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Abstract: The time-dependent traveling salesman problem (TDTSP) asks for a shortest Hamiltonian
tour in a directed graph where (asymmetric) arc-costs depend on the time the arc is entered. With
traffic data abundantly available, methods to optimize routes with respect to time-dependent travel
times are widely desired. This holds in particular for the traveling salesman problem, which is a
corner stone of logistic planning. In this paper, we devise column-generation-based IP methods to
solve the TDTSP in full generality, both for arc- and path-based formulations. The algorithmic key
is a time-dependent shortest path problem, which arises from the pricing problem of the column
generation and is of independent interest—namely, to find paths in a time-expanded graph that are
acyclic in the underlying (non-expanded) graph. As this problem is computationally too costly, we
price over the set of paths that contain no cycles of length k. In addition, we devise—tailored for
the TDTSP—several families of valid inequalities, primal heuristics, a propagation method, and a
branching rule. Combining these with the time-dependent shortest path pricing we provide—to
our knowledge—the first elaborate method to solve the TDTSP in general and with fully general
time-dependence. We also provide for results on complexity and approximability of the TDTSP.
In computational experiments on randomly generated instances, we are able to solve the large
majority of small instances (20 nodes) to optimality, while closing about two thirds of the remaining
gap of the large instances (40 nodes) after one hour of computation.

Keywords: integer programming; traveling salesman problem; shortest path problem

1. Introduction

The traveling salesman problem (TSP) is among the best-studied combinatorial op-
timization problems (see [1,2] for summaries), which is in part due to a wide area of
applications in logistics, manufacturing, telecommunications, and more. Considerable
effort has been put into theoretical analysis of the problem, and implementations of Branch-
and-Bound-based codes capable of computing optimal tours for instances consisting of
several thousand nodes. Many heuristic solution techniques have been proposed as well,
notably the Lin-Kernighan heuristic and its adaptations by Helsgaun [3], and numerous
approaches based on genetic algorithms (see [4] for a comparative study). A prominent
generalization of the TSP is the asymmetric traveling salesman problem (ATSP), which
allows for different costs for the two directions in which a connection may be traversed.

There is, however, a drawback when it comes to real-world traffic problems, namely
the fact that the TSP assumes that the cost required for utilizing an arc in the tour is constant,
independent of the time at which the arc is traversed. This assumption does not generally
hold in urban areas, where congestion, and, as a result, travel times fluctuate considerably.
The problem of computing shortest paths in the presence of time-dependent travel times
has been studied before, leading to significant algorithmic advances [5] rivaling those made
for the shortest path problem itself.
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As for the planning of time-dependent tours, several extensions of the ATSP have
been examined in the literature (see below). The resulting formulations are, however,
generally focused on the structure of the time-dependent cost functions rather than that of
the underlying network itself. Conversely, we study the time-dependent TSP (TDTSP for
short) focusing on paths through the network, leading to different Branch-Cut-and-Price
formulations with time-dependent shortest path problems being solved during the column
generation.

The TSP is very versatile in applications. For solving TSP, specialized IP methods
have proven particularly fruitful. The importance of time-dependent cost functions is
obvious at least for logistic applications. Thus, development of specialized IP methods for
the TDTSP in full generality, with fully general time-dependence of the arc lengths, is of
fundamental importance. To this end, we develop both arc- and path-based formulations
for the TDTSP. Both formulations naturally lead to a high number of variables, naturally
lending themselves to be solved by a column generation approach. It turns out that a
pivotal step in this approach is the pricing problem, which yields a time-dependent shortest
path problem of independent interest. This problem is to find and price paths in the time
expansion of a graph G, which are acyclic when projected in the underlying graph G.

1.1. Preliminaries

The TDTSP is a generalization of the ATSP to the case of time-dependent cost functions.
Specifically, we let D = (V, A) be a directed graph with n: = |V| ≥ 3 vertices, and θmax ∈ N
a fixed time horizon for Θ: = {0, . . . , θmax}. The travel time for an arc a ∈ A is given by a
function ca: Θ→ N. For each sequence of arcs (a1, . . . , ak) with ak = (uk, vk) and vk = uk+1,
we can recursively define an arrival time

θarr(a1, . . . , ak) :=

{
cu1,v1(0), if k = 1, and
θarr(a1, . . . , ak−1) + cuk ,vk (θ

arr(a1, . . . , ak−1)) otherwise.

A feasible solution of the TDTSP is a tour beginning at a source vertex s ∈ V, visiting
every other vertex exactly once, which then returns to s. The TDTSP asks for a feasible
solution T = (a1, . . . , an) minimizing the arrival time θarr(a1, . . . , an) back at s, which we
will also denote by c(T). The specification of a source vertex is necessary for the TDTSP,
as opposed to the ATSP, due to the time-dependency of the travel times c. Several special
properties of travel time functions play an important role in time-dependent versions of
combinatorial problems: The first-in-first-out (FIFO) property stipulates that the traveler
who first enters an arc is also the first to leave it again. Formally, it must hold for each
a ∈ A that

θ + ca(θ) ≤ θ′ + ca(θ
′) ∀ θ, θ′ ∈ Θ, θ ≤ θ′.

Shortest paths with respect to time-dependent costs can be computed efficiently using
a variant of Dijkstra’s algorithm if the cost functions satisfy the FIFO property [6,7].

Secondly, several well-known results (e.g., [8,9]) state that the symmetric version of
the TSP can be approximated in the case of metric cost coefficients, that is, cost coefficients
satisfying the triangle inequality. The definition of the triangle inequality can be easily
generalized to the time-dependent case—a set of travel time functions satisfies the time-
dependent triangle inequality if it holds for each u, v, w ∈ V with θ, θ + cuv(θ) ∈ Θ that

θ + cuw(θ) ≤ θ + cuv(θ) + cvw(θ + cuv(θ)). (1)

1.2. Related Work

Several generalizations of the ATSP have been considered in the literature, such as
the TSP with time windows [10,11], or the class of vehicle routing problems (VRPs) [12].
An interesting novel approach to the TSP and its variant is related to path-based formula-
tions—the flow conservation constraints of the TSP ensure that every solution corresponds
to a set of cycles in the underlying graph, making it possible to reformulate the problem in
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terms of path variables and solving it using a Branch-Cut-and-Price framework [13]. The
same holds for the VRP [14] and other TSP-related problems [15]. By itself, this reformula-
tion is not stronger than the original formulation due to Dantzig et al. [16]. It is, however,
possible to restrict the set of path variables in order to exclude paths which are not tours. Of
course, any such modification alters the pricing problem, generally having an adverse effect
on its computational tractability, requiring a balance between the quality of the relaxation
and the computational effort required to solve the pricing problem. Promising approaches
include the generation of k-cycle-free [17], as well as so-called ng paths [18].

An early extension of the TSP to incorporate time-dependency, due to Picard and
Queyranne [19], generalizes the travel time of an arc (i, j) ∈ A to be sequence-dependent, i.e.,
a function cij(k) (k = 1, . . . , n). This sequence-dependent variant of the TSP, which we refer
to as the SDTSP, has since been studied both theoretically [15] and experimentally [19,20].
Notably, there is a correspondence between this sequence-dependent generalization of
the TSP and the Minimum Latency Problem (MLP), which asks for a tour minimizing the
sum of waiting times of customers. The correspondence has inspired some mixed-integer
programming (MIP) formulations [21] for the MLP. The SDTSP is also closely related to
identical machine scheduling, in particular P||∑ wjTj (see [22]).

