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Abstract: This paper proposes a new group-sparsity-inducing regularizer to approximate `2,0 pseudo-
norm. The regularizer is nonconvex, which can be seen as a linearly involved generalized Moreau
enhancement of `2,1-norm. Moreover, the overall convexity of the corresponding group-sparsity-
regularized least squares problem can be achieved. The model can handle general group configu-
rations such as weighted group sparse problems, and can be solved through a proximal splitting
algorithm. Among the applications, considering that the bias of convex regularizer may lead to
incorrect classification results especially for unbalanced training sets, we apply the proposed model
to the (weighted) group sparse classification problem. The proposed classifier can use the label,
similarity and locality information of samples. It also suppresses the bias of convex regularizer-based
classifiers. Experimental results demonstrate that the proposed classifier improves the performance
of convex `2,1 regularizer-based methods, especially when the training data set is unbalanced. This
paper enhances the potential applicability and effectiveness of using nonconvex regularizers in the
frame of convex optimization.

Keywords: convex optimization; proximal splitting algorithm; generalized Moreau enhancement;
group sparsity; weighted `2,1-norm; sparse representation-based classification

1. Introduction

In recent decades, sparse reconstruction has become an active topic in many areas,
such as in fields of signal processing, statistics, and machine learning [1]. By reconstructing
a sparse solution from a linear measurement, we can obtain a certain expression of high-
dimensional data as a vector with only a small number of nonzero entries. In practical
applications, the data of interest can often be assumed to have a certain special structure.
For example, in microarray analysis of gene expression [2,3], hyperspectral image unmix-
ing [4–6], force identification in industrial applications [7], classification problems [8–13],
etc., the solution of interest often possesses group-sparsity structure, namely the solution
has a natural grouping of its coefficients and nonzero entries only occur in few groups.

This paper focuses on the estimation of group sparse solution, which is related
to the Group LASSO (least absolute shrinkage and selection operator) [14]. Suppose
x = [x>1 , x>2 , · · · , x>g ]> ∈ Rn is a group sparse signal, where xi ∈ Rni , ∑

g
i=1 ni = n and

g is the number of groups. Just as with the use of `0 pseudo-norm for evaluation of
the sparsity, the group sparsity of x can be evaluated with the `2,0 pseudo-norm, i.e.,
‖x‖2,0 =

∥∥(‖x1‖2, ‖x2‖2, · · · , ‖xg‖2
)∥∥

0, where ‖ · ‖2 is the Euclidean norm, and ‖ · ‖0 is the
`0 pseudo-norm which counts the number of nonzero entries in the vector in Rg.

The group sparse regularized least squares problem can be modeled as

minimize
x∈Rn

1
2
‖y− Ax‖2

2 + λ‖x‖2,0, (1)
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where y ∈ Rm and A ∈ Rm×n are known, and λ > 0 is the regularization parameter.
However, the employment of the pseudo-norm `2,0 makes (1) NP-hard [15]. Most studies
in the application replace the nonconvex regularizer `2,0 with its tightest convex envelope
`2,1 [16] (or its weighted variants), and the following regularized least squares problem has
been proposed known as the Group LASSO [14],

minimize
x∈Rn

1
2
‖y− Ax‖2

2 + λ
g

∑
i=1

wi‖xi‖2, (2)

where wi > 0 (i = 1, · · · , g) in the regularization term

‖x‖w,2,1 :=
g

∑
i=1

wi‖xi‖2 (3)

(this is `w,2,1-norm of x, i.e., a separable weighted version [17] of `2,1-norm ‖x‖2,1 =

∑
g
i=1 ‖xi‖2) are used to adjust for group sizes with wi =

√
ni in [14,18]. We give a simple

but clear explanation in Appendix A, to show the bias of `2,1-norm caused by group size in
the application of group sparse classification (GSC).

Although the convex optimization problem (2) has been used as a standard model
for group sparse estimation applications, the convex regularizer `w,2,1 does not necessarily
promote group sparsity sufficiently, mainly due to the fact that `w,2,1-norm is just an ap-
proximation of `2,0 pseudo-norm within the severe restriction of the convexity. To promote
the group sparsity more effectively than convex regularizers, nonconvex regularizers such
as group SCAD (smoothly clipped absolute deviation) [3], group MCP (minimax concave

penalty) [18,19], `p,q regularization (‖x‖p,q :=
(

∑
g
i=1 ‖xi‖

q
p

)1/q
, 0 < q < 1 ≤ p) [20], iter-

ative weighted group minimization [21], and `2,0 [22] have been used for group sparse
estimation problems. However, they lose the overall convexity (In [23], a nonconvex reg-
ularizer which can preserve the overall convexity was proposed, but the fidelity term of
the optimization model is 1

2‖y − x‖2
2 (limited to the case of A = In, where In ∈ Rn×n

is the identity matrix), which cannot be applied to (1) for general A ∈ Rm×n.) of the
optimization problems, which results in their algorithms of no guarantee of convergence to
global minimizers of the overall cost functions.

