj − Di,j in order to take into account the remoteness of job j.

Sub-problems (36) can be solved to search columns with a negative reduced cost using
matheuristics; the number of technician is restricted, and matheuristics restrict the size of
MILP computations, removing jobs similarly to Section 4. The POPMUSIC CG scheme
applies only for generating columns with a negative reduced cost. To prove the optimality
of the RMP, Algorithm 5 applies for the remaining iterations.

Algorithm 7, decomposes the search of columns with a negative reduced cost by using
only computations with one technician. These decomposed sub-problems can also be
solved as ESPPRC with [23]. This scheme allows generating the best individual columns as
in Algorithm 5 and also good complementary columns for these best individual columns.
The solutions of (35) with Algorithm 7 are uneven in the reduced costs following the order
of priority of the technicians, whereas a straightforward matheuristic search applied to (35)
would have a smoother repartition of the reduced costs. A stake of the computational
experiments is to determine whether these two generation schemes are complementary or
if one dominates the other. To generate both types of columns, Algorithm 7 can be applied
to generate initial columns before a smoothing local search phase in order to optimize the
objective function of (36) with a MILP-VND similar to Section 4.

Algorithm 7 Diversification of sub-problem solutions
Input:

- I0 a subset of technician.
- s a cyclic permutation of I0 with order(s) = I0.
- σ, π the dual variables of the last RMP computation.

Initialization: C = ∅, the columns to add in the RMP
for each technician i ∈ I0 :

Let i′ := i, J0 := J
for k = 1 to I0 :

solve (35) for technician i′ with (σ, π) values and the remaining jobs in J0
if the solution induces a column with a negative reduced cost

add the column in C
remove the jobs of the column in J0

i′ := s(i0)
end for :

end for
return C

5.4. How to Select Partitions of Sub-Problems?

A key point for the developments of Section 5.2 and Algorithm 6 is the choice of
the partition of sub-problems. Having a subset of technicians with disjoint competences,
the joint sub-problem (36) is decomposable, an optimal solution is obtained to concatenate
optimal solutions of single sub-problems (35) and there is no benefit to consider grouped
sub-problem (36) instead of the standard ones. This highlights the importance of selecting
technicians with the most similar skills. Note that technicians differ with the locations of
the depots; this point does not allow having exactly symmetrical sub-problems that can be

Algorithms 2021, 14, 313 18 of 39

considered as one sub-problem type with a multiplicity of columns that can be used in the
RMP, as in [12].

5.4.1. Formulation as Clustering Problems

A first approach is to define a distance among technicians and a null distance for
technicians having exactly the same number of skills so that clustering technicians induces
minimizing intra-cluster distances. A Hamming distance can be used in that goal. A first
approach would be to consider the Hamming distance of the skill subsets. In order to
consider the most similar sub-problems (35) in clusters, it is actually better to use the
Hamming distance in the vector of J Booleans, indicating the possibility of a technician to
realize a given job. With our notation, this distance d among technicians can be written
as follows.

∀i, i′ ∈ I , di,i′ = ∑
j∈J

(
11j∈Ji × 11j/∈Ji′

+ 11j/∈Ji
× 11j∈Ji′

)
(37)

A second point before using the clustering algorithm is to define the number of
clusters. Here, the crucial point in the application is to deal with a restricted number of
technicians in each sub-problems, which is relatively small because of the difficulty of
solving sub-problems (36), typically N = 2 or 3 in our numerical experiments. Thus, we
consider P =

⌈
I
N

⌉
clusters, and we consider a clustering problem such as P-means or

P-medoids with a cardinality constraint that each cluster is of size at most N.
Having cluster of sizes N = 2 or 3 brings about the fact that cardinality constrained

adaptations of standard local search such as Lloyd’s heuristic (also called k-means algo-
rithm) are not adapted frameworks. One can use simple greedy heuristics to create such
clusters. In Algorithm 6, it is also useful to diversify the partitions. Several good partitions
can be constructed by using a randomized greedy algorithm, for instance, using one of
the three best possible insertions in a randomized manner instead of choosing the best
local insertion.

5.4.2. MILP Formulation with Two Technician by Cluster

In the case where technicians are grouped by at most two, the clustering optimization
can be formulated with an MILP formulation similar to assignment problems. By defining
binary variables xi,i′ ∈ {0, 1} for all i < i′ xi,i′ = 1 if and only if technicians i, i′ are grouped
in the same cluster, the clustering optimization can be formulated as following MILP.

min
xi,i′

∑
i<i′

di,i′xi,i′ (38)

∑
i′>i

xi,i′ + ∑
i′<i

xi′ ,i 6 1 ∀i ∈ I (39)

∑
i∈I

(
1− ∑

i′>i
xi,i′ − ∑

i′<i
xi′ ,i

)
6 1 (40)

xi,i′ ∈ {0, 1} ∀i < i′ ∈ I (41)

Constraints (39) enforce that each technician is associated to at most one cluster so
that clusters are of size at most two. Constraint (40) enforces that at most one technician is
not related to another one. Note that such situation is unavoidable and happens when the
number of technician is odd. In the case of even numbers of technician, one can remove
constraint (40) and consider an equality in (39). In this case, the problem is very similar
with assignment problems, which ensures that the MILP formulation is efficient for large
values of I . Even in the general case, the small values render solving ILP easy. One can
also consider an extension with at most three technicians by cluster; the bottleneck is the
resolution of Constraint (36) here and not optimal computations of such partitions.

Algorithms 2021, 14, 313 19 of 39

As previously mentioned, it is useful in Algorithm 6 to have diversified partitions.
By solving the previous MILP formulation, it is easy to have one optimal solution, and many
solutions with similar costs can be generated using local moves with 2-opt exchanges. In-
deed, considering only competences, there exist many symmetries with 2-opt exchanges
with technicians having the same skill sets.

5.4.3. Dealing with Heterogeneity of Sub-Problems

Sub-problems can be very asymmetric in terms of sizes, dealing with different subset
of jobs Ji with the skill constraints. At the end of the CG algorithms, the sub-problems
dealing with less jobs are more likely to have finished the CG process with fewer columns
to generate. Some sub-problems can be skipped a priori for some iterations. More gener-
ally, CG sub-problem solving should be more frequent for sub-problems with the higher
cardinality of Ji. Deterministically, the frequency of solving a sub-problem i can be set to
Ji/J . Another criterion is to focus on the sub-problems that produced the most negative
columns in the last iterations. One can also use a Reinforcement Learning algorithm like
ε-greedy approach to update the probability of choosing a sub-problem. For such approach,
rewards model that columns with a negative reduced cost are found, and one may also
count separately as another reward that columns with a significatively negative reduced
cost are found.

5.4.4. Related ML Techniques for Decomposition in Mathematical Programming

We mention here the related ideas using ML techniques for decomposition methods
in mathematical programming. Learning techniques can also be useful for a CG algorithm
to solve sub-problems using the optimal solutions of previous sub-problems, as in [17].
In this work, it allows speeding up the resolution for sub-problems, which is the most
time consuming part in CG algorithms. Such ideas are not implemented in our approach;
it is complementary with the ML-guided stabilization proposed in this paper. We note
also similarities with [9] in the case of a Bender’s decomposition structure rather than a
DW decomposition. In [9], standard sub-problems are also grouped, and an appropriate
clustering problem is defined and solved with ILP formulations an matheuristics.

5.5. Tabu Search Intensification

A general difficulty to implement CG algorithms is that dual variables converge er-
ratically. This is closely related to properties of linear optimization as the optimums are
extreme points. A consequence for CG algorithm is that many iterations are necessary
to have good dual variables to generate the most appropriate columns, with an erratic
convergence of dual variables. Stabilization techniques enforce smoothing the convergence
of dual variables in order to reduce the number of iterations that converge for the CG algo-
rithm and, thus, reduce the computation time needed for CG convergence. Mathematical
properties can not only be exploited for stabilization but also heuristics [75].

This section is motivated by the following fact: Many good columns can be obtained
with slight modifications from a good column. At one iteration, high values of π indicate
the jobs that are likely used in a new column. A kernel of jobs with high πj values can
be combined in several interesting columns regarding the reduced costs. Using such a
property, it is interesting to aggressively generate columns with local search moves from
interesting columns. This section introduces a Tabu Search (TS) matheuristic to generate
quickly a pool of good solutions.

Let xi,j = ∑n′∈Ni
ui,j,n′ , the binaries indicating if technician i ∈ I0 realizes job j.

Having M feasible solutions as previously calculated, we denote with x̃m
i,j the value of

these variables. To forbid already generated columns, we add the following “no-good-cuts”
constraints similarly to [76], which defines a variable fixing strategy.

∀m ∈ [[1, M]], ∑
i,j:x̃m

i,j=1
(1− xm

i,j) + ∑
i,j:x̃m

i,j=0
xm

i,j > 1 (42)

Algorithms 2021, 14, 313 20 of 39

In order to search around the last solution x̃M
i,j , allowing K modifications from the M-th

solution, it can also be written as a linear constraint that defines a variable fixing strategy.

∑
i,j:x̃M

i,j =1

(1− xM
i,j) + ∑

i,j:x̃M
i,j =0

xM
i,j 6 K (43)

These constraints allow generating a TS procedure in Algorithm 8 in order to aggres-
sively generate columns. In the case of the classic CG algorithm, the input for I0 is a
singleton. Adding such constraints in the CG sub-problems can be solved with Branch
and Bound for small MILP computations. For larger MILP computations, these constraints
respect the structures of the MILP matheuristics in order to quickly find good solutions.
We note that the aggressive generation of negatively reduced cost columns with a tabu
search was also introduced in [77] for a significative acceleration of CG in practice.

Algorithm 8 Tabu search intensification
Input:

- I0 a subset of technicians
- the current value in the RMP of dual variables (σ, π)
- a set of initial columns c ∈ ∏i∈I0

Pi with a negative reduced cost in (35)
- an integer M ∈ N, a maximal number of TS iterations
- an integer K ∈ N, a maximal number of assignment modifications

TSINTENSIFICATION(I0, K, M)
//Initialization:

MILP, a MILP formulation for (35) related to technician i
p = c initial columns
Taboo list of columns l = {c}
an integer n = 0 to denote iterations

//Loop to generate columns with negative reduced costs
do:

Add constraint (43) in MILP with columns of p
Add constraint (42) in MILP with columns of p
solve MILP
remove constraint (43) in MILP with columns of p
update p, the optimal columns in the last MIP
update l adding the columns of p with a negative reduced cost in l

while n < M and ReducedCost(p) < 0
return l // the list of columns to add in the next RMP

5.6. Dual Bounds Derived from CG

As mentioned before, when Algorithms 5 or 7 are terminated with the non existence
of columns with negative reduced costs, the value of the continuous RMP is a lower
bound of the problem, which is the LP relaxation of the problem (27)–(29). There is a
theoretical advantage in computing the LP relaxation of the extended formulation (27)–(29)
instead of one of the LP relaxation of the compact formulations [78]. However, it is possible
to have equality among these LP relaxations in the case of a tight formulation existing
for sub-problems, as in [79]. It is a numerical issue to test if an improvement of the LP
relaxation is obtained considering the DW extended formulation and if it compensates the
higher computation times to process the CG algorithm.