Some attempts have been made [23,24] to solve the TDTSP itself using Branch-and-Cut
algorithms, with the focus of exploiting a special structure of the time-dependent cost
functions. Specifically, the travel-time model introduced in [25] assumes that travel times
are determined by a piecewise constant travel speed function, leading to a three-index
formulation where the total number of variables depends on the complexity of the travel
speed functions in terms of the number of their break points. While the approach seems
successful for highly structured travel speed functions, the computational tractability
apparently degrades for more irregular instances (see, for instance, the computational
results in [23]). Another approach, going by the name of Dynamic Discretization Discovery,
has been proposed [26,27] specifically for the TDTSP with time windows, which relies
on iteratively refining a discretization of the time horizon according to optimal solutions
of coarser discretizations determined during previous stages. The approach essentially
substitutes one large integer program with several well-chosen smaller ones, exploiting the
combination of time-dependent travel times and time windows. Conversely, we pursue an
approach that does not rely on any special condition for the travel times.

A preliminary version of this paper [28] explored the (ultimately unsuccessful) usage
of machine-learning techniques in order to solve the TDTSP.

1.3. Structure of This Paper

We begin by examining the complexity of the TDTSP in Section 2, establishing that
the problem is hard to approximate even if an instance satisfies both the FIFO property
and the time-dependent triangle inequality. On the other hand, we establish that an
ATSP approximation algorithm can be used to approximate the TDTSP under some more
restrictive circumstances.

We proceed in Section 3 by introducing several formulations for the TDTSP which do
not need any specific structure of the underlying travel time functions. The formulation is
based on a time expansion of the original graph, resulting in a potentially large number
of variables and constraints, necessitating some form of column generation. We describe
the specific pricing problem, which corresponds to computing shortest time-dependent
paths, that is, shortest paths in a time-expanded network. We augment the approach by
computing time-dependent k-cycle-free paths, using a dual stabilization technique in order
to decrease the number of required pricing iterations. We add several valid inequalities, a
propagation method, a custom branching rule, and primal heuristics in order to improve
the solution process.

We demonstrate the effectiveness of our approach in Section 4 based on a compu-
tational experiment on several instances of differing sizes, providing a conclusion in
Section 5.
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2. Complexity

As a generalization of the TSP, the TDTSP is NP-hard itself. Recall that while there
exists no α-approximation for any α > 1 for the general TSP, the metric TSP can be
approximated [29] (p. 557). This does not hold for the metric TDTSP:

Theorem 1. There is no α-approximation algorithm for any α > 1 for the TDTSP unlessP = NP ,
even if the FIFO property and the time-dependent triangle inequality are satisfied.

Proof. Suppose there exists an α-approximation algorithm ALG for some α ≥ 1. We show
that algorithm ALG could be used to solve the HAMILTONIAN CYCLE problem on an
undirected graph G = (V, E). To this end, let D = (V, A) be the bidirected complete graph
with costs

duv :=

{
1 if {u, v} ∈ E, and
2 otherwise.

Note that G is Hamiltonian if, and only if D contains a tour with costs of exactly n
with respect to the cost function d. Let M := dαne+ 1, s ∈ V be an arbitrary source vertex,
and θmax := n ·M be a time horizon. For θ ∈ Θ and a ∈ A, let

cuv(θ) :=

{
M if (v, θ, duv) = (s, n− 1, 2) or θ > n, and
duv otherwise

(2)

be a set of time-dependent cost functions. These cost functions satisfy both the FIFO
property and the time-dependent triangle inequality (1). We distinguish two cases with
respect to the TDTSP instance (D, c, s, θmax):

– G has a Hamilton cycle, and therefore, a tour T = (a1, . . . , an) with costs of n exists in
D: In this case, the values d(ai) for i = 1, . . . , n are all equal to one, implying that the
optimal solution to the TDTSP instance has an arrival time of n. ALG yields a tour Tapx
with an arrival time of, at most, αn < M. Consequently, the first case of (2) is never
attained, implying that each arc has a travel time of one, and ALG correctly identifies
a Hamiltonian cycle in G.

– G does not possess a Hamiltonian cycle, and every tour T = (a1, . . . , an = (u, s)) has a
cost of at least n + 1 with respect to d: As a result, there must be one arc ak ∈ T having
a travel time of at least two. If k < n, then T arrives at u at time θ ≥ n, and the travel
time of an, and consequently the arrival time of T is at least M. If, on the other hand,
k = n, then T arrives at u at time n− 1 and arc an has a travel time of more than one,
which is only possible if duv = 2, yielding a travel time of M for an. In any case, the
arrival time of T is at least M > αn.

Based on this distinction, G has a Hamilton cycle if, and only if ALG produces a tour
with an arrival time of n.

Remark 1 (Dynamic Programming). It is well-known [30] that the (asymmetric) TSP can be
solved by using a dynamic programming approach. Let C(S, v) be the smallest cost of an (s, v)-path
consisting of the vertices S ⊆ V with s, v ∈ S, and s 6= v. Then, C(S, v) satisfies the following
recursive relationship:

C({s, v}, v) = csv ∀ v ∈ V, v 6= s

C(S, v) = min
u∈S

u 6=s,v

C(S \ {v}, u) + cuv ∀ S ⊆ V, |S| ≥ 3, v ∈ S.

The cost of an optimal tour is then given by minv 6=s C(V, v) + c(v, s), and can be determined
by computing the values C(S, v) in increasing order of |S|, yielding an O(2n · n2) algorithm for
the ATSP.
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In order to adapt the approach to the TDTSP, we can define C(S, v) as the minimum arrival
time of any (s, v)-path departing from s at θ = 0, consisting of the vertices S ⊆ V with s, v ∈ S
and s 6= v. If the TDTSP instance in question satisfies the FIFO property, C(S, v) satisfies a similar
relationship:

C({s, v}, v) = csv(θ = 0) ∀ v ∈ V, v 6= s

C(S, v) = min
u∈S

u 6=s,v

C(S \ {v}, u) + cuv(θ = C(S \ {v}, u)) ∀ S ⊆ V, |S| ≥ 3, v ∈ S.

These relations yield an algorithm for the TDTSP with the same running time as its counterpart
for the ATSP. Note that the FIFO property is key here, since it ensures that only the shortest path
for fixed (S, v) needs to be considered for subsequent computations.

Approximation for Special Cases

Let č : A → N be the static underestimator of the time-dependent cost function c,
defined as

ča := min
θ∈Θ

ca(θ) ∀ a ∈ A.

If the time-dependent cost functions are of low variance, the underestimator yields
TDTSP-approximations based on an underlying ATSP:

Theorem 2. Let λ ≥ 1 such that it holds for all a ∈ A, θ ∈ {0, . . . , T} that

ca(θ) ≤ λ · ča.

Then, any α-approximation of the ATSP yields an (αλ)-approximation of the TDTSP.

Proof. Let Topt, Tapx be the optimal and α-approximate tour with respect to the costs č and
TTopt be the optimal TDTSP tour. We have that

c(Tapx) ≤ λ · č(Tapx) ≤ (αλ) · č(Topt) ≤ (αλ) · č(TTopt) = (αλ) · c(TTopt).

Since the ATSP is inapproximable in general, further assumptions, such as a metric
lower bound čuv, are necessary to obtain any approximation results. What is more, we show
in Appendix A that while it is possible to generalize the well-known one-tree relaxation [31]
from the ATSP to the TDTSP, even the computation of the corresponding lower bound is
an NP-hard problem.