In this paper, we propose a generalized weighted group sparse estimation model
based on the linearly involved generalized-Moreau-enhanced (LiGME) approach [24] that
uses nonconvex regularizer while maintaining the overall convexity of the optimization
problem. Our contributions can be summarized as follows:

• We show in Proposition 2 that the generalized Moreau enhancement (GME) of `w,2,1,
i.e., (‖ · ‖w,2,1)B (see (11)), can bridge the gap between `w,2,1 and `2,0. For the non-
separable weighted `2,1, i.e., ‖W · ‖2,1, its GME can be expressed as LiGME of `2,1 in
the case of weight matrix W has full row-rank.

• We present a convex regularized least squares model with a nonconvex group sparsity
promoting regularizer based on LiGME. It can be served as a unified model of many
types of group sparsity related applications.

• We illustrate the unfairness of `2,1 regularizer in unbalanced classification and then
apply the proposed model to reduce the unfairness of it in GSC and weighted GSC
(WGSC) [11].

The remainder of this paper is organized as follows. In Section 2, we give a brief
review of LiGME model and WGSC method. In Section 3, we present our group sparse
enhanced representation model and its mathematical properties. In Section 4, we apply the
proposed model to group-sparsity-based classification problems. The conclusion is given
in Section 5.

A preliminary short version of this paper was presented at a conference [25].
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2. Preliminaries
2.1. Review of Linearly Involved Generalized-Moreau-Enhanced (LiGME) Model

We first give a brief review of linearly involved generalized-Moreau-enhanced (LiGME)
models, which is closely related to our method. Although the convex function `1-norm
(or nuclear norm) is the most frequently adopted regularizer for sparsity (or low-rank)
pursuing problems, it tends to yield underestimation for high-amplitude value (or large
singular value) [26,27]. The convexity-preserving nonconvex regularizers have been widely
explored in [24,28–33], which promote sparsity (or low-rank) more effectively than convex
regularizers without losing the overall convexity. Among them, the generalized mini-
max concave (GMC) function in [31] does not rely on certain strong assumptions in the
least squares term and has great potential for dealing with nonconvex variations of ‖ · ‖1.
Motivated by GMC function, the LiGME model [24] provides a general framework for con-
structing linearly involved nonconvex regularizers for sparsity (or low-rank) regularized
linear least squares while maintaining the overall convexity of the cost function.

Let (X , 〈·, ·〉X , ‖ · ‖X ), (Y , 〈·, ·〉Y , ‖ · ‖Y ), (Z , 〈·, ·〉Z , ‖ · ‖Z ), and (Z̃ , 〈·, ·〉Z̃ , ‖ · ‖Z̃ ) be
finite-dimensional real Hilbert spaces. Let a function Ψ ∈ Γ0(Z) be coercive with domΨ =
Z . Here Γ0(Z) is the set of proper (i.e., domΨ := {z ∈ Z|Ψ(z) < ∞} 6= ∅) lower
semicontinuous (i.e., lev≤aΨ := {z ∈ Z|Ψ(z) ≤ a} is closed for ∀a ∈ R) convex function
(i.e., Ψ(θz1 + (1− θ)z2) ≤ θΨ(z1) + (1− θ)Ψ(z2)) for ∀z1, z2 ∈ domΨ, 0 ≤ θ ≤ 1) from
Z to (−∞, ∞]; a function Ψ ∈ Γ0(Z) is called coercive if ‖z‖2 → ∞ ⇒ Ψ(z) → ∞.
For Ψ ∈ Γ0(Z), the proximity operator of Ψ is defined by ProxΨ : Z → Z : z 7→
arg minv∈Z Ψ(v) + 1

2‖v− z‖2
Z .

The generalized Moreau enhancement (GME) of Ψ with B ∈ B(Z , Z̃) is defined as

ΨB(·) := Ψ(·)−min
v∈Z

[
Ψ(v) +

1
2
‖B(· − v)‖2

Z̃

]
, (4)

where B is a tuning matrix for the enhancement. Then the LiGME model defined as the
minimization of

JΨB◦L : X → R : x 7→ 1
2
‖y− Ax‖2

Y + λΨB ◦ L(x), (5)

where (A,L, λ) ∈ B(X ,Y)×B(X ,Z)×R+.
Please note that GMC [31] can be seen as a special case of (5) with Ψ = ‖ · ‖1 and

L = Id, where Id is the identity operator. Model (5) can also be seen as an extension
of [32,33].

Although the GME function ΨB in (4) is not convex in general for B 6= OB(Z ,Z̃), where
OB(Z ,Z̃) ∈ B(Z , Z̃) is the zero operator, the overall convexity of the cost function (5) can
be achieved with B designed to satisfy the following convexity condition.

Proposition 1 ([24], Proposition 1). The cost function JΨB◦L in (5) belongs to Γ0(X ) for any
y ∈ Y , if the GME regularizer ΨB in (4) satisfies that

A∗A− λL∗B∗BL � OX , (6)

where A∗ denotes the adjoint of A and OX ∈ B(X ,X ) is the zero operator. In particular, when Ψ
is a certain norm over the vector space Z , JΨB◦L ∈ Γ0(X ) if and only if (6) is satisfied.