Computing the LP relaxation of the extended formulation requires at least solving
each sub-problems to optimality with non strictly negative optimal values. Actually,
the conditions to derive the lower bounds are weaker. At each iteration of the CG algorithm,
one can compute dual bounds by using an equivalence between DW decomposition and
Lagrangian relaxation.

Algorithms 2021, 14, 313 21 of 39

v = min
y,z ∑

i∈I
∑

p∈Pi

Li,pzi,p + ∑
j∈J

Pjyj

s.t : ∑
i∈I

∑
p∈Pi

11j∈pzi,p + yj > 1 ∀j ∈ J ,

∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

zi,p, yj ∈ {0, 1}

(44)

It can be reformulated as a min-max problem.

v = min
y,z

max
λ

∑
i∈I

∑
p∈Pi

Li,pzi,p + ∑
j∈J

Pjyj + ∑
j

λj(1− yj −∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

zi,p, yj ∈ {0, 1}, λj > 0

v = min
y,z

max
λ

∑
i∈I

∑
p∈Pi

Li,pzi,p + ∑
j∈J

(Pj − λj)yj + ∑
j∈J

λj(1−∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

zi,p, yj ∈ {0, 1}, λj > 0

For optimality, it is necessary that λj 6 Pj. Thus, we have the following.

v = min
y,z

max
λ

∑
i∈I

∑
p∈Pi

Li,pzi,p + ∑
j∈J

(Pj − λj)yj + ∑
j∈J

λj(1−∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

λj 6 Pj ∀j ∈ J ,
zi,p, yj ∈ {0, 1}, λj > 0

Swapping minimization and maximization provides a lower bound.

v > max
λ

min
y,z ∑

i∈I
∑

p∈Pi

Li,pzi,p + ∑
j∈J

(Pj − λj)yj + ∑
j∈J

λj(1−∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

λj 6 Pj ∀j ∈ J ,
zi,p, yj ∈ {0, 1}, λj > 0

The independent optimization in y induces that yj = 0. Thus, we have the following.

v > max
λ

min
z ∑

i∈I
∑

p∈Pi

Li,pzi,p + ∑
j∈J

λj(1−∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

0 6 λj 6 Pj ∀j ∈ J ,
zi,p ∈ {0, 1} ∀i ∈ I , ∀p ∈ Pi

In other words, we have following families of dual bounds:

v > l(λ), ∀λ ∈ ∏
j∈J

[0, Pj]

Algorithms 2021, 14, 313 22 of 39

where l(λ) is a Lagrangian bound defined by the following.

l(π) = ∑
j

λj + min
z ∑

i∈I
∑

p∈Pi

Li,pzi,p + ∑
j∈J

λj(1−∑
i∈I

∑
p∈Pi

11j∈pzi,p)

s.t : ∑
p∈Pi

zi,p 6 1 ∀i ∈ I ,

0 6 λj 6 Pj ∀j ∈ J ,
zi,p ∈ {0, 1} ∀i ∈ I , ∀p ∈ Pi

The reduced cost at each iteration of CG algorithm with dual values σi, πj appears
with λj = πj. The reduced cost minimization RC∗i = σi + minzi,p ,p∈Pi (Li,p − ∑j∈k πj)zi,p
appears, and we have the following.

l(λj) = ∑
j∈J

πj −∑
i∈I

σi + ∑
i∈I

RC∗i (45)

Relation (45) makes a relation between the Lagrangian bound l(λ) related to the
dual signal (π, σ) and the optimal values of the sub-problems RC∗i . Using only heuristic
resolution of sub-problems to reach stabilized value of the dual signal (π, σ), optimal com-
putations of each sub-problem RC∗i allow having a lower bound, which is a Lagrangian
bound. We note that having only dual bounds for all RC∗i , with some LP relaxations or
dual bounds given by a truncated B&B search allows computing the lower bounds of the
Lagrangian bound (45), which is possible even for large size instances where optimal com-
putations of sub-problems RC∗i are not possible. Note that if the CG algorithm terminates,
the dual bounds is ∑j∈J πj −∑i∈I σi; the Lagrangian bounds the value of the continuous
RMP, and this result was also obtained by duality in (32).

5.7. Primal CG Heuristics

Once the LP relaxation (31) is computed by CG algorithm, the question is how to
repair LP relaxation into integer solutions. The following strategies can be processed:

• RMP_INT_HEUR(): Solving the integer RMP with the generated columns is a first
quick heuristic. Such a heuristic was used in [33,46];

• LAG_HEUR(): The continuous assignments x̃i,j = ∑p 11j∈p z̃i,p ∈ [0, 1] implied by
continuous relaxation of RMP z̃i,p can be repaired to obtain primal solutions, similarly
with Lagrangian heuristics (the equivalence between CG iterations and Lagrangian
relaxation is shown in previous section). Variable fixing strategies, fixing assignments
with values 0 and/or 1, can be a first strategy. Once variables are fixed, straightforward
B&B search or specific heuristics may apply in order to quickly obtain solutions;

• LAG_RINS(): RMP_INT_HEUR() and LAG_HEUR() can be combined in LAG_RINS(),
a RINS lagrangian heuristic fixing common values in the continuous assignments
ṽi,j and in the assignments of the primal solution given by RMP_INT_HEUR().
With such an approach, the initial solution from RMP_INT_HEUR() is still feasible
for the RINS optimization for a better warmstarting of the Branch& Bound search or
heuristics setting this initial solution.

We note firstly that these repairing heuristics can be processed at each iteration of the
CG scheme, which would induce using such repair heuristics in a multi-start environment
provided by the new columns and LP relaxations at each iteration. We note secondly that
these heuristics can also be used in a B&P tree.

5.8. Management of the CG Pool

In the standard CG Algorithm, one column is generated by each sub-problem resolu-
tion. When many iterations are processed, it may be useful to pay attention to the number
of columns in the RMP. Having a very large number of columns may cause memory errors
or prohibitive computation times to solve RMP problems. In practice, the column pool

Algorithms 2021, 14, 313 23 of 39

may be cleaned regularly, for example, by defining a threshold in the number of columns
to remove after the next RMP computation. Nonbasic columns, i.e., with a null value
in the RMP computation, may be removed. It is possible that the removed columns are
re-generated later; the benefit of the removal is in the reduction in column pool and its
implications. Several criteria can determine which columns to remove, for example, storing
the last used column in a RMP computation and removing the columns that were used the
less recently or computing for all the columns the reduced cost with the updated value of
dual variables and removing the columns with the highest reduced cost [78]. It is advised
that the individual should avoid using this procedure too often and to keep a certain
number of nonbasic columns in the master problem after column removal [78].

With the developments of this paper, especially with Algorithm 8, the columns may
be generated very aggressively. This induces calling the column removing procedure more
often. A specific strategy for the column pool management is proposed here, taking into
account that some columns are useful also in the integer RMP computations to define an
integer solution, even if the column is not interesting for the continuous RMP computations
and, thus, the convergence of the CG algorithm. In our management strategy of the column
pool, the following rules are provided. The procedure is enabled only when the number of
columns reach a given threshold. The procedure is called every C ∈ {3, 5} iterations of the
CG scheme. The columns used in the C computations of the continuous RMP are marked
and kept for the following. A computation of the integer RMP is processed after these C
RMP iterations in order to mark and keep the best primal solution (and possibly removing
jobs that are used at least twice as in the post processing procedure of Section 5.6). The
remaining columns are deleted following the updated value of the reduced cost with the
last computation of dual variables in order to have a constant and defined number of
columns to reiterate CG iterations.

5.9. Using Parallel Computing and a Many-Core Environment

Although the CG algorithm follows a sequential structure adding iteratively new
columns, several points may be parallelized to speed up the computations in practice.
Firstly, the computations of sub-problems are independent for each technician. The I
independent computations of sub-problems shall be parallelized. The parallelization to
speed up the phases of the sub-problems resolution is the main issue for the speed up, as the
sequential part with the LP computations of RMP (31) is less time consuming. In order to
optimize the load balancing of the parallel implementation, a LPT (Lowest Processing Time)
strategy is natural, using increasing preprocessing times which are predicted with the sizes
of the sub-problems with skill constraints. Furthermore, the taboo search intensification
proposed in Algorithm 8 allows a more fine-grain parallelization. Lastly, parallelization
can be also used when dealing concurrently with several heuristic strategies to generate
columns with a negative reduced cost and to perform several of the many variants of
heuristics. Having many possibilities of hybridization allows taking profit from a many-
core environment.

6. Computational Results

Numerical experiments were computed with a quadcore computer with Intel(R)
Core(TM) i7-4790S CPU 3.20 GHz with 8 threads and running Linux Ubuntu, with 16 Gb
of RAM memory.

6.1. Instance Characteristics, Benchmarks and Analysis Methodology
6.1.1. Instance Characteristics

Instances were generated for this study; these instances are available online: https:
//github.com/ndupin/SiteDepTRPTW (accessed on 25 October 2021). Instances are
named gotic_a_b_c_exd.txt where a ∈ {3, 5, 8, 10, 15, 20} is the number of technicians,
b ∈ {1, 3, 5, 10, 20} is the number of skill types, c ∈ {10, 20, 40, 50, 80, 100} is the number
of jobs to plan and d ∈ [[1, 8]] ∪ [[11, 18]]distinguishes instances generated with the same

https://github.com/ndupin/SiteDepTRPTW
https://github.com/ndupin/SiteDepTRPTW

Algorithms 2021, 14, 313 24 of 39

previous characteristics. For each instance, jobs have the same penalization cost. Penalties
are larger than transportation costs so that the optimal solutions serve a maximal number
of jobs. For only instance gotic_15_20_40_ex7.txt, it was impossible to realize all the jobs;
the other optimal solutions visit every customer. In the instances, localisation of depots
and customers is given with 2D coordinates, and the distance from localisation coordinates
(x, y) and (x′, y′) shall be computed using the following rule (different from [19]).

d
(
(x, y), (x′, y′)

)
=

⌊√
b(x− x′)2c+ b(y− y′)2c

⌋
(46)

The (symmetric) commuting time between locations (x, y) and (x′, y′) is given by
the following:

t
(
(x, y), (x′, y′)

)
=

⌊
d((x, y), (x′, y′))

speed

⌋
(47)

where speed is a single speed parameter defined in the instances.

6.1.2. Analysis Methodology

Instances were generated with relations among instances to analyze the trade-off
between optimality and feasibility for the different optimization algorithms. Instances
with d ∈ [[11, 18]] are generated from instances with d− 10 ∈ [[1, 8]] with a higher speed
parameter. Hence, each feasible solution for an instance with d ∈ [[1, 8]] is feasible for the
corresponding instance with parameter 10 + d,

For each group of instances with fixed values of parameters a and b defined, a maximal
number of competences are defined with cmax. The other instances with c < cmax are
defined from the one with cmax: skills in the instance s are grouped modulo c; if skill q is
required in instance cmax, the corresponding skill in instance c is q mod c. Such reduction
keeps the feasible solutions from the previous model and adds potentially new solutions.
Hence, instances with c < cmax are less constrained than the original ones with c = cmax and
have a better optimal value. In the case c = 1, there are no skill constraints, and the model
is similar with a MDVRPTW. For computational analyses, we investigate the difficulty of
instances regarding speed and competence parameters. This defines four datasets:

• Dataset scmax with minimal speed (d ∈ [[1, 8]]) and maximal number of competences cmax;
• Dataset Scmax with maximal speed (d ∈ [[11, 18]]) and maximal number of competences cmax;
• Dataset s1 with minimal speed (d ∈ [[1, 8]]) and no skill constraint (c = 1);
• Dataset S1 with maximal speed (d ∈ [[11, 18]]) and no skill constraint (c = 1).