3. A Branch-and-Price Algorithm

Our aim in the next section is to provide a state-of-the-art mixed integer programming
(MIP)-based algorithm to solve the TDTSP in full generality. We begin by formally defining
time-expanded graphs and establishing both an arc-based and a path-based formulation,
since it is not immediately clear which approach will work better. Both formulations consist
of large numbers of variables, necessitating column generation approaches. Since feasible
tours correspond to acyclic paths through the time-expanded graph, the key to solving the
TDTSP efficiently is: How can we find a shortest path through the time-expanded graph which is
acyclic on the original graph?

Optimizing over the set of acyclic paths, which we denote by P∗, corresponds to
solving the TDTSP itself. The set P of all paths through the time-expanded graph is much
easier to handle, leading to a very fast pricing algorithm at the cost of a substantially weaker
relaxation. To balance the computational effort of the pricing step and the strength of the
relaxation, we generate k-cycle-free paths, that is, paths containing no cycles of size ≤ k,
where larger values of k increase the computational effort while improving the relaxation.
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After discussing the subject of column generation, we strengthen both formulations
based on valid inequalities. To this end, we review several classes of valid inequalities for
the SDTSP and other related problems, adapting the class and their respective separation
algorithms to the TDTSP. Lastly, we make several improvements relating to well-known
MIP techniques, such as adding a branching rule and several primal heuristics.

Definition 1. The set of reachable points in time, T : V → 2Θ is defined as

T (v) := {θ ∈ Θ | ∃(a1, . . . , ak), a1 = (s, v1), ak = (uk, v), θarr(a1, . . . , ak) = θ}.

The time-expanded graph DT = (VT , AT ) has vertices VT := {vθ | v ∈ V, θ ∈ T (v)}
and arcs

AT := {(uθ , vθ′) | uθ , vθ′ ∈ VT , θ′ = θ + cuv(θ)}.

We denote an arc (uθ , vθ′) by (u, v, θ) and assume from now on that cuv(θ) > 0 for all
(u, v) ∈ A, θ ∈ T (v). It follows that DT is acyclic.

Example 1. Figure 1 shows a directed graph with travel times for each arc and its time expansion.
Any tour on D can be embedded into DT as an (s0, sθ)-path.

s

a

b1

3

θ

1 + θ

2

max(1, 4− θ)

θ

s a b

1

2

3

4

5

6

(a) (b)

Figure 1. A directed graph D and its time-expansion DT . (a) The directed graph D; (b) The time-
expansion DT of D with time horizon θmax = 6.

3.1. An Arc-Based Formulation

We formulate the TDTSP based on binary variables for each arc of DT similar to the
SDTSP formulation in [19]. The formulation has two kinds of constraints: A number of
covering constraints ensures that each vertex in V has exactly one outgoing arc in DT ,
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while flow conservation constraints guarantee that any feasible solution consists of a single
(s0, sθ)-path:

min
x ∑

(u,v,θ)∈AT
cuv(θ) · xuv,θ

s.t. ∑
θ∈T (v)

x(δ+(vθ)) = 1 ∀ v ∈ V

x(δ+(vθ))− δ−(vθ) = 0 ∀ v 6= s, θ ∈ T (v)
xa ∈ {0, 1} ∀ a ∈ AT .

(TDTSP-A)

Remark 2. By virtue of the flow conservation constraints in (TDTSP-A), any solution of the
program or its LP-relaxation can be decomposed into a set of paths leading from vertex s0 to vertices
sθ for some values θ ⊆ T (s). As a result, there exist several equivalent linear objectives, for example
the arrival time objective, given by

∑
θ∈T (s)

∑
(v,s,θ′)∈δ−(sθ)

θ · xvs,θ .

Relation to the Static ATSP

There is a strong relationship between the TDTSP and the ATSP. Let y : A→ R≥0 be
the compound flow traversing an arc (u, v) ∈ A with respect to a feasible solution (xa)a∈AT
of (TDTSP-A), given as

yuv := ∑
(u,v,θ)∈AT

xuv,θ . (3)

The covering constraints and the flow conservation yield the well-known two match-
ing equations,

y(δ+(v)) = y(δ−(v)) = 1 ∀ v ∈ V.

The covering constraints and the integrality of the variables x imply that the values
y are binary for any feasible solution x. However, a correct static ATSP formulation still
requires subtour elimination constraints (SECs) of the form

y(δ+(S)) ≥ 1 ∀ S ⊂ V, S 6= ∅, V.

Since DT is acyclic, any solution of (TDTSP-A) is guaranteed to satisfy the additional
SECs. Equivalently, flow augmentation techniques [32] for strengthening ATSP formu-
lations are redundant for (TDTSP-A). Conversely, SECs are not necessarily satisfied by
fractional solutions. Thus, (TDTSP-A) can be strengthened by separating SECs with respect
to the underlying static ATSP (see Section 3.4).

Valid inequalities for the ATSP can be included in the TDTSP by first computing the
compound flow y∗ of a solution x∗ of the LP-relaxation of (TDTSP-A), executing some
separation algorithm yielding a valid inequality in the compound variables y, and finally
expressing this inequality in terms of the original problem variables x.

Any feasible TDTSP solution is feasible for the underlying ATSP, and generic ATSP
solutions do not necessarily produce feasible solutions of the TDTSP. Specifically, no tour
T = (a1, . . . , an) with θarr(T) > θmax can be embedded into DT . The complete description
of the TDTSP in terms of compound variables y can be obtained by adding forbidden path
constraints of the form

∑
a∈P

ya ≤ k− 1 ∀ P = (a1, . . . , ak) : θarr(P) > θmax.
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As a result, facet-defining ATSP inequalities, while valid, are not necessarily facet-
defining for the TDTSP.

3.2. A Path-Based Formulation

Any feasible solution of the TDTSP problem (TDTSP-A) can be decomposed into
(s0, sθ)-paths for some values θ ⊆ T (s). These paths correspond to cycles containing vertex
s in D. We denote by P the set of all (s0, sθ)-paths not containing any vertex sθ′ with θ 6= θ′.
For each path P ∈ P and each vertex v ∈ V, we let χv,P be the set of vertices in VT that
have an outgoing arc contained in P, and αv,P its cardinality, that is,

χv,P := {vθ ∈ VT | (v, w, θ) ∈ P}, and αv,P := |χv,P|.

The problem can be reformulated in terms of path variables:

min
x ∑

P∈P
cP · xP

s.t. ∑
P∈P

αv,P · xP = 1 ∀ v ∈ V

xP ∈ {0, 1} ∀ P ∈ P .

(TDTSP-P)

Any solution of this formulation consists of a single variable xP set to 1 and all others
set to 0, in which case P must be contained in P∗, that is, corresponding to a tour. Any
fractional solution consists of, at most, n different paths in P which need not be tours in D.
The resulting system is small in terms of the number of constraints at the expense of the
number of variables, necessitating a column generation [33] approach.

3.3. Column Generation

Let (λv)v∈V be the dual variables corresponding to the covering constraints
in (TDTSP-P). The reduced cost of a variable xP in the corresponding LP-relaxation is
given as

cP := cP − ∑
v∈V

αv,P · λv,

which can be rewritten as a function AT → R via

cuv,θ := cuv(θ)− λu.

The pricing problem therefore corresponds to a shortest path problem in DT , which
can be solved in linear time since DT is acyclic.