A method of designing B satisfying (6) for X = Rn is provided in [24]; see
Proposition A1 in Appendix B. For any Ψ ∈ Γ0(Z) that is coercive, even symmetry
and prox-friendly (Even symmetry means Ψ ◦ (−Id) = Ψ; prox-friendly means ProxγΨ
is computable (∀γ ∈ R++).) with domΨ = Z , [24] provides a proximal splitting al-
gorithm (see Proposition A2 in Appendix B) of guaranteed convergence to a globally
optimal solution of model (5) under the overall-convexity condition (6).
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2.2. Basic Idea of Weighted Group Sparse Classification (WGSC)

As a relatively simple but typical scenario for the application of the proposed idea in
this paper, we introduce the main idea of weighted group sparse classification (WGSC).
Classification is one of fundamental tasks in the field of the signal and image processing
and pattern recognition. For a classification problem with g classes of subjects, the training
samples can formulate a dictionary matrix A = [A1, A2, · · · , Ag] ∈ Rm×n, where Ai =
[ai1, ai2, · · · , aini ] ∈ Rm×ni is the subset of the training samples from subject i, aij is the
j-th training sample from the i-th class, ni is the number of training samples from class i,
and n = ∑

g
i=1 ni is the number of total training samples. The aim is to correctly determine

which class the input test sample y ∈ Rm belongs to. Although deep learning is very
popular and powerful for classification tasks, it requires a very large-scale training set
and computation resources for numerous parameters training with complicated back-
propagation.

Wright et al. proposed the sparse representation-based classification (SRC) [34] for face
recognition. With the assumption that samples of a specific subject lie in a linear subspace,
a valid test sample y is expected to be approximated well by a linear combination of the
training samples from the same class, which leads to a sparse representation coefficient
over all training samples. Specifically, the test sample y is approximated by the linear
combination of the dictionary items, i.e., y ≈ Ax, where x is the coefficient vector. A simple
minimization model with sparse representation can be minimizex∈Rn

1
2‖y− Ax‖2

2 + λ‖x‖0.
In most SRC-based approaches, `0 regularizer is relaxed to `1, and the model becomes the
well-known LASSO model [35] in statistics.

The label information of the dictionary atoms is not used in the simple model of SRC,
hence the regression is based solely on the structure of each sample. When the subspaces
spanned by different classes are not independent, SRC may lead the test image to be
represented by training samples from multiple different classes. Considering ideal situation
where the test image should only be approximated well by the training samples from one
class corresponding to the correct one, in [8–10], the authors divided training samples
into groups by prior label information and used group-sparsity regularizers. Naturally,
the coefficient vector x has group structure x = [x>1 , x>2 , · · · , x>g ]> ∈ Rn, where xi =

[xi1, xi2, · · · , xini ]
> ∈ Rni (i = 1, 2, · · · , g). This kind of group sparse classification (GSC)

approach aims to represent the test image using the minimum number of groups, and thus
an ideal model is (1) which is NP-hard. As stated in Section 1, a convex approximation of
`2,0, i.e., `2,1-norm, has been used widely as a best convex regularizer to incorporate the
class labels.

More generally, the non-separable weighted `2,1-norm, i.e., ‖W · ‖2,1 has also been
used as the regularizer in GSC [11,36,37]. For example, Tang et al. [11] proposed a weighted
GSC (WGSC) model as follows, by involving the information of the similarity between
query sample and each class as well as the distance between query sample and each
training sample,

minimize
x∈Rn

1
2
‖y− Ax‖2

2 + λ
g

∑
i=1

wi‖di � xi‖2, (7)

where di = [di1, di2, · · · , dini ] ∈ Rni penalizes the distance between y and each training
sample of i-th class, wi is set to assess the relative importance of training samples from
i-th class for representing the test sample, and here � denotes element-wise multiplication.
Specifically, the weights are computed by

dij = exp
(‖y− aij‖2

σ1

)
and wi = exp

(
ri − rmin

σ2

)
, (8)

where σ1 and σ2 are bandwidth parameters, x∗i = arg minxi ‖y− Aixi‖2
2, ri = ‖y− Aix∗i ‖

computes the distance from y to the individual subspace generated by Ai, and rmin denotes
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the minimum reconstruction error of {ri}
g
i=1. The regularizer in (7) can be written as a

non-separable weighted `2,1, i.e., ‖Wx‖2,1, where

W = BlockDiag(W1, W2, · · · , W g) and W i = Diag(widi1, widi2, · · · , widini ). (9)

For the aforementioned methods, after obtaining the optimal solution (denoted by
x̂ = [x̂>1 , x̂>2 , · · · , x̂>g ]>), they assign y to the class that minimizes the class reconstruction
residual defined by ‖y− Ai x̂i‖2.

