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Abstract: Recent advances have shown that it is possible to identify the target speaker which a listener
is attending to using single-trial EEG-based auditory attention decoding (AAD). Most AAD methods
have been investigated for an open-loop scenario, where AAD is performed in an offline fashion
without presenting online feedback to the listener. In this work, we aim at developing a closed-loop
AAD system that allows to enhance a target speaker, suppress an interfering speaker and switch
attention between both speakers. To this end, we propose a cognitive-driven adaptive gain controller
(AGC) based on real-time AAD. Using the EEG responses of the listener and the speech signals of
both speakers, the real-time AAD generates probabilistic attention measures, based on which the
attended and the unattended speaker are identified. The AGC then amplifies the identified attended
speaker and attenuates the identified unattended speaker, which are presented to the listener via
loudspeakers. We investigate the performance of the proposed system in terms of the decoding
performance and the signal-to-interference ratio (SIR) improvement. The experimental results show
that, although there is a significant delay to detect attention switches, the proposed system is able
to improve the SIR between the attended and the unattended speaker. In addition, no significant
difference in decoding performance is observed between closed-loop AAD and open-loop AAD. The
subjective evaluation results show that the proposed closed-loop cognitive-driven system demands a
similar level of cognitive effort to follow the attended speaker, to ignore the unattended speaker and
to switch attention between both speakers compared to using open-loop AAD. Closed-loop AAD in
an online fashion is feasible and enables the listener to interact with the AGC.

Keywords: auditory attention decoding; adaptive gain control; speech enhancement; EEG; brain
computer interface

1. Introduction

Hearing aids aim at restoring the normal hearing abilities by several processing steps
including speech enhancement. The main objective of speech enhancement is to improve
the intelligibility of the recorded microphone signals, which are often corrupted by various
noise sources [1,2]. In a scenario with multiple competing speakers, the performance
of many speech enhancement algorithms, for example, beamforming and blind source
separation, depends on correctly identifying the target speaker, i.e., the speaker which the
listener is attending to.

Recent advances in electroencephalography (EEG) have shown that it is possible
to identify the target speaker from single-trial EEG recordings [3–18], which are non-
invasive and have appropriate temporal resolution for auditory stimuli. Several single-trial
EEG-based auditory attention decoding (AAD) methods have been proposed to identify
the speaker which the listener is attending to, aiming to be incorporated in a real-world
applications, e.g., to control a hearing aid. AAD methods aim at identifying the attended
speaker by relating the EEG responses of the listener to speech signals of speakers. These
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methods are based on, for example, a least-squares cost function [3–7,11,14,16], canonical
correlation analysis [8,13], a state-space model [9,18], and neural networks [12,15,17]. The
least-squares-based AAD method used in Reference [3,5–7,11,14] aims at reconstructing
the attended speech envelope from the EEG responses of the listener using a trained
spatio-temporal envelope estimator. To identify the attended speaker, the reconstructed
speech envelope is compared with the speech envelopes of the competing speakers using
correlation coefficients. Since these correlation coefficients are typically highly fluctuating,
a large correlation window of about 30 s is typically required to obtain a reliable decoding
performance, which causes a large processing delay [9,18,19].

The possibility of decoding auditory attention from EEG recordings has led to an
increasing research interest in the topic of incorporating AAD in a brain-computer interface
for real-world applications, for example, to cognitively drive speech enhancement algo-
rithms [19–25]. Cognitive-driven speech enhancement algorithms potentially provide the
listener with the ability to selectively attend to a specific speaker. It should, however, be
noted that the performance of most aforementioned AAD methods and cognitive-driven
speech enhancement algorithms has been investigated for an open-loop scenario, where
AAD is performed in an offline fashion without presenting online feedback to the listener.
In addition, scenarios with no attention switch between speakers have typically been
investigated, which is unrealistic in practice.

To investigate the performance of AAD for real-world applications, closing the loop
by presenting feedback according to the AAD results in an online fashion is of crucial
importance. Feedback presentation may influence the subsequent intent of the listener and
the brain signals that encode that intent. In Reference [5], the feasibility of a closed-loop
system based on least-squares-based AAD has been shown by presenting the AAD results
as visual feedback, i.e., using different colors or a sphere with different radii. However, the
feasibility of closed-loop AAD enabling the listener to interact with speech enhancement in
an online fashion and allowing the listener to switch attention between speakers remains
to be investigated.

In this paper, we aim at developing a closed-loop AAD system that allows to enhance a
target speaker, suppress an interfering speaker and switch attention between both speakers.
Specifically, we propose a cognitive-driven adaptive gain controller (AGC), which is based
on real-time AAD (RAAD). The RAAD first generates correlation coefficients for both
speakers from the EEG responses of the listener and the speech signals of both speakers. To
this end, we adopted the least-squares-based AAD method from Reference [3], either using
a small correlation window of length 0.25 s or a large correlation window of length 15 s.
The fluctuating correlation coefficients are then translated into more reliable probabilistic
attention measures, based on which the attended and the unattended speaker are identified.
To this end, we propose an AAD algorithm either using a generalized linear model (GLM) or
using a state-space model (SSM), similarly to Reference [9,18]. The AGC as an ideal speech
enhancement algorithm then amplifies the identified attended speaker and attenuates
the identified unattended speaker, where the gains for both speakers are based on the
probabilistic attention measures. Finally, the loop of cognitive-driven gain control is closed
by presenting the amplified attended speaker and the attenuated unattended speaker to
the listener via loudspeakers, enabling the listener to interact with the AGC in an online
fashion and switch attention between speakers. For an acoustic scenario comprising two
competing speakers where one speaker is located on the left side and the other speaker
is located on the right side, we investigate the decoding performance and the speech
enhancement performance of the proposed closed-loop cognitive-driven gain controller
system with 10 participants based on objective and subjective evaluations. In addition, we
provide a detailed analysis and experimental comparison between the open-loop and the
closed-loop AAD system using either the GLM or the SSM.

The paper is organized as follows. In Section 2, we introduce the experiment proto-
col used to calibrate and evaluate the proposed cognitive-driven gain controller system,
describe the stimuli and the data acquisition used for the experiments, and present the
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proposed cognitive-driven gain controller system. In Section 3, we evaluate the decoding
performance and the speech enhancement performance of the proposed cognitive-driven
gain controller system. In Section 4, we discuss the experimental results in more detail,
summarize the main contributions, and suggest possible topics for further research.

2. Methods
2.1. Experiment Protocol

In this section, we present the experiment protocol used to calibrate and evaluate the
cognitive-driven gain controller system. The experiment protocol consists of a calibration
phase, an open-loop AAD phase, and a closed-loop AAD phase (see Figure 1).