3.3.1. Lagrangean Pricing & Dual Stabilization

It is fairly straightforward to derive a Lagrangean relaxation of the LP-relaxation
of (TDTSP-P), which is solved during the pricing problem. The constraint ∑P∈P αs,P · xP = 1
is equivalent to

∑
P∈P

xP = 1,

since every path in P leaves s0 exactly once. By penalizing all covering constraints in the
objective and removing all but this constraint, we obtain the Lagrangean relaxation

LP (λ) :=

(
∑

v∈V
λv

)
+


min

x ∑
P∈P

cP · xP

s.t. ∑
P∈P

xP ≤ 1

xP ≥ 0 ∀ P ∈ P .
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If there exists a path with negative reduced costs with respect to λ, an optimal solution
of LP (λ) is obtained by setting x∗P = 1, where P ∈ P has the minimum reduced cost. If
there is no such path, we set x∗ ≡ 0. In any case, we obtain a lower bound on the LP-
relaxation of (TDTSP-P) during the pricing. It is easy to adapt this approach to (TDTSP-A),
enabling us to use path-based pricing in this case as well.

We use the Lagrangean relaxation in order to perform a dual stabilization based on
the weighted Dantzig–Wolfe decomposition method introduced in [22]. The weighted
Dantzig–Wolfe decomposition method judges the quality of dual values according to the
value of their Lagrangean relaxation. By maintaining a center of stability and only tenta-
tively moving the center towards the current dual values, the technique can significantly
decrease the time required to solve the LP-relaxations of the TDTSP formulations.

3.3.2. Pricing Acyclic Paths

Many paths which are generated in the pricing do not share much resemblance with
tours in the underlying graph D: On the one hand, certain paths only contain few vertices
and lead almost immediately back to sθ . We will address this problem later using the
propagation of lower bounds. On the other hand, paths frequently contain cycles with
respect to D, that is, they contain two different copies vθ , vθ′ of the same vertex v 6= s with
different values θ 6= θ′. Specifically, a path

P = (a1 = (u1, v1, θ1), . . . , ak = (uk, vk, θk))

in DT forms a k-cycle if u1 = vk. A path of at least k arcs contains a k-cycle if any of
its subpaths is a k-cycle. A path not containing a j-cycle for j ≤ k is called k-cycle-free.
Naturally, a k-cycle-free path is also j-cycle-free for all j < k, and it is a tour if, and only if it
is (n− 1)-cycle-free.

In order to strengthen the formulations, we restrict the set of variables in the path-
based formulation (TDTSP-P) to the subset Pk ⊆ P of k-cycle-free paths, noting that

P =: P1 ⊆ P2 . . . ⊆ Pn−1 = P∗.

Similarly, the sets Pk yield increasingly tighter Lagrangean relaxations, i.e., satisfying

LP (λ) ≤ LP2(λ) ≤ . . . ≤ LPn−1(λ).

The restriction to the set Pk requires us to adapt the pricing procedure to k-cycle-free
paths. The k-cycle-free shortest problem has previously been examined [17], leading to a
two-cycle-free labeling scheme with linear running time, as well as an algorithm computing
k-cycle-free paths with a running time of O((k!)2) in the parameter k. In order to improve
the overall performance of the column generation, we use the weighted Dantzig–Wolfe
decomposition described above based on the values LPk (λ).

Adapting the original formulation (TDTSP-A) is not as straightforward, since we have
no control regarding the path decomposition producing the values xuv,θ . As a compro-
mise, we propose to generate new columns according to the arcs of k-cycle-free paths.
Since we cannot guarantee that the resulting flow can be decomposed into k-cycle-free
paths, we cannot ensure that LPk (λ) ≤ LP (TDTSP-A). Nonetheless, it still holds that
LPk (λ) ≤ (TDTSP-A), which is sufficient to ensure that, if no more k-cycle-free paths can
be found, the restricted LP is a relaxation of (TDTSP-A). We are, however, unable to apply
the weighted Dantzig–Wolfe decomposition to the arc-based formulation.

3.4. Valid Inequalities

We consider several classes of valid inequalities, some of which are well-known
ATSP inequalities, whereas others are either adaptations of SDTSP inequalities or newly
derived ones. We express the inequalities in terms of the arc variables x from (TDTSP-A),
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understanding that converting them to (TDTSP-P) is straightforward. The separation is
performed according to a fractional solution x∗ with compound values y∗ given by

y∗uv = ∑
(u,v,θ)∈AT

x∗uv,θ ∀ (u, v) ∈ A.

3.4.1. ATSP Inequalities

Apart from the subtour elimination constraints, probably the best-known family of
facet-defining inequalities for the ATSP goes by the name of D+

k -inequalities [2,34]. These
inequalities are derived based on the compound variables y on a complete directed graph
D = (V, A). To simplify notation, for sets S, T ⊆ V we let

δ(u, T) := {(u, v) ∈ A | v ∈ T}.

The D+
k -inequality for a sequence (v1, . . . , vk) of 2 ≤ k < n distinct vertices is given by

k−1

∑
j=1

yvj ,vj+1 + yvk ,v1 + 2y(δ(v1, {v3, . . . , vk}))

+
k

∑
j=4

y(δ(vj, {v3, . . . , vj−1})) ≤ k− 1.

The separation of D+
k -inequalities involves the enumeration of possible sequences in

a Branch-and-Bound-like fashion. Nonetheless, the separation works well in practice, since
many of the possible sequences can be pruned.

3.4.2. Incompatibilites

Incompatibilites between binary variables, collected in the so-called incompatibil-
ity graph, have proven to be highly useful in order to generate strong inequalities for
mixed-integer programs in general (see [35]). For the ATSP, two arcs (u, v) 6= (u′, v′) are
incompatible if they share one or both of their endpoints, that is,

u = u′ or v = v′ or
(
u = v′ and u′ = v

)
.

The two common classes of inequalities derived from incompatibility graphs are clique
and odd-cycle inequalities. Cliques in the incompatibility graph of the ATSP correspond
to the sets δ+(v) and δ−(v). For the (TDTSP-A), clique inequalities are already implied by
the constraints.

Odd-cycle inequalities for the ATSP are known as odd closed alternating trail inequal-
ities [36], odd CATS for short. An odd CAT corresponds to a sequence a1, . . . , a2k+1 of
distinct arcs in A such that arcs ai and ai+1 share either head or tail. The odd CAT inequality
corresponding to these arcs is given by

k

∑
i=1

yai ≤ k.

Odd CAT inequalities for the ATSP can be separated heuristically by computing
shortest paths in an auxiliary bipartite graph. For the TDTSP, these cuts correspond to odd
cycles of cliques rather than odd cycles of simple incompatibilities.

3.4.3. Odd Path-Free Inequalities

Let S ⊆ V \ {s} be a set of vertices of the underlying graph, VT (S) := {uθ ∈ VT | u ∈
S} the corresponding vertices in VT , and AT (S) the arcs of the subgraph of DT induced
by VT (S). The SEC corresponding to S implies that the set AT (S) can contain, at most,
|S| − 1 arcs.
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We obtain another class of inequalities by restricting ourselves to subsets with odd
cardinality, i.e., |S| = 2k + 1. A subset A′ ⊆ AT is path-free with respect to S if it contains
no nontrivial paths in DT , a nontrivial path consisting of more than one arc. If a set is
path-free, than any arc in the intersection of A′ with a tour through DT connects two
distinct vertices. As a result, the intersection can contain, at most, k arcs, yielding the
following odd path-free inequality (see Figure 2):

∑
(u,v,θ)∈A′

xuv,θ ≤ k.