Although `2,1 regularizer and its weighted variants are widely used in GSC and
WGSC-based methods, they not only suppress the number of selected classes, but also
suppress significant nonzero coefficients within classes. The later may lead to underesti-
mation of high-amplitude elements and adversely affect the performance. The nonconvex
regularizers such as `2,p (0 < p < 1) [37] and group MCP [38] make the corresponding
optimization problems nonconvex. Therefore, we hope to use a regularizer which can
reduce the bias and approximate `2,0 better than `2,1 while ensuring the overall convexity
of the problem.

3. LiGME Model for Group Sparse Estimation
3.1. GME of Weighted `2,1-Norm and Its Properties

Although `2,1-norm (or its weighted variants) acts as the favorable approach to approx-
imate `2,0 in the literature of group sparse estimation, it has large bias and does not promote
group sparsity as effective as `2,0. Since GME provides an approach to better approximate
direct discrete measures (e.g., `0 for sparsity, matrix rank for low-rankness) than their
convex envelopes, we propose to use it for designing group-sparsity pursuing regularizers.

More generally, let us consider the GME of ‖ · ‖w,2,1 in (3). Clearly, ‖ · ‖w,2,1 ∈ Γ0(Rn) is
coercive, even symmetry and prox-friendly, whose proximity operator can be computed by

Proxγ‖·‖w,2,1
: Rn → Rn : x 7→

{(
1− γwi

max{‖xi‖2, γwi}

)
xi

}g

i=1
, (10)

where x = [x>1 , x>2 , · · · , x>g ]> ∈ Rn is a signal with group structure, xi ∈ Rni (i =

1, 2, · · · , g) and ∑
g
i=1 ni = n.

Actually, the GME of ‖ · ‖w,2,1 with B ∈ Rb×n (see (4)):

(‖ · ‖w,2,1)B(x) =
g

∑
i=1

wi‖xi‖2 − min
v∈Rn

{
g

∑
i=1

wi‖vi‖2 +
1
2
‖B(x− v)‖2

2

}
, (11)

where vi ∈ Rni (i = 1, 2, · · · , g) and v = [v>1 , v>2 , · · · , v>g ]> ∈ Rn, can serve as a parametric
bridge between ‖ · ‖2,0 and ‖ · ‖w,2,1.

Proposition 2. (GME of ‖ · ‖w,2,1 can bridge the gap between ‖ · ‖2,0 and ‖ · ‖w,2,1.) Let Bγ :=
BlockDiag( w1√

γ In1 , w2√
γ In2 , · · · , wg√

γ Ing) for γ > 0, where wi > 0 is the weight in (3) for i =

1, · · · , g. Then, for any x ∈ Rn,

lim
γ↓0

2
γ
(‖ · ‖w,2,1)Bγ

(x) = ‖x‖2,0. (12)

Together with the fact that (‖ · ‖w,2,1)On×n
(x) = ‖x‖w,2,1 where On×n ∈ Rn×n is the zero

matrix, the regularization term 2
γ (‖ · ‖w,2,1)Bγ

(x) can serve as a parametric bridge between ‖ · ‖2,0

and ‖ · ‖w,2,1. As a special case, the GME of ‖ · ‖2,1 can serve as a parametric bridge between ‖ · ‖2,0
and ‖ · ‖2,1.



Algorithms 2021, 14, 312 6 of 14

Proof. The regularization term 2
γ(‖ · ‖w,2,1)Bγ

(x) : Rn → R : [x>1 , x>2 , · · · , x>g ]> 7→ ∑
g
i=1

2
γ ϕi(xi),

where

ϕi(xi) := wi‖xi‖2 − min
vi∈Rni

{
wi‖vi‖2 +

wi
2

2γ
‖xi − vi‖2

2

}
for i = 1, · · · , g. By ([39], Example 24.20), we obtain

2
γ

ϕi(xi) =


2wi
γ
‖xi‖2 −

wi
2

γ2 ‖xi‖2
2, if ‖xi‖2 ≤

γ

wi

1, otherwise.
(13)

Then, we obtain

lim
γ↓0

2
γ

ϕi(xi) =

{
0, if ‖xi‖2 = 0,

1, otherwise,
(14)

and

lim
γ↓0

2
γ
(‖ · ‖w,2,1)Bγ

= lim
γ↓0

g

∑
i=1

2
γ

ϕi(xi) = ‖x‖2,0. (15)

Figure 1 illustrates simple examples of ‖x‖2,1 and (‖ · ‖2,1)B(x) when g = 1, n = 2
and B = I2. As we can see, (‖ · ‖2,1)I2(x) can approximate ‖x‖2,0 better than ‖x‖2,1.

(a) (b)

Figure 1. Simple examples of two group sparse regularizers (one group case): (a) The `2,1 regularizer;
(b) The regularizer (‖ · ‖2,1)In

.

Of course, as reviewed in Section 2.1, we can minimize J(‖·‖w,2,1)B◦Id (see (5)) with the

algorithm in (A3) in Proposition A2, under the overall-convexity condition A>A−λB>B �
On×n.