Figure 1. Experiment protocol used to calibrate and evaluate the cognitive-driven gain controller
system. The experiment protocol consists of a calibration phase with four sessions, an open-loop
AAD phase with one session and a closed-loop AAD phase with three sessions.

2.1.1. Calibration Phase

In the calibration phase, the cognitive-driven gain controller system was individually
calibrated for each participant using the EEG responses for a scenario with two competing
speakers (see Figure 2). Participants were cued by an arrow on a screen to listen attentively
to one of the speakers while recording the ongoing EEG responses. Participants were also
instructed to minimize eye movement and blinking, which may cause EEG artifacts. The
EEG responses were recorded during four sessions, lasting 30 min in total. The first and
the second session each lasted 10 min, while the third and the fourth session each lasted
5 min. For the first and the third session, the participants were cued to attend to the left
speaker, whereas, for the second and the fourth session, the participants were cued to
attend to the right speaker. Following each session, the participants were asked to fill out
a questionnaire consisting of multiple-choice questions about the stories uttered by the
speakers. There was one question per minute of each story. The questionnaire was used to
check whether the participants attended to the cued speaker. After the fourth session, there
was a short break. During this break, the recorded EEG responses were used to calibrate
the cognitive-driven gain controller system (see Section 2.5), individualized per participant.

2.1.2. Open-Loop AAD Phase

In the open-loop AAD phase, the calibrated AAD algorithms were used to identify
the attended and the unattended speaker without presenting feedback to the participants.
The open-loop AAD phase consisted of one session lasting 10 min. During this session,
participants were cued by an arrow on a screen every minute to switch attention between
the competing speakers while recording the ongoing EEG responses. Afterwards, par-
ticipants were asked to rate how much effort it took to follow the attended speaker, to
ignore the unattended speaker, and to switch attention to the cued speaker on a scale
from 0 to 10, with 0 being least effort and 10 being most effort. In addition, participants
were asked to rate how well they understood the attended story on a scale from 0 to 10,
with 0 being nothing understood and 10 being everything understood. Furthermore, the
participants were asked to fill out a questionnaire consisting of multiple-choice questions
about the stories uttered by the speakers. While participants were rating and answering
the questionnaire, the decoding performance of several AAD algorithms (see Section 2.5.1)
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was evaluated using the recorded EEG responses. The following AAD algorithms were
considered:

• LW–GLM: AAD algorithm using a generalized linear model (GLM) with a large
correlation window (LW) of 15 s.

• LW–SSM: AAD algorithm using a state-space model (SSM) with a large correlation
window (LW) of 15 s.

• SW–SSM: AAD algorithm using a state-space model with a small correlation window
(SW) of 0.25 s. Using a small correlation window was motivated by the results in
Reference [9], where it was shown that the state-space model is able to translate
highly fluctuating coefficients of the spatio-temporal envelope estimators into reliable
probabilistic attention measures.

Note that, in this paper, an AAD algorithm using a generalized linear model with a
small correlation window was not considered, since initial experiments showed highly
fluctuating correlation coefficients with unreliable probabilistic attention measures.

Figure 2. Overview of the proposed cognitive-driven gain controller system for a scenario with
two competing speakers. The EEG responses were acquired using the EEG amplifier. The acquired
EEG responses and EEG trigger markers were streamed using the gUSBamp application. Using the
gUSBamp application and the LSL software package, the streamed EEG responses were forwarded
to the real-time AAD (RAAD) for online decoding, to the Lab Recorder application for recording,
and to the OpenViBE software for online EEG visualization. The RAAD was implemented and run
using MATLAB (MATLAB 1). The RAAD identified the attended and the unattended speaker and
generated their corresponding probabilistic attention measure. The generated probabilistic attention
measure of the attended speaker (p̂a) was forwarded to the AGC using the LSL software package.
Based on the probabilistic attention measure, the AGC amplified the attended speaker (λ̄a ŝa) and
attenuated the unattended speaker (λ̄u ŝu) as acoustic stimuli. The AGC (together with trigger marker
and visual stimuli) was implemented and run using MATLAB (MATLAB 2). The AAD loop was then
closed by presenting the acoustic stimuli using the audio interface and two loudspeakers.

2.1.3. Closed-Loop AAD Phase

In the closed-loop AAD phase, the calibrated cognitive-driven gain controller system
was used to identify the attended and the unattended speaker and to close the loop
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by presenting the amplified attended speaker and the attenuated unattended speaker
in an online fashion via loudspeakers. The closed-loop AAD phase consisted of three
sessions, each lasting 10 min. During each session, participants were cued by an arrow
on a screen every minute to switch attention between the presented competing speakers
while recording the ongoing EEG responses. To identify the attended and the unattended
speaker, in each session a different AAD algorithm was used, i.e., LW–GLM, LW–SSM,
and SW–SSM. These AAD algorithms were randomly assigned to the sessions for each
participant. After each session, the participants were asked to fill out a questionnaire
consisting of multiple-choice questions about the stories uttered by the speakers, similarly
to the open-loop AAD phase. In addition, the participants were asked to rate how much
effort it took to follow the attended speaker, to ignore the unattended speaker, to switch
attention to the cued speaker, and how well they understood the attended story. For
analyzing the experimental results, 24% of the results needed to be excluded, 5% due to
a technical hardware problem when saving the results and 19% due to poor attentional
performance reported by participants themselves after a few sessions (Some participants
reported that they either completely lost concentration to attend to the cued speaker or
they completely engaged with the story uttered by the non-cued speaker.).

2.2. Participants

Ten native German-speaking participants (aged between 22 and 31 years; 6 male,
4 female) took part in this study (An EEG experiment participation was announced, to
which ten persons responded.). Informed consent was received from all participants. All
participants were self-reported normal hearing and reported no past or present neurological
or psychiatric conditions. Informed consent was obtained from all subjects involved in the
study. The study was carried out in accordance with the Declaration of Helsinki.

2.3. Stimuli

Two German audio stories, uttered by two different male speakers, were used as
the speech signals of the competing speakers. One story was from a German audio book
website [26], and the other story was from a selection of audio books [27]. Before performing
the experiment, participants reported no knowledge of the audio stories. Speech pauses
from the audio stories that exceeded 0.5 s were shortened to 0.5 s. The audio stories were
normalized to the same root-mean-square (RMS) value at a comfortable level which was
individualized by each participant. The audio stories with no repetition were considered as
the acoustic stimuli for the calibration phase, the open-loop AAD phase and the closed-loop
AAD phase. The acoustic stimuli were presented at a sampling frequency of 44,100 Hz
using MATLAB (MATLAB 2 in Figure 2), a Fireface UC audio interface system (provided
by RME Audio, Germany) and two loudspeakers placed at the left side (with an azimuth
of −45◦) and the right side (with an azimuth of 45◦) and a distance of 1 m from the the
participants. The visual stimuli consisting of an arrow for cueing were presented using a
monitor in front of the participants. In addition, the EEG trigger markers synchronized
with the acoustic and visual stimuli were generated using the Fireface UC audio interface
system and a g.TRIGbox (provided by g.tec, Austria). The presentation of the acoustic and
visual stimuli and the trigger marker generation were performed using the same computer
employed for the cognitive-driven gain controller system (see Figure 2 and Table 1).
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Table 1. Software and hardware used for the proposed cognitive-driven gain controller system.