We separate these inequalities heuristically by first determining promising subsets S,
and then computing the optimal set A′ for each promising subset S. In order to determine
a promising subset S, we note that the odd path-free inequality is strongest for small values
of k. We therefore restrict ourselves to the case of k = 1, determining several promising sets
based on the amount of induced flow y∗(S). To avoid very similar inequalities, we only
consider the best promising 3-set containing each vertex v ∈ D \ {s}. For each candidate
set S, we compute an optimal set A′ using an integer program.

θ

a b c

1

2

3

4

5

6

Figure 2. A path-free set of arcs on three vertices.

3.4.4. Lifted Subtour Elimination Inequalities

Subtour elimination constraints can be used to strengthen formulation (TDTSP-A).
They can be separated in polynomial time by solving a series of flow problems on the
underlying graph D. To further strengthen SECs for the SDTSP, it was observed in [15] that
any tour has to leave S sufficiently early in order to be able to reach the vertices in V \ S
and return to s within the time horizon. We proceed to adapt the approach to the TDTSP.
Let θ̂ be such that

θ̂ ≥ max{θ | there exists a tour T leaving S for the first time at θ}.

Then, the following lifted subtour elimination constraint (LSEC) is valid for (TDTSP-A):

∑
(u,v,θ)∈δ+(AT (S))

θ≤θ̂

xuv,θ ≥ 1.
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The value of θ̂ is maximized for a tour which first serves S, then V \ S and returns to s
immediately afterwards. Computing the optimum value of θ̂ is intractable in practice, as it
would involve the solution of a TDTSP on S itself.

Instead of maximizing the time spent in S, we therefore minimize the time spent in
V \ S. Since we do not know the optimum value of θ̂, we do not know the values of the cost
function c. Hence, we relax the problem by replacing the time-dependent cost functions
cuv(θ) by its static underestimator čuv. Minimizing the length of a static tour leaving s,
traversing V \ S, and finally returning to s is easily formulated as an ATSP, yielding an
optimal value of θ̌. The latest departure time θ̂ can then be determined as θmax − θ̌.

This estimation of the optimal θ̂ can be rather rough if the cost functions c differ
significantly from their underestimators č. As a result, the computational effort required
to solve the ATSP does not seem merited. We choose to instead bound the static tour cost
from below by computing an arborescence of minimum weight.

3.4.5. Cycle Inequalities

While it is possible to generate variables for the (TDTSP-A) according to k-cycle-
free paths, solutions of the LP relaxation generally do not possess a k-cycle-free path
decomposition. We adapt the cycle inequalities introduced in [15] for the SDTSP to the
TDTSP, cutting off solutions based on the elimination of k-cycles. Consider a path

P = (a = (u, u1, θ), a1 = (u1, v1, θ1), . . . , ak = (uk, vk, θk))

in DT satisfying the following properties:

1. The arcs a1, . . . , ak form a k-cycle C not containing s.
2. The arc a enters the cycle C, that is, u /∈ {u1, . . . , uk}.

Let T be a tour entering the cycle C via arc a. Since T is k-cycle-free, it can contain, at
most, j ≤ k− 1 of the arcs in C, leaving the cycle via an arc (uj, w, θj) with w 6= uj+1. It also
holds that w cannot coincide with u` for ` < j or u (otherwise T would contain a cycle of
length ≤ j). Based on these observations, the cycle inequality associated with P, defined as

xu1v1,θ1 ≤
k−1

∑
j=1

∑
(uj ,w,θj)∈AT

w/∈{u,u1,...,uj+1}

xujw,θj+1 ,

is valid for (TDTSP-A). We separate these inequalities using a simple heuristic: Based on
x∗ we compute a decomposition into paths P1, . . . , Pk ⊆ P . For each path Pi, we determine
whether it contains a k-cycle, adding the corresponding inequality if necessary.

Note that cycle inequalities were reexamined in [37], leading to the stronger class
of Time-Dependent Cycle Inequalities (TDCIs) for the SDTSP. The techniques required
to derive these inequalities are, however, specific to the SDTSP and do not generalize to
the TDTSP.

3.4.6. Unitary AFCs

Unitary admissible flow constraints (AFCs) were introduced in [15] for the SDTSP. In
terms of the TDTSP, they can be derived as follows:

Summing up the flow conservation constraints of (TDTSP-A) over a set S ⊆ VT not
containing any vertices sθ yields the equation x(δ−(S)) = x(δ+(S)). Based on an incoming
arc (u, v, θ) ∈ δ−(S), it can be relaxed to xuv,θ ≤ x(δ+(S)). This constraint by itself is
obviously redundant. However, any tour T that enters S via (u, v, θ) has to leave S using
some arc (u′, v′, θ′) ∈ δ+(S) such that v′ 6= u, v, yielding the unitary AFC inequality

xuv,θ ≤ ∑
(u′ ,v′ ,θ′)∈δ+(S)

v′ 6=u,v

xu′v′ ,θ′ .
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To separate these inequalities, we first observe that stronger unitary AFC inequalities
correspond to smaller cuts, that is, a set S′ with (u, v, θ) ∈ δ−(S′) and δ+(S′) ⊆ δ+(S)
produces a stronger inequality than S. As a result, any vertex in S except for vθ+cuv(θ) can
be removed, provided that it does not contain any arc entering from another vertex in S.
We can therefore assume that S only contains vertices reachable from vθ+cuv(θ). Similarly,
we can also assume that S contains no copies of u and v, other than vθ+cuv(θ) itself. Hence,
the separation of unitary AFC inequalities can be conducted by solving a min-cut problem
for each arc (u, v, θ) with x∗uv,θ > 0, with capacities based on the values of x∗.

3.5. Additional Techniques

The addition of cutting planes already significantly strengthens the TDTSP formu-
lations. There are, however, several other techniques which can be used to speed up the
computation of the optimal tour in a Branch-and-Bound framework:

3.5.1. Propagation

During the solution process, we have a dual bound θ based on the value of the
LP-relaxation of the current Branch-and-Bound node and a primal bound θ based on
the best-known integral solution (we let θ := −∞ and θ := +∞ if the bounds are not
available). The LP-relaxation frequently contains (s0, sθ)-paths containing only a few arcs
each, leading back to s at θ < θ. Similarly, there are long paths which cannot be part of an
optimal solution. Formally, variable xvw,θ can be fixed to zero if

θ > θ or (θ + cvw(θ) < θ and w = s).

We propagate any improvement in the bounds θ and θ by fixing the appropriate
variables. We also include the propagation into the pricing problem.

3.5.2. Compound Branching

Branching on variables xuv,θ likely yields a highly unbalanced Branch-and-Bound tree,
since fixing a variable xuv,θ to one is a strong restriction, while fixing it to zero is a very weak
one. We instead add the binary compound flow variables y and coupling constraints (3) to
the formulations and assign branching priorities in order to force the solver to branch on
compound flow variables whenever possible, leading to a more balanced tree. Since any
binary solution y∗ corresponds to a tour, it is never necessary to branch on the variables
x. Since the number of compound variables is generally much lower than the number
of arcs in AT , the addition of the compound variables is unlikely to significantly affect
computational performance.

3.5.3. Primal Heuristics

We use an incremental construction heuristic to obtain a path P starting at s0. At each
turn, we append an arc leading to vertices whose counterparts in D are still unexplored by
P, finishing when the path forms a tour. The selection of the arcs is based on the current
fractional solution (x∗, y∗). Arcs that are fixed to zero are always disregarded. If there are
multiple possible arcs to be added, we score each arc (u, v, θ), and then choose one with
probability proportional to the score. We use three different scoring functions:

– The inverse of the travel time cuv(θ) (breaking ties arbitrarily);
– The variable value of x∗uv,θ using travel times to break ties or
– The compound value y∗uv using the same tie-breaking rule.