In the following, we consider the GME of non-separable weighted `2,1-norm ‖W · ‖2,1,
where W ∈ Rl×n is not necessarily a diagonal matrix. This is because in some applications,
such as classification problems [11,36,37] stated in Section 2.2, and also heterogeneous
feature selection [40], weights are introduced inside groups as well (i.e., the weight of every
entry can be different) to improve the estimation accuracy. The GME of ‖W · ‖2,1 with
B̃ ∈ Rb×n is well-defined (The lack of coercivity requires slight modification from min to
inf.) as

(‖W · ‖2,1)B̃(x) = ‖Wx‖2,1 − inf
v∈Rn

{
‖Wv‖2,1 +

1
2
‖B̃(x− v)‖2

2

}
, (16)
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and therefore we can formulate

minimize
x∈Rn

J(‖W ·‖2,1)B̃◦Id
=

1
2
‖y− Ax‖2

2 + λ(‖W · ‖2,1)B̃(x). (17)

However, we should remark that ‖W · ‖2,1 ∈ Γ0(Rn) is even symmetric but not
necessarily coercive or prox-friendly (As found in ([39], Proposition 24.14), it is known
that for Ψ ∈ Γ0(Z) and L ∈ B(X ,Z) satisfying LL∗ = µId with some µ ∈ R++, we
have ProxΨ◦L(x) = x + µ−1L∗(ProxµΨ(Lx)− Lx) for x ∈ X . In such a special case, if Ψ is
prox-friendly, Ψ ◦L is also prox-friendly. However, for general L ∈ B(X ,Z) not necessarily
satisfying such standard conditions, we have to discuss the prox-friendliness of Ψ ◦ L case
by case.). Fortunately, by Proposition 3 below, if rank(W) = l and B̃ can be expressed as
B̃ = BW for some B ∈ Rb×l , we can show the useful relation

(‖W · ‖2,1)B̃(x) = (‖ · ‖2,1)B ◦W(x), (18)

which implies that the GME (‖W · ‖2,1)B̃ of ‖W · ‖2,1 can be handled as the LiGME
(‖ · ‖2,1)B ◦W of ‖ · ‖2,1.

Proposition 3. For Ψ ∈ Γ0(Z) which is coercive and B ∈ B(Z , Z̃), assume L ∈ B(X ,Z) has
full row-rank. Then for any x ∈ X ,

(Ψ ◦ L)B◦L(x) = ΨB ◦ L(x), (19)

where (Ψ ◦ L)B◦L(·) := Ψ(L·)− infv∈X
{

Ψ(Lv) + 1
2‖BL(· − v)‖2

2

}
and ΨB(·) := Ψ(·)−

minv∈Z
{

Ψ(v) + 1
2‖B(· − v)‖2

2

}
.

Proof. On one hand, by the definition of GME, we have

(Ψ ◦ L)B◦L(x) = Ψ(Lx)− inf
v∈X

{
Ψ(Lv) +

1
2
‖BL(x− v)‖2

2

}
= Ψ(Lx)− h(BLx),

where h(z) : Z̃ → R is given by

h(z) = inf
v∈X

{
Ψ(Lv) +

1
2
‖z− BLv‖2

2

}
= inf

u∈(null L)⊥
inf

û∈null L

{
Ψ(L(u + û)) +

1
2
‖z− BL(u + û)‖2

2

}
= inf

u∈(null L)⊥

{
Ψ(Lu) +

1
2
‖z− BLu‖2

2

}
= inf

u∈range L∗

{
Ψ(Lu) +

1
2
‖z− BLu‖2

2

}
= inf

v∈Z

{
Ψ(LL∗v) +

1
2
‖z− BLL∗v‖2

2

}
= inf

v∈Z

{
Ψ(LL∗(LL∗)−1v) +

1
2
‖z− BLL∗(LL∗)−1v‖2

2

}
= inf

v∈Z

{
Ψ(v) +

1
2
‖z− Bv‖2

2

}
.

Therefore, (Ψ ◦ L)B◦L(x) = Ψ(Lx)− infv∈Z
{

Ψ(v) + 1
2‖BLx− Bv‖2

2

}
.

On the other hand, ΨB ◦ L(x) = Ψ(Lx)−minv∈Z
{

Ψ(v) + 1
2‖B(Lx− v)‖2

2

}
by defi-

nition. Thus, we obtain the conclusion.
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In the rest of the paper, we focus on LiGME model of `2,1-norm.

3.2. LiGME of `2,1-Norm

For simplicity as well as for effectiveness in application to GSC and WGSC, we focus
on the LiGME model of ‖ · ‖2,1 with an invertible linear operator W ,

minimize
x∈Rn

J(‖·‖2,1)B◦W =
1
2
‖y− Ax‖2

2 + λ(‖ · ‖2,1)B ◦W(x). (20)

In this case, for achieving J(‖·‖2,1)B◦W ∈ Γ0(Rn), we can simply design B ∈ Rm×n, in a
way similar to ([31], (48)), as in the next proposition.