Hence, datasets s1 and S1 are MDVRPTW instances, with a correspondence and more
constrained instances due to speed with dataset s1. Dataset S1 is less constrained than the
three other datasets. Original dataset scmax is the more constrained dataset, comparable
to the three other datasets. Comparing the difficulty induced for instances scmax and S1
allows analyzing the difficulty induced by speed and rare competence separately.

In order to compare optimization algorithms in a given dataset, the following indica-
tors are provided:

• Fail: The number of instances where the maximal number of jobs is not scheduled;
• BKS: The number of instances where the Best Known Solution (BKS) is reached;
• Mean: The average gap for all the considered instances of the primal solution to

the BKS;
• σ: The standard deviation of the gaps between primal solution and BKS;
• Min: The minimum gaps between primal solution and BKS for all instances ;
• Q1: The first quartile of the gaps between primal solutions and BKS;
• Med: The median (or second quartile) of the gaps between primal solutions and BKS;
• Q3: The third quartile of the gaps between primal solutions and BKS;
• Max: The maximum gaps between primal solution and BKS for all instances.

Algorithms 2021, 14, 313 25 of 39

6.1.3. Implementation and Characteristics of MILP Solving

The numerical experiments reported here used Cplex version 12.6 to solve MILP and
LP. The analysis of B&B characteristics was provided by using the OPL modeling language
to call Cplex. The matheuristics of Section 4 were implemented with OPL script to iterate
successive MILP computations. A first CG scheme was implemented with OPL script also
by using the populate mode to observe the impact of keeping several columns with negative
reduced cost per sub-problem resolution. The final CG scheme and heuristics for sub-
problems were coded in Python by using the PuLP library to call for MILP and LP. Using
PuLP allows using Cplex or open source tools (such COIN-OR) the same programming
interface. However, using PuLP resulted in important computation time to load MILP
models, similarly to https://python-mip.readthedocs.io/en/latest/bench.html (accessed
on 25 October 2021). PuLP is not a relevant choice to solve iteratively many MILP models
in short computation times, and the loading time of the MILP model may be much longer.
Hence, the computation times were not representative with such implementations. The
results of the study conclude the types of heuristics that can be used, which include
hybridized and parallelized heuristics for future and better implementations.

6.1.4. LocalSolver

As a benchmark local search solver for our study, we used LocalSolver version 7.5.
We note that the results are better now by using the last versions of LocalSolver; we
provide here the results with version 7.5, and our instances were given to the LocalSolver
Company for their internal benchmark. For the latest versions of LocalSolver (at least
with version 10), BKSs are found for most of the instances within 600 s solving time.
Note that our instances may be interesting for benchmarking general local search solvers,
especially to test the accuracy of local search facing highly constrained instances where
some multi-start strategies may be useful. Benchmark codes with LocalSolver are also
given in https://github.com/ndupin/SiteDepTRPTW (accessed on 25 October 2021).
For the efficiency of the LocalSolver model, we used the definition of variables using
LocalSolver lists, and TW constraints are modeled as an objective function accumulating
TW infeasibilities, with a hierarchical optimization considering firstly feasibility and then
the costs of the routes. Such a choice is similar with LocalSolver’s VRPTW example and
was validated by LocalSolver experts. Two variants were implemented. The general
case considers only the disjoint constraint among Localsolver’s lists: the routes of each
technician visit disjoints sets of jobs. For the special case where a solution exits without
outsourcing costs, one can model it with a partition by adding a cardinality constraint with
LocalSolver. The reported results show the results with the general variant; failures are
cases where a non-maximum number of jobs are assigned to technicians.

6.1.5. Solving MILP Compact Formulations

Analyzing the characteristics of the B&B straightforward resolution for the different
variants of MILP formulations of Section 3 is a key issue for determining how to choose
the MILP formulation for the next developments. Table 2 compares the quality of the dual
bounds for the MILP formulations (1)–(8), (12)–(19) and (27)–(29) on instances solvable to
optimality with a straighforward B&B resolution. For the compact formulations (1)–(8)
and (12)–(19), the bounds are compared with and without the cuts (10) or (21) for the LP
relaxation and the dual bound at the root node of the B&B tree before branching. For the
extended formulation, only the LP relaxation is computed with the CG algorithm. This
table highlights that the quality of the linear relaxation of the compact formulation is very
weak, with a large gap relative to the Lagrangian bounds. The cuts of Cplex provide a
significant improvement of the LP relaxation in all the cases. The cuts (10) or (21) provide
also significant improvements that are not redundant with the cuts for Cplex. The FGG-
based formulation with the cuts (21) gives significantly the best dual bounds among the
compact formulations.

https://python-mip.readthedocs.io/en/latest/bench.html
https://github.com/ndupin/SiteDepTRPTW

Algorithms 2021, 14, 313 26 of 39

Table 2. Comparison of the average gaps to dual bounds given by some variants of MILP formulations to the optimal
solutions on a set of 55 instances solvable to optimality with Cplex. The results are gathered on instances with the same
number of technicians, skills and interventions. LP denotes the linear relaxation, whereas nod1 denotes the bounds obtained
after the cutting plane passes of Cplex at the root node before branching.

(1)–(8) (1)–(8) (1)–(8) (1)–(8) (12)–(19) (12)–(19) (12)–(19) (12)–(19) (27)–(29)
Bound LP nod1 LP nod1 LP nod1 LP nod1 LP
Cuts No No (10) (10) No No (21) (21) No

data_3_1_10 45.7% 8.7% 11.9% 3.2% 28.1% 3.3% 8.8% 1.0% 1.8%
data_3_5_10 43.4% 0.0% 9.7% 0.0% 23.4% 0.0% 8.0% 0.0% 0.0%

data_5_1_20 44.8% 29.5% 27.9% 11.6% 35.7% 17.9% 22.0% 13.7% 1.9%
data_5_3_20 52.7% 30.3% 30.8% 17.7% 39.0% 19.9% 22.7% 15.5% 0.6%
data_5_5_20 58.1% 28.7% 27.5% 14.6% 42.1% 18.5% 25.1% 14.1% 0.3%

data_8_1_20 40.5% 20.6% 20.8% 10.6% 32.6% 10.6% 16.8% 7.8% 1.3%
data_8_3_20 54.7% 28.5% 28.6% 17.1% 35.2% 14.8% 20.0% 11.2% 1.8%
data_8_5_20 60.6% 26.7% 25.9% 11.2% 39.7% 8.1% 21.3% 1.6% 0.5%

data_10_10_40 55.9% 25.0% 25.8% 14.3% 40.8% 19.4% 20.7% 13.9% 2.0%

data_15_10_40 55.6% 18.9% 19.6% 10.7% 35.8% 11.0% 13.4% 6.3% 0.6%
data_15_20_40 53.9% 14.2% 16.1% 6.1% 32.1% 7.5% 13.1% 4.8% 0.7%

6.2. MILP Formulations Results

By choosing the MILP formulations and the cuts to add for the integer resolution,
these results on the dual bounds shall be compared with the computation time. Indeed,
adding cuts (10) or (21) for choosing the FGG-based formulation increases the size of
the MIP, which induces more computation time for computing LP relaxations. Let us
analyze the best compromise in the improvement of LP relaxation relative to the time spent
to compute the dual bound. Table 3 compares the computation time for solving small
problems to optimality with the previous variants of compact MILP formulations. The
FGG-based formulation has significantly worse results than formulation (1)–(8) with the
cuts (10). Adding the cuts (10) or (21) is justified also in the computations to optimality by
Table 3.

An explanation of the huge gap between the lightest and the FGG-based MILP formu-
lation comes with the efficiency of the generic primal heuristics. For the different compact
formulations, the generic primal heuristics provided bad results to find first solutions,
and convergence of primal bound is very long. It is indeed difficult to find solutions
with the maximal number of jobs allocated in the first stages of the resolution even for
medium size instances. Giving a good initial solution as warmstart to solvers allowed
improving significantly the computation time for solving instances to optimality, cutting
off earlier a significant number of nodes in the B&B tree. These facts are related to the poor
quality of the LP relaxation. The empirical results showed that the efficiencies of primal
heuristics were significantly worse with the FGG-based MILP formulations, which explains
the difference observed in Table 3.

6.2.1. Solving CG Sub-Problems

If CG sub-problems with one technician having a similar polyhedral structure with
the entire compact MILP formulation, the efficiency of straightforward MILP solving is
very different. For some mid size instances, it can be less time consuming to solve the entire
MILP with a compact formulation rather than solving a single technician CG sub-problem.
It is paradoxical, and DW reformulation decomposes the original MILP with iterations of
smaller problems. The reason for such paradoxical situations is that sub-problems are of a
different nature. Seeing CG sub-problems as shortest path problems, many distances are
negative in providing a negatively reduced cost. In the original MILP problems, all the
distances are positive. For sub-problems, cycles with negatively reduced cost may appear,
and this tends to produce many sub-tours with negatively reduced costs in continuous

Algorithms 2021, 14, 313 27 of 39

relaxations. When solving sub-problems with many sub-tours of negative costs with an
MILP solver, the lower bounds are of a poor quality and many sub-tours are generated in
many nodes of the B&B tree. This induces that the convergence to optimality is difficult in
this case.

Table 3. Comparison of computation time (in seconds) of both compact MILP formulations of
Section 3, with or without the 2-sub-tour cuts.

(1)–(8) (1)–(8) (12)–(19) (12)–(19)
No Cuts +(10) No Cuts +(21)

4_1_20_ex4 34.7 7.6 333.1 601.2
4_3_20_ex4 45.4 19.6 799.3 121.2
4_5_20_ex4 14.6 5.4 35.0 27.0

5_3_20_ex1 131.5 83.4 >1200 955.5
5_3_20_ex2 21.3 24.9 224.8 86.2
5_3_20_ex3 34.7 14.4 >1200 647.3
5_3_20_ex4 48.1 20.4 259.9 223.8

5_5_20_ex1 4.3 5.4 161.6 36.1
5_5_20_ex2 5.5 2.6 34.0 3.0
5_5_20_ex3 6.2 5.8 118.4 101.9
5_5_20_ex4 7.5 4.1 40.4 29.2

8_5_20_ex1 8.4 6.1 81.4 12.5
8_5_20_ex2 1.0 0.7 0.4 0.4
8_5_20_ex3 2.5 0.8 1.7 1.9
8_5_20_ex4 5.3 0.9 0.8 1.8
8_5_20_ex5 2.1 1.0 5.7 3.6

15_20_40_ex1 46.2 7.5 408.7 89.1
15_20_40_ex2 8.3 3.0 22.4 15.0
15_20_40_ex3 15.6 10.6 53.9 31.2
15_20_40_ex4 58.8 15.7 108.3 35.6
15_20_40_ex5 114.5 15.2 114.4 58.6
15_20_40_ex6 6.9 3.7 4.7 5.2
15_20_40_ex8 7.3 1.5 3.3 2.7

Note that this critical situation appears more often in the first iterations of the CG
algorithm when the dual values are not stabilized and have values of πj; in the worst
case πj = Pj occurs when penalization is used in the RMP in the case of unbalanced dual
variables. In the last iterations of the CG algorithm, having more stable dual variables
induces less complications, and straightforward MILP solving is more efficient at these
iterations compared to the first iterations. A good point is that primal heuristics of MILP
solvers (relying on branching, in particular, diving heuristic) remains efficient for finding
columns with a negative reduced cost for sub-problems in the first iterations, which is
enough to continue the CG algorithm without solving optimality the first sub-problems.
Note that for a given CG iteration, the computation efficiency of sub-problems i significantly
varies following the number of jobs that the technician considered in a sub-problem can
realize. At the end of the CG algorithm, it tends to solve quickly the sub-problems with
the less jobs, proving that no column of negative reduced cost exist, and the sub-problems
with remaining columns to add are the sub-problems with the maximal number of jobs
with the competence constraint.