Since this construction is computationally inexpensive, we can increase the chance of
finding an improved tour by using all scoring functions and performing several iterations
with different random seeds.
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4. Computational Experiments

We proceed to report on the empirical findings on a set of artificially generated
TDTSP instances. All experiments were carried out based on an implementation in the
C++ programming language that compiled with full optimization. We used version 7.0.1
of the SCIP [38] optimization suite and version 9.0.0 of GUROBI [39] as an underlying LP
solver. We ran the experiments on an AMD Epyc 7742 processor clocked at up to 3.40 GHz,
and imposed a time limit of 3600 s for all computations. Each individual computation was
carried out by a single-threaded process.

4.1. Instances

We generate several problem instances, each given by a complete directed graph and
cost functions associated with its arcs. We embed the vertices of the graph into {0, . . . , 100}2

and introduce (symmetric) costs ca using rounded-down Euclidean distances between the
points of the embedding. Based on the costs ca, we generate a piecewise linear function
fa(θ): N→ Z with M ∈ N breaking points θ1 < θ2 < . . . < θM within Θ:

1. We let fa(0): = 0 and fix the slope at zero to +1.
2. The slope alternates between +1 and −1 with break points at θi for i = 1, . . . , M.

Based on fa, the time-dependent cost function ca: {0, . . . , θmax} → N is given as

ca(θ) := ca + max(min( fa(θ), λ · ca), 0),

where the parameter λ > 1 controls which multiple of ca(θ)/ca can be attained (see Figure 3
for an example). Throughout the experiments we set λ: = 3 and distribute a M: = 360 break
point over a set of 3600 points in time.

0 20 40 60 80 100
0

10

20

30

40

Figure 3. A sample plot of the travel time function for costs of 10, a time horizon of θmax = 100 and
M = 10 break points. The cost is constrained by a factor of λ = 3.

By construction, the function f satisfies the FIFO property independently of the choice
of the time steps θ. We then use (time-dependent) shortest-path distances with respect to
c(·) instead of c directly, in order to ensure that the (time-dependent) triangle inequality is
satisfied as well.

We generate 50 small instances consisting of 20 vertices each, as well as 20 large
instances consisting of 40 vertices based on different random seeds. For each instance, we
compute an optimal tour T0 with respect to the time-independent costs. The tour T0 serves
both as an initial feasible solution and as a means to determine a suitable time horizon θmax

to construct a time-expanded graph DT .
There is a significant increase in the number of arcs during the time-expansion—while

the original number of 20 vertices of the small instances leads to 380 arcs in the underlying
graph, the number of arcs in the time-expanded graphs DT ranges from about 80,000 to
over 130,000. For the large instances, the number of arcs in DT lies between 800,000 and
1,000,000.

Remark 3. By means of Theorem 2, the choice of objective enabled us to compute a lower bound
on the optimal objective values of our TDTSP instances. These bounds are oftentimes better than
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the objective values of the LP-relaxations of the root nodes. However, in order to evaluate our
formulations, we do not use them during our computations.

4.2. Computational Results
4.2.1. Comparisons between Formulations

We begin by comparing the performance of the different formulations, namely, the
arc-based formulation (TDTSP-A), both with and without path-based pricing, and its
path-based counterpart (TDTSP-P). The increased size of the instances (see above) has
immediate consequences regarding the computational performance (see Table 1 for the
solution statistics for the large instances): Formulation (TDTSP-A) spends an average
of about 13 min solving the root relaxations of the problem instances. Enabling column
generation decreases this time to about 55 s, whereas the path-based formulation (TDTSP-P)
averages at 17 s. While the difference in running times is less pronounced for the small
instances, it is clear that column generation is necessary in order to solve larger TDTSP
instances.

Despite the fact that the path-based formulation solves the initial relaxation the fastest,
it explores only seven nodes on average during its execution, compared to 29 nodes
explored by the arc-based formulation. Consequently, the average remaining gaps are 0.57
and 0.55, respectively. The gap here is defined as (p− d)/d, with p being the objective
function value of the best-known feasible solution, and d the best-known lower bound.

4.2.2. Performance of Different Pricers

We proceed to evaluate the pricing methods introduced in Section 3.3. As a first step,
we study the difference between pricing individual arcs and entire paths with respect to the
arc-based formulation (TDTSP-A). While both approaches yield the same gaps at the root
node, path-based pricing is substantially faster than pricing arcs, while yielding relaxations
with substantially fewer variables.

We then examine the effect of pricing k-cycle-free paths, based on the algorithms
introduced in [17], the experimental results being depicted in Table 2. Clearly, increasing
the value of k increases the computational effort. On the other hand, larger values of k yield
tighter relaxations. To obtain a realistic picture of the running times, we solved the LP-
relaxation of (TDTSP-A) and measured the required running time, thereby accounting for
deviations in the size of the programs arising from the use of different pricing techniques.
After solving the relaxations, we compute the relative gaps between the different dual
bounds and the primal bound obtained from the original path-based pricing method,
thereby ignoring any distortions due to improved primal bounds.

We find that, independently of the formulation, pricing two-cycle-free paths incurs
a negligible computational overhead of less than a minute, while closing almost 30% of
the relative gap. Increasing k beyond two immediately results in a significant increase
to the computational effort, requiring almost 40 min for large instances for the arc-based
formulation. What is more, the effect of pricing k-cycle-free paths on the relative gap
becomes less pronounced for larger values of k.

Regarding the formulations, the pricing procedure becomes significantly more difficult
for the path-based formulation (TDTSP-P). While the effect is mitigated when we add dual
stabilization, the difference remains significant. A likely explanation is that, when solving
the arc-based formulation, the LP solver can compose the arcs of previously added paths
in order to obtain new paths, which may not have been explicitly added before. As a result,
the solver is quickly able to compute near-optimal dual values, thereby guiding the column
generation. What is more, the difference between the formulations with respect to the
relative gaps is very slight and does not merit the computational effort required.

Based on these observations we proposed to use the arc-based formulation while pric-
ing two-cycle-free paths in order to achieve a reasonable trade-off between computational
overhead and decrease in relative gap.
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Table 1. Statistics with respect to the large instances for miscellaneous formulations, consisting of primal, dual values, remaining gap, the number of examined nodes, and the time
required to solve the root node.