Proposition 4. For an invertible W ∈ Rn×n, let

B =
√

θ/λAW−1, 0 ≤ θ ≤ 1, (21)

then for the LiGME model in (20), J(‖·‖2,1)B◦W ∈ Γ0(Rn).

Proof. By A>A− λW>B>BW = A>A− λW>(
√

θ/λAW−1)>(
√

θ/λAW−1)W = (1−
θ)A>A � On×n and Proposition 1, J(‖·‖2,1)B◦W ∈ Γ0(Rn) is ensured.

Model (20) can be applied to many different applications that conform to group-
sparsity structure.

4. Application to Classification Problems
4.1. Proposed Algorithm for Group-Sparsity Based Classification

Since `2,1 regularizer in GSC is unfair for classes of different sizes (see Appendix A)
while `2,0-regularizer is not, our purpose is to use a better approximation of `2,0 as the reg-
ularizer. Therefore, we apply model (20) to group-sparsity-based classification. Following
GSC, we can set W = In in (20).

Inspired by WGSC [11] which well designs weights to enforce locality and similar-
ity information of samples, we can also set the weight matrix W according to (9). The
classification algorithm is summarized in Algorithm 1.

The `2,1-norm regularized least squares problem in WGSC can be solved by a proximal
gradient method [41]. Compared with it, the step 2 in Algorithm 1 for solving (20) requires
at each update only one additional computation for Proxγ‖·‖2,1

(see (10) with wi = 1).

4.2. Experiments

First, by setting W = In, we conduct the experiments on a relatively simple dataset to
investigate the influence by bias of `2,1 regularizer on the classification problem (especially
when training set is unbalanced), and verify the performance improvement using (‖ · ‖2,1)B
as the regularizer by conducting the experiments on a relatively simple dataset. The USPS
handwritten digit database [42] has 11,000 samples of digits “0” through “9” (1100 samples
per class). The dimension of each sample is 16× 16. In our classification experiments, we
vectorized them to 256-D vectors. The number of training samples for each class is not
necessarily equal, which varies from 5 to 50 (the size of test set is fixed to 50 images per
class).

We set W = In (the initialization of W should be modified in Algorithm 1) for the
proposed model (20) and compared it with GSC (with `2,1 regularizer) [10]. We set B =√

θ/λA and fix θ = 0.9 to achieve the overall convexity of proposed method, and set κ =
1.1, ι = ‖(κ/2)A>A + λIn‖spec + (κ − 1), τ = (κ/2 + 2/κ)λ‖B‖2

spec + (κ − 1). The initial
estimate is set as (x(0), u(0), w(0)) = (On×1, On×1, On×1), and the stopping criterion is set
to either ‖(x(k), u(k), w(k))− (x(k+1), u(k+1), w(k+1))‖2 < 10−4 or steps reaching 10,000.

Figure 2 shows an example of unbalanced training set (digits “0” through “4” have
5 samples per class and “5” through “9” have 25 samples per class). The input (an image of
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digit “0”) was misclassified (into digital “6”) by GSC while classified correctly by proposed
method. The obtained coefficient vectors by GSC and proposed method (both with λ = 4)
are illustrated respectively, and some samples corresponding to nonzero coefficients are
also displayed in Figure 2. It can be seen that the samples from digit “6” made the
greatest contribution to the representation in GSC, and samples from “5” and “0” also
made small contribution. In our method, samples from the correct class “0” made the
biggest contribution and led to correct result. It is reasonable, because our method did not
suppress the high value coefficients too much whereas `2,1 did. The big suppression of
`2,1 made the coefficients of the correct class cannot be large enough, and thus easily led
to misclassification.

Algorithm 1: The proposed group-sparsity enhanced classification algorithm

Input: A matrix of training samples A = [A1, A2, · · · , AG] ∈ Rm×n grouped by
class information, a test sample vector y ∈ Rm, parameters λ, σ1 and σ2.

1. Initialization: Let (x(0), u(0), v(0)) ∈ Rn ×Rn ×Rn.
Compute the weight matrix W by (9).
Choose B satisfying A>A− λW>B>BW � On×n.
Choose (ι, τ, κ) ∈ R++ ×R++ × (1,+∞) satisfying

ιIn −
κ

2
A>A− λW>W � On×n and τ ≥

(κ

2
+

2
κ

)
λ‖B‖2

spec. (22)

2. For k = 0, 1, 2, · · · , compute

x(k+1) =
[

In −
1
ι
(A>A− λW>B>BW)

]
x(k) − λ

ι
W>B>Bu(k) − λ

ι
W>v(k) +

1
ι

A>y,

u(k+1) =Prox λ
τ ‖·‖2,1

[2λ

τ
B>BWx(k+1) − λ

τ
B>BWx(k) + (In −

λ

τ
B>B)u(k)

]
,

v(k+1) =2Wx(k+1) −Wx(k) + v(k) − Prox‖·‖2,1

(
2Wx(k+1) −Wx(k) + v(k)

)
until the stopping criterion is fulfilled.

3. Compute the class label i? of y by

i? = arg min
i
‖y− Aix

(k+1)
i ‖2. (23)

Output: The class label i? corresponding to y.