Software/Hardware Description

Lab Streaming Layer (LSL) software 1.12 Handles the gUSBamp application and the Lab Recorder
program

gUSBamp application (part of LSL) Streams EEG responses and EEG trigger markers
Lab Recorder program (part of LSL) Record EEG responses

OpenViBE software 2.0 Visualizes online EEG responses

MATLAB 11.2
Runs RAAD algorithms, AGC algorithm, presents acoustic and

visual stimuli via Fireface UC audio interface system, and
generates EEG trigger marker

gUSBamp Research Records EEG signals using 16 channel EEG amplifier
g.TRIGbox (multi-modal trigger box) Generates EEG trigger markers synchronized

with acoustic and visual stimuli
Fireface UC audio interface system Presents acoustic stimuli

Computer Runs MATLAB, LSL software, and OpenViBE software

2.4. Data Acquisition

Aiming at using a small number of electrodes for AAD, EEG responses were acquired
using C = 16 electrodes. The electrodes were placed on the scalp area at F1, F2, FC3,
FC4, FT7, FT8, Cz, C5, C6, P3, P4, P7, P8, Oz, PO3, and PO4 (see Figure 3). This electrode
placement was inspired by the results in Reference [6,28], where it was shown that an elec-
trode configuration covering the temporal, central, frontal, and parietal scalp areas yields
a reliable decoding performance. The EEG responses were referenced to the P9 electrode
(Since we did not observe a significant difference in AAD performance between referencing
to the P9 electrode or to the nose electrode, we decided to use P9 as the fixed reference
electrode for all phases.). The EEG responses were acquired using active (g.LADYbird)
electrodes and a g.USBamp bio-signal amplifier (provided by g.tec, Austria). The acquired
EEG responses and EEG trigger markers were streamed at a sampling frequency of 500 Hz
using the gUSBamp application from the Lab Streaming Layer (LSL) software package
(provided by Swartz Center for Computational Neuroscience, UCSD). Using the gUSBamp
application, the streamed EEG responses were also forwarded to RAAD for online de-
coding, to the Lab Recorder application (provided by Swartz Center for Computational
Neuroscience and Kothe) for recording, and to the OpenViBE software for online EEG
visualization (see Table 1). The gUSBamp application, the OpenViBE software and the Lab
Recorder application were run on the same computer employed for the cognitive-driven
gain controller system (see Figure 2).

Figure 3. Scalp map of EEG electrodes.

2.5. Cognitive-Driven Gain Controller System

In this section, we present the proposed cognitive-driven gain controller system
consisting of RAAD and AGC (see Figure 4). Section 2.5.1 describes the RAAD, which
generates probabilistic attention measures based on which the attended and the unattended
speaker are identified. Section 2.5.2 describes the AGC, which amplifies the identified at-
tended speaker and attenuates the identified unattended speaker based on the probabilistic
attention measures.
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(a) (b)

Figure 4. Real-time AAD (RAAD) and adaptive gain controller (AGC): (a) block diagram and (b) process flow.

2.5.1. Real-Time Auditory Attention Decoding (RAAD)

The RAAD consists of three blocks (see Figure 4), i.e., pre-processing of the EEG
responses and speech signals, correlation coefficient generation and AAD using either
GLM or SSM.

A. Pre-Processing:
The streamed EEG responses from the gUSBamp application were re-referenced to a
common average reference, band-pass filtered between 0.5 Hz and 9 Hz using a fourth-
order Butterworth band-pass filter, and, subsequently, downsampled to 64 Hz in an
online fashion. Contrary to the online EEG pre-processing, the speech pre-processing
was performed in an offline fashion, since the speech signal s1,t of speaker 1 and
the speech signal s2,t of speaker 2, with t the discrete time index for t = 1 . . . T, are
available. The envelopes of both speech signals e1,k and e2,k, with k the sub-sampled
time index for k = 1 . . . K, were obtained using a Hilbert transform, followed by low-
pass filtering at 9 Hz and downsampling to 64 Hz. The pre-processed EEG responses
and the speech envelopes were then provided in an online fashion to the correlation
coefficient generation block.

B. Correlation Coefficient Generation:
To generate the correlation coefficients of speaker 1 and speaker 2, we adopted the
least-squares-based AAD method from Reference [3], which estimates the attended
speech envelope from the EEG responses using a spatio-temporal envelope estimator
trained during the calibration phase.

(1) Training step (calibration phase): In the training step, the attended speaker is
assumed to be known. The attended speech envelope is then estimated from the
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pre-processed EEG responses rc,k, with c the electrode index for 1 . . . C, using a
spatio-temporal envelope estimator g [3], i.e.,

êa,k = gTrk, (1)

with
g =

[
gT

1 gT
2 . . . gT

C

]T
, (2)

gc =
[
gc,0 gc,1 . . . gc,J−1

]T , (3)

rk =
[
rT

1,k rT
2,k . . . rT

C,k

]T
, (4)

rc,k =
[
rc,k rc,k+1 . . . rc,k+J−1

]T , (5)

where J denotes the number of envelope estimator coefficients per electrode.
The trained envelope estimator g is obtained by minimizing the least-squares
error between the (known) attended speech envelope ea,k and the reconstructed
envelope êa,k, regularized with the squared norm of the derivative of the envelope
estimator coefficients to avoid over-fitting [3,14,29], i.e.,

min
g

1
K

K

∑
k=1

(ea,k − gTrk︸︷︷︸
êa,k

)2 + βgTΛΛΛg, (6)

with ΛΛΛ denoting the derivative matrix [14] and β denoting a regularization
parameter. The solution of (6) is equal to

g = (Q + βΛΛΛ)−1q, (7)

with the correlation matrix Q and the cross-correlation vector q given by

Q =
1
K

K

∑
k=1

rkrT
k , q =

1
K

K

∑
k=1

rkea,k. (8)

(2) Correlation coefficient generation step (open-loop and closed-loop AAD phase): To
generate the correlation coefficients of speaker 1 and speaker 2, we compute the
Pearson correlation coefficients between the estimated attended envelope êa,k in
(1) and the speech envelopes e1,k and e2,k, i.e.,

ρ1,k = ρ(e1,k, êa,k), ρ2,k = ρ(e2,k, êa,k), (9)

where êa,k denotes the stacked vector of estimated attended envelopes corre-
sponding to a correlation window of length KCOR, i.e.,

êa,k =
[
êa,k−KCOR+1 êa,k−KCOR+2 . . . êa,k

]T , (10)

and e1,k and e2,k are defined similarly as in (10).