Instance
(TDTSP-A) (TDTSP-A) with Pricing (TDTSP-P) with Pricing

p d g n troot p d g n troot p d g n troot

1 759 439.85 0.73 1 3 384.62 759 447.77 0.70 33 32.90 759 443.94 0.71 7 13.96
2 952 566.09 0.68 1 3 426.43 952 579.02 0.64 25 54.04 952 565.64 0.68 3 20.50
3 733 471.61 0.55 1 – 733 471.23 0.56 28 36.62 733 470.51 0.56 5 11.41
4 962 492.88 0.95 1 3 438.55 962 499.10 0.93 24 75.91 962 490.63 0.96 4 19.06
5 764 508.43 0.50 1 – 764 501.86 0.52 35 40.97 764 494.42 0.55 4 16.06
6 818 526.35 0.55 1 3 495.04 818 527.73 0.55 21 32.48 818 525.38 0.56 4 13.49
7 745 518.59 0.44 1 3 468.89 745 522.99 0.42 29 49.53 745 522.35 0.43 8 11.66
8 772 492.36 0.57 1 – 772 483.32 0.60 23 41.59 772 476.44 0.62 4 20.80
9 786 576.16 0.36 1 – 786 577.25 0.36 32 39.56 786 577.23 0.36 9 12.81

10 897 535.59 0.67 1 3 392.87 897 543.79 0.65 24 42.06 897 532.30 0.69 5 15.16
11 794 497.36 0.60 1 3 450.85 794 496.43 0.60 26 64.05 794 495.94 0.60 8 17.17
12 854 509.18 0.68 1 3 411.36 854 518.79 0.65 21 49.47 854 513.38 0.66 4 13.15
13 870 553.34 0.57 1 – 870 553.83 0.57 22 36.36 870 551.60 0.58 4 16.52
14 771 520.03 0.48 1 3 460.53 771 523.41 0.47 32 44.75 771 517.18 0.49 11 10.82
15 721 543.23 0.33 1 – 721 548.23 0.32 35 29.64 721 544.67 0.32 15 9.84
16 767 535.25 0.43 1 3 505.49 767 545.93 0.40 25 44.69 767 545.51 0.41 7 12.48
17 751 459.39 0.63 1 3 256.30 751 459.52 0.63 32 37.10 751 457.83 0.64 5 12.65
18 799 528.77 0.51 1 3 405.66 799 545.27 0.47 26 67.33 799 531.38 0.50 8 17.77
19 800 503.82 0.59 1 3 460.39 800 512.01 0.56 32 66.72 800 505.73 0.58 5 20.77
20 822 566.01 0.45 1 3 310.60 822 584.36 0.41 34 77.51 822 564.98 0.45 4 16.15
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Table 2. Running time and relative gap for different pricers.

Running Time [s] Relative Gap

k Small Large Small Large

Original 1.14 18.57 0.43 0.57

arc-based, k-cycle-free
2 1.28 23.39 0.32 0.45
3 69.44 1960.60 0.28 0.40
4 1706.55 – 0.26 –

path-based, k-cycle-free 2 7.38 38.19 0.31 0.43
3 1203.36 – 0.26 –

path-based, stabilized,
k-cycle-free

2 4.22 54.44 0.31 0.43
3 585.13 – 0.26 –

4.2.3. Impact of Valid Inequalities

We evaluate the separators introduced in Section 3.4 using the same approach as
above, comparing the running times and relative gaps for all separators (see Table 3).
In terms of the relative gap, the subtour inequalities, as well as their lifted counterparts
(see Section 3.4.4) perform best, closing about 25% of the gap of the original formulation.
The computational overhead is relatively lower compared to pricing three- or four-cycle-
free paths. We evaluated miscellaneous combinations of different separators, finding the
combination of lifted subtour and D+

k inequalities to be most efficient.

Table 3. Running time and relative gap for different separators.

Running Time [s] Relative Gap

Small Large Small Large

Original 1.14 18.57 0.43 0.57

Separator

Cycle 5.66 107.12 0.38 0.54
D+

k 6.19 286.34 0.33 0.45
LSEC 9.41 378.85 0.29 0.43

Odd CAT 4.05 152.71 0.39 0.52
Odd path-free 5.06 87.30 0.41 0.56

SEC 9.38 373.89 0.30 0.43
unitary AFC 23.43 263.34 0.38 0.55

LSEC and D+
k 10.16 484.12 0.29 0.42

4.2.4. Performance of Primal Heuristics

In order to judge the effectiveness of the LP-based construction heuristics introduced
in Section 3.5.3, we solve the initial relaxations of instances, then apply the heuristics in
order to improve the primal bound. Once more, we record both the execution time and
the gap relative to the original dual bound. The results, shown in Table 4, demonstrate
the effectiveness of these fairly simple heuristics—while the computational effort is minor,
with increases in running time well below 10 s, up to 30% of the gap is closed solely based
on improved primal bounds.
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Table 4. Running time and relative gap for different heuristics.

Running Time [s] Relative Gap

Small Large Small Large

Original 1.14 18.57 0.43 0.57

Heuristic
Compound value 2.53 47.93 0.30 0.53

Inverted travel time 2.34 45.22 0.37 0.53
Variable value 1.99 46.38 0.37 0.50

4.2.5. Final Algorithm

Based on the previous experiments, we augment the arc-based formulation (TDTSP-A)
with two-cycle-free path-based pricing, the combination of lifted subtour and D+

k inequali-
ties, and all of the primal heuristics. In addition, we use the propagation method introduced
in Section 3.5.1 to fix binary variables whenever possible.

Based on the combined improvements, we are able to solve 46 of the 50 small instances
to optimality. The remaining gap of the four unsolved instances averages 4.5%.

While we are unable to solve any of the large instances to optimality, we reduce the
original remaining gap from 55% to 19% (see Tables 1 and 5). In order to compare our
algorithm with a state-of-the-art solver, we used GUROBI as a black-box solver on the
same instances. As a black-box solver, GUROBI uses neither a column-generation approach,
nor the specialized heuristics and valid inequalities we introduced above, consequently
averaging at a significantly larger gap of 44% on the large instances.

Table 5. Running time and relative gap for the full formulation.

Instance
Full Formulation GUROBI

p d g n troot p d g n

1 627 527.08 0.19 18 775.79 676 444 0.52 1
2 832 644.08 0.29 10 763.66 952 566 0.68 1
3 660 551.06 0.20 26 296.38 733 476 0.54 3
4 740 609.09 0.21 8 1950.61 818 494 0.66 1
5 714 609.00 0.17 22 348.29 764 502 0.52 3
6 723 599.49 0.21 17 710.42 765 529 0.45 1
7 667 571.00 0.17 28 273.41 612 522 0.17 1
8 682 573.00 0.19 17 593.06 772 482 0.60 3
9 700 612.00 0.14 27 199.94 786 583 0.35 1

10 753 637.00 0.18 18 800.22 897 533 0.68 1
11 659 579.02 0.14 16 302.16 793 499 0.59 1
12 749 606.71 0.23 11 936.39 854 509 0.68 1
13 779 634.00 0.23 17 693.32 805 561 0.44 1
14 744 600.29 0.24 21 415.43 746 520 0.44 1
15 701 607.08 0.15 31 201.47 721 546 0.32 1
16 721 608.00 0.19 11 922.34 767 545 0.41 1
17 688 548.00 0.26 15 551.36 751 464 0.62 2
18 645 593.49 0.09 14 496.26 799 532 0.50 1
19 742 571.00 0.30 12 809.39 800 511 0.57 1
20 773 622.59 0.24 21 464.79 803 566 0.42 1

5. Conclusions and Future Work

In this paper, we have discussed several theoretical and empirical properties of the
TDTSP. Since the TDTSP is a generalization of the ATSP, many of the complexity-specific
theoretical results, such as NP-hardness and inapproximability, carry over to the TDTSP.

Unfortunately, several positive results regarding the ATSP are not retained in the
TDTSP. Specifically, the TDTSP remains inapproximable even if a generalized triangle
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inequality is satisfied. Furthermore, even simple relaxations, such as time-dependent trees,
cannot be used to determine combinatorial lower bounds on the TDTSP.

From a practitioner’s point of view, the increase in problem size poses significant
problems when trying to solve even moderate-sized instances of the TDTSP. The authors
of [15] conclude that there are challenging instances of the SDTSP with less than 100
vertices. While the results date back some years, the increase in computational complexity
is apparent even in the case of the SDTSP.