(For example, any κ > 1, ι = ‖(κ/2)A>A + λW>W‖spec + (κ − 1) and τ = (κ/2 +
2/κ)λ‖B‖2

spec + (κ − 1) can satisfy (22).)
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Figure 2. Estimated sparse coefficients x̂ by GSC and proposed method respectively.
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Table 1 summarizes the recognition accuracy of GSC and the proposed method with
W = In. The training set includes digits “0” through “4” β samples per class and “5”
through “9” α samples per class. Through numerical experiments, we found that GSC with
λ = λGSC = 1.5 and the proposed method with λ = λprop = 3 perform well on this dataset.
We also experimented the proposed method of using λGSC, which did not degrade too
much compared with using λprop. We see that the GSC model degrades when the training
set is unbalanced, and the proposed method outperforms GSC especially in such case.

Table 1. Recognition results on the USPS database.

Method

Training Set Size (α = maxi{ni}, β = mini{ni})

α 10 25 50

β 5 10 5 25 25 50

GSC(with λ = 1.5) 81.4% 86.6% 73.6% 91.4% 88.4% 93.2%
Proposed (λ = 1.5) 82.0% 87.2% 79.0% 92.2% 89.4% 93.0%
Proposed (λ = 3) 82.6% 87.8% 80.8% 92.2% 90.6% 93.4%

Next, we conduct the experiments on a classic face dataset to verify the validity of
the proposed linearly involved model by setting the weight matrix W according to (9).
The ORL Database of Faces [43] contains 400 images from 40 distinct subjects (10 images
per subject) with variations in lighting, facial expressions (open or closed eyes, smiling or
not smiling) and facial details (glasses or no glasses). In our experiments, following [44],
all images were downsampled from 112× 92 to 16× 16 and then formed 256-D vectors.
The number of training samples for each class is not necessarily equal, which varies from 4
to 8 (test set is fixed to 2 images per class).

We compared the proposed model (20) (W = In and W by (9) respectively) with
GSC [10] and WGSC [11]. In order to achieve the overall convexity, we set B =

√
θ/λAW−1,

0 ≤ θ ≤ 1 and fix θ = 0.9 for proposed method. Settings of (ι, τ, κ), initial estimate and
stopping criterion are the same as those in the previous experiment. When the parameter
λ is assigned too small, the obtained coefficient vector is not group sparse; when the
parameter σ1 or σ2 is assigned too small, the information of locality or similarity plays a
decisive role. We found that λ = 0.05 for `2,1 regularizer-based methods (i.e., GSC and
WGSC), λ = 0.2 for the proposed method and σ1 ∈ [2, 4], σ2 ∈ [0.5, 2] for weights involved
methods (i.e., WGSC and proposed method with W by (9)) work well on this dataset.

Figure 3 shows a classification result of WGSC and proposed method (W by (9)) (both
with σ1 = 4, σ2 = 2)) when training set is unbalanced (20 subjects have 8 samples per class
and the others have 6 samples per class). The input is an image of subject 10 which was
misclassified into subject 8 by WGSC while classified correctly by proposed method.

By proposed method

By WGSC

Input image 

Figure 3. An example of results by WGSC and proposed method.
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Table 2 summarizes the recognition accuracy of GSC, the proposed method with
W = In, WGSC and the proposed method with W computed by (9). Training set setting
is that 20 subjects have β samples per class and the others have α samples per class. With
the strategically designed matrix (9), WGSC achieves a significant improvement over GSC.
By using the proposed method with W computed by (9), the performance can be further
improved, especially when the training set is unbalanced.

Table 2. Recognition results on the ORL database.

Method

Training Set Size (α = maxi{ni}, β = mini{ni})

α 4 6 8

β 4 4 6 4 6 8

GSC 86.3% 85.0% 91.3% 85.0% 92.5% 93.8%
Proposed (W = In) 88.8% 86.3% 93.8% 86.3% 93.8% 95.0%

WGSC 90.6% 87.5% 95.0% 88.8% 93.8% 96.3%
Proposed (W by (9)) 91.3% 89.4% 95.6% 91.9% 94.4% 96.3%

5. Conclusions

In this paper, the potential applicability and effectiveness of using nonconvex regular-
izers in convex optimization framework was explored. We proposed a generalized Moreau
enhancement (GME) of weighted `2,1 function and analyzed its relationship with the lin-
early involved GME of `2,1-norm. The proposed regularizer is nonconvex and promotes
group sparsity more effectively than `2,1 while maintaining the overall convexity of the
regression model at the same time. The model can be used in many applications and we ap-
plied it to classification problems. Our model makes use of the grouping structure by class
information and suppresses the tendency of underestimation of high-amplitude coefficients.
Experimental results showed that the proposed method is effective for image classification.
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Appendix A. The Bias of `2,1 Regularizer in Group Sparse Classification

Using `2,1 regularizer in classification problems not only minimizes the number of the
selected classes, but also minimizes the `2-norm of coefficients within each class. The later
may adversely affect the classification result, since the optimal representation of a test
sample by training samples of the correct subject may contain large coefficients. Moreover,
in many classification applications, the number of training samples from different classes
is not the same. We argue that the bias of `2,1 regularizer makes it unfair for classes of
different sizes.