In the training step, the pre-processed EEG responses obtained from the calibration
phase were segmented into trials of length 15 s, shifted by 1 sample (corresponding to
1

64 s). The parameters J and β of the envelope estimator in (3) and (7) were determined
for each participant using a leave-one-trial-out cross-validation approach, similarly
as in Reference [3,14]. Using these parameters, a trained spatio-temporal envelope
estimator g in (7) was then computed for each participant using all trials from the
calibration phase.
In the correlation coefficient generation step, the pre-processed EEG responses were
segmented in the same way as in the training step. The correlation coefficients ρ1,k
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and ρ2,k in (9) were computed either using a large correlation window of length
KCOR = 960 samples (corresponding to 15 s) with an overlap of 959 samples or using
a small correlation window of length KCOR = 16 samples (corresponding to 0.25 s)
with no overlap. In Reference [4,7,9,18], it has been shown that the performance of
AAD algorithms is affected by fluctuations of the correlation coefficients. In this paper,
we propose two methods (GLM and SSM) to translate the fluctuating correlation
coefficients into more reliable probabilistic attention measures.

C. Auditory Attention Decoding Using Generalized Linear Model:
The AAD algorithm using the GLM consists of a training and a decoding step. The
training step takes place during the calibration phase, whereas the decoding step takes
place during the open-loop and the closed-loop AAD phase.

(1) Training step: The correlation coefficients of speaker 1 and speaker 2 in (9) are first
segmented into non-overlapping (NOL) windows of length KNOL, i.e.,

ρρρ1,i =
[
ρ1,(i−1)KNOL+1 ρ1,(i−1)KNOL+2 . . . ρ1,iKNOL

]T
, (11)

ρρρ2,i =
[
ρ2,(i−1)KNOL+1 ρ2,(i−1)KNOL+2 . . . ρ2,iKNOL

]T
, (12)

with i the window index for i = 1 . . . I. The mean differential correlation coeffi-
cient between speaker 1 and speaker 2 in window i is computed as

∆̄ρi =
1

KNOL

KNOL

∑
n=1

(ρ1,(i−1)KNOL+n − ρ2,(i−1)KNOL+n). (13)

We model the attention state d̄i in window i as a binary random variable [30], i.e.,{
d̄i = 1, attending to speaker 1 in window i
d̄i = 2, attending to speaker 2 in window i

, (14)

which is assumed to follow a Bernoulli distribution with probability p̄i, i.e.,

P
(
d̄i
)
= p̄i

2−d̄i (1− p̄i)
d̄i−1 =

{
p̄i, if d̄i=1

1− p̄i, if d̄i=2
. (15)

Using a GLM, the probability of attending to speaker 1 is then given by [31]

p̄i = P
(
d̄i = 1

)
= 1− P

(
d̄i = 2

)
=

1
1 + e−z̄i

, (16)

with the linear predictor z̄i, i.e.,

z̄i = xT
i ααα, (17)

xi = [1 ∆̄ρi]
T , (18)

ααα = [α0 α1]
T , (19)

where α0 and α1 denote the GLM parameters. Obviously, the probability of
attending to speaker 1 monotonically increases from 0 to 1 for z̄i ∈ (−∞, ∞).
The probability mass function in (15) can be written as an exponential distribution
using the canonical link function θi = logit( p̄i) = z̄i, with logit( p̄i) = log

(
p̄i

1− p̄i

)
,

i.e.,
P
(
d̄i
)
= exp(d̄iθi − b(θi)), (20)

with
b(θi) = log(1 + exp(θi)). (21)
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The maximum likelihood (ML) estimate of the GLM parameters in (19) is then
obtained by maximizing the log-likelihood function, i.e.,

α̂αα = arg max
ααα

`(xi, i = 1 : I|ααα) =
I

∑
i=1

d̄iθi − b(θi). (22)

This estimate can be computed, for example, by using an iteratively re-weighted
least-squares algorithm and Newton–Raphson method [32,33], i.e.,

α̂αα(r+1) = (XTW(r)X)−1XTW(r)y(r), (23)

with r the iteration index and

X = [x1 x2 . . . xI ]
T , X ∈ RI×2, (24)

W(r) = diag

 1

p̄(r)i

(
1− p̄(r)i

)
, W(r) ∈ RI×I , (25)

p̄(r)i = logit−1(z̄(r)i ), (26)

z̄(r)i = xT
i α̂αα(r), (27)

y(r) = [y(r)1 y(r)2 . . . y(r)I ]T , y(r) ∈ RI×1, (28)

y(r)i = z̄(r)i + (d̄i − p̄(r)i )logit′( p̄(r)i ), (29)

where (· )′ denotes the derivative operator. Algorithm 1 summarizes the GLM
parameter estimation in the training step.

Algorithm 1 : GLM Training

input: xi and d̄i for i = 1 . . . I

1: initialization: p̄(0)i = d̄i, z̄(0)i = logit( p̄(0)i ), calculate α̂αα(1) using (23)
2: for r = 1 . . . R do
3: calculate p̄(r)i and z̄(r)i using (26) and (27), respectively
4: calculate y(r) and W(r) using (28), (29), and (25), respectively
5: update the GLM parameters α̂αα(r+1) using (23)
6: end for

output: α̂αα = α̂αα(R+1)

(2) Decoding step: To decode which speaker a participant is attending to in window i,
the mean differential correlation coefficient ∆̄ρi is computed using (13), based on
which the linear predictor z̄i is computed using the (trained) GLM parameters α̂αα in
(17). The probability of attending to speaker 1, i.e., P

(
d̄i = 1

)
, and the probability

of attending to speaker 2, i.e., P
(
d̄i = 2

)
, are then obtained using (16). Based

on these probabilities, it is decided that the participant attended to speaker 1 if
P
(
d̄i = 1

)
> P

(
d̄i = 2

)
, or attended to speaker 2 otherwise.

The probabilistic attention measure of the attended speaker p̂a,i in window i is,
hence, determined as{

p̂a,i = P
(
d̄i = 1

)
, if P

(
d̄i = 1

)
> P

(
d̄i = 2

)
p̂a,i = P

(
d̄i = 2

)
, otherwise.

(30)

Obviously, the probabilistic attention measure of the attended speaker p̂a,i lies
between 0.5 and 1. The probabilistic attention measure of the unattended speaker
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p̂u,i is determined as p̂u,i = 1− p̂a,i. The process flow of AAD using the GLM is
depicted in Figure 4.