With the different nature of MILP optimization searching for columns with negative
reduced costs, the differences between the FGG formulation and the most compact MILP
formulation are emphasized, with larger gaps in the quality of LP relaxations. In order
to provide dual bounds of sub-problems, as in Section 5.7, it is better to use the FGG
formulation. For using the primal heuristics and solving in truncated time in matheuristics,
the most compact formulation (1)–(8) is more efficient. Note that the efficiency of the sub
tour cuts is lessened (10).

Algorithms 2021, 14, 313 28 of 39

6.2.2. Results with Extended DW Reformulation

Table 2 shows that the quality of the lower bounds of the extended DW reformulation
outperforms compact formulations at the LP relaxation and also at the root noot of the
B&B tree considering the generic cuts implemented in Cplex. Note that this was not the
case in [79], and these results are coherent with the known results for the class of vehicle
routing problems [11].

For many instances, the LP relaxation of the extended formulation has no gap with
the integer solution, and the integer RMP already provides an optimal integer solution.
For such instances, no branching is needed for a B&P enumeration scheme. Note that
such results occurs more often for the highly constrained instances. For lowly constrained
instances, continuous combinations of columns often exist for decreasing the RMP objective
function. Skill constraints induce some decoupling of technician routes and are helpful for
CG approaches. Combined with TW constraints and a limited number of jobs per route, it
is in favor of CG approaches with the generation of few and diversified columns.

6.3. Results with Constructive Matheuristics

Table 4 compares the efficiency of the constructive matheuristics over all instances.
These results can be compared to the other approaches over the same set of instances in
Table 5; it illustrates that these heuristics are not efficient in terms of accuracy in finding
feasible solutions and in terms of the quality of the feasible solutions found. Generally,
reoptimizing previous decisions involves F assign,6 instead of F assign,=, such as standard
greedy approaches. Contrary to [5], considering in parallel these different constructive
matheuristics and taking the best solution found induces significant over costs for most of
the instances, and it is not enough to find a feasible solution for all the instances.

6.3.1. Constructive Matheuristics Iterating Technician by Technician

Constructive heuristics of Section 4.2 iterating technician by technician are particularly
inefficient, and many infeasibilities and mostly solutions of a poor quality result. The local
optimization tends to produce dense plannings to assign a maximal number of jobs in the
first iterations and last iterations with few jobs to assign. This shape of solution explains
the poor results of these heuristics. Firstly, the optimal solution may be very different from
this shape of solutions with unbalanced solutions, especially for the easiest instances. Even
the reoptimization with F assign,6, it is not efficient to balance the routes of technicians;
a reason for this is that the first routes have also been optimized with distances. Thus,
removing jobs induces few impacts. Such variable fixing does not allow placing another
job in the previously computed routes. Secondly, the local optimizations do not take into
account that some jobs have to be assigned in the planning for rarity reasons; it explains the
poor accuracy of these heuristics. These results conclude that the construction of solution
“technician by technician“ shall be avoided in a specific implementation.

6.3.2. Constructive Matheuristics Iterating by Buckets of Jobs

The constructive heuristics of Section 4.3 iterating with buckets of jobs are more
efficient. The results of Table 4 illustrate that slight improvements are obtained using
F assign,6 rather than F assign,= and that considering the TW amplitude to possibly realize
jobs is better than considering only the number of technicians able to realize the job. The
reason is that rarity of jobs is a key element in the order of local optimizations. Increasing
the number of jobs in the local optimizations tends to increase the quality of solutions,
and some counter-examples are found where the 10 jobs optimization results in worse
results than using the five jobs optimization. Indeed, even if the 10 jobs optimization
contains twice the amount as five jobs optimization and would be seen as better local
optimization, the optimality of local optimization in greedy algorithms is not a guarantee
of the quality of the final solution. Local Branching insertions of Section 4.4 provides
aggressive heuristics that are able to find much better solutions but also frequently results

Algorithms 2021, 14, 313 29 of 39

in solutions that do not allocate the maximal number of jobs, especially for the most
constrained instances.

Table 4. Comparison of the statistical indicators presented in Section 6.1.2 using several constructive matheuristics for all
the instances. njob denotes Algorithm 2 grouping in subsets of n jobs, and 1tic denotes Algorithm 1. For job insertion,
the initial sorting of jobs is based on the number of technicians that can realize the jobs (nbTec) or with the cumulated time
considering TW constraints (timeJob). Variable fixing in MILP local optimization includes F assign,6 or F assign,6.

Sort Fix Fail BKS Mean σ min Q1 Med Q3 Max

1 job nbTec F assign,= 7 0 21.54% 11.49% 5.48% 12.83% 20.72% 28.36% 44.57%
2 job nbTec F assign,= 7 0 20.01% 10.07% 5.79% 11.94% 19.34% 26.02% 40.35%
8 job nbTec F assign,= 5 0 16.59% 8.27% 2.74% 10.90% 16.15% 21.26% 34.56%
10 job nbTec F assign,= 6 0 16.27% 8.55% 3.89% 10.80% 14.89% 19.51% 36.64%

1 job timeJob F assign,= 2 0 28.61% 15.62% 7.91% 17.65% 26.14% 36.95% 66.30%
2 job timeJob F assign,= 2 0 26.04% 13.95% 7.24% 17.02% 23.44% 32.77% 61.49%
5 job timeJob F assign,= 2 0 23.68% 12.12% 5.10% 15.19% 21.39% 32.85% 47.61%
8 job timeJob F assign,= 2 0 19.94% 11.23% 3.03% 11.32% 19.00% 26.81% 44.76%
10 job timeJob F assign,= 1 0 19.74% 11.37% 5.61% 11.95% 16.47% 24.33% 51.71%

1 job nbTec F assign,6 6 0 19.58% 9.78% 4.68% 12.57% 18.94% 26.45% 37.34%
2 job nbTec F assign,6 6 0 18.68% 9.43% 5.64% 11.61% 17.29% 24.25% 39.60%
5 job nbTec F assign,6 3 0 6.18% 2.80% 1.36% 4.24% 5.57% 8.48% 11.40%
8 job nbTec F assign,6 7 0 20.83% 11.35% 3.63% 13.83% 20.07% 26.22% 48.52%
10 job nbTec F assign,6 6 0 4.69% 1.33% 1.90% 4.32% 4.87% 5.55% 6.65%

1 job timeJob F assign,6 2 0 27.12% 15.91% 6.69% 16.09% 24.29% 35.62% 64.39%
2 job timeJob F assign,6 2 0 24.41% 13.12% 6.31% 15.40% 21.89% 31.12% 57.20%
5 job timeJob F assign,6 4 0 21.85% 11.40% 4.87% 13.97% 18.85% 29.41% 44.54%
8 job timeJob F assign,6 4 0 18.04% 10.34% 2.96% 10.73% 17.21% 23.74% 40.87%
10 job timeJob F assign,6 6 0 18.34% 10.74% 5.30% 11.10% 15.80% 22.09% 45.33%

1 tic F assign,= 10 0 55.31% 27.98% 24.83% 36.67% 48.13% 66.72% 123.43%
1 tic F assign,6 10 0 54.32% 25.52% 25.59% 35.88% 49.45% 65.79% 116.51%

Best Constr 1 0 13.17% 8.99% 1.84% 7.57% 11.97% 17.20% 38.70%

Table 5. Comparison of the solution quality of local search approaches for the complete dataset. LocalSolver results are
reported for defined time limits, CG heuristics and VND matheuristics at termination. For VND matheuristics, different
initializations are provided, and the multi-start VND considers the reported initialization for a parallel or multi-start
implementation.

Fail Mean σ min Q1 Med Q3 Max

LocalSolver 30 s 2 6.05% 4.20% 0.85% 2.73% 5.06% 8.12% 16.04%
LocalSolver 60 s 2 4.50% 3.51% 0.64% 2.11% 3.58% 6.38% 14.41%
LocalSolver 300 s 2 1.96% 1.96% 0.00% 0.45% 1.29% 2.69% 7.14%
LocalSolver 600 s 2 1.03% 1.01% 0.00% 0.14% 0.90% 1.57% 3.51%
LocalSolver 900 s 1 0.94% 1.06% 0.00% 0.03% 0.40% 1.57% 3.51%

RMP_INT_HEUR 0 1.07% 1.27% 0.00% 0.05% 0.63% 1.60% 3.90%
LAG_HEUR 0 0.73% 1.01% 0.00% 0.01% 0.34% 1.06% 3.46%
LAG_RINS 0 0.20% 0.34% 0.00% 0.00% 0.04% 0.25% 1.18%
LAG_RINS+VND 0 0.10% 0.26% 0.00% 0.00% 0.00% 0.06% 0.97%

5 job,nbTec+VND 0 1.90% 2.29% 0.00% 0.23% 0.92% 2.80% 7.31%
5 job,timeJob+VND 0 2.03% 2.34% 0.00% 0.25% 1.09% 3.16% 8.38%
10 job,nbTec+VND 0 2.38% 2.67% 0.00% 0.51% 1.57% 3.47% 10.38%
10 job,timeJob+VND 0 2.93% 3.00% 0.02% 0.77% 2.19% 4.28% 10.84%
init0+VND 0 3.45% 3.76% 0.00% 0.82% 2.49% 5.09% 13.82%

Multi-start VND 0 0.70% 1.10% 0.00% 0.03% 0.19% 0.86% 9.23%

Algorithms 2021, 14, 313 30 of 39

6.3.3. CG Heuristics

As previously mentioned, the LP relaxation of the extended formulation has no gap
with the integer solution for many instances, especially highly constrained instances. The
integer RMP already gives an optimal integer solution; thus, the post-processing heuristics
furnish an optimal solution. Table 5 shows the average results for all the larger instances,
and the partial results on the subsets for the comparative analyses are provided in Table 6.
In the cases where the integer RMP is not optimal, the solution quality is still excellent
and much better than the constructive matheuristics based on the compact formulations.
Significant improvements are provided, removing jobs that are realized twice or more in
the integer RMP solution, such situation appeared multiple times. Significant and quick
improvements are then provided with RINS diving using compact formulation, providing
high quality solutions with a majority of BKS.