Example A1. Suppose that a test sample y ∈ Rm can be represented by a combination of all ni
samples from class i without error, i.e., y = Aixi and ‖xi‖1 = 1, where Ai ∈ Rm×ni and xi ∈ Rni .

(a) If the number of samples in this class is doubled by duplication, the training set of class
i becomes Ãi = [Ai, Ai] ∈ Rm×2ni . Obviously, y can also be well represented by y =
Ãi x̃i, where x̃i = [ηx>i , (1 − η)x>i ]

> ∈ R2ni (0 ≤ η ≤ 1) and ‖x̃i‖1 = 1. However,
‖xi‖2

2 − ‖x̃i‖2
2 = 2η(1− η)‖xi‖2

2 ≥ 0. That is, `2,1 value of the first representation (before
duplication) is greater than that of the second one (after duplication).

(b) If the number of samples in this class is increased to dni by copying d − 1 times (d > 1),
the training set of class i becomes Ãi = [Ai, · · · , Ai] ∈ Rm×dni . Obviously, y = Ãi x̃i
is a representation of y, where x̃i = [ 1

d x>i , · · · , 1
d x>i ]

> ∈ Rdni and ‖x̃i‖1 = 1. Then
‖x̃i‖2 = 1√

d
‖xi‖2 < ‖xi‖2.

Example A1 tells us that the group size affects the value of `2,1 regularizer. Even
if the new training sample is only a copy of the original samples (without adding any
new information), the value of `2,1 regularizer will decrease. Therefore, `2,1 regularizer is
unfair for classes of different sizes. It has the tendency to refuse the class has relatively
few samples, because the coefficient vector is more likely to have a large `2,1 regularizer
value. Please note that `2,0-regularizer is independent of group size and it does not have
such unfairness.

Appendix B. Parameter Tuning and Proximal Splitting Algorithm for LiGME Model

Proposition A1 ([24], Proposition 2). In (5), let (X ,Y ,Z) = (Rn,Rm,Rl), (A, L, λ) ∈
Rm×n × Rl×n × R++ , and rank(L) = l. Choose a nonsingular L̃ ∈ Rn×n satisfying
[Ol×(n−l) I l ]L̃ = L. Then Bθ :=

√
θ/λΛ1/2U> ∈ Rl×l , θ ∈ [0, 1], ensures JΨBθ

◦L ∈
Γ0(Rn), where [D̃1 D̃2] := A(L̃)−1 and UΛU> := D̃>2 D̃2− D̃>2 D̃1(D̃>1 D̃1)

† D̃>1 D̃2 ∈ Rl×l

is an eigendecomposition.

Proposition A2 ([24], Theorem 1). Consider minimization of JΨB◦L in (5) under the overall-
convexity condition (6). Let a real Hilbert space (H := X ×Y ×Z , 〈·, ·〉H, ‖ · ‖H) be a product
space and define an operator TLiGME : H → H : (x, u, v) → (ξ, ζ, η) with parameters (ι, τ) ∈
R++ ×R++, by

ξ :=
[
Id− 1

σ
(A∗A− λL∗B∗BL)

]
x− λ

ι
L∗B∗Bu− λ

ι
L∗v +

1
ι

A∗y,

ζ := Prox λ
τ Ψ

[
2λ

τ
B∗BLξ − λ

τ
B∗BLx +

(
Id− λ

τ
B∗B

)
u
]

,

η := 2Lξ − Lx + v− ProxΨ(2Lξ − Lx + v).

Then the following holds:

1. arg minx∈X JΨB◦L(x) = {x? ∈ H | (x?, u?, v?) ∈ Fix(TLiGME)}, where Fix(TLiGME) :=
{(x, u, v) ∈ H | TLiGME(x, u, v) = (x, u, v)}.
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2. Choose (ι, τ, κ) ∈ R++ ×R++ × (1, ∞) satisfying

ιId− κ

2
A∗A− λL∗L � OX ,

τ ≥
(κ

2
+

2
κ

)
λ‖B‖2

op,
(A1)

where ‖ · ‖op is the operator norm. Then

P :=

 ιId −λL∗B∗B −λL∗

−λB∗BL τId OZ
−λL OZ λId

 � OH (A2)

and TLiGME is κ
2κ−1 -averaged nonexpansive in the Hilbert space (H, 〈·, ·〉P, ‖ · ‖P).

3. Assume the condition (A1) holds. Then, for any initial point (x(0), u(0), v(0)), the sequence
{(x(k), v(k), u(k))}k∈N generated by

(x(k+1), u(k+1), v(k+1)) = TLiGME(x(k), u(k), v(k)) (A3)

converges to a point (x?, u?, v?) ∈ Fix(TLiGME) and

lim
k→∞

x(k) = x? ∈ arg min
x∈X

JΨB◦L(x).
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