The AAD algorithm using the GLM was implemented and run using MATLAB
(MATLAB 1 of RAAD in Figure 2). For the training step, Algorithm 1 was executed
with R = 30 iterations using the correlation coefficients obtained from the calibration
phase. Both for the training and the decoding steps, the correlation coefficients were
computed using the large correlation window (i.e., KCOR = 960 samples) and the
mean differential correlation coefficient in (13) was computed using a window of
length KNOL = 16 samples (corresponding to 0.25 s). During the decoding step, the
probabilistic attention measures p̂a,i and p̂u,i were forwarded to the AGC using the LSL
software package (see Figure 2). Each participant’s own data were used for training
the GLM parameters and for decoding. To evaluate the performance of the proposed
LW–GLM algorithm, the decoding performance for each participant was computed as
the percentage of correctly decoded NOL windows. To evaluate the delay to detect a
cued attention switch of the proposed LW–GLM algorithm, the delay was computed
as the time takes for the LW–GLM algorithm to detect an attention switch after the
moment the arrow on a screen cued to switch attention.

D. Auditory Attention Decoding Using State-Space Model:
As an alternative to the GLM, it has been proposed in Reference [9] to use a SSM
to translate the absolute values of the coefficients of the spatio-temporal envelope
estimator into probabilistic attention measures. Contrary to Reference [9], in this
paper, we propose to use the absolute values of the correlation coefficients

φ1,k =
∣∣ρ1,k

∣∣, (31)

φ2,k =
∣∣ρ2,k

∣∣, (32)

instead of the coefficients of the spatio-temporal envelope estimator, which need to be
obtained for both the attended and the unattended speaker.
Similarly to (14), we model the attention state dk at time instance k as a binary random
variable, i.e., {

dk = 1, attending to speaker 1 at time instance k
dk = 2, attending to speaker 2 at time instance k

, (33)

which is assumed to follow a Bernoulli distribution with probability pk. Similarly to
(16), the probability of attending to speaker 1 is given by

pk = P(dk = 1) = 1− P(dk = 2) =
1

1 + e−zk
, (34)

where the variable zk is now modeled as an autoregressive (AR) process, i.e.,

zk = c0zk−1 + wk. (35)

The parameter c0 is a hyperparameter ensuring stability of the AR process, and the
noise process wk is assumed to follow a normal distribution with variance ηk, i.e.,

wk ∼ N (0, ηk), (36)

ηk ∼ Inverse-Gamma(a0, b0), (37)

where a0 and b0 are hyperparameters. The AR model in (35) implies that the variable
zk at time instance k is predicted from zk−1 at the previous time instance with some
uncertainty, which is modeled by the noise process wk.
To relate the correlation coefficients ρ1,k and ρ2,k in (9) to the attention state dk, we
model the probability of the absolute values of the correlation coefficients, given
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attention to speaker 1 or speaker 2, using a log-normal distribution (Please note that
modeling the probabilities of the absolute values of the correlation coefficients with
log-normal distributions allows for a closed-form iterative solution [9], compared to
modeling the probabilities of the correlation coefficients either with normal or von
Mises-Fisher distributions [30].), i.e.,

p(φl,k | dk = l) ∼ Log-Normal(δa, µa), l = 1, 2, (38)

with
δa ∼ Gamma(γ̄a, ν̄a), p(µa | δa) ∼ N (µ̄a, δa), (39)

where γ̄a, ν̄a and µ̄a denote the hyperparameters of the attended log-normal distri-
bution. Similarly, we model the probability of the absolute values of the correlation
coefficients, given no attention to speaker 1 or speaker 2, as

p(φl,k | dk 6= l) ∼ Log-Normal(δu, µu), l = 1, 2, (40)

with
δu ∼ Gamma(γ̄u, ν̄u), p(µu | δu) ∼ N (µ̄u, δu), (41)

where γ̄u, ν̄u, and µ̄u denote the hyperparameters of the unattended log-normal distri-
bution. Since a small overlap between the attended and the unattended log-normal
distributions is desired for a reliable decoding performance, the hyperparameters
γ̄{a,u}, ν̄{a,u}, and µ̄{a,u} are tuned to minimize the overlap.
Aiming at estimating the probability of attending to speaker 1 and speaker 2 at
time instance k = k∗ (see Figure 4), we now consider the absolute values of the
correlation coefficients within a sliding window of length KSSM = KP + KA + 1,
with KP and KA denoting the number of correlation coefficients prior to and after
k∗, respectively. The set of parameters to be estimated in this window is given by
ΩΩΩ =

{
zk∗−KP :k∗+KA , ηk∗−KP :k∗+KA , δa, µa, δu, µu

}
. The maximum a posteriori (MAP)

estimate is obtained by maximizing the log-posterior function, i.e.,

Ω̂ΩΩ = arg max
ΩΩΩ

`(ΩΩΩ|φ1,k, φ2,k, k = k∗ − KP : k∗ + KA), (42)

which can be computed iteratively using the Expectation Maximization (EM) algo-
rithm as in Reference [9,30].
Using the estimated variable zk, the probability pk = P(dk = 1) of attending to speaker
1 at time instance k is obtained using (34). These probabilities are segmented into
non-overlapping windows of length KNOL, i.e.,

pi =
[

p(i−1)KNOL+1 p(i−1)KNOL+2 . . . piKNOL

]T
, (43)

and the probability of attending to speaker 1 in window i is then computed as the
mean of the probabilities, i.e.,

P
(

d̂i = 1
)
=

1
KNOL

KNOL

∑
n=1

p(i−1)KNOL+n, (44)

with d̂i the attention state in window i. The probability of attending to speaker 2 in
window i is computed as

P
(

d̂i = 2
)
= 1− P

(
d̂i = 1

)
. (45)

Based on these probabilities, it is decided that the participant attended to speaker 1 if
P
(

d̂i = 1
)
> P

(
d̂i = 2

)
, or attended to speaker 2 otherwise.
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The probabilistic attention measure of the attended speaker p̂a,i in window i is, hence,
determined as  p̂a,i = P

(
d̂i = 1

)
, if P

(
d̂i = 1

)
> P

(
d̂i = 2

)
p̂a,i = P

(
d̂i = 2

)
, otherwise.