The difficulty with CG heuristics is the time required to reach the convergence of
the CG algorithm. Compact matheuristics are much faster. Speeding up the convergence
of the CG exact algorithm is a crucial issue, and analyses are reported in a following
section. Using only heuristics and matheuristics to solve sub-problems allows having quick
heuristics. However, it induces a significant decrease in solution quality for continuous
and integer RMP. Using only heuristics without matheuristic operators for solving sub-
problems almost keep some jobs not realized even in the continuous RMP. After such
quick phase with heuristic solving of sub-problems, using matheuristics (including the
matheuristic stabilization operators) allows accurately finding feasible solutions for all of
the instances. These two phases are worthwhile for reaching the quickest computation time
such as the stages of the CG convergence compared to the use of exact resolutions of sub-
problems. To derive the CG heuristics, some few iterations of the CG algorithm are required
with exact solutions sub-problems with the stabilization operators. Solving sub-problems
with LocalSolver in a short time limit and applying TS matheuristic intensification with
Algorithm 8 was also very efficient in that context.

6.4. Results with MILP-VND Local Search

Tables 5 and 6 provide the comparative results among local search approaches. For the
MILP-VND matheuristics, it allows comparing the quality of the local minimum obtained
by using different initialization heuristics. The comparative analyses on subsets of instances
in Table 6 illustrate the impact of the difficulty of constraints for the efficiency of local
search approaches.

6.5. Stabilization of CG Algorithm

If the extended formulation and the CG algorithm allows providing lower and upper
bounds of an excellent quality, the critical issue is to make the CG algorithm converge
quickly, which is the bottleneck of this method. As previously outlined, using quick heuris-
tics in the first phase and then matheuristics in the second phase with the TS intensification
as matheuristic operator allows quicker iteration than using an exact method, and it is
the quickest way to reach advances phases of the CG algorithm, but it is not enough to
reach the convergence of the CG algorithm. Note that this is particularly interesting for
avoiding the exact methods at the first iterations with respect to solving the most difficult
sub-problems, as described in Section 6.2.1.

This section provides the results applied to decreasing the number of iterations of the
CG algorithm in terms of converging faster in order to validate the different CG schemes.
Two experiences with exact methods are provided in this section, and the validation of
CG schemes has also an impact for designing the first iterations of the CG algorithm with
heuristic and matheuristic resolution of CG sub-problems.

Algorithms 2021, 14, 313 31 of 39

Table 6. Comparison of the solution quality of local search approaches for the 17 mid-size instances of dataset scmax, Scmax

and S1. LocalSolver results are reported for defined time limits, CG heuristics and VND matheuristics at termination. For
VND matheuristics, different initialization are provided, and the multi-start VND considers the reported initialization for a
parallel or multi-start implementation.

For Dataset scmax (the Most Constrained Instances)

Fail BKS Mean σ min Q1 Med Q3 Max

LocalSolver 30 s 2 0 13.68% 9.93% 2.43% 6.47% 10.78% 19.09% 35.86%
LocalSolver 60 s 2 0 11.24% 9.61% 2.31% 3.76% 6.99% 19.03% 32.18%
LocalSolver 300 s 2 0 5.36% 5.78% 1.30% 1.96% 3.35% 6.96% 24.52%
LocalSolver 600 s 2 0 3.89% 2.63% 0.70% 1.91% 3.35% 5.06% 8.76%
LocalSolver 900 s 1 1 2.99% 2.37% 0.00% 1.68% 2.49% 2.95% 8.26%

RMP_INT_HEUR 0 6 1.09% 1.32% 0.00% 0.00% 0.50% 1.82% 3.66%
LAG_HEUR 0 7 0.81% 1.10% 0.00% 0.00% 0.43% 1.07% 3.66%
LAG_RINS 0 8 0.19% 0.29% 0.00% 0.00% 0.08% 0.29% 1.12%
LAG_RINS+VND 0 15 0.08% 0.27% 0.00% 0.00% 0.00% 0.00% 1.12%

5 job,nbTec+VND 0 3 2.91% 2.84% 0.00% 0.49% 2.10% 4.71% 9.23%
5 job,timeJob+VND 0 2 3.60% 3.59% 0.00% 0.70% 2.66% 5.56% 14.32%
10 job,nbTec+VND 0 1 3.34% 3.17% 0.00% 1.24% 2.84% 4.43% 13.53%
10 job,timeJob+VND 0 0 4.71% 3.57% 0.09% 2.33% 4.13% 7.03% 11.67%
init0+VND 0 2 5.91% 6.04% 0.00% 1.11% 4.44% 10.46% 20.91%

Multi-start VND 0 4 1.71% 2.33% 0.00% 0.11% 0.66% 2.49% 9.23%

For dataset scmax

Fail BKS Mean σ min Q1 Med Q3 Max

LocalSolver 30 s 0 0 7.91% 5.36% 1.32% 4.97% 7.05% 8.56% 24.33%
LocalSolver 60 s 0 0 5.02% 3.06% 0.79% 2.94% 4.80% 6.55% 13.50%
LocalSolver 300 s 0 3 1.85% 1.63% 0.00% 0.56% 1.30% 2.98% 4.62%
LocalSolver 600 s 0 5 1.20% 1.45% 0.00% 0.03% 0.77% 1.77% 4.62%
LocalSolver 900 s 0 5 0.91% 1.09% 0.00% 0.03% 0.51% 1.24% 3.63%

RMP_INT_HEUR 0 5 1.31% 1.78% 0.00% 0.03% 0.48% 2.03% 5.52%
LAG_HEUR 0 7 0.87% 1.45% 0.00% 0.00% 0.13% 1.02% 4.76%
LAG_RINS 0 9 0.14% 0.18% 0.00% 0.00% 0.06% 0.25% 0.59%
LAG_RINS+VND 0 16 0.03% 0.08% 0.00% 0.00% 0.00% 0.00% 0.27%

5 job,nbTec+VND 0 7 1.29% 1.99% 0.00% 0.00% 0.40% 1.78% 7.42%
5 job,timeJob+VND 0 7 1.29% 1.99% 0.00% 0.00% 0.40% 1.78% 7.42%
10 job,nbTec+VND 0 8 1.80% 3.17% 0.00% 0.00% 0.17% 2.24% 12.66%
init0+VND 0 7 0.77% 1.03% 0.00% 0.00% 0.22% 0.95% 3.16%

Multi-start VND 0 12 0.29% 0.55% 0.00% 0.00% 0.00% 0.33% 2.06%

For Dataset S1 (the Less Constrained Instances)

Fail BKS Mean σ min Q1 Med Q3 Max

LocalSolver 30 s 0 0 7.78% 5.03% 2.56% 3.44% 6.65% 11.21% 19.30%
LocalSolver 60 s 0 0 6.35% 4.67% 0.83% 2.97% 5.24% 7.46% 15.81%
LocalSolver 300 s 0 3 2.42% 3.05% 0.00% 0.13% 0.69% 4.62% 9.10%
LocalSolver 600 s 0 6 1.71% 2.59% 0.00% 0.00% 0.32% 1.56% 7.52%
LocalSolver 900 s 0 8 0.83% 1.19% 0.00% 0.00% 0.13% 1.46% 3.72%

RMP_INT_HEUR 0 3 0.86% 0.80% 0.00% 0.16% 0.79% 1.29% 2.21%
LAG_HEUR 0 5 0.35% 0.41% 0.00% 0.02% 0.17% 0.67% 1.36%
LAG_RINS 0 11 0.17% 0.31% 0.00% 0.00% 0.00% 0.13% 0.86%
LAG_RINS+VND 0 16 0.07% 0.21% 0.00% 0.00% 0.00% 0.00% 0.86%

5 job,nbTec+VND 0 9 0.67% 0.91% 0.00% 0.00% 0.05% 0.89% 2.53%
5 job,timeJob+VND 0 9 0.67% 0.91% 0.00% 0.00% 0.05% 0.89% 2.53%
10 job,nbTec+VND 0 8 0.99% 1.21% 0.00% 0.00% 0.47% 1.87% 3.86%
init0+VND 0 11 0.68% 1.51% 0.00% 0.00% 0.00% 0.72% 5.98%

Multi-start VND 0 15 0.07% 0.19% 0.00% 0.00% 0.00% 0.00% 0.74%

Using only complementary neighborhoods with pairs of technicians N pair
i,i′ and reop-

timization of buckets of 10 jobs N jobs in different partitions allowed considering larger
neighborhoods than the traditional ones, contains the other main neighborhood and al-
lowed quick resolution times. As in [4], a very short number of iterations of the MILP-VND

Algorithms 2021, 14, 313 32 of 39

using iteratively all the considered neighborhoods were enough for converging to a local
minimum; for most instances, 2/3 of such iterations were needed, and the worst cases used
five such iterations. MILP-VND allows having quick convergence and scaled better for
all the larger instances than exact methods. Contrary to [4], such large neighborhoods are
not sufficient to converge to local minimums of excellent quality. The quality of the local
minimum varies significantly following the different initialization. Considering the four
matheuristic initialization and the null initialization, followed by the MILP-VND provided
a multi-start matheuristic that is accurate for finding good solutions, the most difficult
dataset scmax provided the worst solutions. Dataset scmax is generally the more difficult
one for local search approaches, with less feasible neighbor moves because of the hard
constraints. This was not the case of the CG-based heuristics. Using MILP-VND after the
LAG_RINS heuristic of an excellent quality allowed polishing the results and increases
the number of BKS found, illustrating the advantages, drawbacks and complementarity of
local search approaches and CG heuristics depending on the structures of the instances.

6.5.1. Impact of CG Initialization and Multi-Column Generation per Sub-Problem

In this section, we analyze the results considering the standard Algorithm 5 with an
exact resolution of sub-problems and generating one or several columns per sub-problem.
The second variant is implemented by using the populate mode of Cplex with OPL; we note
that it is possible to use all the columns with a negative reduced cost found using callbacks,
which is not available with OPL but is now available in some MILP modeling interfaces
and libraries such as PythonMIP or Julia JUMP. The generation of several columns is used
at most for the five first iterations, and the remaining iterations are processed with the
standard Algorithm 5 with at most one column generated per sub-problem. The maximal
size of the population of Cplex is set to ten: at most, 10 new columns are added in the RMP.

Figure 1 illustrates the convergence of integer and continuous RMP in both variants;
the results for some small instances are given with the number of iterations to converge in
Table 7. Figure 1 illustrates that CG is naturally stable for TRPTW, with a few degenerated
iterations. Degenerescence occurs more frequently for VRPTW [11]. A reason is that the
I sub-problems are highly heterogeneous with difference competence sets and location
of depots; a degenerated iteration would induce the generation of I degenerate columns,
whereas in VRPTW, only one sub-problem is generated when taking into account the sym-
metry among vehicles, and the probability of degenerate iteration is larger [11]. Figure 1
shows that integer and continuous RMP are very close; it happens for highly constrained
instances and also with generation of few columns. It explains the high quality of the
RMP_INT_HEUR heuristic.

Figure 1. Illustration of the CG convergence of RMP and integer RMP for an instance with 40 jobs
and 15 technicians with 20 different skills.

Algorithms 2021, 14, 313 33 of 39

Using several solution found by the MILP solver induces many benefits for the CG
convergence: The difference in the quality of continuous and integer RMP is significant,
and the dual variables have a less erratic convergence. This is a virtuous circle: Having
better RMP values induce better dual values that generate more relevant columns. This
explains how the experiments with only five iterations of aggressive CG produce such
difference. The first iterations are the most unstable.

Table 7 considers, furthermore, an initialization with the optimal integer solution. In
many cases, the convergence value of the continuous RMP is obtained here, and there
are only degenerated iterations with the optimal iterations. In such cases, the dual initial
values are very good, but it is not sufficient to guarantee the fast convergence of the CG
Algorithm 5. If the optimal initialization makes the number of iterations decrease on
average, there exists some instances where there are more degenerate iterations with the
optimal initialization than iterations starting from no column.