To be able to tackle the TDTSP, a sophisticated pricing routine is necessary. It is
apparent that generating columns according to time-dependent paths is superior to gener-
ating columns for individual arcs. More recent advances regarding specialized shortest
path variants facilitate the solution process by achieving improved dual bounds. Further
improvements in this area will likely benefit the TDTSP as well.

The connection between TDTSP and ATSP yields a variety of feasible classes of inequal-
ities which help to significantly improve dual bounds. Unfortunately, the generalizations
of SDTSP-type inequalities do not perform equally well in comparison. Objective value
propagation and primal heuristics decrease the gap even further. The primal heuristics
profit from the connection to the ATSP, significantly outperforming the heuristics built into
the solver itself.

We have focused on developing an algorithm capable of solving instances with fairly
arbitrary travel times. It may be worth investigating the performance on instances with
more regular travel time functions by conducting a computational study. Similarly, the
existing formulations can be extended to incorporate time windows, suggesting further
comparative experiments.
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Appendix A. Time-Dependent Spanning Trees

Relaxations play an important role in integer programming in general and the TSP
in particular. They provide lower bounds which can be used to obtain quality guarantees
for solutions. The prevalent relaxation of combinatorial problems formulated as integer
programs is given by their fractional relaxations. In several cases however, it is possible
to derive purely combinatorial relaxations. In case of the symmetric traveling salesman
problem, a popular combinatorial relaxation is given by one-trees [31]. A one-tree with
respect to a graph G = (V, E) with V = {1, . . . , n} consists of a spanning tree together
with an additional edge joining vertex s: = 1 to another vertex v ∈ V. Since every tour is a
one-tree, the one-tree of minimum cost provides a lower bound on the cost of a tour. The
computation of such a one-tree in the static case involves the computation of a minimum
spanning tree (MST), which can be carried out efficiently. The approach generalizes to the
ATSP, in which case the one-tree corresponds to an arborescence with root s together with
a single arc entering s from another vertex v.

An important question to ask is whether these approaches carry over to the time-
dependent case. We begin by generalizing the definition of spanning trees to the time-
dependent case. To this end, we assume throughout this subsection that D is bidirected,
corresponding to an undirected graph GD, and that the time-dependent cost function c is

https://github.com/chrhansk/time-dependent-tsp
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symmetric, i.e., cuv(θ) = cvu(θ) holds for all (u, v) ∈ A, θ ∈ Θ, making the cost function c
correspond to the undirected edges of GD. We consider a spanning tree T = (V, F) of GD.
For each vertex v ∈ V, there exists a unique (s, v)-path Pv in T, enabling us to define an
arrival time θarr

T (u) induced by T via Pu for each u ∈ V. Based on these arrival times we
define the following:

Definition A1. A time-dependent minimum spanning tree (TDMST) is a spanning tree T of GD
minimizing c(T), which is defined as

c(T) := ∑
{u,v}∈F

cuv(θ
arr
T (u)).

The corresponding optimization problem asks for the value of a TDMST for an instance
(GD, c, s). As was the case before, any tour becomes a spanning tree once we remove its
last arc, the arrival time of the resulting path at its target coinciding with the cost of the
tree. Consequently, the optimal value of the corresponding TDTSP instance is bounded
from below by the cost of any minimum spanning tree. Unfortunately, approximating the
TDMST is an NP-hard problem itself:

Theorem A1. There is no α-approximation algorithm for any α > 1 for the TDMST problem
unless P = NP .

Proof. Consider an instance of the 3SAT problem (see [29] (p. 391)), given in terms of a set
X: = {x1, . . . , xn} of Boolean variables and a set Z : = {Z1, . . . , Zm} of clauses, each clause
consisting of exactly three literals in X ∪̇X. We construct a suitable instance of the TDMST
problem using a number of components. First we define a component Ai for each variable
xi ∈ X. The component is shown in Figure A1a, the edges being annotated with their
(constant) travel times.

Aj

sj

tj

s

xj

0

2

0

1

Bi

xi1 xi2 xi3

vi1 vi2 vi3

wi1 wi2 wi3

(a) (b)

Figure A1. Gadgets used in the proof of Theorem A1. (a) A component which queries whether a
variable is set; (b) A component which determines whether a clause is satisfied.

We define a component Bi for each clause Zi ∈ Z . To this end, let xi1, xi2, xi3 denote
the variables whose literals appear in Zi and M ≥ 2n+ 6m+ 1. The edges in the component
have the following travel times:

1. The edges {wi1, wi2} and {wi2, wi3} have a constant travel time of 1.
2. The edge {vi1, wi1} has a travel time of

cvi1wi1(θ) :=

{
1 if θ ≤ 2, and
M otherwise.

The same holds true for the edges {vi2, wi2} and {vi3, wi3}.
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3. The travel time of the edge connecting xik and vik depends on whether xk or xk
appears in the clause Zj. In the former case the travel time is constantly 1, whereas in
the latter it is given by

cxikvik (θ) :=

{
0 if θ ≥ 2, and
2 otherwise.

The instance including the components, depicted in Figure A2, has a TDMST of cost
less than M if and only if the 3SAT instance is satisfiable:

s

A1 A2 An−1 An· · ·

B1 · · · Bm

Figure A2. The TDMST construction used to prove Theorem A1.

Consider a satisfying truth assignment of the 3SAT instance. For each variable xj set
to true we choose the path (s, sj, xj, tj) in component Aj. If the variable is set to false
we choose the path (s, sj, tj, xj) to be part of the spanning tree. Thus, the arrival time of
the tree at xj is 1 if xj is set to true and 2 otherwise. For each clause Zi we add the edges
between the vertices corresponding to its variables and their respective vi counterparts.
Since the clause is satisfied, the arrival time at one of vi1, vi2, or vi3 is at most 2, enabling us
to add the edges {vik, wik}, {wi1, wi2}, and {wi2, wi3} at a cost of 1 each. The total cost of
the resulting tree is at most 2n + 6m < M.

Conversely, consider a tree T with costs less than M. We first consider the (s, sj)-paths
in T for all j = 1, . . . , n. If this path does not contain {s, sj} itself, then it must start by
t traversing a variable gadget Aj′ for j′ 6= j continued by a clause gadget Bi, entering
via vik and leaving via vil . As was established above, the earliest arrival time at vik is 2,
implying that the time of arrival at wil is at least 4, resulting in a travel time of at least
M for the traversal of edge {wil , vil}, thereby contradicting the assumption of c(T) < M.
For the same reason, T must contain either the path (s, sj, xj) or (s, sj, tj, xj). Based on the
optimality of T, the tree must contain (s, sj, xj, tj) in the former case. We can therefore
identify the choice of paths with a variable assignment as we did above.

To see that the assignment is feasible, we note that for each clause Zi one of the edges
{vik, wik}, say {vi1, wi1}, is in T and directed away from vi1. Since c(T) < M, the travel
time of this edge must be less than M, implying that the arrival time of T at vi1 is at most 2.
If xi1 appears in Zj, then the arrival time at xi1 is 1, and the variable is set to true satisfying
Zi. If xi1 appears in Zj, then it follows that the arrival time at xi1 is 2, the variable is set to
false and clause Zi is satisfied as well.

Now assume the existence of an α-approximation for the TDMST problem. We con-
struct the instance introduced above for M := dα · (2n+ 6m)e and apply the approximation.
If the resulting tree has costs less than M, the 3SAT instance is satisfiable. Otherwise, the
optimal TDMST has costs at least M/α ≥ 2n + 6m, and the instance is not satisfiable.
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