(46)

The probabilistic attention measure of the unattended speaker p̂u,i is determined as
p̂u,i = 1− p̂a,i. The process flow of AAD using the SSM is depicted in Figure 4.
The AAD algorithm using the SSM was implemented and run using MATLAB (MAT-
LAB 1 of RAAD in Figure 2). The hyperparameters in (35) and (37) were set to c0 = 1,
a0 = 2.008 and b0 = 0.2016, similarly as in Reference [9]. The hyperparameters γ̄a, ν̄a
and µ̄a in (39) were set by fitting a gamma and a normal distribution to the absolute
values of the correlation coefficients of the (oracle) attended speaker obtained from
the calibration phase. Similarly, the hyperparameters γ̄u, ν̄u, and µ̄u in (41) were set
by fitting a gamma and a normal distribution to the absolute values of the correlation
coefficients of the (oracle) unattended speaker obtained from the calibration phase.
The SSM parameter set ΩΩΩ was estimated using the EM algorithm as in Reference
[9] with 20 iterations. On the one hand, for the LW–SSM algorithm using a large
overlapping correlation window (i.e., KCOR = 960 samples, 1 sample shift), a small
SSM window of length KSSM = 1 sample (corresponding to 1

64 s) with KP = 0 and
KA = 0 was used. On the other hand, for the SW–SSM algorithm using a small
non-overlapping correlation window (i.e., KCOR = 16 samples), a large SSM window
of length KSSM = 60 samples (corresponding to 15 s) with KP = 53 (corresponding to
13.25 s) and KA = 6 (corresponding to 1.50 s) was used as in Reference [9]. The length
of the window KNOL in (43) was set such that both algorithms generated the proba-
bilistic attention measure of the attended speaker p̂a,i in (46) every 0.25 s. This means
that for the LW–SSM algorithm a window of length KNOL = 16 samples was used,
while, for the SW–SSM algorithm, a window of length KNOL = 1 sample was used.
Each participant’s own data were used for hyperparameter and parameter setting,
as well as for decoding. To evaluate the performance of the proposed LW–SSM and
SW–SSM algorithms, the decoding performance for each participant was computed
as the percentage of correctly decoded NOL windows. To evaluate the delay to detect
a cued attention switch of the proposed LW–SSM and SW–SSM algorithms, the delay
was computed as the time takes for the LW–SSM and SW–SSM algorithms to detect
an attention switch after the moment the arrow on a screen cued to switch attention.

2.5.2. Adaptive Gain Controller (AGC)

The probabilistic attention measure of the attended speaker p̂a,i in window i, either
obtained using the GLM in (30) or using the SSM in (46), is then used to drive the AGC
(see Figure 2).

The speech signal s1,t of speaker 1 and the speech signal s2,t of speaker 2 are first
segmented into non-overlapping windows of length KAGC, i.e., for window i

s1,i =
[
s1,(i−1)KAGC+1 s1,(i−1)KAGC+2 . . . s1,iKAGC

]T
, (47)

s2,i =
[
s2,(i−1)KAGC+1 s2,(i−1)KAGC+2 . . . s2,iKAGC

]T
. (48)

Based on the AAD result for window i, the attended speech vector ŝa,i and the unattended
speech vector ŝu,i are determined as{

ŝa,i = s1,i, ŝu,i = s2,i if the identified attended speaker is speaker 1
ŝa,i = s2,i, ŝu,i = s1,i otherwise.

(49)
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By multiplying the attended speech vector ŝa,i with the gain λa,i and multiplying the
unattended speech vector ŝu,i with the gain λu,i, the objective of the AGC is to achieve a
desired signal-to-interference-ratio (SIR) between the identified attended and unattended
speakers in window i. The desired SIR in window i is defined as a linear function of the
probabilistic attention measure p̂a,i, i.e.,

SIRdes
i = 2SIRmax p̂a,i − SIRmax, (50)

such that p̂a,i = 1 corresponds to SIRmax, i.e., the maximum desired SIR, and p̂a,i = 0.5
corresponds to SIR = 0 dB.

The SIR in window i at the output of the AGC is equal to

SIRi = 10 log10

(
λ2

a,i ϕa,i

λ2
u,i ϕu,i

)
, (51)

with the energy of the attended and unattended speech vector in window i given by

ϕa,i = ŝT
a,iŝa,i, ϕu,i = ŝT

u,iŝu,i. (52)

By setting (51) equal to the desired SIR in (50) and constraining the overall energy at the
output of the AGC to be equal to the overall input energy, i.e.,

λ2
a,i ϕa,i + λ2

u,i ϕu,i = ϕa,i + ϕu,i, (53)

the gains λu,i and λa,i can be computed as

λ2
u,i =

1 + ϕa,i
ϕu,i

1 + 10
SIRdes

i
10

, (54)

λ2
a,i = 10

SIRdes
i

10
ϕu,i

ϕa,i
λ2

u,i. (55)

To avoid annoying artefacts due to highly time-varying gains, the gains λu,i in (54) and λa,i
in (55) are averaged over four windows, i.e.,

λ̄u,i =
1
4

i

∑
n=i−3

λu,n, λ̄a,i =
1
4

i

∑
n=i−3

λa,n. (56)

The amplified attended speech vector s̄a,i and the attenuated unattended speech vector s̄u,i
in window i are finally obtained as

s̄a,i = λ̄a,iŝa,i, (57)

s̄u,i = λ̄u,iŝu,i. (58)

These signals are then presented to the participant via two loudspeakers. The AGC was
implemented and run using MATLAB (MATLAB 2 in Figure 2). The sampling frequency of
the speech signals of both speakers was equal to 44,100 Hz. The maximum desired SIR in
(50) was set to 7 dB.

The speech enhancement performance of the AGC was evaluated in terms of the SIR
improvement ∆SIR, i.e.,

∆SIR = SIRout − SIRin, (59)
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with

SIRin = 10 log10


I

∑
i=1

sT
a,isa,i

I
∑

i=1
sT

u,isu,i

, (60)

SIRout = 10 log10


I

∑
i=1

s̄T
a,is̄a,i

I
∑

i=1
s̄T

u,is̄u,i

, (61)

where sa,i and su,i denote the (oracle) attended and unattended speech vectors, defined
similarly as in (47).

3. Results

In this section, we evaluate the decoding performance and the speech enhancement
performance of the proposed cognitive-driven gain controller system described in the
previous section. In Section 3.1, we evaluate the decoding performance of the proposed
AAD algorithms for the open-loop and the closed-loop AAD phase. In Section 3.2, we
evaluate the speech enhancement performance of the AGC for the closed-loop AAD phase.
Finally, in Section 3.3, we compare the subjective evaluation between the open-loop and
the closed-loop AAD phase.