Table 7. Number of iterations for the convergence of CG algorithm to solve the LP relaxation of the
extended formulation compared when only one column is generated per sub-problem, improvements
with multi-column generation and providing an optimum of the MILP as the initial solution.

Instance 1 col per Sub-Problem Multicol Multicol + Warm Start

data_3_5_10_ex1 24 7 4
data_3_5_10_ex2 13 5 7
data_3_5_10_ex3 8 5 5
data_3_5_10_ex4 11 6 5

data_8_5_20_ex1 21 9 7
data_8_5_20_ex2 11 9 7
data_8_5_20_ex3 38 15 12
data_8_5_20_ex4 15 10 8

data_15_20_40_ex1 21 13 13
data_15_20_40_ex2 19 11 9
data_15_20_40_ex3 17 10 14
data_15_20_40_ex4 21 11 11

data_10_3_50_ex1 54 21 22
data_15_3_50_ex1 32 26 18

Total 324 168 150
% iterations 100 51.9% 46.3%

These experiments validate the impact of having a multi-column generation even
with an unstructured method of generating columns. The next section provides the results
related to the structured method of generating several columns per sub-problem.

6.5.2. Impact of the Different CG Schemes and Stabilization Operators

To understand the specific contributions of the different CG schemes , we provide here
comparative analyses solving exactly sub-problems for small and mid-size instances and
a proven termination of the CG algorithm. The following CG schemes are implemented
and compared:

• CG1: This is the standard CG scheme, as written in Algorithm 5;
• CG2: The standard CG scheme is followed by TS intensification to solve single techni-

cian sub-problems. It corresponds to Algorithm 8 with only partitions into singletons,
with parameters k = 3 and N = 5;

• CG3: This is the POPMUSIC CG scheme without TS intensification, where sub-
problems (36) are solved only using exact computations;

• CG4: This is the POPMUSIC CG scheme without TS intensification, where the sub-
problems (36) are solved twice: Algorithm 7 provides the first solutions in a hierarchi-
cal manner, and a second phase optimizes the worst reduced cost (and, thus, balances

Algorithms 2021, 14, 313 34 of 39

the reduced costs) with a VND local search matheuristic, generating all the columns
with a negatively reduced cost obtained from these two phases.

• CG5: This corresponds to the strategy CG4 with TS intensification activated with K = 3
and M = 5.

The dominant computational results are illustrated in Figure 2. The known hierarchies
among CG schemes are significant: CG1 is significantly dominated by the other schemes,
POPMUSIC and TS intensification induce a very significant acceleration in terms of CG
convergence. Comparing CG3 and CG4 allows concluding that the optimization of the total
reduced cost with diversification in sub-problems (36) induces a better CG convergence than
the CG with the hierarchical decomposition of Algorithm 7. Combining POPMUSIC and TS
intensification dominates the single stabilization strategies: POPMUSIC column generation is
mostly useful for the first iterations in terms of recombining columns in the next RMP, where
it can be difficult to find a solution allocating all the jobs (and, thus, paying no prohibitive
penalty). TS intensification is crucial when dual variables have a relative stability, which is
helpful for the latest phases of the CG convergence. When the dual variables are changing
slightly, it is likely that there exist many columns of very good quality among neighbors of the
optimal solution of the previous sub-problem. Aggressively using TS intensification prevents
generating neighbors from the previous iterations in further iterations, which explains the
gain when using TS intensification. To compute the extended LP relaxation to optimality, TS
strategies are prominent for reducing the number of CG iterations. TS is particularly efficient
for the final iterations of CG algorithm, but it is also useful in the first iterations with respect
to having a deterministic scheme to aggressively generate solutions in the first iterations, as in
the first experience of stabilization.

Algorithms 2021, 1, 0 35 of 39

(a) First iterations of all CG schemes (b) Last CG iterations of all CG schemes

(c) Comparison between GC2 and GC5 (d) Comparison between GC2 and GC4

Figure 2. Comparison of the CG convergence for an instance with 40 jobs and 15 technicians with
10 different skills. For a better readability, all CG schemes are separately illustrated on the very
first and the termination iterations, and comparisons between GC2 and GC5 or GC4 are shown in
separate graphs.

7. Conclusions and Perspectives

This work provided several results and offers different perspectives. The CG algo-
rithm is efficient for computing dual and primal bounds for the TRPTW coherently with
the results obtained for VRPTW problems. The LP relaxation of the DW extended formu-
lation efficiently guides us toward primal solutions of an excellent quality.Matheuristics
based on the compact ILP formulation may be inefficient even with combinations of large
neighborhoods in a VND local search, contrary to [4], or with parallelization using a
portfolio of matheuristics, contrary to [5]. We note also a similarity with [25]: improving
the exact methods and MILP formulations is a first step before applying MILP models to
matheuristics, and the first step is crucial for the efficiency of the resulting matheuristic.

If CG heuristics are particularly efficient in terms of quality, the key point is to speed
up and stabilize the convergence of the CG algorithm. Two matheuristic components
are proposed and proven efficient for TRPTW. On the one hand, the heterogeneity of sub-
problems allows a POPMUSIC decomposition to generate columns by avoiding redundancy
in the served requests for a better re-combination in the RMP computation. ML techniques
are used to generate appropriate partitions, illustrating the impact of hybridizing ML and
ILP techniques. On the other hand, a Tabu matheuristic intensification for sub-problems
avoids generating similar columns in neighbor iterations of the CG algorithm, decreasing
the number of iterations to converge. POPMUSIC matheuristic is efficient for the first CG
iterations where it is difficult to serve all the requests, whereas TS intensification remains
efficient for the last phases of the CG algorithm where dual values are quite stable. For both
schemes, heuristic solving schemes are designed to speed up the search of negative reduced
cost columns, and light heuristics are firstly processed and then heavier matheuristics are
used speed up the time of first CG iterations. A perspective would be to improve the
exact solutions of such sub-problems for the validated CG scheme by using labelling

Figure 2. Comparison of the CG convergence for an instance with 40 jobs and 15 technicians with 10 different skills. For a
better readability, all CG schemes are separately illustrated on the very first and the termination iterations, and comparisons
between GC2 and GC5 or GC4 are shown in separate graphs.

Algorithms 2021, 14, 313 35 of 39

7. Conclusions and Perspectives

This work provided several results and offers different perspectives. The CG algo-
rithm is efficient for computing dual and primal bounds for the TRPTW coherently with
the results obtained for VRPTW problems. The LP relaxation of the DW extended formu-
lation efficiently guides us toward primal solutions of an excellent quality.Matheuristics
based on the compact ILP formulation may be inefficient even with combinations of large
neighborhoods in a VND local search, contrary to [4], or with parallelization using a
portfolio of matheuristics, contrary to [5]. We note also a similarity with [25]: improving
the exact methods and MILP formulations is a first step before applying MILP models to
matheuristics, and the first step is crucial for the efficiency of the resulting matheuristic.

If CG heuristics are particularly efficient in terms of quality, the key point is to speed
up and stabilize the convergence of the CG algorithm. Two matheuristic components
are proposed and proven efficient for TRPTW. On the one hand, the heterogeneity of sub-
problems allows a POPMUSIC decomposition to generate columns by avoiding redundancy
in the served requests for a better re-combination in the RMP computation. ML techniques
are used to generate appropriate partitions, illustrating the impact of hybridizing ML and
ILP techniques. On the other hand, a Tabu matheuristic intensification for sub-problems
avoids generating similar columns in neighbor iterations of the CG algorithm, decreasing
the number of iterations to converge. POPMUSIC matheuristic is efficient for the first CG
iterations where it is difficult to serve all the requests, whereas TS intensification remains
efficient for the last phases of the CG algorithm where dual values are quite stable. For both
schemes, heuristic solving schemes are designed to speed up the search of negative reduced
cost columns, and light heuristics are firstly processed and then heavier matheuristics are
used speed up the time of first CG iterations. A perspective would be to improve the
exact solutions of such sub-problems for the validated CG scheme by using labelling
algorithms. Note that TS intensification and many matheuristics are compatible with
labelling algorithms; a perspective is to implement such matheuristics without using an
MILP solver. Possessing many strategies and hybridizations for generating columns is a
good characteristic with parallelization in a multi-core environment.

We note that our final approach investigates and combines the three types of matheuris-
tics for VRPTW problems in the taxonomy of [15]: CG-based heuristics as a general frame-
work, with computation of primal and dual bounds; improvement heuristics with local search
procedures to improve the integer RMP heuristics and to solve CG sub-problems); and
decomposition approaches to initialize CG and also in the sub-problem resolution of CG.
In such hybridization, mathematical programming is hybridized with the trajectory of
local search metaheuristics. A perspective is also to investigate the collaboration between
CG heuristics and population metaheuristics. The aggressive CG scheme and benefits or
diversification highlighted in this paper offer perspectives to solve CG sub-problems and
generate several columns with GA, PSO or ACO heuristics. Recent advances for these
population meta-heuristics are promising for such applications [80–83].

Our instances are now public, and the graduations of difficulty and highly constrained
instances with fewer possible neighbor moves are useful for challenging local search im-
plementation. The first results with LocalSolver were already good, with some difficulties
on highly constrained instances; we note that our instances are now in their benchmark
instances to help the parametrization of their generic solver. This is a perspective for other
generic codes with local search applied for vehicle routing problems.

Other perspectives are to extend these results with extensions of VRP and technician
routing problems with more constraints (as in [18,19,34]) or considering multi-objective
or robust optimization extensions, as in [84–86]. The matheuristic stabilization of CG
algorithm may also be extended for other problems where CG algorithm is efficient,
even without having heterogeneous sub-problems. It raises the question whether the
matheuristic stabilization techniques proposed in this paper would also be efficient in the
case of symmetrical sub-problems.

Algorithms 2021, 14, 313 36 of 39

Author Contributions: Conceptualization, N.D. and E.-G.T.; Methodology, N.D. and E.-G.T.; Soft-
ware, R.P; Validation, R.P.; Data curation, R.P.; Writing—original draft preparation, N.D.; Writing—
review and editing, N.D and R.P.; Supervision, E.-G.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting reported results can be found at https://github.com/
ndupin/SiteDepTRPTW (accessed on 25 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Williams, H.P. Model Building in Mathematical Programming; John Wiley & Sons: Hoboken, NJ, USA, 2013.
2. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput.

2011, 11, 4135–4151. [CrossRef]
3. Jourdan, L.; Basseur, M.; Talbi, E.G. Hybridizing exact methods and metaheuristics: A taxonomy. Eur. J. Oper. Res. 2009,

199, 620–629. [CrossRef]
4. Dupin, N.; Talbi, E. Matheuristics to optimize refueling and maintenance planning of nuclear power plants. J. Heuristics 2021,

27, 63–105. [CrossRef]
5. Dupin, N.; Talbi, E. Parallel matheuristics for the discrete unit commitment problem with min-stop ramping constraints. Int.

Trans. Oper. Res. 2020, 27, 219–244. [CrossRef]
6. Talbi, E. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper.