3.1. Auditory Attention Decoding Performance

For all considered AAD algorithms (LW–GLM, LW–SSM, and SW–SSM), Figure 5
depicts the correlation coefficients ρ1,k and ρ2,k of speaker 1 and speaker 2 and the prob-

ability of attending to speaker 1, i.e., P
(

d̂i = 1
)

or P
(

d̂i = 2
)

, for an exemplary session
from the open-loop AAD phase. It can be observed that all AAD algorithms translate the
fluctuating correlation coefficients into smooth probabilistic attention measures. When
using the large correlation window, i.e., LW–GLM and LW–SSM, the correlation coefficients
are more discriminative and the probabilistic attention measures are more reliable with a
lower variability compared to using the small correlation window, i.e., SW–SSM. This can
mainly be explained by the fact that the large correlation window provides a larger amount
of data from the reconstructed attended envelope and the envelopes of the speech signals
compared to the small correlation window. A large discriminability and reliability of the
correlation coefficients and the probabilistic attention measures are obviously essential to
obtain a large decoding performance.

(a) Large correlation window
(KCOR = 960 samples, 1 sample shift)

(b) Small correlation window
(KCOR = 16 samples, no overlap)

Figure 5. Exemplary correlation coefficients of speaker 1 and speaker 2 and probability of attending to speaker 1 from the
open-loop AAD phase when using AAD algorithms employing (a) a large correlation window (LW–GLM, LW–SSM) and
(b) a small correlation window (SW–SSM).
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For the considered AAD algorithms, Figure 6 depicts the decoding performance for the
open-loop and the closed-loop AAD phase. It can be observed that all AAD algorithms yield
a median decoding performance that is larger than chance level (50%). For the open-loop
AAD phase, the LW–GLM, LW–SSM, and SW–SSM algorithms yield a median decoding
performance of 65.0%, 60.5%, and 56.5%, respectively. For the closed-loop AAD phase, the
LW–GLM, LW–SSM, and SW–SSM algorithms yield a median decoding performance of
67.7%, 64.2%, and 60.4%, respectively. The larger median decoding performance obtained
by the LW–GLM and LW–SSM algorithms is consistent with the probabilistic attention
measures in Figure 5, where due to the large correlation window more reliable probabilistic
attention measures are obtained compared to the SW–SSM algorithm. A statistical multiple
comparison test (Kruskal–Wallis test followed by post-hoc Dunn and Sidak test [34])
revealed no significant difference (p > 0.05) in decoding performance between the open-
loop and the closed-loop AAD phase nor between the considered AAD algorithms.

(a) open-loop AAD (b) closed-loop AAD

Figure 6. Decoding performance for (a) the open-loop AAD phase and (b) the closed-loop AAD phase when using the
LW–GLM, LW–SSM, and SW–SSM algorithms. The boxplots display the median, the first quartile, the third quartile, the
minimum, and the maximum of the decoding performance across participants. The dashed-line represents the upper
boundary of the confidence interval corresponding to chance level based on a binomial test at the 5% significance level.

To further investigate the performance of the proposed AAD algorithms, Figure 7
depicts the delay to detect a cued attention switch for the open-loop and the closed-
loop AAD phase. For the open-loop AAD phase, the LW–GLM, LW–SSM, and SW–SSM
algorithms yield a median delay of 16.0 s, 7.7 s, and 13.9 s, respectively. For the closed-loop
AAD phase, the LW–GLM, LW–SSM, and SW–SSM algorithms yield a median delay of
19.8 s, 11.5 s, and 17.4 s, respectively. A statistical multiple comparison test (Kruskal–Wallis
test followed by post-hoc Dunn and Sidak test) revealed no significant difference (p > 0.05)
between the open-loop and the closed-loop AAD phase nor between the considered AAD
algorithms.

3.2. Signal-to-Interference Reduction of Adaptive Gain Controller

For the considered AAD algorithms, Figure 8 depicts the SIR improvement for the
closed-loop AAD phase. It can be observed that the LW–GLM, LW–SSM, and SW–SSM
algorithms yield a median SIR improvement of 1.1 dB, 1.7 dB, and 0.5 dB, respectively.
The larger SIR improvement obtained by the LW–GLM and LW–SSM algorithms can be
explained by the larger decoding performance compared to the SW–SSM algorithm. The
larger decoding performance leads to a larger number of windows during which the
attended speaker is correctly amplified and the unattended speaker is correctly attenuated.
In addition, it can be observed that the SW–SSM algorithm yields an SIR improvement
with a larger variability (−2.7–3.0 dB) than the LW–GLM algorithm (0.6–2.1 dB) and the
LW–SSM algorithm (0.7–3.8 dB). This can be explained by the larger variability of the
probabilistic attention measures obtained by the SW–SSM algorithm (see Figure 5). Due to
the linear role of the probabilistic attention measure in the AGC for determining the desired
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SIR between the attended and the unattended speaker, as shown in (50), probabilistic
attention measures with a large variability lead to SIRs with a large variability.

(a) open-loop AAD (b) closed-loop AAD

Figure 7. Delay to detect a cued attention switch for (a) the open-loop AAD phase and (b) the closed-loop AAD phase
when using the LW–GLM, LW–SSM, and SW–SSM algorithms. The boxplots display the median, the first quartile, the third
quartile, the minimum, and the maximum of the switch detection delay across participants.

Figure 8. SIR improvement of the proposed cognitive-driven gain controller system when using the
LW–GLM, LW–SSM, and SW–SSM algorithms. The boxplots display the median, the first quartile,
the third quartile, the minimum, and the maximum of the SIR improvement across participants.

3.3. Subjective Evaluation of Open-Loop and Closed-Loop AAD

For the open-loop and the closed-loop AAD phase, Figure 9 presents the perceived
effort to follow the attended speaker, to ignore the unattended speaker, to switch attention
between both speakers, and the level of story understanding.

In terms of the perceived effort to follow the attended speaker and to ignore the
unattended speaker (Figure 9a,b), it can be observed that the lowest median effort is
obtained for the open-loop AAD, while a higher median effort is required for the closed-
loop AAD, especially when using the SW–SSM algorithm. This can be attributed to the
negative SIR improvement in some windows (see Figure 8), where the attended speaker
is wrongly attenuated and the unattended speaker is wrongly amplified. Nevertheless,
a statistical multiple comparison test (Kruskal–Wallis test followed by post-hoc Dunn
and Sidak test) revealed no significant difference (p > 0.05) between all considered open-
loop and closed-loop AAD cases. Similarly, in terms of the effort to switch attention
between both speakers (Figure 9c), a statistical multiple comparison test revealed no
significant difference (p > 0.05) between all considered open-loop and closed-loop AAD
cases. These results show that the proposed closed-loop cognitive-driven gain controller
system demands a similar perceived effort to follow the attended speaker, to ignore the
unattended speaker and to switch attention compared to the open-loop AAD system. In
terms of the level of story understanding (Figure 9d), the highest median understanding
level is obtained for the open-loop AAD, while a lower median understanding level is
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obtained for the closed-loop AAD. This is consistent with the perceived cognitive effort
(Figure 9a,b,c), where the open-loop AAD demands the lowest effort, possibly resulting in
more cognitive resources available for story understanding compared to the closed-loop
AAD. Nevertheless, a statistical multiple comparison test revealed no significant difference
(p > 0.05) between all considered open-loop and closed-loop AAD cases.

(a) (b)

(c) (d)

Figure 9. Subjective evaluation results of the open-loop and the closed-loop AAD phase using the LW–GLM, LW–SSM, and SW–SSM
algorithms in terms of perceived effort to (a) follow the attended speaker, (b) ignore the unattended speaker, (c) switch attention
between both speakers, and (d) understand the story.

Finally, Figure 10 presents the level of improvement in system usage achieved by the
participants throughout the sessions of the closed-loop AAD phase. It can be observed for
all considered AAD algorithms that a significant improvement in system usage is obtained.

Figure 10. Subjective improvement in system usage for the closed-loop AAD system when using the
LW–GLM, LW–SSM, and SW–SSM algorithms.
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4. Discussion

The experimental results for the open-loop AAD system show that the largest median
decoding performance is obtained by the LW–GLM algorithm (65%). This is in accordance
with the experimental results in Reference [6], where it has been shown that open-loop
AAD using a low number of electrodes with a correlation window smaller than 15 s
results in a decoding performance lower than 75%. It should, however, be noted that the
decoding performance in Reference [6] was obtained based on an optimal EEG electrode
configuration, whereas the decoding performance reported in this paper was obtained
based on a fixed EEG electrode configuration. In addition, the experimental results show
that there is no significant difference in decoding performance between the open-loop
and the closed-loop AAD system using the proposed AAD algorithms. This is consistent
with the experimental results in Reference [5], where no significant difference in decoding
performance between an open-loop and a closed-loop AAD system using visual feedback
has been observed.

The experimental results show that the LW–GLM and LW–SSM algorithms using
the large correlation window yield a larger median decoding performance compared
to the SW–SSM algorithm using the small correlation window. The large correlation
window provides a larger amount of data from the reconstructed attended envelope and
the envelopes of the speech signals compared to the small correlation window, resulting in
more discriminative correlation coefficients, more reliable probabilistic attention measures
and a larger decoding performance. This is in accordance with the experimental results
in Reference [4,6], where it has been shown that a larger correlation window results in a
larger decoding performance. In addition, the experimental results show that the LW–GLM
algorithm yields a larger median decoding performance than the LW–SSM algorithm. This
may be explained by the fact that the LW–GLM algorithm infers the probabilistic attention
measures based on the mean differential correlation coefficients rather than the absolute
value of the correlation coefficients, hence providing a larger dynamic range including
positive and negative values.

In conclusion, the results demonstrate the feasibility of closed-loop AAD in an online
fashion, enabling the listener to interact with an adaptive gain controller (as an ideal speech
enhancement algorithm) for a scenario with two competing speakers. On the one hand, the
closed-loop cognitive-driven gain controller system improves the SIR between the attended
and the unattended speaker. This may make it easier to follow the attended speaker,
ignore the unattended speaker and switch attention between both speakers, resulting in a
lower cognitive effort compared to open-loop AAD. On the other hand, the closed-loop
cognitive-driven gain controller system introduces a significant delay to detect attention
switches, which causes the attended speaker to be wrongly attenuated and the unattended
speaker to be wrongly amplified for sometime. This may make it more difficult to follow
the attended speaker and ignore the unattended speaker, resulting in a higher cognitive
effort compared to open-loop AAD. Nevertheless, the subjective evaluation results indicate
that overall the closed-loop cognitive-driven gain controller system demands a similar
effort as open-loop AAD.

A delay to detect attention switches significantly influences the performance of the
closed-loop cognitive-driven gain controller system. Recently, methods that are able to
decode auditory attention with low delay have been proposed, e.g., based on a state-space
model [9,18], neural networks [12,18,35], and common spatial patterns [36]. Therefore,
investigating the potential of fast AAD methods for a closed-loop cognitive-driven gain
controller system to detect attention switches could be interesting as future work.

While the closed-loop AAD experiments were performed without incorporating a prac-
ticing phase for the participants, the subjective evaluation results suggest that a significant
improvement in system usage was obtained throughout the closed-loop AAD experiment.
Future work could, therefore, investigate the impact of incorporating a practicing phase
on the decoding and the speech enhancement performance of the cognitive-driven gain
controller system. This practicing phase could simply be an extended version of the closed-
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loop phase with many sessions where the participants can gather enough experience to
fully master (i.e. find an intelligent way to control) the cognitive-driven gain controller
system.

Although the application of the proposed cognitive-driven gain controller system was
limited to acoustic scenarios with two competing speakers, it was shown in Reference [10]
that open-loop AAD is feasible for an acoustic scenario with four competing speakers when
using perfectly separated clean speech signals for decoding. In addition, the evaluation
of the proposed system was limited to acoustic scenarios with non-moving speakers and
with speakers located on opposite sides of the listener, whereas in real-world conditions
speakers may move and may be located on the same side of the listener. Therefore, it would
certainly be interesting as future work to investigate the performance of (an extension
of) the proposed cognitive-driven speech enhancement system for more realistic acoustic
scenarios.

The application of the proposed cognitive-driven gain controller system is obviously
not limited to hearing devices. The system could also be used, e.g., for virtual reality (VR)
that simulates a remote environment, e.g., for entertainment, training and medicine. It
could be used to adapt the simulated world based on the auditory attention of the VR user.

5. Conclusions

In this paper, we proposed a closed-loop gain system which cognitively steers an adap-
tive gain controller based on real-time AAD for a scenario with two competing speakers.
The real-time AAD infers the probabilistic attention measures of the attended and the unat-
tended speaker from EEG recordings of the listener and the speech signals of both speakers.
Based on these probabilistic attention measures, the adaptive gain controller amplifies the
identified attended speaker and attenuates the identified unattended speaker. The loop of
cognitive-driven gain control is then closed by presenting the amplified attended speaker
and the attenuated unattended speaker via loudspeakers. The experimental results demon-
strate the feasibility of the proposed closed-loop cognitive-driven gain controller system
(both using AAD algorithms based on GLM and SSM), enabling the listener to interact with
the system in real-time. Although there is a significant delay to detect attention switches,
which causes the attended speaker to be wrongly attenuated and the unattended speaker to
be wrongly amplified for some time, the proposed closed-loop system is able to improve the
SIR between the attended and the unattended speaker. Moreover, the subjective evaluation
results show that the proposed closed-loop cognitive-driven system demands a similar
perceived level of cognitive effort to follow the attended speaker, to ignore the unattended
speaker, and to switch attention between both speakers compared to open-loop AAD. With
this work, an attempt was made to bring closed-loop cognitive-driven speech enhancement
closer to real-world applications.
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