Res. 2016, 240, 171–215. [CrossRef]
7. Peschiera, F.; Dell, R.; Royset, J.; Haït, A.; Dupin, N.; Battaïa, O. A novel solution approach with ML-based pseudo-cuts for the

Flight and Maintenance Planning problem. Spectr. 2021, 43, 635–664. [CrossRef]
8. Riedler, M.; Jatschka, T.; Maschler, J.; Raidl, G. An iterative time-bucket refinement algorithm for a high-resolution resource-

constrained project scheduling problem. Int. Trans. Oper. Res. 2020, 27, 573–613. [CrossRef]
9. Dupin, N.; Talbi, E. Machine learning-guided dual heuristics and new lower bounds for the refueling and maintenance planning

problem of nuclear power plants. Algorithms 2020, 13, 185. [CrossRef]
10. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014; Volume 18,
11. Feillet, D. A tutorial on column generation and branch-and-price for vehicle routing problems. 4OR Q. J. Oper. Res. 2010, 8,

407–424. [CrossRef]
12. Pessoa, A.; Sadykov, R.; Uchoa, E.; Vanderbeck, F. A generic exact solver for vehicle routing and related problems. Math. Program.

2020, 183, 483–523. [CrossRef]
13. Danna, E.; Le Pape, C. Branch-and-price heuristics: A case study on the vehicle routing problem with time windows. In Column

Generation; Springer: Berlin/Heidelberg, Germany, 2005; Volume 18, pp. 99–129.
14. Doerner, K.F.; Schmid, V. Survey: Matheuristics for rich vehicle routing problems. In International Workshop on Hybrid

Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 206–221.
15. Archetti, C.; Speranza, M.G. A survey on matheuristics for routing problems. EURO J. Comput. Optim. 2014, 2, 223–246.

[CrossRef]
16. Furian, N.; O’Sullivan, M.; Walker, C.; Çela, E. A machine learning-based branch and price algorithm for a sampled vehicle

routing problem. OR Spectrum 2021, 43, 693–732. [CrossRef]
17. Morabit, M.; Desaulniers, G.; Lodi, A. Machine-Learning-Based Column Selection for Column Generation. Transp. Sci. 2021, 5,

815–831. [CrossRef]
18. Dutot, P.F.; Laugier, A.; Bustos, A.M. Technicians and Interventions Scheduling for Telecommunications; Technical Report for France

Telecom R&D: Paris, French, 2006.
19. Gromicho, J.; van’t Hof, P.; Vigo, D. The VeRoLog verolog solver challenge 2019. J. Veh. Rout. Algorithms 2019, 2, 109–111.

[CrossRef]
20. Cordeau, J.F.; Laporte, G.; Mercier, A. A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper.

Res. Soc. 2001, 52, 928–936. [CrossRef]
21. Cordeau, J.F.; Laporte, G. A tabu search algorithm for the site dependent vehicle routing problem with time windows. INFOR Inf.

Syst. Oper. Res. 2001, 39, 292–298. [CrossRef]
22. Polacek, M.; Hartl, R.F.; Doerner, K.; Reimann, M. A variable neighborhood search for the multi depot vehicle routing problem

with time windows. J. Heuristics 2004, 10, 613–627. [CrossRef]
23. Feillet, D.; Dejax, P.; Gendreau, M.; Gueguen, C. An exact algorithm for the elementary shortest path problem with resource

constraints: Application to some vehicle routing problems. Networks 2004, 44, 216–229. [CrossRef]

https://github.com/ndupin/SiteDepTRPTW
https://github.com/ndupin/SiteDepTRPTW
http://doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.ejor.2007.07.035
http://dx.doi.org/10.1007/s10732-020-09450-0
http://dx.doi.org/10.1111/itor.12557
http://dx.doi.org/10.1007/s10479-015-2034-y
http://dx.doi.org/10.1007/s00291-020-00591-z
http://dx.doi.org/10.1111/itor.12445
http://dx.doi.org/10.3390/a13080185
http://dx.doi.org/10.1007/s10288-010-0130-z
http://dx.doi.org/10.1007/s10107-020-01523-z
http://dx.doi.org/10.1007/s13675-014-0030-7
http://dx.doi.org/10.1007/s00291-020-00615-8
http://dx.doi.org/10.1287/trsc.2021.1045
http://dx.doi.org/10.1007/s41604-019-00011-8
http://dx.doi.org/10.1057/palgrave.jors.2601163
http://dx.doi.org/10.1080/03155986.2001.11732443
http://dx.doi.org/10.1007/s10732-005-5432-5
http://dx.doi.org/10.1002/net.20033

Algorithms 2021, 14, 313 37 of 39

24. Cappanera, P.; Gouveia, L.; Scutellà, M.G. Models and valid inequalities to asymmetric skill-based routing problems. EURO J.
Transp. Logist. 2013, 2, 29–55. [CrossRef]

25. Cappanera, P.; Requejo, C.; Scutellà, M.G. Temporal constraints and device management for the Skill VRP: mathematical model
and lower bounding techniques. Comput. Oper. Res. 2020, 124, 105054. [CrossRef]

26. Pessoa, A.; Sadykov, R.; Uchoa, E. Enhanced Branch-Cut-and-Price algorithm for heterogeneous fleet vehicle routing problems.
Eur. J. Oper. Res. 2018, 270, 530–543. [CrossRef]

27. Schwarze, S.; Voß, S. Improved load balancing and resource utilization for the skill vehicle routing problem. Optim. Lett. 2013,
7, 1805–1823. [CrossRef]

28. Schwarze, S.; Voß, S. A bicriteria skill vehicle routing problem with time windows and an application to pushback operations at
airports. In Logistics Management; Springer: Berlin/Heidelberg, Germany, 2015; pp. 289–300.

29. Yan, X.; Xiao, B.; Xiao, Y.; Zhao, Z.; Ma, L.; Wang, N. Skill vehicle routing problem with time windows considering dynamic
service times and time-skill-dependent costs. IEEE Access 2019, 7, 77208–77221. [CrossRef]

30. Castillo-Salazar, J.and Landa-Silva, D.; Qu, R. Workforce scheduling and routing problems: Literature survey and computational
study. Ann. Oper. Res. 2016, 239, 39–67. [CrossRef]

31. Kovacs, A.; Parragh, S.; Doerner, K.; Hartl, R. Adaptive large neighborhood search for service technician routing and scheduling
problems. J. Sched. 2012, 15, 579–600. [CrossRef]

32. Xie, F.; Potts, C.; Bektaş, T. Iterated local search for workforce scheduling and routing problems. J. Heuristics 2017, 23, 471–500.
[CrossRef]

33. Pillac, V.; Gueret, C.; Medaglia, A. A parallel matheuristic for the technician routing and scheduling problem. Optim. Lett. 2013,
7, 1525–1535. [CrossRef]

34. Mendoza, J.; Montoya, A.; Guéret, C.; Villegas, J. A parallel matheuristic for the technician routing problem with conventional
and electric vehicles. In Proceedings of the 12th Metaheuristics International Conference, Las Palmas de Gran Canaria, Spain,
19–24 February 2017.

35. Chen, X.; Thomas, B.W.; Hewitt, M. The technician routing problem with experience-based service times. Omega 2016, 61, 49–61.
[CrossRef]

36. Pillac, V.; Guéret, C.; Medaglia, A. A fast reoptimization approach for the dynamic technician routing and scheduling problem.
In Recent Developments in Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 347–367.

37. Anoshkina, Y.; Meisel, F. Interday routing and scheduling of multi-skilled teams with consistency consideration and intraday
rescheduling. EURO J. Transp. Logist. 2020, 9, 100012. [CrossRef]

38. Bley, A.; Karch, D.; D’Andreagiovanni, F. WDM fiber replacement scheduling. Electron. Notes Discret. Math. 2013, 41, 189–196.
[CrossRef]

39. Pugliese, L.; Guerriero, F. A survey of resource constrained shortest path problems: Exact solution approaches. Networks 2013,
62, 183–200. [CrossRef]

40. Sadykov, R.; Uchoa, E.; Pessoa, A. A bucket graph—Based labeling algorithm with application to vehicle routing. Transp. Sci.
2021, 55, 4–28. [CrossRef]

41. Baldacci, R.; Battarra, M.; Vigo, D. Routing a heterogeneous fleet of vehicles. In The Vehicle Routing Problem: Latest Advances and
New Challenges; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27.

42. Baldacci, R.; Mingozzi, A. A unified exact method for solving different classes of vehicle routing problems. Math. Program. 2009,
120, 347. [CrossRef]

43. Bettinelli, A.; Ceselli, A.; Righini, G. A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing
problem with time windows. Transp. Res. Part C Emerg. Technol. 2011, 19, 723–740. [CrossRef]

44. Gendreau, M.; Potvin, J.Y.; Bräysy, O.; Hasle, G.; Løkketangen, A. Metaheuristics for the vehicle routing problem and its extensions:
A categorized bibliography. In The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 143–169.

45. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
46. Vidal, T.; Crainic, T.; Gendreau, M.; Prins, C. A hybrid genetic algorithm with adaptive diversity management for a large class of

vehicle routing problems with time-windows. Comput. Oper. Res. 2013, 40, 475–489. [CrossRef]
47. Rizzoli, A.; Montemanni, R.; Lucibello, E.; Gambardella, L. Ant colony optimization for real-world vehicle routing problems.

Swarm Intell. 2007, 1, 135–151. [CrossRef]
48. Hurkens, C. Incorporating the strength of MIP modeling in schedule construction. RAIRO-Oper. Res. 2009, 43, 409–420. [CrossRef]
49. Mancini, S. A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: Formulation and adaptive

large neighborhood search based matheuristic. Transp. Res. Part C Emerg. Technol. 2016, 70, 100–112. [CrossRef]
50. Taillard, E. A heuristic column generation method for the heterogeneous fleet VRP. RAIRO Oper. Res. 1999, 33, 1–14. [CrossRef]
51. Vidal, T.; Crainic, T.; Gendreau, M.; Prins, C. A unified solution framework for multi-attribute vehicle routing problems. Eur. J.

Oper. Res. 2014, 234, 658–673. [CrossRef]
52. Pekel, E. Solving technician routing and scheduling problem using improved particle swarm optimization. Soft Comput. 2020,

24, 19007–19015. [CrossRef]
53. Pereira, D.; Alves, J.; de Oliveira Moreira, M. A multiperiod workforce scheduling and routing problem with dependent tasks.

Comput. Oper. Res. 2020, 118, 104930. [CrossRef]

http://dx.doi.org/10.1007/s13676-012-0012-y
http://dx.doi.org/10.1016/j.cor.2020.105054
http://dx.doi.org/10.1016/j.ejor.2018.04.009
http://dx.doi.org/10.1007/s11590-012-0524-2
http://dx.doi.org/10.1109/ACCESS.2019.2919963
http://dx.doi.org/10.1007/s10479-014-1687-2
http://dx.doi.org/10.1007/s10951-011-0246-9
http://dx.doi.org/10.1007/s10732-017-9347-8
http://dx.doi.org/10.1007/s11590-012-0567-4
http://dx.doi.org/10.1016/j.omega.2015.07.006
http://dx.doi.org/10.1016/j.ejtl.2020.100012
http://dx.doi.org/10.1016/j.endm.2013.05.092
http://dx.doi.org/10.1002/net.21511
http://dx.doi.org/10.1287/trsc.2020.0985
http://dx.doi.org/10.1007/s10107-008-0218-9
http://dx.doi.org/10.1016/j.trc.2010.07.008
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cor.2012.07.018
http://dx.doi.org/10.1007/s11721-007-0005-x
http://dx.doi.org/10.1051/ro/2009026
http://dx.doi.org/10.1016/j.trc.2015.06.016
http://dx.doi.org/10.1051/ro:1999101
http://dx.doi.org/10.1016/j.ejor.2013.09.045
http://dx.doi.org/10.1007/s00500-020-05333-5
http://dx.doi.org/10.1016/j.cor.2020.104930

Algorithms 2021, 14, 313 38 of 39

54. Cortés, C.E.; Gendreau, M.; Rousseau, L.; Souyris, S.; Weintraub, A. Branch-and-price and constraint programming for solving a
real-life technician dispatching problem. Eur. J. Oper. Res. 2014, 238, 300–312. [CrossRef]

55. Zamorano, E.; Stolletz, R. Branch-and-price approaches for the multiperiod technician routing and scheduling problem. Eur. J.
Oper. Res. 2017, 257, 55–68. [CrossRef]

56. Mathlouthi, I.; Gendreau, M.; Potvin, J. Branch-and-price for a multi-attribute technician routing and scheduling problem. SN
Oper. Res. Forum 2021, 2, 1–35. [CrossRef]

57. Penna, P.; Subramanian, A.; Ochi, L.S.; Vidal, T.; Prins, C. A hybrid heuristic for a broad class of vehicle routing problems with
heterogeneous fleet. Ann. Oper. Res. 2019, 273, 5–74. [CrossRef]

58. Graf, B. Adaptive large variable neighborhood search for a multiperiod vehicle and technician routing problem. Networks 2020,
76, 256–272. [CrossRef]

59. Jagtenberg, C.; Maclaren, O.; Mason, A.; Raith, A.; Shen, K.; Sundvick, M. Columnwise neighborhood search: A novel set
partitioning matheuristic and its application to the VeRoLog Solver Challenge 2019. Networks 2020, 76, 273–293. [CrossRef]

60. Kheiri, A.; Ahmed, L.; Boyacı, B.; Gromicho, J.; Mumford, C.; Özcan, E.; Dirikoç, A. Exact and hyper-heuristic solutions for the
distribution-installation problem from the VeRoLog 2019 challenge. Networks 2020, 76, 294–319. [CrossRef]

61. Kastrati, V.; Ahmeti, A.; Musliu, N. Solving Vehicle Routing and Scheduling with Delivery and Installation of Machines using
ILS. In Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling-PATAT, Bruges,
Belgium, 24–27 August 2021; Volume 1.

62. Fırat, M.; Hurkens, C. An improved MIP-based approach for a multi-skill workforce scheduling problem. J. Sched. 2012,
15, 363–380. [CrossRef]

63. Pokutta, S.; Stauffer, G. France Telecom workforce scheduling problem: A challenge. RAIRO Oper. Res. 2009, 43, 375–386.
[CrossRef]

64. Estellon, B.; Gardi, F.; Nouioua, K. High-Performance Local Search for Task Scheduling with Human Resource Allocation. In
International Workshop on Engineering Stochastic Local Search Algorithms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–15.

65. Cordeau, J.F.; Laporte, G.; Pasin, F.; Ropke, S. Scheduling technicians and tasks in a telecommunications company. J. Sched. 2010,
13, 393–409. [CrossRef]

66. Hashimoto, H.; Boussier, S.; Vasquez, M.; Wilbaut, C. A GRASP-based approach for technicians and interventions scheduling for
telecommunications. Ann. Oper. Res. 2011, 183, 143–161. [CrossRef]

67. Ascheuer, N.; Fischetti, M.; Grötschel, M. A polyhedral study of the asymmetric traveling salesman problem with time windows.
Networks 2000, 36, 69–79. [CrossRef]

68. Öncan, T.; Altınel, İ.K.; Laporte, G. A comparative analysis of several asymmetric traveling salesman problem formulations.
Comput. 2009, 36, 637–654. [CrossRef]

69. Fox, K.; Gavish, B.; Graves, S. An n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problem. Oper. Res.
1980, 28, 1018–1021. [CrossRef]

70. Lindahl, M.; Sørensen, M.; Stidsen, T. A fix-and-optimize matheuristic for university timetabling. J. Heuristics 2018, 24, 645–665.
[CrossRef]

71. Fischetti, M.; Lodi, A. Local branching. Math Program. 2003, 98, 23–47. [CrossRef]
72. Taillard, É.; Voss, S. POPMUSIC-Partial optimization metaheuristic under special intensification conditions. In Essays and Surveys

in Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2002; pp. 613–629.
73. Mancini, S. A combined multistart random constructive heuristic and set partitioning based formulation for the vehicle routing

problem with time dependent travel time. Comput. Oper. Res. 2017, 88, 290–296. [CrossRef]
74. Queiroga, E.; Sadykov, R.; Uchoa, E. A POPMUSIC matheuristic for the capacitated vehicle routing problem. Comput. Oper. Res.

2021, 136, 105475. [CrossRef]
75. du Merle, O.; Villeneuve, D.; Desrosiers, J.; Hansen, P. Stabilized column generation. Discret. Math. 1999, 94, 229–237. [CrossRef]
76. Lazic, J.; Hanafi, S.; Mladenovic, N.; Urozevic, D. Variable Neighbourhood Decomposition Search for 0-1 Mixed Integer Programs.

Comput. Oper. Res. 2010, 37, 1055–1067. [CrossRef]
77. Desaulniers, G.; Lessard, F.; Hadjar, A. Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle

routing problem with time windows. Transp. Sci. 2008, 42, 387–404. [CrossRef]
78. Desrosiers, J.; Lübbecke, M. A primer in column generation. In Column Generation; Springer: Berlin/Heidelberg, Germany, 2005;

pp. 1–32.
79. Dupin, N. Column generation for the discrete UC problem with min-stop ramping constraints. IFAC-PapersOnLine 2019,

52, 529–534. [CrossRef]
80. Vidal, T.; Crainic, T.; Gendreau, M.; Lahrichi, N.; Rei, W. A hybrid genetic algorithm for multidepot and periodic vehicle routing

problems. Oper. Res. 2012, 60, 611–624. [CrossRef]
81. Wang, C.; Guo, C.; Zuo, X. Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm.

Appl. Soft Comput. 2021, 112, 107774. [CrossRef]
82. Wang, F.; Zhang, H.; Li, K.; Lin, Z.; Yang, J.; Shen, X. A hybrid particle swarm optimization algorithm using adaptive learning

strategy. Inf. Sci. 2018, 436, 162–177. [CrossRef]
83. Nurcahyadi, T.; Blum, C. Adding Negative Learning to Ant Colony Optimization: A Comprehensive Study. Mathematics 2021,

9, 361. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2014.03.006
http://dx.doi.org/10.1016/j.ejor.2016.06.058
http://dx.doi.org/10.1007/s43069-020-00044-x
http://dx.doi.org/10.1007/s10479-017-2642-9
http://dx.doi.org/10.1002/net.21959
http://dx.doi.org/10.1002/net.21961
http://dx.doi.org/10.1002/net.21962
http://dx.doi.org/10.1007/s10951-011-0245-x
http://dx.doi.org/10.1051/ro/2009025
http://dx.doi.org/10.1007/s10951-010-0188-7
http://dx.doi.org/10.1007/s10479-009-0545-0
http://dx.doi.org/10.1002/1097-0037(200009)36:2<69::AID-NET1>3.0.CO;2-Q
http://dx.doi.org/10.1016/j.cor.2007.11.008
http://dx.doi.org/10.1287/opre.28.4.1018
http://dx.doi.org/10.1007/s10732-018-9371-3
http://dx.doi.org/10.1007/s10107-003-0395-5
http://dx.doi.org/10.1016/j.cor.2017.06.021
http://dx.doi.org/10.1016/j.cor.2021.105475
http://dx.doi.org/10.1016/S0012-365X(98)00213-1
http://dx.doi.org/10.1016/j.cor.2009.09.010
http://dx.doi.org/10.1287/trsc.1070.0223
http://dx.doi.org/10.1016/j.ifacol.2019.11.186
http://dx.doi.org/10.1287/opre.1120.1048
http://dx.doi.org/10.1016/j.asoc.2021.107774
http://dx.doi.org/10.1016/j.ins.2018.01.027
http://dx.doi.org/10.3390/math9040361

Algorithms 2021, 14, 313 39 of 39

84. Agra, A.; Christiansen, M.; Figueiredo, R.; Hvattum, L.; Poss, M.; Requejo, C. The robust vehicle routing problem with time
windows. Comput. Oper. Res. 2013, 40, 856–866. [CrossRef]

85. Jozefowiez, N.; Semet, F.; Talbi, E. Multi-objective vehicle routing problems. Eur. J. Oper. Res. 2008, 189, 293–309. [CrossRef]
86. Glize, E.; Jozefowiez, N.; Ngueveu, S. An ε-constraint column generation-and-enumeration algorithm for Bi-Objective Vehicle

Routing Problems. Comput. Oper. Res. 2021, 138, 105570. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2012.10.002
http://dx.doi.org/10.1016/j.ejor.2007.05.055
http://dx.doi.org/10.1016/j.cor.2021.105570

	Introduction
	Problem Statement and Related Work
	Problem Statement and Notation
	Related Problems in the Literature
	Related Vehicle Routing Problems
	Related Technician Routing Problems

	Algorithms for Solving Related Problems
	Solving Related Vehicle Routing Problems
	Solving Technician Routing Problems

	MILP Compact Formulations
	First MILP Formulations
	Four-Index MILP Formulation with Ordinality

	Matheuristics Based on Compact MILP Formulations
	MILP Neighborhoods for Local Optimizations
	Greedy Heuristics Iterating along Technicians
	Greedy Heuristics Iterating among Jobs
	Local Branching Insertions of Jobs
	VND Local Search Matheuristic
	General Algorithm
	MILP Neighborhoods
	Sequence of MILP Neighborhoods

	Parallel Heuristics

	Dantzig–Wolfe Reformulation and CG Matheuristics
	Extended Formulation and Column Generation
	POPMUSIC-CG Decomposition
	Solving CG Sub-Problems
	How to Select Partitions of Sub-Problems?
	Formulation as Clustering Problems
	MILP Formulation with Two Technician by Cluster
	Dealing with Heterogeneity of Sub-Problems
	Related ML Techniques for Decomposition in Mathematical Programming

	Tabu Search Intensification
	Dual Bounds Derived from CG
	Primal CG Heuristics
	Management of the CG Pool
	Using Parallel Computing and a Many-Core Environment

	Computational Results
	Instance Characteristics, Benchmarks and Analysis Methodology
	Instance Characteristics
	Analysis Methodology
	Implementation and Characteristics of MILP Solving
	LocalSolver
	Solving MILP Compact Formulations

	MILP Formulations Results
	Solving CG Sub-Problems
	Results with Extended DW Reformulation

	Results with Constructive Matheuristics
	Constructive Matheuristics Iterating Technician by Technician
	Constructive Matheuristics Iterating by Buckets of Jobs
	CG Heuristics

	Results with MILP-VND Local Search
	Stabilization of CG Algorithm
	Impact of CG Initialization and Multi-Column Generation per Sub-Problem
	Impact of the Different CG Schemes and Stabilization Operators

	Conclusions and Perspectives
	References

